TPLP 25 (4): 473-488, 2025. (© Siemens Aktiengesellschaft Oesterreich and the Author(s), 2025. 473
Published by Cambridge University Press. This is an Open Access article, distributed under

the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/

by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited.

d0i:10.1017/S147106842510029X

Smart Expansion Techniques for ASP-Based
Interactive Configuration®

LUCIA BALAZOVA and RICHARD COMPLOI-TAUPE
Siemens AG Osterreich, Vienna, Austria

(e-mail: richard.taupe@siemens.com)

SUSANA HAHN

University of Potsdam, Potsdam, Germany
Potassco Solutions, Werder (Havel), Germany

(e-mail: hahnmartinlu@uni-potsdam.de)

NICOLAS RUHLING
University of Potsdam, Potsdam, Germany
UP Transfer, Potsdam, Germany
(e-mail: nruehling@uni-potsdam.de)

GOTTFRIED SCHENNER
SIEMENS AG Osterreich, Austria

(e-mail: gottfried.schenner@siemens.com)

submitted 20 July 2025; revised 20 July 2025; accepted 27 July 2025

Abstract

Product configuration is a successful application of answer set programming (ASP). However,
challenges are still open for interactive systems to effectively guide users through the configura-
tion process. The aim of our work is to provide an ASP-based solver for interactive configuration
that can deal with large-scale industrial configuration problems and that supports intuitive user
interfaces (Uls) via an application programming interface (API). In this paper, we focus on
improving the performance of automatically completing a partial configuration. Our main contri-
bution enhances the classical incremental approach for multi-shot solving by four different smart
expansion functions. The core idea is to determine and add specific objects or associations to the
partial configuration by exploiting cautious and brave consequences before checking for the exis-
tence of a complete configuration with the current objects in each iteration. This approach limits
the number of costly unsatisfiability checks and reduces the search space, thereby improving
solving performance. In addition, we present a Ul that uses our API and is implemented in ASP.

KEYWORDS: answer set programming, product configuration, interactivity

* This research was partially supported by the Austrian Research Promotion Agency (FFG) under
the “Al for Green” program and by the German Federal Ministry for Economic Affairs and Energy
(BMWE) through the ZIM project grant KK5291307GR4.

()]

Check f
https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press Updates.

https://doi.org/10.1017/S147106842510029X
https://orcid.org/0000-0001-7639-1616
mailto:richard.taupe@siemens.com
https://orcid.org/0000-0003-2622-2632
mailto:hahnmartinlu@uni-potsdam.de
https://orcid.org/0000-0001-5157-6788
mailto:nruehling@uni-potsdam.de
mailto:gottfried.schenner@siemens.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S147106842510029X&domain=pdf
https://doi.org/10.1017/S147106842510029X

474 L. BaldzZovd et al.

1 Introduction

Configuration (Felfernig et al. 2014) has been one of the first successful applications
(Gebser et al. 2011b; Felfernig et al. 2017; Gengay et al. 2019) of answer set programming
(ASP; Gelfond and Kahl (2014); Lifschitz (2019)). Nonetheless, there are open challenges
for ASP-based configurators, one of them being interactive configuration.

Industrial configuration problems in large infrastructure projects may contain thou-
sands of components and hundreds of component types and are typically solved in
a step-wise manner by combining interactive actions with automatic solving of sub-
problems (Falkner et al. 2020). When using a grounding-based formalism like ASP, a
grounding bottleneck (Eiter et al. 2007) arises due to the large number of components.
Furthermore, the necessary domain size is not known beforehand and can vary signif-
icantly. Therefore, we require a way to dynamically introduce new components during
the configuration process.

In our previous work, we developed an application programming interface (API) to
satisfy basic requirements for interactive configuration (Falkner et al. 2020) based on
OOASP (Falkner et al. 2015) and using various features of clingo® (Gebser et al. 2019).
In this paper, we report on our recent advancements in developing an ASP-based domain-
independent interactive configuration platform. The new achievements, compared to
previously published reports (Comploi-Taupe et al. 2022, 2023), consist of dramatically
improved solving performance by using novel so-called smart expansion techniques and
the creation of a user interface (UI) prototype based on clinguin (Beiser et al. 2024).

The general idea of the smart expansion techniques is to infer as much knowledge
as possible from the current configuration state and to use this knowledge to reduce the
search space of the ASP solver and to limit costly unsatisfiability checks. This results from
the insight that in our earlier implementation, objects were added incrementally to the
configuration without any class restrictions or associations, which in turn led to a combi-
natorial explosion of the search space. For this purpose, we introduced four new functions:
ObjectNeeded, GlobalUpperBoundGap, GlobalLowerBoundGap, and AssociationPossible.
While the first three ones use intersections of possible solutions to determine objects that
are definitely needed in the configuration, the latter function provides possible associa-
tions between two objects with the intention of quickly estimating the minimal size of
a complete configuration. We demonstrate the working of the functions using our racks
example as known from earlier work.

The remainder of the paper is organized as follows: Section 2 presents background
on ASP, product configuration, and the OOASP framework, as well as our running
example and previous results regarding the interactive configurator. We then proceed
to present our novel contributions. Section 3 contains detailed explanations about the
four smart expansion functions and their implementation in our interactive configurator,
and Section 4 introduces our novel clinguin Ul Finally, Section 5 demonstrates the exper-
imental results of our new implementation, comparing its performance to the previous
version, and Section 6 concludes this paper.

L https://potassco.org/clingo/

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

Smart Expansion Techniques for ASP-Based Interactive Configuration 475

2 Background

2.1 Answer set programming

A logic program consists of rules of the form

Q13 ..-38m = Amils.--s2p,00t Apt1,...,00t A,.

where for 1 <4 <o, each a; is an atom of form p(ty,...,tx) and all t; are terms (vari-
ables, constant terms, or function terms). For 0 < m < n < o, atoms a; to a, are often
called head atoms, while a, 1 ; to a, and not a, 4 1 to not a, are also referred to as
positive and negative body literals, respectively. An expression is said to be ground if it
contains no variables. As usual, not denotes (default) negation. A rule is called a fact
if m=n=0=1, normal if m =1, and an integrity constraint if m =0. In what follows,
we deal with normal logic programs only, for which m is either 0 or 1. Semantically, a
logic program induces a set of stable models, being distinguished models of the program
determined by the stable models semantics (Gelfond and Lifschitz 1990).

To ease the use of ASP in practice, several extensions have been developed. Multi-shot
solving, which is one such extension, allows for solving continuously changing logic pro-
grams in an operative way. In clingo, this can be controlled via an API for implementing
reactive procedures that loop on grounding and solving while reacting, for instance, to
outside changes or previous solving results.

We want to highlight here the use of so-called assumptions and externals (Kaminski
et al. 2023). The former are added to the solving process and can be interpreted as
integrity constraints that force the answer sets to contain certain atoms without providing
evidence for them. The latter are specified by the #external directive and allow for
declaring atoms whose truth value can be set via the API. This provides the tools to
continuously assemble ground rules evolving at different stages of a reasoning process
and to change program behavior by manipulating the truth values of atoms.

2.2 Product configuration and OOASP

Product configuration as an activity produces the specification of an artifact that is
assembled from instances of given component types and that conforms to a given set
of constraints between those components. Component types can have attributes, thus
components can be parametrized. Furthermore, components are related via part-of, is-a,
or other relationships (Felfernig et al. 2014). Many configuration problems are dynamic,
meaning the number of necessary components for a solution is unknown in advance
(Falkner et al. 2016).

OOASP (Falkner et al. 2015, 2018) is an ASP-based framework to encode and reason
about object-oriented problems such as configuration problems. It defines a Domain
Description Language (DDL) specific to the domain of object-oriented models that can
be represented by a modeling language corresponding to a UML class diagram. OOASP-
DDL defines ASP predicates to encode models (classes, subclass relations, associations,
and attributes) and instantiations (instances, is-a relations, instance-level associations,
and attribute values). Furthermore, it provides a uniform way to encode constraints.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

476 L. BaldzZovd et al.

Table 1. OOASP-DDL predicates for the encoding of models

Predicate Description

ooasp_class(C) C is a class

ooasp_subclass (SubC, SupC) SubC is a subclass of SupC

ooasp_assoc(A,C1,C1Min,C1iMax, In association A, each instance of class C1

C2,C2Min, C2Max) is associated to C2Min-C2Max instances of class C2,
and each C2 instance to C1Min-C1Max C1 instances

ooasp_attr(C,A,T) A is an attribute of class C with type T

ooasp_attr_enum(C,A,D) D is an element of the domain of attribute A of class C

Table 2. OOASP-DDL predicates for the encoding of instantiations

Predicate Description

ooasp_isa(C,0) 0 is an object of class C
ooasp_associated(A,01,02) Object 01 is associated to object 02 in association A
ooasp_attr_value(A,0,V) The attribute A of object 0 has value V

Table 1 shows the OOASP-DDL predicates for the encoding of models, and Table 2
shows the OOASP-DDL predicates for the encoding of instantiations.?

OOASP constraints are defined using the predicate ooasp_cv (where “cv” stands for
“constraint violation”). Rules with head atoms of this predicate are used instead of ASP
constraints to enable configurations to be checked, that is, to derive which constraints
are violated in a given configuration. To enforce a configuration to be consistent, the
ASP constraint: :~ ooasp_cv(C,0,M,L) is added, forbidding any constraint violations.
An ooasp_cv atom contains four terms: a unique constraint identifier C, the identifier of
the faulty object 0, a string containing a message M describing the issue, and a list L of
additional explanatory terms.

OOASP distinguishes integrity constraints from domain-specific constraints. The for-
mer are defined in the OOASP framework itself and refer to issues such as invalid values
and violations of association cardinalities. Domain-specific constraints can be defined by
a user of OOASP as additional rules that derive ooasp_cv atoms.

An instantiation (configuration) defined by the predicates from Table 2 is complete
if every object is an instance of an instantiable class, and it is valid (consistent) if no
constraint violations can be derived from it. We follow the convention that only leaf
classes (i.e., classes that have no subclasses) are instantiable, so every object must be an
instance of a leaf class in a complete configuration. Finding a complete and valid config-
uration is usually an interactive task, iteratively involving user interactions (decisions)
and automatic reasoning by a solver, for example, an ASP solver (Falkner et al. 2020).

The goal of our work is to support interactive configuration in a framework based on
OOASP.

2 We here present a version of OOASP-DDL that has evolved from the original definition (Falkner et al.
2015) and that has also been slightly simplified for this paper.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

Smart Expansion Techniques for ASP-Based Interactive Configuration 477

eleres_modiles [Jﬁ
Elcmenth] Elcment| Elementl) [__Frame | P RackSingle RackDoubic
] [J [] []
1.0
1.4
Moduicf ¢ franse_odules
[Maduterv] [Maduiev] [Miduten] [Moduieinn
[J [] [] [J -

Knowledge Base racks_v1

Fig. 1. Class diagram for the racks knowledge base generated by clingraph.

2.3 Running example

We use an extension of the typical hardware racks configuration problem (Falkner et al.
2015) as running example. The UML class diagram (Figure 1) shows all concepts and
relations of the racks knowledge base. Additionally, it includes the following domain-
specific constraints:

C1. An ElementA/B/C/D requires exactly 1/2/3/4 objects of type Modulel /II/III/TV
C2. Instances of ModuleI/II/III/IV must be connected to exactly one Element

C3. A RackSingle/RackDouble has exactly 4/8 Frames

C4. A Frame containing a Modulell must also contain exactly one ModuleV

This example captures the essence of a typical configuration knowledge base in an
industrial setting. Of course, real-life industrial knowledge bases are much larger (>100
classes, associations, attributes). Another property of these knowledge bases is that the
number of objects required for a solution is not known beforehand.

2.4 Interactive configurator

In our previous work (Comploi-Taupe et al. 2023),> we have identified and implemented
eight distinct interactive tasks for product configuration. We have also provided an API
as well as a Ul implemented with ¢pywidgets and using clingraph to visualize the model
and the configuration graph. The interactive configurator presented in this paper enables
users to build a complete configuration incrementally based on the OOASP framework,
by combining user actions with automatic solving. The implementation takes advantage
of clingo’s multi-shot capabilities (Gebser et al. 2019), ensuring that rules are grounded
dynamically as the configuration evolves. This approach avoids the need for re-grounding
and utilizes learned constraints.

The system allows users to carry out edition tasks (T1-T4), which amount to set-
ting the type of existing objects, adding or removing associations, setting values for
attributes, and adding new objects. Additionally, three key reasoning tasks are inte-
grated into the system: task TH generates the configuration using choice rules, task T6
checks if the configuration violates any constraints, and task T7 provides the user with
available edit options through brave reasoning. Tasks T6 and T7 employ two externals,

3 Source code for this version can be found in https://github.com/siemens/OOASP /tree/v1.0.0

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

478 L. BaldzZovd et al.

namely, check_permanent_cv and check_potential_cv, which help manage constraint
violations. The potential violations are those that can be fixed later in the process, while
permanent violations cannot be resolved. Finally, task T8 encapsulates the overall pro-
cess, where a partial configuration (P) is extended incrementally into a complete and
consistent one (C), by adding new objects until a complete and consistent configuration
is found. This task was identified as the most expensive one in terms of performance, as
it requires the solver to check for the existence of C with the current objects leading to
multiple costly unsatisfiability checks before finding a solution.

3 Improved interactive configuration

In this section, we outline the new contributions that build upon the work presented by
Comploi-Taupe et al. (2023) and whose main goal is to improve the performance and
usability of the interactive configurator.

Let us first provide a novel formalization of task T8, which will be the focus of our
improvements.

Definition 1.

A configuration problem is defined by a tuple (C, AN, A, AtN, At, D, O, sat), where
C is the set of instantiable classes, AN is a set of unique association names, A: AN —
C x C is a total function that defines the involved classes for each association, AtN is a
set of attribute names, At C C x AtN is the set of attributes, D is the universal domain
of attribute values, O is the (possibly infinite) set of potentially usable objects, and sat
is a function that maps a partial configuration P as defined below to the value T iff P
satisfies all the constraints imposed by the configuration problem.*

Definition 2.

A (partial) configuration P of a configuration problem as defined above is defined
by a tuple (Op, instanceof p, assocsp, valuesp), where Op C O is the set of instantiated
objects, instanceof p: O — C is a partial function mapping instantiated objects to their
classes, assocsp : AN — 2907 %07 s g function defining the instantiated associations, and
valuesp : At x O — D is a partial function mapping attributes to their values.

A configuration is complete if every object is an instance of an instantiable class (i.e.,
the function instanceof is total) and every attribute has a value (i.e., for all at = (¢, a) €
At and all 0 € Op where instanceof p(0) = ¢, we get that valuesp(at, 0) has a value), and
it is consistent if the constraints are satisfied (i.e., sat(P)=T).

The latter condition also enforces the lower bounds of all associations to be satisfied,
and constraints may restrict the domains of attributes.

Task T8, extending a partial configuration into a complete and consistent one, can
then be formally defined as follows: An incremental extension of a partial configuration
to a complete and consistent one is a sequence of (partial) configurations (P, ..., P,),
where for each 1 <7 < n, we get that P;;1 is a proper extension of P;; that is, it holds that
Pi # Pit1, Op, € Op, ., instanceof p, C instanceof p, _, , valuesp, € valuesp, ,,, and for all

4 The detailed way how to define constraints is abstracted away here. Constraints include integrity
constraints as well as domain-specific constraints as described in Section 2.2.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

Smart Expansion Techniques for ASP-Based Interactive Configuration 479

an € AN : assocsp,(an) C assocsp, ., (an). Furthermore, the configuration P, is complete
and consistent as defined above.

Our main contribution in this paper is the introduction of so-called smart expansion
functions. For this purpose, we present four different functions that focus on improving
the performance of task T8 by reducing the search space of the configuration problem.
In the most basic implementation of task T8, objects are added incrementally to the
configuration without any class restrictions or associations, leading to a combinatorial
explosion of the search space. To mitigate this, we inspected new techniques that allow
us to use existing information to infer additional knowledge about the required objects
while also reducing the number of unsatisfiability checks.

We enhanced the usability of the system by extending the OOASP-DDL with
the concept of association specializations (Taupe et al. 2016). This concept mir-
rors the idea of subclassing in OOASP but applies it to associations. With this
extension, users can define associations specific to subclasses that override those of
their parent classes. Therefore, domain-specific constraints C1-C3 from Section 2.3
can now be integrated into the knowledge base directly. For instance, by adding
the facts ooasp_assoc_specialization(element_modulesl, element_modules) and
ooasp_assoc(element_modulesl, elementA, 1, 1, moduleI, 1, 1), we introduce a
specialized version of the element_modules association, namely element_modulesli,
which enforces that each elementA must be associated with exactly one modulel, and
vice versa. However, constraint C4 cannot be expressed in this way and remains directly
implemented in the ASP encoding. Overall, this extension increases the expressiveness of
the language, reduces the need for domain-specific constraints, and enables the encoding
to leverage this structural information during solving, as well as for the inferences in the
smart functions.

Additionally, we also improved the performance of the system by removing the use of
externals for user input and replacing them with assumptions, which was possible thanks
to the reframing of task T6 (checking if P is complete or if it violates any constraints).
Originally, this task needed to generate facts about which constraints were violated with-
out solving the configuration. For this, it was necessary to disable all choice rules to avoid
fixing the violations. However, since assumptions can be considered as constraints, using
them to represent user input is only possible if the program has rules to obtain the
assumed atoms, which requires the choice rules. We were able to refocus this in our new
version by restricting feedback about constraint violations to use the smart functions
described below. This change omits certain feedback details, such as missing attributes,
but still provides information about missing objects and associations, which is arguably
more relevant, at the benefit of removing the complexity introduced by externals.

We dedicate the remainder of this section to the illustration of our implementation of
task T8 followed by a detailed explanation of the four smart expansion functions.

3.1 Smart functions

As mentioned in Section 2.4, our basic approach to solving the configuration problem
incrementally consisted in adding objects to the configuration one by one and checking
for unsatisfiability after each addition. Our novel contribution enhances this multi-shot

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

480 L. BaldzZovd et al.

approach by adding four different smart expansion functions. The idea is that before
checking for the existence of C with the current (grounded) objects, we apply the smart
expansion functions, which determine and add necessary specific objects or associations
to P. This postpones costly unsatisfiability checks to the end of the process and thereby
limits their number to a minimum. As a consequence, satisfiable instances might be
processed by the smart expansion functions, but since they already meet the constraints,
no new objects will be added. The overhead of this additional computation is minimal
compared to the cost of checking unsatisfiability after adding each object.

The entire process is outlined in Algorithm 1, which takes a partial configuration P
and iterates until it is extended into a complete configuration. It first sets the external
check_potential_cv to false, allowing the smart expansion functions to analyze the
current configuration. Then, it iterates over the smart functions, which are responsible
for adding new objects or associations to the partial configuration. Selection and order of
smart functions can be customized. If any of the functions add new objects or associations,
the algorithm starts again with the first smart function. Once P can’t be extended further
by the smart functions, the external check_potential_cv is set to true, and the solver
is called to check for unsatisfiability. If the configuration is still unsatisfiable, it means
that the current set of objects is insufficient to satisfy the constraints and that the
smart functions were not able to detect this. In this case, the algorithm adds a new
object without a fixed type to the configuration. Throughout this process, the program
is grounded incrementally whenever a new object is added, either by the smart functions
or by the algorithm itself.

Algorithm 1 Smart Incremental Solving

Input: Partial configuration P
1 done «+ False;
2 while not done do

3 Set external check_potential_cv to False;
4 foreach f € smart_functions do

5 config_was_extended + f(P);

6 if config was_extended then

7 L goto line 3;

®

Set external check_potential_cv to True;
9 done + Solve();

10 if not done then

11 L Add abstract object;

The smart expansion functions exploit knowledge about the configuration model using
auxiliary predicates to gather relevant information about the current configuration state.
These atoms are then used to determine necessary objects and associations by calculating
cautious and brave consequences (intersection and union of stable models, respectively).

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

Smart Expansion Techniques for ASP-Based Interactive Configuration 481

To ensure a satisfiable answer that provides this information, we ignore potential con-
straints by setting the external check_potential_cv to false, while the permanent
constraints remain active, since we want to discard anything that cannot be fixed by
further interaction with the system.

We now proceed to present each smart expansion function in detail. The encodings
presented here are simplified versions that omit the additional argument used for incre-
mentally grounded objects. For the complete encodings, we refer the reader to the source
code.®

3.1.1 ObjectNeeded

The first smart expansion function detects when additional objects of a specific class are
required, creates them, and associates them with an existing object.

To illustrate the workings of the function, we will consider the following example in
the remainder of this section: The input partial configuration consists of one Rack r and
one Frame f without associations. The model (Figure 1) specifies that a Rack must be
associated with at least four Frames. This means that even if r gets associated with f,
at least three more Frames must be added to satisfy the requirement.

This information is encoded using atoms of the form assoc_needs_object
(ID,A,X,C,DIR), as shown in Listing 1. This predicate indicates that the object ID
requires at least X objects of class C, associated through A in the direction DIR. The rule
relies on the predicate 1b_violation, which detects violations of the lower bound for
association A, where the required number of objects is CMIN and the current number is
N. This violation is then used in the head of the rule to determine how many additional
objects are needed by computing the range from 1 to the missing amount, specifically
CMIN-N.

1 assoc_needs_object(ID,A,1..CMIN-N,C,D) :-
2 lb_violation(ID, _, (A,CMIN,N,C,D)).

Listing. 1. Encoding to obtain the assoc_needs_object/6 predicate.

The smart function analyzes these atoms within the cautious consequences to deter-
mine the necessary objects and associations. Since these atoms appear in the cautious
consequences, they hold true in all models, indicating that the constraints cannot be sat-
isfied with the current set of objects. In our example, this analysis leads to the conclusion
that at least three additional Frames must be associated with r (identified by ID 1), as
captured by the following target atoms:

1 assoc_needs_object(l,rack_frames,1l,frame,1),
2 assoc_needs_object(l,rack_frames,2,frame,1),
3 assoc_needs_object(l,rack_frames,3,frame,1).

We employ multiple atoms under the concept of “at least” and use model intersec-
tions to eliminate target atoms from models where possible associations with existing
objects were not considered. In our example, since potential constraint violations are not
enforced, there exists a model in which r and f are not associated, which obtains target
atoms for X € {1, 2, 3,4}. However, there is another model where r and f are associated,

5 https://github.com /siemens/OOASP /tree/v2.0.0

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

482 L. BaldzZovd et al.

so the atom for X =4 is absent. As a result, it is discarded during the intersection process.
This technique significantly improves performance compared to our previous attempts,
where a single atom and an optimization statement were used to minimize constraint
violations.

As a result, the smart function then analyzes the target atoms, determines the max-
imum value of X, and grounds three additional Frames, directly associating them with
object r through the rack_frames association.

3.1.2 GlobalUpperBoundGap

This smart function calculates required objects using upper bounds by summing up the
number of existing instances of a class and verifying whether the upper bounds can be
satisfied globally. This is implemented in the encoding in Listing 2, where the presence
of the atom global_ub_gap(C,N) in the cautious consequences signifies the need to add
at least N objects of type C.

This function is limited to “target associations,” in which one side involves a single
object. These associations are collected using the predicate is_target_assoc/2, which is
incorporated into the rule. The predicate ooasp_assoc_limit/6 is then used to retrieve
the upper bound for the association from the model. Next, the #count aggregate is
applied to count the number of objects for each class within the association. The final line
ensures that the upper bound exceeds the number of objects already in the configuration
and performs the necessary calculation to determine how many additional objects are
needed.

For example, a partial configuration with one Rack and nine Frames includes the atom
global_ub_gap(rack,1). This is calculated from the fact that the upper bound for
Racks in the rack_frames association is 8, while the number of Frames is 9. As a result,
the current Racks are insufficient to associate with all the Frames. In this particular case,
the smart function ObjectNeeded has no effect, as there exists a configuration where each
Frame is associated with the Rack, meaning the intersection of violations is empty.

It is important to note that, since this is a global calculation, no instantiated objects
are considered, and therefore, no specific associations can be added.

1 global_ub_gap(C2,1..((NUM1 + MAX - 1) / MAX)-NUM2) :-
2 is_target_assoc(A,DIR),

3 ooasp_-assoc_limit (A,max,DIR2,C2,MAX,C1),

4 DIR2!=DIR,
5
6
7

#count { ID:ooasp_isa(C1,ID) }
#count { ID:ooasp-_isa(C2,ID) }
NUM2 * MAX < NUM1.

Listing. 2. Encoding to obtain the global_ub_gap/2 predicate.

NUM1,
NUM2,

8.1.8 GlobalLowerBoundGap

This function operates similarly to the GlobalUpperBoundGap function, but for lower
bounds. In this case, atoms global_lb_gap(C,N) in the cautious consequences indicate
the need to add at least N objects of type C.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

Smart Expansion Techniques for ASP-Based Interactive Configuration 483

For example, consider a scenario with 2 Racks and 4 Frames. Although locally, the
Racks and Frames appear to have enough objects to satisfy the lower bound of the
rack_frames association, the corresponding rule computes that the global lower bound
for the two Racks is 8 Frames. Therefore, the atom global_1b_gap(frame, 4) indicates
the need to ground at least four additional Frames to fulfill this gap.

For brevity, we omit the full encoding, which is quite similar to Listing 2.

8.1.4 AssociationPossible

The final smart function reduces the search space by identifying viable associations
to complete the configuration through brave consequences. The inclusion of the atom
assoc_possible(A,ID1,ID2) in the brave consequences signifies that the association A
between objects ID1 and ID2 can (possibly) be added. These atoms are calculated in
Listing 3.

The rule uses the predicate from the smart function ObjectNeeded to verify
that both objects ID1 and ID2 require an association. Additionally, the predicate
potential_assoc/5 ensures that it is indeed possible to associate the objects. Finally,
we confirm that the classes of the objects are already set, preventing the imposition of a
class through the association.

While this approach may affect the completeness of the solution by limiting available
options, it significantly speeds up the process of finding or estimating the minimal domain
size. We can see this improvement in an example with 17 Frames, where adding these
associations reduces the search space.

1 assoc_possible(A,ID1,ID2) :-

2 assoc _needs _object (ID1,A,1, _,_),
3 assoc_needs _object (ID2,A,1, _,),
4 potential _assoc(A,ID1,ID2,C1,C2),
5 user (ooasp_isa(C1,ID1)),

6 user (coasp_isa(C2,ID2)).

Listing. 3. Encoding to obtain the assoc_possible/3 predicate.

4 User interface with clinguin

We have developed a new prototypical Ul for smart interactive configuration, replacing
the previous ipywidgets-based implementation by clinguin (Beiser et al. 2024). clinguin is
a system for generating Uls in ASP. To achieve this, clinguin employs a set of dedicated
predicates to define layout, style, and functionality of the interface, while handling user-
triggered events. This streamlined design simplifies the specification of continuous user
interactions within an ASP system, specifically clingo.

The built-in capacities of clinguin to add user input as assumptions, and to provide
options and inferences via brave and cautious reasoning, allowed us to directly integrate
tasks T1-T3, T5, and T7 without the need for additional code. Our prototype enhances
usability with features such as saving/loading configurations and a clear button, while
utilizing clinguin’s integration with clingraph (Hahn et al. 2024) to visualize and interact
with the configuration graph directly. A snapshot of the Ul is shown in Figure 2.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

484 L. BaldzZovd et al.

& 00ASP 9g Find Incrementally | & Save . Lcad — o
RackDouble (2] ElementA (7)
RackDoubde ElementA
Lk Bamesh = =
| T (11 Tack_tameil) = *
EI;E;‘:I:BIGI F',;‘r':';g" .E'I';Tnemé / | Elgmm!] FE’;‘;;GJ
frame_position =8 S ‘ frame_pasition =4
sarmae_otuien T - :
szt 1 a—— T | MM'_M»"{ trame_mocus aﬂ_w.[
Modulell (4) 1 Modulel (12)
Medulell Madulelll {10) Module! (3) Modulel
| B Sre pocues Modulell Module
Domain Size: 12
Configuration Size: 11 Modulel (12) Attribute Values Ohbject Associations
A § Viodule!
Add object
object - i

Fig. 2. Snapshot of prototype Ul in clinguin.

5 Experimental results

The performance benchmarks were carried out for task T8 (completing a partial configu-
ration) for 20 problem instances of increasing size and complexity.’ Each of the instances
is defined by a partial configuration containing the same number n € 1..20 of objects
of each Element subtype. The complete configuration obtained for the largest problem
instance contains 325 objects. The performance testing was done on different permuta-
tions of the smart functions, with the resource consumption tracked by the runsolver tool
(Roussel 2011). The testing was performed on a virtual machine with 32 GB RAM limit.
Measures were taken to minimize external influence on the performance of the solver, for
example, by disabling swapping.

Figures 3 and 4 visualize our main experimental results in terms of solving performance.
We compare the old version of our implementation (Comploi-Taupe et al. 2023) with
two different setups of the newest version. The curves in the figure represent the best-
performing smart function permutations, with and without constraint C4 described in
Section 2.3, in comparison to the old version. The smart expansion functions provide
a significant improvement in terms of performance compared to the previous version in
our benchmarks. The decrease in runtime and memory consumption allows the system
to complete much more complex partial configurations than the previous version.

Constraints that cannot be expressed in the OOASP language (such as constraint
C4), however, cannot always benefit from the smart functions. This is because the smart
functions are not able to leverage the knowledge encoded by such constraints to derive
missing objects or associations. The jumps in the runtimes in Figure 3 can be explained

6 The benchmarking script is available as benchmarks/ooasp_bench.sh in https://github.com /siemens/
OOASP /tree/v2.0.0.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://github.com/siemens/OOASP/tree/v2.0.0
https://github.com/siemens/OOASP/tree/v2.0.0
https://doi.org/10.1017/S147106842510029X

Smart Expansion Techniques for ASP-Based Interactive Configuration

485
600 1{ [ROREY . e e B]
s ! 1
| !
500 | i
\ !
— 400 -
- 1 1
L
8 300 doied
o [
E [
=200 Vo
L]
Vi . .
100 \",' --*-- with constraint C4
X —e— without constraint C4
0 ~-m- old (without constraint C4)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
number of objects in the input partial configuration
Fig. 3. Runtime (time-out: 600 s).
--%-- with constraint C4 L
20 . . Ko T e -,
= —e— without constraint C4 QURS
G ~m- old (without constraint C4) L .
Nt e | |
c
S 15 L
a
£
3
\2 a
S 10 Y
el n’
e}
< 5 S =
3 L e
o o
w
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20
number of objects in the input partial configuration

Fig. 4. Peak memory consumption.

by this fact and by observing that there are certain input (partial) configurations where
the system is forced to derive generic objects (without any specific type) as the smart
functions are not able to derive the specific types of needed objects.

Given the nature of the smart functions, there can be a huge disparity in the solver
performance depending on the chosen order of application. Thus, the usage of smart
functions does not immediately guarantee better performance. This variability, however,
allows the combinations and the order of the smart functions to be tailored to a particu-
lar problem, for example, in portfolio solving (cf. Gebser et al. 2011a). We experimented
with various permutations of at least three of the smart functions. The results show that
the order of the smart functions has a significant impact on the performance such that
some permutations can solve an instance in a matter of seconds, while others time out.
On average, permutations of all four smart functions starting with AssociationPossible

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842510029X

486 L. BaldzZovd et al.

provided the best results. In the results visualized in Figures 3 and 4, the permutation
(AssociationPossible, ObjectNeeded, GlobalUpperBoundGap, GlobalLowerBoundGap)
was used as it has been shown to have the best performance on the defined benchmarks.

6 Conclusions

When dealing with industrial configuration problems, the favored approach is often an
interactive one, where the user is solving the problem in a step-wise manner while being
guided through the configuration process. As these kinds of problems typically contain
thousands of components, solving performance and the design of a clear, intuitive user
experience are key. Our work addresses both of these issues by improving the perfor-
mance of our existing interactive configurator (Comploi-Taupe et al. 2022, 2023) and
by developing a new prototypical Ul based on clinguin. While the former is achieved by
introducing four new smart expansion functions to the ASP-based configuration API, the
latter simplifies the specification of continuous user interactions within an ASP system,
thereby facilitating future development of a user-friendly UI. The four smart expansion
functions use cautious and brave reasoning to derive knowledge about the current config-
uration and to reduce the search space of the ASP solver. We demonstrated the working
of the functions using our racks example as known from earlier work and compared the
performance of the new functions with the old ones. Our experimental results show that
the new functions are able to significantly reduce solving time and memory usage of the
ASP solver clingo.

Future work should explore ways to generalize the smart functions such that they can
be applied to configuration problems containing constraints not specified directly in the
OOASP framework. We also plan to extend the UI prototype to support more complex
configuration problems and improve the user experience.

Competing interests

The authors declare none.

References

BEISER, A., HAHN, S. AND ScuHAUB, T. 2024. ASP-driven user—interaction with clinguin. In
Technical Communications of the Fortieth International Conference on Logic Programming
(ICLP’24), P. CABALAR and T. SWIFT, Eds. EPTCS, 215-228.

CoMPLOI-TAUPE, R., FALKNER, A., HAHN, S., ScHAUB, T. AND SCHENNER, G. 2023.
Interactive configuration with ASP multi-shot solving. In Proceedings of the Twenty-
fifth International Configuration Workshop (CONEF’23), J. Horcas, J. GALINDO, R.
CoMPLOI-TAUPE and L. FUENTES, Eds. Vol. 3509, 95-103, CEUR Workshop Proceedings.
https://ceur-ws.org/Vol-3509/paperl3.pdf.

CoMPLOI-TAUPE, R., HAHN, S., SCHENNER, G. AND ScHAUB, T. 2022. Challenges of develop-
ing an API for interactive configuration using ASP. In Proceedings of the Fifth Workshop on
Trends and Applications of Answer Set Programming (TAASP’22), 2022, A. TARZARIOL,
F. LAFERRIERE and Z. SARIBATUR, Eds. http://www.kr.tuwien.ac.at/events/taasp22/
papers/TAASP_2022_paper_5.pdf.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

http://www.kr.tuwien.ac.at/events/taasp22/papers/TAASP_2022_paper_5.pdf
http://www.kr.tuwien.ac.at/events/taasp22/papers/TAASP_2022_paper_5.pdf
https://doi.org/10.1017/S147106842510029X

Smart Expansion Techniques for ASP-Based Interactive Configuration 487

E1TeRr, T., FABER, W., FINK, M. AND WOLTRAN, S. 2007. Complexity results for answer set
programming with bounded predicate arities and implications. Annals of Mathematics and
Artificial Intelligence 51, 2-4, 123-165. https://doi.org/10.1007/s10472-008-9086-5.

FALKNER, A., FRIEDRICH, G., HASELBOCK, A., SCHENNER, G. AND SCHREINER, H. 2016.
Twenty-five years of successful application of constraint technologies at Siemens. AI Magazine
37, 4, 67-80. https://doi.org/10.1609/aimag.v37i4.2688.

FALKNER, A., FrIEDRICH, G., SCHEKOTIHIN, K., TAaupe, R. AND TEeppraN, E. 2018.
Industrial applications of answer set programming. Kinstliche Intelligenz 32, 2-3, 165-176.
https://doi.org/10.1007/s13218-018-0548-6.

FALKNER, A., HASELBOCK, A., KRAMES, G., SCHENNER, G., SCHREINER, H. AND TAUPE, R.
2020. Solver requirements for interactive configuration. Journal of Universal Computer Science
26, 3, 343-373. https://doi.org/10.3897/jucs.2020.019.

FALKNER, A., RYABOKON, A., SCHENNER, G. AND SHCHEKOTYKHIN, K. 2015. OOASP: con-
necting object-oriented and logic programming, Proceedings of the Thirteenth International
Conference On Logic Programming and Nonmonotonic Reasoning (LPNMR’15), F. CALIMERI,
G. IANNT and M. TRUSzCZYNSKI, Eds. Vol. 9345 of Lecture Notes in Artificial Intelligence,
Springer-Verlag, 332-345. https://doi.org/10.1007/978-3-319-23264-5_28.

FELFERNIG, A., FALKNER, A., Atas, M., ErDENIz, S., Uran, C. AND Azzoni, P. 2017.
ASP-based knowledge representations for IoT configuration scenarios. In Proceedings of
the Nineteenth International Configuration Workshop (CONF’17), L. ZHANG and A. HAAG,
Eds. IESEG School of Management, 62-67. https://www.ieseg.fr/wp-content/uploads/
2017/01/Proceedgins_Final.pdf#page=62.

FELFERNIG, A., HoTZ, L., BAGLEY, C. AND TIIHONEN, J. 2014. Knowledge-Based Configuration:
From Research to Business Cases. Elsevier/Morgan Kaufmann. https://doi.org/10.1016/
C2011-0-69705-4.

GEBSER, M., KAMINSKI, R., KAUFMANN, B. AND ScHAUB, T. 2019. Multi-shot ASP solving with
clingo. Theory and Practice of Logic Programming 19, 1, 27-82. https://doi.org/10.1017/
S51471068418000054.

GEBSER, M., KAMINSKI, R., KAUFMANN, B.; SCHAUB, T., SCHNEIDER, M. AND ZILLER, S.
2011a. A portfolio solver for answer set programming: Preliminary report. In Proceedings of
the Eleventh International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’11), J. DELGRANDE and W. FABER, Eds. Vol. 6645 of Lecture Notes in Artificial
Intelligence, Springer-Verlag, 352-357. https://doi.org/10.1007/978-3-642-20895-9_40.

GEBSER, M., KAMINSKI, R. AND ScHAUB, T. 2011b. aspcud: A Linux package configuration tool
based on answer set programming. In Proceedings of the Second International Workshop on
Logics for Component Configuration (LoCoCo’11), C. DRESCHER, I. LYNCE and R. TREINEN,
Eds. Vol. 65 of Electronic Proceedings in Theoretical Computer Science (EPTCS), 12-25.
https://doi.org/10.4204/eptcs.65.2.

GELFOND, M. AND KAHL, Y. 2014. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press.
GELFOND, M. AND LirscHITZ, V. 1990. Logic programs with classical negation. In Proceedings
of the Seventh International Conference on Logic Programming (ICLP’90), D. WARREN and

P. Szerep1, Eds. MIT Press, 579-597.

GENGAY, E., SCHULLER, P. AND ERDEM, E. 2019. Applications of non-monotonic reasoning
to automotive product configuration using answer set programming. Journal of Intelligent
Manufacturing 30, 1407-1422. https://doi.org/10.1007/s10845-017-1333-3.

HAHN, S., SABUNcU, O., ScHAUB, T. AND StToLZMANN, T. 2024. Clingraph: A system
for ASP-based visualization. Theory and Practice of Logic Programming 24, 3, 533-559.
https://doi.org/10.1017/5147106842400005X.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://www.ieseg.fr/wp-content/uploads/2017/01/Proceedgins_Final.pdf#page=62
https://www.ieseg.fr/wp-content/uploads/2017/01/Proceedgins_Final.pdf#page=62
https://doi.org/10.1016/C2011-0-69705-4
https://doi.org/10.1016/C2011-0-69705-4
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S147106842510029X

488 L. BaldzZovd et al.

Kaminski, R., RoMERO, J., ScHAUB, T. AND WaNko, P. 2023. How to build your
own ASP-based system?!. Theory and Practice of Logic Programming 23, 1, 299-361.
https://doi.org/10.1017/51471068421000508.

LirscHITZ, V. 2019. Answer Set Programming. Springer-Verlag. https://doi.org/10.1007/
978-3-030-24658-7.

RousseL, O. 2011. Controlling a solver execution with the runsolver tool. Journal on
Satisfiability, Boolean Modeling and Computation 7, 4, 139-144. https://doi.org/10.3233/
SAT190083.

TAUPE, R., FALKNER, A. A. AND SCHENNER, G. 2016. Deriving tighter component cardinality
bounds for product configuration. In 18th International Configuration Workshop, 2016. ISBN
979-10-91526-04-3. http://cp2016.adcp.org/program/workshops/CWS-2016-Proceedings.
pdf#section*.8.

https://doi.org/10.1017/5147106842510029X Published online by Cambridge University Press

https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.3233/SAT190083
https://doi.org/10.3233/SAT190083
http://cp2016.a4cp.org/program/workshops/CWS-2016-Proceedings.pdf#section*.8
http://cp2016.a4cp.org/program/workshops/CWS-2016-Proceedings.pdf#section*.8
https://doi.org/10.1017/S147106842510029X

	Introduction
	Background
	Answer set programming
	Product configuration and OOASP
	Running example
	Interactive configurator

	Improved interactive configuration
	Smart functions
	ObjectNeeded
	GlobalUpperBoundGap
	GlobalLowerBoundGap
	AssociationPossible

	User interface with clinguin
	Experimental results
	Conclusions
	References

