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1. Introduction

Motivated by applications to dielectric breakdown and polycrystal plasticity, the study
of the asymptotic behaviour of power-law functionals has been the subject of increased
interest during the last decade. In the context of (first-failure) dielectric breakdown for
composite materials made of two isotropic phases, Garroni et al . [14] have introduced
natural variational principles that provide a rigorous justification, via De Giorgi’s Γ -
convergence [10, 11], of the classical dielectric breakdown model as a limiting case of
power-law models, and suggest a new non-degenerate variational principle in L∞ that
can be used to efficiently characterize the effective yield set. The Γ -convergence results
in [14] have been extended [4,5] to the framework of A-quasiconvexity, which allows for
more general linear partial differential equation constraints on the underlying fields. The
analysis in [4] leads to variational characterizations of the yield set in the framework
of electrical resistivity, where one works with divergence-free underlying fields, while [5]
deals with applications to models of antiplane shear and plane stress plasticity. These
results have recently been extended to the setting of power-law functionals defined on
variable exponent Sobolev spaces for curl-free fields (see [3]) as well as for the general
case of fields that are subject to constant rank differential constraints [6].
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The main goal of this paper is to study whether Γ -convergence results in the spirit
of Garroni et al . [14] can be obtained in the very general framework of Orlicz–Sobolev
spaces. To this aim, we analyse the asymptotic behaviour of several classes of inhomo-
geneous functionals involving energy densities that are defined either in terms of Young
functions Φn (see Theorem 3.2 in § 3 of the paper) or in terms of the Orlicz norms associ-
ated with these functions (Theorems 3.3 and 3.4 in § 3). In the particular case where the
Young functions are of power-law-type Φn(t) = tn/n, Theorem 3.2 allows us to recover
the traditional dielectric breakdown model discussed in [14] (see also [16]), while the
Γ -limit obtained in Theorem 3.3 suggests an alternative derivation of the new varia-
tional principle proposed by Garroni et al . as a limit of variational principles involving
the Orlicz norm. Our next Γ -convergence result, Theorem 3.4, shows that in the setting
of conductivity, even if one considers nonlinear materials whose elastic energies are char-
acterized by a combination of the two previous types of energies (which type of energy is
activated depends on the magnitude of the Orlicz norm of the electric field), the predicted
limiting material behaviour coincides again with the one in [14].

Overall, our results indicate that widely accepted models of dielectric breakdown can
be justified as limiting cases of much more flexible models. They should be viewed in the
context of the recent literature (see, for example, [4,6] and references therein) concerned
with the derivation and analysis of a variety of models in the more general setting of
polycrystal plasticity starting from appropriate power-law and related models. Further-
more, understanding the asymptotic behaviour of inhomogeneous functionals satisfying
non-standard growth conditions is also of independent interest, and we expect that our
results will find further applications in other areas, such as electrorheological fluids or
image processing, where these types of functionals play a key role in accurately describing
the underlying physical phenomena.

The layout of the paper is as follows: in § 2 we briefly describe some basic properties of
Orlicz and Orlicz–Sobolev spaces; our Γ -convergence results, Theorems 3.2, 3.3 and 3.4,
are stated in § 3 of the paper; the remaining sections are devoted to the proofs of our
main results, together with a number of remarks and auxiliary results.

2. Orlicz–Sobolev spaces

In this section we provide a brief review of the basic properties of Orlicz and Orlicz–
Sobolev spaces. For more details we refer the reader to the books [1,2,19,20] and to the
papers [7,8,13,15].

Assume that ϕ : R → R is an odd increasing homeomorphism from R onto R, and
define

Φ(t) =
∫ t

0
ϕ(s) ds, Φ�(t) =

∫ t

0
ϕ−1(s) ds. (2.1)

Note that Φ(0) = 0, Φ is convex and limt→∞ Φ(t) = +∞, which makes Φ a Young
function. Moreover, since Φ(t) = 0 if and only if t = 0, limt→0 Φ(t)/t = 0, and
limt→∞ Φ(t)/t = +∞, Φ is an N -function (see [1] or [2] for more details). Φ� is called
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the complementary function of Φ and it satisfies

Φ�(t) = sup{st − Φ(s) : s � 0} for all t � 0.

In addition, Φ� is also an N -function and Young’s inequality

st � Φ(s) + Φ�(t) for all s, t � 0

holds. In what follows, we assume that

1 < ϕ− � tϕ(t)
Φ(t)

� ϕ+ < ∞ for all t > 0, (2.2)

where

ϕ− := inf
t>0

tϕ(t)
Φ(t)

and ϕ+ := sup
t>0

tϕ(t)
Φ(t)

.

We indicate below several examples of functions ϕ : R → R that are odd increasing
homeomorphisms from R onto R and for which (2.2) holds. For more details, the reader
is referred to [7, Examples 1–3, p. 243].

(1) ϕ(t) = |t|p−2t with p > 1. It can be shown that ϕ− = ϕ+ = p.

(2) ϕ(t) = log(1 + |t|r)|t|p−2t with p, r > 1. In this case ϕ− = p and ϕ+ = p + r.

(3) ϕ(t) = |t|p−2t/ log(1 + |t|) if t �= 0, ϕ(0) = 0, with p > 2. In this case it turns out
that ϕ− = p − 1 and ϕ+ = p.

With ϕ, Φ and Φ� as above, the Orlicz space LΦ(Ω) is the space of measurable functions
u : Ω → R such that

‖u‖LΦ := sup
{ ∫

Ω

uv dx :
∫

Ω

Φ�(|v|) dx � 1
}

< ∞. (2.3)

Endowed with the so-called Orlicz norm, given by (2.3), LΦ(Ω) is a Banach space. The
Luxemburg norm, defined by

‖u‖Φ := inf
{

μ > 0:
∫

Ω

Φ

(
u(x)
μ

)
dx � 1

}
, (2.4)

is equivalent to the Orlicz norm on LΦ(Ω).
In the context of Orlicz spaces, Hölder’s inequality reads as follows (see [20, Inequal-

ity 4, p. 79]):∫
Ω

uv dx � 2‖u‖LΦ‖v‖LΦ� for all u ∈ LΦ(Ω) and v ∈ LΦ�

(Ω).

The Orlicz–Sobolev space W 1,Φ(Ω) is defined by

W 1,Φ(Ω) :=
{

u ∈ LΦ(Ω) :
∂u

∂xi
∈ LΦ(Ω), i = 1, . . . , N

}
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and it is a Banach space with respect to the norm

‖u‖1,Φ := ‖u‖Φ + |‖∇u|‖Φ.

We note that if ϕ− and ϕ+ are defined as above, our hypothesis (2.2) implies that Φ

satisfies the Δ2-condition:
Φ(2t) � KΦ(t) ∀t � 0, (2.5)

where K is a positive constant (see [18, Proposition 2.3]). On the other hand (see, for
example, [12, Lemma 2.1] or [18, Proposition 2.1]), we have

‖u‖ϕ+

Φ �
∫

Ω

Φ(|u(x)|) dx � ‖u‖ϕ−

Φ ∀u ∈ LΦ(Ω), ‖u‖Φ < 1, (2.6)

and
‖u‖ϕ−

Φ �
∫

Ω

Φ(|u(x)|) dx � ‖u‖ϕ+

Φ ∀u ∈ LΦ(Ω), ‖u‖Φ > 1. (2.7)

Finally, we assume that Φ is such that

the map [0,∞) 	 t → Φ(
√

t) is convex. (2.8)

We note that this, together with (2.5), implies that the Orlicz space LΦ(Ω) is a uniformly
convex (and hence reflexive) Banach space (see [18, Proposition 2.2]).

Remark 2.1. Let p > 1 and define ϕ(t) = |t|p−2t, t ∈ R. As we already mentioned
in example (1), it can be shown that in this case we have ϕ− = ϕ+ = p and the
corresponding Orlicz space LΦ(Ω) reduces to the classical Lebesgue space Lp(Ω), while
the Orlicz–Sobolev space W 1,Φ(Ω) becomes the Sobolev space W 1,p(Ω).

Finally, we note that under assumption (2.2) we have (see, for example, [12,
Lemma A.2]):

β(ρ)Φ(t) � Φ(ρt) � γ(ρ)Φ(t) ∀t > 0, ρ > 0, (2.9)

where

β(ρ) :=

{
ρϕ+

if ρ ∈ (0, 1],

ρϕ−
if ρ ∈ (1,∞),

γ(ρ) :=

{
ρϕ−

if ρ ∈ (0, 1],

ρϕ+
if ρ ∈ (1,∞).

3. Main results

We start by recalling the definition of Γ -convergence (introduced in [10,11]) in metric
spaces. The reader is referred to [9] for a comprehensive introduction to the subject.

Definition 3.1. Let X be a metric space. A sequence {Fn} of functionals Fn : X →
R̄ := R ∪ {∞} is said to Γ (X)-converge to F∞ : X → R̄, and we write Γ (X) −
limn→∞ Fn = F∞, if the following hold:
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(i) for every u ∈ X and {un} ⊂ X such that un → u in X, we have

F∞(u) � lim inf
n→∞

Fn(un);

(ii) for every u ∈ X there exists a sequence {un} ⊂ X (called a recovery sequence) such
that un → u in X and

F∞(u) � lim sup
n→∞

Fn(un).

Let Ω ⊂ R
N be an open set of finite Lebesgue measure, |Ω| < +∞, with sufficiently

smooth boundary. To simplify the presentation we will assume in what follows that
|Ω| = 1. However, this additional assumption is only imposed so that unnecessary com-
plications in the proofs can be avoided; our results still hold, with straightforward mod-
ifications, in the general case.

Let Φn be defined as in (2.1), and assume that for each n ∈ N, (2.2) and (2.8) hold
(with ϕ and Φ replaced with ϕn and Φn, respectively). Moreover, we will assume that ϕn

satisfies the following conditions:

ϕ−
n → ∞ as n → ∞ (3.1)

and
there exists a real constant β > 1 such that ϕ+

n � βϕ−
n for all n ∈ N. (3.2)

Let λ ∈ L∞(Ω) be such that 0 < a � λ(x) � b, where a and b are two positive real
numbers. For each n ∈ N, consider the functionals In, Jn : L1(Ω) → [0, +∞] defined by

In(u) =

⎧⎨
⎩

∫
Ω

1
ϕn(1)

Φn(|λ(x)∇u(x)|) dx if u ∈ W 1,Φn(Ω),

+∞ otherwise,

and

Jn(u) =

{
‖λ∇u‖Ψn if u ∈ W 1,Ψn(Ω),

+∞ otherwise,

where Ψn(t) := Φn(t)/Φn(1).

Theorem 3.2. Assume that the sequence {ϕn} satisfies (3.1) and (3.2). Define
I∞ : L1(Ω) → [0, +∞] by

I∞(u) =

{
0 if |λ(x)∇u(x)| � 1 for almost every (a.e.) x ∈ Ω,

+∞ otherwise.

Then the following hold.

(i) For every u ∈ L1(Ω), and {un} ⊂ L1(Ω) such that un ⇀ u weakly in L1(Ω), we
have

I∞(u) � lim inf
n→∞

In(un). (3.3)
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(ii) For every u ∈ L1(Ω) there exists a sequence {un} ⊂ L1(Ω) such that un → u

strongly in L1(Ω), and

lim sup
n→∞

In(un) � I∞(u). (3.4)

In particular, Γ (L1(Ω)) − limn→∞ In = I∞.

In the case where the sequence {ϕn} satisfies (3.1), and with (3.2) replaced by the
stronger requirement

lim
n→∞

ϕ+
n /ϕ−

n = 1, (3.5)

two other Γ -convergence results can be established. The first one concerns the sequence
{Jn} defined above, while the second one involves a rescaled version of the sequence
{In} considered in Theorem 3.2. Precisely, we will prove in § 5 of the paper the following
theorem.

Theorem 3.3. Assume that the sequence {ϕn} satisfies (3.1) and (3.5). Define
J∞ : L1(Ω) → [0, +∞] by

J∞(u) =

{
‖λ∇u‖L∞(Ω;RN ) if u ∈ W 1,∞(Ω),

+∞ otherwise.
(3.6)

Then the following hold.

(i) For every u ∈ L1(Ω), and {un} ⊂ L1(Ω) such that un ⇀ u weakly in L1(Ω), we
have

J∞(u) � lim inf
n→∞

Jn(un).

(ii) For every u ∈ L1(Ω), there exists a sequence {un} ⊂ L1(Ω) such that un → u

strongly in L1(Ω), and

lim sup
n→∞

Jn(un) � J∞(u).

In particular, Γ (L1(Ω)) − limn→∞ Jn = J∞.

For n ∈ N and t ∈ R, define Ψn(t) := Φn(t)/Φn(1) and consider the sequence {Kn} of
functionals Kn : L1(Ω) → [0, +∞] given by

Kn(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( ∫
Ω

Ψn(|λ(x)∇u(x)|) dx

)1/ϕ+
n

if u ∈ W 1,Ψn(Ω) with ‖λ∇u‖Ψn � 1,

‖λ∇u‖Ψn if u ∈ W 1,Ψn(Ω) with ‖λ∇u‖Ψn
> 1,

+∞ otherwise.

Theorem 3.4. Assume that the sequence {ϕn} satisfies (3.1) and (3.5) and let J∞
be defined by (3.6). Then the following hold.
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(i) For every u ∈ L1(Ω), and {un} ⊂ L1(Ω) such that un ⇀ u weakly in L1(Ω), we
have

J∞(u) � lim inf
n→∞

Kn(un).

(ii) For every u ∈ L1(Ω) there exists a sequence {un} ⊂ L1(Ω) such that un → u

strongly in L1(Ω), and

lim sup
n→∞

Kn(un) � J∞(u).

In particular, Γ (L1(Ω)) − limn→∞ Kn = J∞.

Remark 3.5. We recall that a sequence {Fn} of functionals Fn : L1(Ω) → R̄ is said to
be equicoercive with respect to the strong topology of L1(Ω) if, whenever {un} ⊂ L1(Ω)
is a sequence with bounded energy, i.e. such that supn∈N Fn(un) < ∞, there exists a
subsequence {unk

} of {un}, and u ∈ L1(Ω) such that unk
→ u strongly in L1(Ω).

Although in part (i) of Theorems 3.2–3.4 we are able to prove the Γ -liminf inequalities
under the less restrictive assumption that un ⇀ u weakly (rather than strongly) in
L1(Ω), our Γ -convergence results are then explicitly stated as holding with respect to
the strong topology of L1(Ω). This topology is natural to consider here because the
sequences of functionals {In}, {Jn} and {Kn} in the statements of Theorems 3.2–3.4
are in fact equicoercive with respect to it. Indeed, as it can be seen from the proofs of
these theorems presented in §§ 4 and 5 of the paper, in each case, the sequences with
bounded energy turn out to be uniformly bounded in any Sobolev space W 1,q(Ω) with
q > 1. The equicoercivity property then follows from the Rellich–Kondrachov theorem
(precisely, from fact that the embedding of W 1,q(Ω) into L1(Ω) is compact).

4. Proof of Theorem 3.2

We start by verifying (3.4). If I∞(u) = ∞, the inequality clearly holds for any sequence
un → u strongly in L1(Ω). On the other hand, if I∞(u) < +∞ we must have I∞(u) = 0
and, consequently, |λ(x)∇u(x)| � 1 for a.e. x ∈ Ω. For each n ∈ N let un := u and note
that we have

lim sup
n→∞

In(un) = lim sup
n→∞

∫
Ω

Φn(|λ(x)∇u(x)|)
ϕn(1)

dx

� lim sup
n→∞

|Ω|Φn(1)
ϕn(1)

� lim sup
n→∞

|Ω|
ϕ−

n

= 0

= I∞(u),

where we have used hypotheses (2.2) and (3.1). Thus, the constant sequence {un} = {u}
is a recovery sequence for the Γ -limit.
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To prove (3.3) we may assume, without loss of generality, that un ∈ W 1,Φn(Ω) and

lim inf
n→∞

In(un) = lim
n→∞

In(un) < ∞. (4.1)

Note that since Φn(t) dominates tϕ
−
n near infinity for each n ∈ N, we have W 1,Φn(Ω) ⊂

W 1,ϕ−
n (Ω), and thus un ∈ W 1,ϕ−

n (Ω) (see [17, Lemma 2]).
Let x ∈ Ω be a Lebesgue point for λ∇u ∈ L1(Ω). For any ball B(x, r) ⊂ Ω and n ∈ N

sufficiently large we have, in view of Hölder’s inequality,∫
B(x,r)

|λ(y)∇un(y)| dy � ‖λ∇un‖
Lϕ

−
n

‖χB(x,r)‖L(ϕ
−
n )′ , (4.2)

where (ϕ−
n )

′
:= (ϕ−

n − 1)/ϕ−
n . We also have

‖χB(x,r)‖L(ϕ
−
n )′ = |B(x, r)|(ϕ−

n −1)/ϕ−
n . (4.3)

Before proceeding further, we note that (2.9) implies that

Φn(1)
{

tϕ
−
n if t � 1

tϕ
+
n if t ∈ (0, 1)

}
� Φn(t) � Φn(1)

{
tϕ

+
n if t � 1

tϕ
−
n if t ∈ (0, 1)

}
(4.4)

for all n ∈ N. Consider the sets

Ω+
n = {x ∈ Ω; |λ(x)∇un(x)| � 1} and Ω−

n = {x ∈ Ω; |λ(x)∇un(x)| < 1}.

In view of (2.2), (3.2) and (4.4), we have∫
Ω

|λ(x)∇un(x)|ϕ−
n dx =

∫
Ω−

n

|λ(x)∇un(x)|ϕ−
n dx +

∫
Ω+

n

|λ(x)∇un(x)|ϕ−
n dx

� 1 +
∫

Ω+
n

|λ(x)∇un(x)|ϕ−
n dx

� 1 +
ϕn(1)
Φn(1)

∫
Ω

Φn(|λ(x)∇un(x)|)
ϕn(1)

dx

� 1 + ϕ+
n In(un)

� 1 + βϕ−
n In(un).

Thus,
‖λ∇un‖

Lϕ
−
n

� [1 + βϕ−
n In(un)]1/ϕ−

n . (4.5)

Combining (4.2), (4.3) and (4.5), we obtain∫
B(x,r)

|λ(y)∇un(y)| dy � |B(x, r)|(ϕ−
n −1)/ϕ−

n [1 + βϕ−
n In(un)]1/ϕ−

n ,

which, in view of (3.1) and (4.1), implies that

lim sup
n→∞

∫
B(x,r)

|λ(y)∇un(y)| dy � |B(x, r)|. (4.6)
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Let q � 1 be an arbitrary real number. By (3.1), q < ϕ−
n for sufficiently large n ∈ N.

Using Hölder’s inequality we have

∫
Ω

|λ(x)∇un(x)|q dx �
( ∫

Ω

|λ(x)∇un(x)|ϕ−
n dx

)q/ϕ−
n

|Ω|(ϕ−
n −q)/ϕ−

n

=
( ∫

Ω−
n

|λ(x)∇un(x)|ϕ−
n dx +

∫
Ω+

n

|λ(x)∇un(x)|ϕ−
n dx

)q/ϕ−
n

�
(

1 +
∫

Ω

Φn(|λ(x)∇un(x)|)
Φn(1)

dx

)q/ϕ−
n

� (1 + βϕ−
n In(un))q/ϕ−

n .

Thus, the sequence {∇un} is bounded in Lq(Ω; RN ) for any q � 1. Since un ⇀ u

weakly in L1(Ω) we deduce, in view of the Poincaré–Wirtinger inequality, that {un} is
bounded in Lq(Ω). It follows that {un} is bounded in W 1,q(Ω), and thus we may extract
a subsequence (not relabelled) such that un ⇀ u weakly in W 1,q(Ω). Well-known lower
semicontinuity results now give∫

B(x,r)
|λ(y)∇u(y)| dy � lim inf

n→∞

∫
B(x,r)

|λ(y)∇un(y)| dy,

which implies, in view of (4.6), that

1
|B(x, r)|

∫
B(x,r)

|λ(y)∇u(y)| dy � 1.

Since almost every x ∈ Ω is a Lebesgue point for λ∇u, passing to the limit r → 0+ in
the above inequality yields |λ(x)∇u(x)| � 1 for a.e. x ∈ Ω. It follows that I∞(u) = 0 and
this implies that the inequality (3.3) holds. This concludes the proof of Theorem 3.2.

5. Proofs of Theorems 3.3 and 3.4

We begin this section by establishing several auxiliary results that will be needed later.
The following two lemmas generalize to the Orlicz space setting the classical result which
asserts that if Ω ⊂ R

N has finite Lebesgue measure and if u ∈ L∞(Ω), then

lim
q→∞

‖u‖Lq(Ω) = ‖u‖L∞(Ω). (5.1)

Lemma 5.1. Let {ϕn} be a sequence of odd increasing homeomorphisms from R

onto R such that ϕ+
n → ∞ as n → ∞. Then, if u ∈ L∞(Ω) \ {0}, we have

lim
n→∞

[
1

|Ω|Φn(1)

∫
Ω

Φn

(
|u(x)|

‖u‖L∞(Ω)

)
dx

]1/ϕ+
n

= 1. (5.2)
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Proof. Define v ∈ L∞(Ω) by

v(x) :=
u(x)

‖u‖L∞(Ω)
.

We have |v(x)| � 1 for a.e. x ∈ Ω, and using the fact that tϕn(t)/Φn(t) � ϕ+
n for all t > 0

and n ∈ N, we deduce that for every fixed n ∈ N the function (0,∞) 	 t → tϕ
+
n /Φn(t) is

increasing on (0,∞). Thus, for every t ∈ (0, 1) and n ∈ N, we have

tϕ
+
n

Φn(t)
� 1

Φn(1)
.

Since |v(x)| � 1 for a.e. x ∈ Ω we find

|v(x)|ϕ+
n

Φn(|v(x)|) � 1
Φn(1)

for a.e. x ∈ Ω.

It follows that∫
Ω

|v(x)|ϕ+
n dx � 1

Φn(1)

∫
Ω

Φn(|v(x)|) dx � 1
Φn(1)

Φn(1)|Ω| = |Ω|,

which gives

(
1

|Ω|

∫
Ω

|v(x)|ϕ+
n dx

)1/ϕ+
n

�
[

1
|Ω|Φn(1)

∫
Ω

Φn

(
|u(x)|

‖u‖L∞(Ω)

)
dx

]1/ϕ+
n

� 1

for each n ∈ N. Letting n → ∞ in the above inequality, and taking into account (5.1),
we conclude that (5.2) holds. �

Remark 5.2. In particular, (5.2) holds when our hypothesis (3.1) is satisfied. Also,
note that (5.1) follows from (5.2); indeed, given an arbitrary sequence {qn} of real num-
bers such that qn → ∞, it suffices to consider Φn(t) := tqn in (5.2).

Lemma 5.3. Let u ∈ L∞(Ω) and let {ϕn} be a sequence of odd increasing homeo-
morphisms from R onto R such that (3.1) and (3.2) hold. Then

lim
n→∞

‖u‖Ψn = ‖u‖L∞(Ω), (5.3)

where Ψn(t) := Φn(t)/Φn(1).

Remark 5.4. Elementary computations show that with ψn = Ψ ′
n, we have ψ−

n = ϕ−
n

and ψ+
n = ϕ+

n for all n ∈ N.

Proof. We may assume, without loss of generality, that u �≡ 0. We will show that

lim
n→∞

∥∥∥∥ u

‖u‖L∞(Ω)

∥∥∥∥
Ψn

= 1. (5.4)
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First note that, since |u(x)| � ‖u‖L∞(Ω) for a.e. x ∈ Ω, we have

1
Ψn(1)

∫
Ω

Ψn

(
|u(x)|

‖u‖L∞(Ω)

)
dx � 1 ∀n ∈ N.

Taking into account the fact that Ψn(1) = 1 for each n ∈ N, the definition of the
Luxemburg norm gives ∥∥∥∥ u

‖u‖L∞(Ω)

∥∥∥∥
Ψn

� 1 ∀n ∈ N. (5.5)

In what follows we will work with the Luxemburg norm (2.4) of the Orlicz space LΦ(Ω)
rather than the equivalent Orlicz norm (2.3).

In view of (2.6) and (5.5) we obtain that

∥∥∥∥ u

‖u‖L∞(Ω)

∥∥∥∥
ϕ−

n

Ψn

�
∫

Ω

Ψn

(
|u(x)|

‖u‖L∞(Ω)

)
dx,

and hence ∥∥∥∥ u

‖u‖L∞(Ω)

∥∥∥∥
Ψn

�
[( ∫

Ω

Ψn

(
|u(x)|

‖u‖L∞(Ω)

)
dx

)1/ϕ+
n
]ϕ+

n /ϕ−
n

∀n ∈ N. (5.6)

By Lemma 5.1, the sequence {an} with

an :=
( ∫

Ω

Ψn

(
|u(x)|

‖u‖L∞(Ω)

)
dx

)1/ϕ+
n

converges to 1 as n → ∞. On the other hand, (3.2) implies that the sequence {ϕ+
n /ϕ−

n }
is bounded. Consequently,

lim
n→∞

a
ϕ+

n /ϕ−
n

n = lim
n→∞

exp
(

ϕ+
n

ϕ−
n

ln(an)
)

= 1.

Passing to the limit as n → ∞ in (5.6) gives

lim inf
n→∞

∥∥∥∥ u

‖u‖L∞(Ω)

∥∥∥∥
Ψn

� 1.

Hence, taking into account (5.5), we deduce that (5.4) holds. �

Remark 5.5. We point out that in the case when the additional assumption |Ω| = 1 is
removed (that is, we just assume that |Ω| < +∞), the conclusion of Lemma 5.3 (see (5.3))
should read

lim
n→∞

‖u‖|Ω|−1Ψn
= ‖u‖L∞(Ω). (5.7)

Clearly, (5.7) implies (5.3). We also note that, given an arbitrary sequence of real numbers
qn → ∞, by taking Φn(t) := tqn in (5.7) we again recover (5.1).
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Lemma 5.6. Let Ω1 ⊂ Ω2 be two open sets and u ∈ LΦ(Ω2). Then u ∈ LΦ(Ω1) and

‖u‖Φ,Ω1 � ‖u‖Φ,Ω2 ,

where ‖u‖Φ,Ωi stands for the Luxemburg norm of u in LΦ(Ωi), i ∈ {1, 2}.

Proof. Assume that u �≡ 0 in Ω2. Clearly,∫
Ω1

Φ(|u|) dx �
∫

Ω2

Φ(|u|) dx,

and thus u ∈ LΦ(Ω1). The previous inequality can be rewritten as∫
Ω2

Φ(|u|χΩ1) dx �
∫

Ω2

Φ(|u|) dx,

which holds for all u ∈ LΦ(Ω2). Combining this with the definition of the Luxemburg
norm in LΦ(Ω2), we deduce that∫

Ω2

Φ

(
|u|

‖u‖Φ,Ω2

χΩ1

)
dx �

∫
Ω2

Φ

(
|u|

‖u‖Φ,Ω2

)
dx � 1.

Hence, ∫
Ω1

Φ

(
|u|

‖u‖Φ,Ω2

)
dx � 1

and the definition of the Luxemburg norm in LΦ(Ω1) now yields ‖u‖Φ,Ω1 � ‖u‖Φ,Ω2 . �

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. We begin by establishing the existence of a recovery sequence
for the Γ -limit. Let u ∈ L1(Ω) be such that J∞(u) < +∞. Thus, u ∈ W 1,∞(Ω) and
J∞(u) = ‖λ∇u‖L∞(Ω;RN ). For n ∈ N define un := u. We have un ∈ W 1,Ψn(Ω), and using
Lemma 5.3 we obtain

lim sup
n→∞

Jn(un) = lim sup
n→∞

‖λ∇u‖Ψn = ‖λ∇u‖L∞(Ω;RN ).

We deduce that the constant sequence {un} = {u} is a recovery sequence for the Γ -limit.
It remains to show that for any u ∈ L1(Ω) we have

J∞(u) � lim inf
n→∞

Jn(un) (5.8)

whenever {un} ⊂ L1(Ω) is such that un ⇀ u weakly in L1(Ω).
We may assume, without loss of generality, that un ∈ W 1,Ψn(Ω) and, after eventually

extracting a subsequence (not relabelled),

lim inf
n→∞

Jn(un) = lim
n→∞

Jn(un) < ∞. (5.9)
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Let q � 1 be arbitrary. By (3.1), q < ϕ−
n for sufficiently large n ∈ N. For n ∈ N consider

the sets

Ω+
n = {x ∈ Ω; |λ(x)∇un(x)| � 1} and Ω−

n = {x ∈ Ω; |λ(x)∇un(x)| < 1}.

We have∫
Ω

|λ(x)∇un(x)|q dx =
∫

Ω+
n

|λ(x)∇un(x)|q dx +
∫

Ω−
n

|λ(x)∇un(x)|q dx.

Hölder’s inequality yields

∫
Ω+

n

|λ(x)∇un(x)|q dx � |Ω+
n |(ϕ−

n −q)/ϕ−
n

( ∫
Ω+

n

|λ(x)∇un(x)|ϕ−
n dx

)q/ϕ−
n

(5.10)

and ∫
Ω−

n

|λ(x)∇un(x)|q dx � |Ω−
n |(ϕ+

n −q)/ϕ+
n

( ∫
Ω−

n

|λ(x)∇un(x)|ϕ+
n dx

)q/ϕ+
n

. (5.11)

For n ∈ N and x ∈ Ω+
n we have, in view of (2.9), that

|λ(x)∇un(x)|ϕ−
n � Ψn(|λ(x)∇un(x)|). (5.12)

Given n ∈ N, we have two alternatives: either |‖λ∇un|‖Ψn,Ω+
n

� 1 or |‖λ∇un|‖Ψn,Ω+
n

>1.
We will assume first that we are in the case where |‖λ∇un|‖Ψn,Ω+

n
� 1. Taking into

account (2.9), (5.12) and the definition of the Luxemburg norm in LΨn(Ω+
n ), we obtain

that ∫
Ω+

n

∣∣∣∣ λ(x)∇un(x)
|‖λ∇un|‖Ψn,Ω+

n

∣∣∣∣
ϕ−

n

dx �
∫

Ω+
n

Ψn

(
λ(x)∇un(x)

|‖λ∇un|‖Ψn,Ω+
n

)
� 1,

which further yields

( ∫
Ω+

n

|λ(x)∇un(x)|ϕ−
n dx

)q/ϕ−
n

� |‖λ∇un|‖q

Ψn,Ω+
n
. (5.13)

Next, assume that |‖λ∇un|‖Ψn,Ω+
n

> 1. Integrating (5.12) over Ω+
n and using (2.7), we

get ∫
Ω+

n

|λ(x)∇un(x)|ϕ−
n dx �

∫
Ω+

n

Ψn(|λ(x)∇un(x)|) dx � |‖λ∇un|‖ϕ+
n

Ψn,Ω+
n
.

Thus, ( ∫
Ω+

n

|λ(x)∇un(x)|ϕ−
n dx

)q/ϕ−
n

� |‖λ∇un|‖qϕ+
n /ϕ−

n

Ψn,Ω+
n

. (5.14)

From (5.13) and (5.14) it follows that

( ∫
Ω+

n

|λ(x)∇un(x)|ϕ−
n dx

)q/ϕ−
n

� max{|‖λ∇un|‖q

Ψn,Ω+
n
, |‖λ∇un|‖qϕ+

n /ϕ−
n

Ψn,Ω+
n

},
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and hence, in view of Lemma 5.6,

( ∫
Ω+

n

|λ(x)∇un(x)|ϕ−
n dx

)q/ϕ−
n

� max{|‖λ∇un|‖q
Ψn,Ω , |‖λ∇un|‖qϕ+

n /ϕ−
n

Ψn,Ω }

for all n ∈ N. A similar argument implies that we have

( ∫
Ω−

n

|λ(x)∇un(x)|ϕ+
n dx

)q/ϕ+
n

� max{|‖λ∇un|‖q
Ψn,Ω , |‖λ∇un|‖qϕ−

n /ϕ+
n

Ψn,Ω } ∀n ∈ N.

The last two inequalities, combined with (5.10) and (5.11), respectively, imply that

( ∫
Ω

|λ(x)∇un(x)|q dx

)1/q

�
(

|Ω+
n |(ϕ−

n −q)/ϕ−
n + |Ω−

n |(ϕ+
n −q)/ϕ+

n

)1/q

× max{|‖λ∇un|‖q
Ψn,Ω , |‖λ∇un|‖qϕ+

n /ϕ−
n

Ψn,Ω , |‖λ∇un|‖qϕ−
n /ϕ+

n

Ψn,Ω }1/q

or, equivalently,( ∫
Ω

|λ(x)∇un(x)|q dx

)1/q

�
(

|Ω+
n |(ϕ−

n −q)/ϕ−
n + (1 − |Ω+

n |)(ϕ+
n −q)/ϕ+

n

)1/q

× max{|‖λ∇un|‖q
Ψn,Ω , |‖λ∇un|‖qϕ+

n /ϕ−
n

Ψn,Ω , |‖λ∇un|‖qϕ−
n /ϕ+

n

Ψn,Ω }1/q.

Using the fact that (ϕ−
n − q)/ϕ−

n � (ϕ+
n − q)/ϕ+

n for each n ∈ N, the above inequality
implies that

|‖λ∇un|‖Lq(Ω) �
(

|Ω+
n |(ϕ−

n −q)/ϕ−
n + (1 − |Ω+

n |)(ϕ−
n −q)/ϕ−

n

)1/q

× max{|‖λ∇un|‖q
Ψn,Ω , |‖λ∇un|‖qϕ+

n /ϕ−
n

Ψn,Ω , |‖λ∇un|‖qϕ−
n /ϕ+

n

Ψn,Ω }1/q.

Since xθ + (1 − x)θ � 21−θ for all x, θ ∈ (0, 1), it follows that

|‖λ∇un|‖Lq(Ω) � 2(1−(ϕ−
n −q)/ϕ−

n )/q

× max{|‖λ∇un|‖q
Ψn,Ω , |‖λ∇un|‖qϕ+

n /ϕ−
n

Ψn,Ω , |‖λ∇un|‖qϕ−
n /ϕ+

n

Ψn,Ω }1/q. (5.15)

Hence, by (5.9) and (3.5), we obtain that the sequence {∇un} is bounded in Lq(Ω; RN )
for any q � 1. Since un ⇀ u weakly in L1(Ω) we deduce, after eventually extracting a
subsequence (not relabelled), that un ⇀ u weakly in W 1,q(Ω). The weak lower semicon-
tinuity of the norm implies that

‖λ∇u‖Lq(Ω;RN ) � lim inf
n→∞

‖λ∇un‖Lq(Ω;RN ). (5.16)
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Passing to the limit as n → ∞ in (5.15) and taking into account (5.9) and our hypothe-
sis (3.5), we obtain

lim sup
n→∞

‖λ∇un‖Lq(Ω;RN ) � lim sup
n→∞

‖λ∇un‖Ψn = lim
n→∞

Jn(un). (5.17)

Combining (5.16) and (5.17) we find that, for any q > 1, we have

‖λ∇u‖Lq(Ω;RN ) � lim
n→∞

Jn(un). (5.18)

Using a localization argument similar to the one used in the proof of Theorem 3.2, it
can be shown that ∇u ∈ L∞(Ω; RN ). Thus, letting q → ∞ in (5.18) and taking into
account (5.1), we deduce that

J∞(u) � lim
n→∞

Jn(un) = lim inf
n→∞

Jn(un).

Hence, (5.8) holds, which concludes the proof of Theorem 3.3. �

Before we can prove Theorem 3.4 we need to establish an auxiliary result which is a
slight refinement of Lemma 5.1.

Lemma 5.7. Let {ϕn} be a sequence of odd increasing homeomorphisms from R

onto R such that (3.1) and (3.5) are satisfied, and let u ∈ L∞(Ω) be such that
‖u‖L∞(Ω) � 1. Then

lim
n→∞

( ∫
Ω

Ψn(|u(x)|) dx

)1/ϕ+
n

= ‖u‖L∞(Ω),

where, for n ∈ N and t > 0, Ψn(t) := Φn(t)/Φn(1).

Proof. Using the fact that |u(x)| � ‖u‖L∞(Ω) � 1 for a.e. x ∈ Ω, together with (4.4),
we obtain that ( ∫

Ω

|u(x)|ϕ+
n dx

)1/ϕ+
n

�
( ∫

Ω

Ψn(|u(x)|) dx

)1/ϕ+
n

�
[( ∫

Ω

|u(x)|ϕ−
n dx

)1/ϕ−
n
]ϕ−

n /ϕ+
n

for every n ∈ N. Taking into account (3.1), (3.5) and (5.1), the conclusion now follows
by letting n → ∞ in the above estimates. �

Proof of Theorem 3.4. Let u ∈ L1(Ω) be arbitrary. To prove the existence of a
recovery sequence, we only need to consider the non-trivial case where J∞(u) < ∞.
Thus, u ∈ W 1,∞(Ω) and J∞(u) = ‖λ∇u‖L∞(Ω;RN ). Define un ∈ W 1,Ψn(Ω) by un := u

for n ∈ N. We have two possibilities: either ‖λ∇u‖L∞(Ω;RN ) � 1 or ‖λ∇u‖L∞(Ω;RN ) > 1.
In the first case, applying (5.5) to λ|∇u| ∈ L∞(Ω) gives ‖λ∇u‖Ψn � 1, which implies
that

Kn(un) = Kn(u) =
( ∫

Ω

Ψn(|λ(x)∇u(x)|) dx

)1/ϕ+
n

.
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On the other hand, if ‖λ∇u‖L∞(Ω;RN ) > 1, we have, by Lemma 5.3, that ‖λ∇u‖Ψn
> 1

for n ∈ N sufficiently large. Thus, in this case, Kn(un) = Kn(u) = ‖λ∇u‖Ψn . In view of
Lemmas 5.3 and 5.7 we conclude that

lim
n→∞

Kn(un) = J∞(u),

and hence {un} = {u} is again a recovery sequence for the Γ -limit.
It remains to prove that

J∞(u) � lim inf
n→∞

Kn(un) (5.19)

whenever {un} ⊂ L1(Ω) and u ∈ L1(Ω) are such that un ⇀ u weakly in L1(Ω).
Extracting a subsequence if necessary, we may assume, without loss of generality, that
un ∈ W 1,Ψn(Ω) and

lim inf
n→∞

Kn(un) = lim
n→∞

Kn(un) < ∞.

Let q � 1 be arbitrary. In view of (3.1), q < ϕ−
n � ϕ+

n for sufficiently large n ∈ N.
For n ∈ N we have either ‖λ∇un‖Ψn � 1 or ‖λ∇un‖Ψn > 1. Revisiting the proof of
Theorem 3.3 we recall that, in either case, (5.15) gives

‖λ∇un‖Lq(Ω;RN ) � 2(1−(ϕ−
n −q)/ϕ−

n )/q

× max{|‖λ∇un|‖q
Ψn

, |‖λ∇un|‖qϕ+
n /ϕ−

n

Ψn
, |‖λ∇un|‖qϕ−

n /ϕ+
n

Ψn
}1/q. (5.20)

In addition, when ‖λ∇un‖Ψn
� 1, the above inequality and (2.6) give

‖λ∇un‖Lq(Ω;RN ) � 2(1−(ϕ−
n −q)/ϕ−

n )/q

× max{Tn(λ∇un)q, Tn(λ∇un)qϕ+
n /ϕ−

n , Tn(λ∇un)qϕ−
n /ϕ+

n }1/q,

(5.21)

where

Tn(v) :=
( ∫

Ω

Ψn(|v|) dx

)1/ϕ+
n

.

Thus, by (5.20), (5.21) and (3.5), we deduce that the sequence {∇un} is bounded in
Lq(Ω; RN ). To conclude that (5.19) holds, one may now proceed along the lines of the
last part of the proof of Theorem 3.3. �

Acknowledgements. The research of M.B. was partly supported by the US
National Science Foundation under Grant No. DMS-1156393. M.M. was partly supported
by Grant CNCS-UEFISCDI Grant No. PN-II-ID-PCE-2012-4-0021 ‘Variable Exponent
Analysis: Partial Differential Equations and Calculus of Variations’.

The authors thank an anonymous referee for her/his careful reading of the original
manuscript and for a number of relevant comments that led to improvements in the expo-
sition. M.M. gratefully acknowledges the kind hospitality of the Department of Mathe-
matics and Statistics at Loyola University Chicago where this work was initiated during
his visit in October 2011.

https://doi.org/10.1017/S0013091514000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000170


Γ -convergence of inhomogeneous functionals in Orlicz–Sobolev spaces 303

References

1. R. Adams, Sobolev spaces (Academic Press, 1975).
2. D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Grundlehren

der Mathematischen Wissenschaften, Volume 314 (Springer, 1996).
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