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Classification of Regular Parametrized
One-relation Operads
In memoriam Jean-Louis Loday (1946–2012)

Murray Bremner and Vladimir Dotsenko

Abstract. Jean-Louis Loday introduced a class of symmetric operads generated by one bilinear op-
eration subject to one relation making each le�-normed product of three elements equal to a linear
combination of right-normed products: (a1a2)a3 = ∑σ∈S3 xσ aσ(1)(aσ(2)aσ(3)). Such an operad
is called a parametrized one-relation operad. For a particular choice of parameters {xσ}, this op-
erad is said to be regular if each of its components is the regular representation of the symmetric
group; equivalently, the corresponding free algebra on a vector space V is, as a graded vector space,
isomorphic to the tensor algebra of V . We classify, over an algebraically closed ûeld of character-
istic zero, all regular parametrized one-relation operads. In fact, we prove that each such operad
is isomorphic to one of the following ûve operads: the le�-nilpotent operad deûned by the rela-
tion ((a1a2)a3) = 0, the associative operad, the Leibniz operad, the dual Leibniz (Zinbiel) operad,
and the Poisson operad. Our computational methods combine linear algebra over polynomial rings,
representation theory of the symmetric group, and Gröbner bases for determinantal ideals and their
radicals.

1 Introduction

Jean-Louis Loday introduced the class of operads which he called parametrized one-
relation operads. Each of these operads is generated by one binary operation satis-
fying one ternary relation which states that every monomial of the form (a1a2)a3
can be rewritten as a linear combination of permutations of the monomial a1(a2a3).
_is can be regarded as a natural generalization of associativity, since it says that in
each product of three arguments we can reassociate parentheses to the right; the new
feature is that we permit permutations of the arguments.

Deûnition 1.1 An operad O generated by one bilinear operation a1 , a2 ↦ (a1a2)
is called a parametrized one-relation operad if its ideal of relations is generated by a
single relation of the form

(LR) (a1a2)a3 = x1a1(a2a3) + x2a1(a3a2) + x3a2(a1a3)+
x4a2(a3a1) + x5a3(a1a2) + x6a3(a2a1).
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It is called the LR relation, since it allows us to re-associate parentheses in products of
three elements from the le� to the right.

Example 1.2 _emost familiar examples of parametrized one-relation operads are
the following ûve special cases:
● (a1a2)a3 = 0 [le�-nilpotent],
● (a1a2)a3 = a1(a2a3) [associative],
● (a1a2)a3 = a1(a2a3) − a2(a1a3) [le� Leibniz],
● (a1a2)a3 = a1(a2a3) + a1(a3a2) [right Zinbiel],
● (a1a2)a3 = a1(a2a3) + 1

3 [a1(a3a2) − a2(a1a3) + a2(a3a1) − a3(a1a2)] [Poisson].
_e last identity deûnes the one-operation presentation of the Poisson operad discov-
ered by Livernet and Loday [14]. _e usual deûnition of Poisson algebras is obtained
by polarization [17].

Notation 1.3 For given coeõcients x = [x i] in Relation (LR), we write:
● Ox for the quadratic symmetric binary operad deûned by that relation,
● Ox(n) for the arity n component of that operad (viewed as a right Sn-module),
● Ox(V) for the free Ox-algebra generated by the vector space V .
See Section 2 for a brief review of the theory of algebraic operads.

Not much is known about parametrized one-relation operads in general. One nat-
ural question asked by Loday [22]was to determine the values of parameters forwhich
the operad Ox is Koszul. _e ûve examples above are all Koszul, and they have one
more common feature: all components of each of these operads are regular represen-
tations of the corresponding symmetric groups (it is obvious for the ûrst of them, and
is well known for the others [15]). _is observation naturally leads to an attempt to
search for other examples of Koszul operads among the operads satisfying the same
property.

Deûnition 1.4 We say that the vector of coeõcients x = [x i] in Relation (LR) is
regular if the following equivalent conditions hold.
(1) For each ûnite-dimensional vector space V , the free algebra Ox(V) is isomor-

phic as a graded vector space (not as a graded algebra) to the non-unital tensor
algebra T(V).

(2) For all n ≥ 1, the Sn-module Ox(n) is isomorphic to the regular module FSn .

Remark 1.5 It is o�en the case that the term “regular” is used to describe symmet-
ric operads obtained from nonsymmetric operads by symmetrization. We choose to
break that tradition and use this more general notion that includes symmetrizations
of nonsymmetric operads but is wider, i.e., the operads Leib and Zinb are not sym-
metrizations of nonsymmetric operads. _e class of operads whose free algebras have
the tensor algebras as underlying vector spaces is very natural, and the term “regular”
is most appropriate for that property.

In this paper we give a complete classiûcation of regular parametrized one-relation
operads over an algebraically closed ûeldF of characteristic 0. _e answer turns out to
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be wonderfully simple, however disappointing from the viewpoint of hunting for new
Koszul operads: up to isomorphism, every such operad is one of those in Example 1.2.
It is worthmentioning though, that for four of those operads, there is a one-parameter
family of regular parametrized one-relation operads isomorphic to it.

Main_eorem (_eorem7.1 (ii)) Over an algebraically closed ûeld of characteristic 0,
every regular parametrized one-relation operad is isomorphic to one of the following ûve
operads: the le�-nilpotent operad deûned by the identity ((a1a2)a3) = 0, the associative
operad, the Leibniz operad Leib, the dual Leibniz (Zinbiel) operadZinb, and the Poisson
operad.

It is an entertaining exercise to check that the ûve operads of Example 1.2 are pair-
wise nonisomorphic. One way to do that is as follows. _e le�-nilpotent operad,
the associative operad, and the Poisson operad are easily seen to be isomorphic to
their Koszul duals. _e Koszul dual of the operad Leib is isomorphic to the op-
erad Zinb; these two operads are not isomorphic because the suboperad generated
by the S2-invariants of Zinb(2) is the operad Com of commutative associative alge-
bras, whereas in the case of Leib, we have (a1a2 + a2a1)a3 = 0, which implies the
identity {{a1 , a2}, {a3 , a4}} = 0 for the symmetrized product {a1 , a2} = a1a2 + a2a1.
(In fact, it is possible to show that each identity satisûed by the symmetrized prod-
uct follows from that identity). _e suboperads generated by the S2-invariants and
S2-anti-invariants of Poisson(2) are the operad Com and the operad Lie of Lie alge-
bras, respectively. Only the second of these claims holds for the associative operad,
and neither is true for the le�-nilpotent operad.

_e proof of the main theorem uses algorithms for linear algebra over polynomial
rings, the representation theory of the symmetric group, and commutative algebra,
especially Gröbner bases for determinantal ideals and their radicals. It is worth men-
tioning that in fact, our proof of the main theorem shows that this classiûcation result
holds over a ûeld F of characteristic zero where every quadratic equation has solu-
tions (equivalently, F× = (F×)2). _e assumption on the characteristic is more fun-
damental: for example, the suboperad Com of Poisson naturally splits oò as a direct
summand, and this implies that the corresponding Sn-modules are, in general, not
regular in positive characteristic.

Our main technical result classiûes all parametrized one-relation operads that are
regular in arity 4; it then turns out that such operads are necessarily regular in all ar-
ities. It is an open problem to provide a theoretical proof that explains conceptually
why this should be true. In a way, this phenomenon makes one think of Bergman’s
Diamond Lemma [2] in the context of operads [11,15], although, there seems to be no
obvious way to formalize that intuition. A related remark is that our results recover
the family of operads from [17], which interpolates between the associative and the
Poisson operad. _is family provides some supporting evidence for the operadic ana-
logue of the Koszul deformation principle for quadratic algebras [12, 20]; currently it
is unknown if such an analogue exists.
At ûrst glance, it is natural to expect that most relations (LR) deûne an operad

whose components are regularmodules: one can say that re-associationwould permit
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rewriting every product as a combination of right-normed products

a1(a2(⋅ ⋅ ⋅ (an−1an) ⋅ ⋅ ⋅))
that transform according to the regular representation. However, this strategy, when
inspected more closely, exhibits many subtle phenomena: there are many ways to
begin such rewriting, and at the same time, owing to the presence of all permutations
on the right side of (LR), it is not at all clear that such a re-association process will
terminate. In fact, it turns out that the generic operad deûned by (LR) is as far from
having regular modules as components as possible.

Nilpotency_eorem (_eorem 4.6) LetN be the set of all points a in the parameter
space F6 for which the operadOa is nilpotent of index 3. _enN is a Zariski open subset
of the parameter space F6.

In a nutshell, this follows from the fact that the Stasheò associahedron [15] of di-
mension 2, the pentagon, has the same number of vertices and edges; its vertices cor-
respond to basis elements of the free operad in arity 4, and its edges are in one-to-one
correspondence with the formal consequences of one ternary relation. Since the two
numbers coincide, it is natural to expect that for a generic relation all operations of
arity 4 will vanish.

1.1 Outline of This Paper

Section 2 recalls the necessary background on algebraic operads. We focus on binary
quadratic operads, since they are the only type of operad that we consider.

Section 3 reviews basics of linear algebra over polynomial rings; we recall the no-
tion of a determinantal ideal that is used to understand how the rank of a matrix with
polynomial entries depends on the parameters.

Section 4 introduces the cubic relation matrix M, square of size 120, with entries
in C = F[x1 , . . . , x6]. _is sparse matrix (over 94% zeros) is the main object of study
throughout the paper. Its row module Row(M) over C is the S4-module of rela-
tions satisûed by the general parametrized one-relation operad in arity 4. We use
the algorithms from the previous section to obtain some basic information about the
nullmodule of M: the C-module {MH = O ∣ H ∈ C120}. In particular, we prove the
Nilpotency _eorem for parametrized one-relation operads.

Section 5 recalls basic concepts andmethods from the representation theory of the
symmetric group, emphasizing arity 4 and applications to polynomial identities. _is
allows us to replace the single large matrix M with ûve much smaller matrices that
are much easier to study using computational commutative algebra.

In Section 6, we combine the approaches of the previous sections and prove the
main technical result, a classiûcation of all parametrized one-relation operads for
which the arity 4 component is the regular module. _is is done by a careful anal-
ysis of possible relations (LR) by increasing number of nonzero coeõcients.

In Section 7, we establish that each of the operads in the previous section is regular,
and isomorphic to one of the ûve operads from the Main _eorem, thus obtaining a
full classiûcation.

Section 8 outlines some further research directions and open problems.
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2 Preliminaries on Algebraic Operads

In this section we recall basic background information from the theory of operads.
All operads in this paper are generated by one binary operation, and we choose to
keep this section within these limits. For general deûnitions and further details, we
refer the reader to the recent comprehensive monograph by Loday and Vallette [15].
For the algorithmic aspects, see [5].

2.1 Nonsymmetric Operads

Operads encode multilinear operations with many arguments in the same way as as-
sociative algebras encode linear maps. _e ûrst level of abstraction is the notion of
a nonsymmetric operad, where operations can be substituted into one another, but
arguments of operations cannot be permuted. We may therefore choose a symbol
such as ∗ to represent each of the n arguments of a given operation: ω(∗, . . . , ∗). _e
diòerent occurrences of ∗ represent diòerent arguments, which are distinguished by
their positions.

_roughout the paper, we only consider the case in which all operations are built
out of one generating operation; therefore, we shall not give that operation a speciûc
name, and write simply (∗∗), where it is understood that every pair of parentheses
contains exactly two arguments, and each of these arguments is in turn either ∗ or
another pair of parentheses containing exactly two . . . , etc. _is notation remains
unambiguous if we also omit the commas separating the arguments.

Deûnition 2.1 _e free nonsymmetric operad Ω generated by one binary operation
(∗∗) has components Ω(n), n ≥ 1, where Ω(n) is spanned by the composite opera-
tions built out of (∗∗) that have exactly n arguments (in other words, it is of arity n).
Such an operation must have exactly n − 1 occurrences of (∗∗) (in other words, is of
weight n − 1).

Example 2.2 _e following balanced bracketings form a basis of Ω(n) for 1 ≤ n ≤ 4:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n monomials
1 ∗
2 (∗∗)
3 (∗(∗∗)), ((∗∗)∗)
4 (∗(∗(∗∗))), (∗((∗∗)∗)), ((∗∗)(∗∗)), ((∗(∗∗))∗), (((∗∗)∗)∗)

Henceforth we will omit the outermost pair of parentheses.

Lemma 2.3 ([21]) _e dimension of Ω(n), or equivalently the number of distinct
balanced bracketings using n − 1 pairs of brackets, is equal to the Catalan number

(2.1) dimΩ(n) = 1
n
(2n − 2

n − 1
) (n ≥ 1).

As a vector space, Ω(n) is the homogeneous subspace of degree n in the free nonas-
sociative algebra with one binary operation ω and one generator ∗, but the collection
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of all components Ω(n) has amuch richer structure to it that exempliûes the simplest
case in the theory of algebraic operads.

Deûnition 2.4 _e composition maps ○i in the free nonsymmetric operad Ω are
deûned as follows. On basis monomials µ ∈ Ω(n) and µ′ ∈ Ω(n′), the i-th compo-
sition µ ○i µ′ ∈ Ω(n + n′ − 1) for 1 ≤ i ≤ n, is the result of substituting µ′ for the i-th
argument ∗ in µ. _is operation extends bilinearly to any elements α ∈ Ω(n) and
α′ ∈ Ω(n′).

Deûnition 2.5 We inductively deûne a total order µ ≺ µ′ on nonsymmetric basis
monomials µ and µ′. _e basis of the induction is the unique total order on the set
{∗} which is a basis of Ω(1). Consider µ ∈ Ω(n) and µ′ ∈ Ω(n′), where n and n′

are not both equal to 1. If n < n′, then we set µ ≺ µ′. If n′ < n, then we set µ′ ≺ µ.
Otherwise, n = n′; write µ = µ1µ2 and µ′ = µ′1µ

′

2. We have µ i ∈ Ω(p i) for p i < n and
µ′i ∈ Ω(p′i) for p′i < n′,. _erefore, by induction we may assume that our total order
is deûned for µ i and µ′i . If µ1 /= µ′1, we set µ ≺ µ′ if and only if µ1 ≺ µ′1, else we set
µ ≺ µ′ if and only if µ2 ≺ µ′2. For example, the monomials in Example 2.2 follow this
order.

2.2 Symmetric Operads

Of course, when one deals with actual multilinear operations, there is more structure
to take into account, namely permutations of arguments. Formalizing that leads to
the notion of a symmetric operad.

Deûnition 2.6 _e free symmetric operad T generated by one binary operation has
components

(2.2) T(n) = Ω(n) ⊗ FSn ,

where Sn acts trivially on Ω(n) and FSn is the right regular module. A basis for T(n)
consists of all simple tensorsψ⊗τ, whereψ ∈ Ω(n) is a nonsymmetric basismonomial
and τ ∈ Sn is a permutation of the arguments.

Remark 2.7 _enatural interpretation of the simple tensorψ⊗τ is thatψ represents
a certain bracketing (or placement of operation symbols) applied to the underlying
multilinear monomial aτ(1) ⋅ ⋅ ⋅ aτ(n) that is the result of the action of τ on a decom-
posable tensor a1 ⊗ ⋅ ⋅ ⋅ ⊗ an . Since this action of Sn can lead quickly to a great deal
of confusion, we include a few sentences to clarify it. Consider this le� action of Sn
on decomposable tensors v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn : τ(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn) = vτ−1(1) ⊗ ⋅ ⋅ ⋅ ⊗ vτ−1(n). _is
action moves the factor in position i to position τ(i), and induces a right action on
T(n) that has the property that its extension to the tensor product T(n) ⊗FSn V

⊗n

can be conveniently interpreted as applying operations to arguments. In other words,
(ψ ⊗ τ) ⋅ σ = ψ ⊗ τσ . _e total order of Deûnition 2.5 extends from the nonsym-
metric case to the symmetric case: given basis monomials ψ ⊗ τ and ψ′ ⊗ τ′, we ûrst
compare the bracketings ψ,ψ′, and if ψ = ψ′, then we compare the permutations τ, τ′

in lexicographical order. It is straightforward to verify that the natural composition
of operations in T is equivariant with respect to this action of the symmetric groups.
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More concretely, one can view T(n) as the multilinear subspace of degree n in the
free nonassociative algebra with one binary operation and n generators a1 , . . . , an .

Lemma 2.8 _e dimension of T(n), or equivalently the number of distinct multilin-
ear n-ary nonassociative monomials, is given by the following formula:

dimT(n) = 1
n
(2n − 2

n − 1
)n!.

Proof _is follows immediately from Deûnition 2.1 and equations (2.1) and (2.2).

Deûnition 2.9 By a quadratic relation in the free symmetric operad T we mean an
element of T(3), i.e., a (nonzero) linear combination of simple tensors ψ ⊗ τ, where
each bracketing ψ ∈ Ω(3) involves two occurrences of the generator (∗, ∗). Any
S3-submodule R ⊆ T(3) is called a module of quadratic relations. To determine a
module of relations R, it suõces to give a set of module generators, not a linear basis
(that is typically much larger).

Remark 2.10 When discussing relations in an operad, the word quadratic (and
similarly cubic, quartic, etc.) refers to the weight k− 1, not to the arity k. In particular,
the quadratic relations are of arity three.

Deûnition 2.11 An (operad) ideal J in the free symmetric operad T is a family of
Sn-submodules J(n) ⊆ T(n), where n ≥ 1, that is closed under composition with
arbitrary elements of T.

_e quotient operad T/J has components (T/J)(n) = T(n)/J(n)with the natural
induced compositions.

_e ideal J ⊆ T generated by a subset Γ ⊆ T is the intersection of all the ideals
containing Γ. Notation: J = (Γ).

Deûnition 2.12 Consider the operad ideal J = (ρ) generated by one quadratic re-
lation ρ ∈ T(3). _e S3-module of quadratic relations is J(3) = ρ ⋅ FS3, the right
S3-module generated by ρ. We regard ρ = ρ(a1 , a2 , a3) as an operation with three
arguments. _e component T(4) contains three compositions ρ ○i ω and two com-
positions ω ○ j ρ that vanish in (T/(ρ))(4):

ρ((a1a2), a3 , a4), ρ(a1 , (a2a3), a4), ρ(a1 , a2 , (a3a4)),(2.3)
ρ(a1 , a2 , a3)a4 , a1ρ(a2 , a3 , a4).

We call relations (2.3) the cubic consequences of the quadratic relation ρ. _ese ûve
relations generate the S4-module J(4) ⊆ T(4). We can inductively repeat this gen-
eration of consequences into higher arities to compute every Sn-module in the ideal
(ρ), but we will only require the cubic case.

Deûnition 2.13 We say that an operadP = T/J is nilpotent if there exists k0 ≥ 0 such
that P(k + 1) = {0} for all k ≥ k0. If k0 is the least nonnegative integer satisfying this
condition, then we say that P is nilpotent of index k0. (_is way, nilpotency of index
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k0 means that all operations made of k0 or more copies of the generating operation
vanish).

Clearly P(k) = {0} if and only if J(k) = T(k). Hence P is nilpotent of index k0 if
and only if J(k0) /= T(k0) and J(k) = T(k) for all k > k0. Compositions of elements
of T( j) with the generating operation produce all of T( j + 1), so to check nilpotency
it is enough to check that P(k + 1) = 0 just for k = k0, and not for all k ≥ k0.

Example 2.14 ([18]) _e simplest example of a nilpotent operad is the anti-associa-
tive operadA+ generated by one binary operation satisfying the relation

(a1a2)a3 + a1(a2a3) = 0;

this relation introduces a sign change every time we reassociate a product of three
factors. _is relation is the special case with parameters [−1, 0, 0, 0, 0, 0] of Relation
(LR); hence A+ is a parametrized one-relation operad. It is easy to show that A+ is
nilpotent of index 3. Indeed, we note that the deûning relation of our operad can
be applied as a rewriting rule to the product ((a1a2)a3)a4 in two diòerent ways: by
rewriting (a1a2)a3 ûrst, obtaining

((a1a2)a3)a4 = −(a1(a2a3))a4 = a1((a2a3)a4) = −a1(a2(a3a4)),

or by setting b = (a1a2) and rewriting (ba3)a4 ûrst, obtaining.

((a1a2)a3)a4 = −(a1a2)(a3a4) = a1(a2(a3a4)).

(_is should remind the reader of computing an S-polynomial when calculating a
Gröbner basis). We conclude that a1(a2(a3a4)) = 0. Since all ûve basis compositions
(2.3) appear along the way, all of them are zero. Hence A+(4) = {0}, and the operad
A+ is nilpotent.

2.3 Matrix Condition for Regularity

Relation (LR) is a special case of the following general binary quadratic relation [14]:

(2.4) R(a1 , a2 , a3) = ∑
τ∈S3

wτ(aτ(1)aτ(2))aτ(3) + ∑
τ∈S3

yτ aτ(1)(aτ(2)aτ(3)),

where wτ , yτ ∈ F. _e S3-submodule generated by R is the module (R) ∩ T(3) of
quadratic relations. If H ⊆ S3 is the (normal) subgroup ûxing R, then (R) ∩ T(3) ≅
F(S3/H) and so dim(R) ≤ 6, with equality if and only if only the identity permuta-
tion ûxes R. _e larger dim(R), the smallerH; dimension and symmetry are inversely
related. For us the important case is dim(R) = 6. _us R generates an S3-module iso-
morphic to FS3. Relation (LR) satisûes this condition. We shall return to this general
relation (2.4) in Section 5 where it will serve as a toy example for the representa-
tion-theoretic method.
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We write out relation (2.4) term by term, replacing the permutation subscripts by
integers, using the lex order in S3. _e relation R then has the form

w1(a1a2)a3 +w2(a1a3)a2 +w3(a2a1)a3 +w4(a2a3)a1 +w5(a3a1)a2(2.5)
+w6(a3a2)a1 + y1a1(a2a3) + y2a1(a3a2) + y3a2(a1a3)
+ y4a2(a3a1) + y5a3(a1a2) + y6a3(a2a1).

For a relation R of the form (LR) we havew1 = 1 andw2 = ⋅ ⋅ ⋅ = w6 = 0. Let [W ∣ Y] be
the matrix whose rows are the coeõcient vectors obtained by applying every σ ∈ S3
to R:

R ⋅ σ = ∑
τ∈S3

wτ(aστ(1)aστ(2))aστ(3) + ∑
τ∈S3

yτ(aστ(1)aστ(2))aστ(3) , σ ∈ S3 .

Working this out explicitly, where the columns correspond to the basis monomials in
the order of (2.5), we obtain a matrix where the pattern of subscripts matches that of
the celebrated Dedekind–Frobenius determinant for S3:
(2.6)

[ W Y ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 w2 w3 w4 w5 w6 y1 y2 y3 y4 y5 y6
w2 w1 w5 w6 w3 w4 y2 y1 y5 y6 y3 y4
w3 w4 w1 w2 w6 w5 y3 y4 y1 y2 y6 y5
w5 w6 w2 w1 w4 w3 y5 y6 y2 y1 y4 y3
w4 w3 w6 w5 w1 w2 y4 y3 y6 y5 y1 y2
w6 w5 w4 w3 w2 w1 y6 y5 y4 y3 y2 y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Lemma 2.15 Suppose that for the given 6 × 6 matrices W and Y with coeõcients in
F, the rows of the matrix [W ∣ Y] form a single orbit for the right action of S3, as in
(2.6) above. _e subspace they generate contains a relation of the type (LR) if and only
if W is invertible.

Proof Note that every matrix representing the orbit of a relation of the type (LR) is
a matrix of the form

(2.7)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 −x1 −x2 −x3 −x4 −x5 −x6
0 1 0 0 0 0 −x2 −x1 −x5 −x6 −x3 −x4
0 0 1 0 0 0 −x3 −x4 −x1 −x2 −x6 −x5
0 0 0 1 0 0 −x5 −x6 −x2 −x1 −x4 −x3
0 0 0 0 1 0 −x4 −x3 −x6 −x5 −x1 −x2
0 0 0 0 0 1 −x6 −x5 −x4 −x3 −x2 −x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and this matrix is in row canonical form (RCF). For any matrix [W ∣ Y], its RCF is a
matrix of the form [I ∣ Z] if and only ifW is invertible, and in this case Z = W−1Y .
Finally, in (2.6) the matrices W and Y are, respectively, the matrices representing the
action of ∑σ wσσ and ∑σ yσσ on the right regular module, and thus so is W−1Y ,
justifying the same Dedekind–Frobenius determinant pattern of matrix elements in
W−1Y .
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2.4 Koszul Duality

_e theory of Koszul duality for operads, due to Ginzburg and Kapranov [13], as-
sociates a quadratic operad P with another quadratic operad P!, its Koszul dual. In
the case when P satisûes some good homological properties (such operads are called
Koszul operads), the Koszul dual operad can be used to control deformation theory
of P-algebras. (Familiar examples are given by deformation complexes of associative
algebras and Lie algebras). For an operad generated by a binary product, the operad
P! admits a very economic description that we recall here, referring the reader to [15]
for general deûnitions and results on Koszul duality, as well as further motivation.

Proposition 2.16 ([15]) Suppose that P ≅ T/(R) is a quotient operad of T by some
module of quadratic relations R. We deûne a scalar product on T(3) as follows:

(2.8) (ψ1 ,ψ1) = 1, (ψ2 ,ψ2) = −1, (ψ1 ,ψ2) = 0, where ψ1 = (∗∗)∗,ψ2 = ∗(∗∗).
_is can be extended to an S3-invariant scalar product on T(3) by the formula

(2.9) (ψ i ⊗ τ j ,ψk ⊗ τℓ) = (ψ i ,ψk)δ jℓε(τ j),
where ε∶ S3 → {±1} is the sign, and δ jℓ is the Kronecker symbol. We write R� for its
orthogonal complement with respect to (2.8). _eKoszul dual operad P! is the quotient
operad T/(R�).

Lemma 2.17 ([14],[15, Proposition 7.6.8]) _e Koszul dual operad P! of any para-
metrized one-relation operad P is isomorphic to a parameterized one-relation operad;
if the operad P is deûned by Relation (LR), the Koszul dual operad is isomorphic to the
operad deûned by the relation

(a1a2)a3 = x1a1(a2a3) − x3a1(a3a2) − x2a2(a1a3)
+ x4a2(a3a1) + x5a3(a1a2) − x6a3(a2a1).

In plain words, to obtain S, we switch and negate coeõcients 2 and 3, and negate coef-
ûcient 6.

Proof We start from matrix (2.7) whose row space is the module R of quadratic re-
lations. By Proposition 2.16, the computation of R� is reduced to the computation
of the nullspace of a modiûed matrix: we multiply columns 7–12 by −1 according to
(2.8), and then multiply columns 2, 3, 6, 8, 9, 12 with odd permutations by −1 accord-
ing to (2.9). We compute the RCF: for this we simply multiply the rows with odd
permutations by −1:

(2.10)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 −x1 x2 x3 −x4 −x5 x6
0 1 0 0 0 0 x2 −x1 −x5 x6 x3 −x4
0 0 1 0 0 0 x3 −x4 −x1 x2 x6 −x5
0 0 0 1 0 0 −x5 x6 x2 −x1 −x4 x3
0 0 0 0 1 0 −x4 x3 x6 −x5 −x1 x2
0 0 0 0 0 1 x6 −x5 −x4 x3 x2 −x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We compute the standard basis for the nullspace of (2.10) by setting free variables
to unit vectors and solving for leading variables. We obtain another matrix whose
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row space is the nullspace of (2.10); this is the module (R�). However, this matrix
has the form [X ∣ I6]: it is not in row canonical form. Computing the RCF of this
matrix requires dividing by polynomials in the x i . However, this can be avoided by
passing to the isomorphic operad for the opposite algebras, which interchanges ψ1
and ψ2, putting the columns back into the original order of the monomials, and then
computing the RCF. We obtain the following result:

(2.11)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 −x1 x3 x2 −x4 −x5 x6
0 1 0 0 0 0 x3 −x1 −x5 x6 x2 −x4
0 0 1 0 0 0 x2 −x4 −x1 x3 x6 −x5
0 0 0 1 0 0 −x5 x6 x3 −x1 −x4 x2
0 0 0 0 1 0 −x4 x2 x6 −x5 −x1 x3
0 0 0 0 0 1 x6 −x5 −x4 x2 x3 −x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From the ûrst row of (2.11), we easily read oò the coeõcients of S.

3 Linear Algebra Over Polynomial Rings

Over a ûeld F, to determine whether two m × n matrices A and B belong to the same
orbit under the le� action of GLm(F), we compute the row canonical forms RCF(A)
and RCF(B) and check whether they are equal. Similarly, for the le�-right action of
GLm(F) ×GLn(F), we compute Smith(A) and Smith(B).

Over a Euclidean domain, in particular, the ring F[x] of polynomials in one vari-
able x over a ûeld F, a modiûcation of Gaussian elimination gives the desired result,
since the coordinate ring is a PID and we can implement the Euclidean algorithm
for GCDs using row (or column) operations. _e analogue of the RCF in this case is
called the Hermite normal form (HNF).

Once we go beyond Euclidean domains, these computations become much more
diõcult for twomain reasons: we can no longer compute GCDs using row operations,
and it would not help even if we could, since the coordinate ring is no longer a PID.
In this setting, the existence of a normal form which determines when two matrices
belong to the same orbit remains an open problem. We can nonetheless obtain some
useful information about a multivariate polynomial matrix by elementary methods.

We consider the problem of computing the rank of an m× n matrix Awith entries
in the ring F[x1 , . . . , xp] of polynomials in p ≥ 2 variables (or parameters) over F.
In one sense, the rank of such a matrix is its rank when regarded as a matrix over
the ûeld F(x1 , . . . , xp) of rational functions: since the coordinate ring is now a ûeld
again, we can useGaussian elimination. However, crucial information is lost, since we
are implicitly assuming that none of the denominators that arise in the matrix entries
during this calculation ever become 0. Another deûnition of the rank of the matrix A
is as follows.

Deûnition 3.1 Let A be an m × n matrix over F[x1 , . . . , xp] regarded as a parame-
trized family of matrices over F. We deûne the function A∣ ∶Fp → Matmn(F). For
a1 , . . . , ap ∈ F the matrix A∣(a1 , . . . , ap) is obtained from A by setting x i = a i for
i = 1, . . . , p. Composing A∣ with the rank on Matmn(F), gives the substitution rank
function: subrankA = rank ○A∣∶Fp → {0, 1, 2, . . . , min(m, n)}. _e inverse images of
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the ranks 0 ≤ r ≤ min(m, n) deûne the inverse rank function:

invrankA(r) = {(a1 , . . . , ap) ∈ Fp ∣ subrankA(a1 , . . . , ap) = r}.

We deûne theminimal rank rmin as follows:

rmin(A) = min{r ∣ 0 ≤ r ≤ min(m, n), invrankA(r) /= ∅}.

_e following very simple result will be useful to us later.

Proposition 3.2 Let A be an m × n matrix over F[x1 , . . . , xp]. If there exist ele-
ments a1 , . . . , ap ∈ F such that the matrix A∣(a1 , . . . , ap) ∈ Matmn(F) has full rank
r = min(m, n), then A has full rank over the ûeld F(x1 , . . . , xp) of rational functions.

Proof It is well known that the rank of an m× n matrix over F is r if and only if two
conditions hold: at least one r × r minor is not 0, and every (r + 1) × (r + 1) minor
is 0. _erefore, if A does not have full rank, then all minors of A of size r vanish,
which of course would guarantee that all those minors vanish a�er specialisation to
(a1 , . . . , ap), when they become the minors of A∣(a1 , . . . , ap).

Deûnition 3.3 LetAbe anm×nmatrix overF[x1 , . . . , xp]. _e determinantal ideals
DIr(A) for r = 0, . . . , min(m, n) are deûned as follows: DI0(A) = F[x1 , . . . , xp], and
if r ≥ 1, then DIr(A) is the ideal in F[x1 , . . . , xp] generated by all r × r minors of A.

In terms of determinantal ideals, we can reformulate the classical formula for the
rank of a matrix as follows.

Proposition 3.4 Let A be an m × n matrix over F[x1 , . . . , xp]. For every value of r
not exceeding min(m, n), we have invrankA(r) = V(DIr+1) ∖ V(DIr).

_e advantage of using determinantal ideals is that they allow us to study the rank
of amatrix using only ring operations (without division). _e classical theory of deter-
minantal ideals is concerned almost exclusively with the homogeneous case, in which
every minor is a homogeneous polynomial [19]. Since many entries of the cubic rela-
tion matrix M (to be deûned in the next section) equal 1, the determinantal ideals we
study in what follows will be inhomogeneous. We could reformulate our problem in
homogeneous terms by introducing a new parameter x0 to play the role of the coeõ-
cient of (a1a2)a3 in Relation (LR). _is leads into the theory of sparse determinantal
ideals [3]. However, having many leading ones in the matrix will be very useful from
a computational point of view.

Henceforth, most of our computations require a choice of monomial order.

Deûnition 3.5 For an element m of the monomial basis of F[x1 , . . . , xp], we write

m =
p
∏
k=1

x ekk , e(m) = [e1 , . . . , ep], deg(m) =
p

∑
k=1
ek .

_e graded reverse lexicographic order (see grevlex in Maple, Magma and Macaulay,
degrevlex in sage, and dp in Singular) is deûned by m ≺ m′ if and only if either
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deg(m) < deg(m′), or deg(m) = deg(m′), and ek > e′k , where k is the smallest index
such that ek /= e′k . Note that x1 ≺ ⋅ ⋅ ⋅ ≺ xp .

_e leading monomial LM( f ) of a nonzero polynomial f ∈ F[x1 , . . . , xp] is the
greatest with respect to ≺, and LC( f ) is the coeõcient of LM( f ).

In what follows, we shall use this ordering of monomials for ordering lists of poly-
nomials (term by term).

Deûnition 3.6 Given a monomial order ≺, every ideal J ⊆ F[x1 , . . . , xp] contains a
(ûnite) ordered set G = { f1 , . . . , ft} of (nonzero) polynomials, called a Gröbner basis
with respect to ≺, satisfying the following conditions:

● J = (G): the polynomials f1 , . . . , ft generate J.
● ({LM( f ) ∣ f ∈ J}) = ({LM( f ) ∣ f ∈ G}): the ideal generated by the leading

monomials of the elements of J is generated by the leadingmonomials of the elements
of G.
A reduced Gröbner basis satisûes the following additional conditions.

● _e generators are monic: LC( f ) = 1 for every f ∈ G.
● For every f ∈ G, no monomial of any f ′ ∈ G ∖ { f } is divisible by LM( f ).

Every ideal has a unique reduced Gröbner basis with respect to a given monomial or-
der. Of the many books on Gröbner bases, Cox et al.[9,10] are the most approachable.

Deûnition 3.7 For an ideal J ⊆ F[x1 , . . . , xp], the zero set V(J) is the set of points
in Fp that are solutions to every polynomial in J:

V(J) = {(a1 , . . . , ap) ∈ Fp ∣ f (a1 , . . . , ap) = 0 for all f ∈ J .}
_e ideal I(S) of the subset S ⊆ Fp consists of all polynomials that vanish on S:

I(S) = { f ∈ F[x1 , . . . , xp] ∣ f (a1 , . . . , ap) = 0 for all (a1 , . . . , ap) ∈ S}.

Clearly J ⊆ I(V(J)). _e radical of J is the ideal
√

J = I(V(J)). We say that J is a
radical ideal if J =

√
J. For our purposes, the value of these concepts is that o�en

√
J

is much larger than J and has a much smaller and simpler Gröbner basis.

For a matrix whose entries are multivariate polynomials, Algorithm 1 produces a
partial Smith form based on elimination using nonzero scalar entries. _e basic idea
is rather naive, but this algorithmwill be useful in reducing the size of matrices before
computing determinantal ideals.

4 General Results on Parametrized One-relation Operads

4.1 The Cubic Relation Matrix M

Notation 4.1 _emonomial basis of the quadratic space T(3) consists of the ûve el-
ements from Example 2.2. We replace the argument symbols ∗ by the identity permu-
tation of the variables a1 , a2 , a3 , a4 obtaining a generating set for the S4-moduleT(4):

γ1 = ((a1a2)a3)a4 , γ2 = (a1(a2a3))a4 , γ3 = (a1a2)(a3a4),
γ4 = a1((a2a3)a4), γ5 = a1(a2(a3a4)).
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Algorithm 1 Partial Smith form

Input: an m × n matrix R with entries in F[x1 , . . . , xp].
Output: an m × n matrix S equivalent to R over F[x1 , . . . , xp] in the sense that S =

URV , where U (m ×m) and V (n × n) are invertible matrices over F[x1 , . . . , xp],
that is, det(U) and det(V) are nonzero scalars. Furthermore, S consists of two
diagonal blocks: an identity matrix and a block B in which no entry is a nonzero
scalar.
set S ← R k ← 1.
while s i j ∈ F ∖ {0} for some i , j ≥ k do
Find the least i ≥ k for which s i j ∈ F ∖ {0} for some j ≥ k.
If i /= k, then interchange rows i and k of S.
Find the least j ≥ k for which sk j ∈ F ∖ {0}.
If j /= k, then interchange columns j and k of S.
If skk /= 1, then divide row k of S by skk .
For i = k + 1, . . . ,m do: subtract s ik times row k from row i.
For j = k + 1, . . . , n do: subtract sk j times column k from column j.
Set k ← k + 1.

end while
return S.

To each generator γ1 , . . . , γ5 we apply all 24 permutations from S4 to obtain a lin-
ear basis of T(4). We write these basis monomials using the notation [τ]q = τ ⋅ γq
for τ ∈ S4 and q ∈ {1, . . . , 5}. We impose a total order by deûning monomial
j ∈ {1, . . . , 120} to be [τ]q , where j − 1 = 24(q − 1) + (r − 1) and r ∈ {1, . . . , 24}
and τ is permutation r in lex order.

Let us consider the general relation of the type (LR):

ρ(a1 , a2 , a3) = (a1a2)a3 − x1a1(a2a3) − x2a1(a3a2) − x3a2(a1a3)
− x4a2(a3a1) − x5a3(a1a2) − x6a3(a2a1).

In what follows, we denote by J the operad ideal in T generated by ρ. We regard the
coeõcients x1 , . . . , x6 as indeterminates, and so T has become an operad not over
F, but instead over the polynomial ring C = F[x1 , . . . , x6]. _at is, we replace each
Sn-moduleT(n) overF by the tensor productC⊗T(n) overC, where every τ ∈ Sn acts
as the identity map on C. _us T(n) has changed from a vector space of dimension
(2k−2)!
(k−1)! (Lemma 2.8) to a free C-module of the same rank. In particular, T(4) is a free
C-module of rank 120.
According to Deûnition 2.12 the elements generate the S4-module J(4) ⊆ T(4)

ρ(a1a2 , a3 , a4) = ((a1a2)a3)a4 − x1(a1a2)(a3a4) − x2(a1a2)(a4a3)
− x3a3((a1a2)a4) − x4a3(a4(a1a2)) − x5a4((a1a2)a3)
− x6a4(a3(a1a2)),

https://doi.org/10.4153/CJM-2017-018-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-018-3


1006 M. Bremner and V. Dotsenko

ρ(a1 , a2a3 , a4) = (a1(a2a3))a4 − x1a1((a2a3)a4) − x2a1(a4(a2a3))
− x3(a2a3)(a1a4) − x4(a2a3)(a4a1) − x5a4(a1(a2a3))
− x6a4((a2a3)a1),

ρ(a1 , a2 , a3a4) = (a1a2)(a3a4) − x1a1(a2(a3a4)) − x2a1((a3a4)a2)
− x3a2(a1(a3a4)) − x4a2((a3a4)a1) − x5(a3a4)(a1a2)
− x6(a3a4)(a2a1),

ρ(a1 , a2 , a3)a4 = ((a1a2)a3)a4 − x1(a1(a2a3))a4 − x2(a1(a3a2))a4
− x3(a2(a1a3))a4 − x4(a2(a3a1))a4 − x5(a3(a1a2))a4
− x6(a3(a2a1))a4 ,

a1ρ(a2 , a3 , a4) = a1((a2a3)a4) − x1a1(a2(a3a4)) − x2a1(a2(a4a3))
− x3a1(a3(a2a4)) − x4a1(a3(a4a2)) − x5a1(a4(a2a3))
− x6a1(a4(a3a2)).

Using the notation for basis elements described above, these expansions can be writ-
ten as
(4.1)
[1234]1 − x1[1234]3 − x2[1243]3 − x3[3124]4 − x4[3412]5 − x5[4123]4 − x6[4312]5
[1234]2 − x1[1234]4 − x2[1423]5 − x3[2314]3 − x4[2341]3 − x5[4123]5 − x6[4231]4
[1234]3 − x1[1234]5 − x2[1342]4 − x3[2134]5 − x4[2341]4 − x5[3412]3 − x6[3421]3
[1234]1 − x1[1234]2 − x2[1324]2 − x3[2134]2 − x4[2314]2 − x5[3124]2 − x6[3214]2
[1234]4 − x1[1234]5 − x2[1243]5 − x3[1324]5 − x4[1342]5 − x5[1423]5 − x6[1432]5 .

_e following list of 120 relations generates J(4) as a C-module:

ρ(a1a2 , a3 , a4).τ, ρ(a1 , a2a3 , a4).τ, ρ(a1 , a2 , a3a4).τ,
ρ(a1 , a2 , a3)a4 .τ, a1ρ(a2 , a3 , a4).τ,

where τ ∈ S4 is an arbitrary permutation. _ese relations can be represented as row
vectors of dimension 120 over C using the total order of Notation 4.1; each vector
has the entries {1,−x1 , . . . ,−x6} and 113 zeros. We sort these row vectors into semi-
triangular form using the following total order x ≺ y on row vectors of the same but
arbitrary length.
● Let i , j ≥ 1 be the least integers for which x i /= 0 and y j /= 0.
● If i /= j, then x ≺ y if and only if i < j.
● If i = j but x i /= y j , then x ≺ y if and only if x i ≺ y j according to

1 ≺ −x1 ≺ −x2 ≺ −x3 ≺ −x4 ≺ −x5 ≺ −x6 .

● If i = j and x i = y j , then x ≺ y if and only if x′ ≺ y′, where x′ (resp. y′) is obtained
from x (resp. y) by deleting the ûrst i entries.

Deûnition 4.2 _e cubic relation matrix M = (m i j) is the square matrix of size 120
in which entry m i j is the coeõcient of the j-th basis monomial (Notation 4.1) in the
i-th row vector in the list of consequences of the relation ρ sorted as above.
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Lemma 4.3 _e cubic relation matrix M has minimal rank 84. _e reduced Gröbner
basis for the ûrst nontrivial determinantal ideal DI85(M) is as follows:

x2 + x3 , x1 + x4 , x6 , x2
1 , x2x1 , x1x5 + x2 , x2

2 , x5x2 + x1 , x2
5 − 1.

_e reduced Gröbner basis for the radical
√
DI85(M) is as follows:

x1 , x2 , x3 , x4 , x6 , x2
5 − 1.

_e only parameter values which produce the minimal rank are [0, 0, 0, 0,±1, 0], and
for these values we obtain the maximal dimension nullity(M) = 36 for the S4-module
T(4)/J(4).

Proof _e following properties of M were obtained using the computer algebra
system Maple. Applying Algorithm 1 to the cubic relation matrix M, produces
diag(I84 , B) where B is a 36 × 36 matrix in which no entry is a nonzero scalar. From
this it follows that for all a1 , . . . , a6 ∈ F, the matrix M∣(a1 , . . . , a6) has rank ≥ 84,
and DIk(M) = DIk−84(B) for k > 84. _is formula easily allows computation of the
Gröbner bases for the ideal DI85(M) = DI1(B) and for its radical, which are as stated
in the lemma. Examining these Gröbner bases, we see that B = 0 only for the values
of parameters [0, 0, 0, 0,±1, 0], which completes the proof.

Remark 4.4 _e computations for the proof of Lemma 4.3 also provided the fol-
lowing information about the block B. Every entry f of B has integer coeõcients, and
only 99 of the 1296 entries are zero. A�er normalizing these polynomials by making
all leading coeõcients equal to 1, there are 709 distinct polynomials with 665 distinct
irreducible factors; in fact, 492 of these polynomials are irreducible. In a way, it is
remarkable that the ideal generated by these polynomials has such a small and simple
Gröbner basis.

Remark 4.5 _e other determinantal ideals are much harder. A generating set for
DIr(B) contains C(36, r)2 determinants of r× r submatrices. In particular, regularity
requires nullity(M) = 24 and hence rank(B) = 12. To determine the parameter values
satisfying this condition, Proposition 3.4 tells us to ûnd the zero sets V(DIr(B)) for
r = 12, 13. For r = 12 (and worse for r = 13), we must evaluate more than 1018 minors,
and 12× 12 determinants over F[x1 , . . . , x6] are not easy to compute. Even supposing
that this were possible, we would still have to compute Gröbner bases for the two
ideals, and hope that these would make it possible to solve explicitly for the zero sets.
We will be able to overcome these obstacles using the representation theory of the
symmetric group, starting in Section 5.

4.2 Nilpotency Theorem

_eorem 4.6 Let N be the set of all points a in the parameter space F6 for which
the operad Oa is nilpotent of index 3. _en N is a Zariski open subset of the parameter
space F6.
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Proof Example 2.14 showed that the anti-associative identity is a special case of Re-
lation (LR) and that the anti-associative operad is nilpotent of index 3. Hence set-
ting x1 = −1 and x2 = ⋅ ⋅ ⋅ = x6 = 0 in M produces an invertible matrix over F. It
follows from Proposition 3.2 that the cubic relation matrix M is invertible over the
ûeld of rational functions F(x1 , . . . , x6). For a = (a1 , . . . , a6) ∈ F6, the parametrized
one-relation operad Oa is nilpotent of index 3 if and only if det(M∣(a1 , . . . , a6)) /= 0;
this condition deûnes a Zariski open subset in the space of parameters.

4.3 Towards Classifying Regular Parametrized One-Relation Operads

Lemma 4.7 If the operad Ox is regular for the values xk = ak ∈ F (1 ≤ k ≤ 6), then
● rank(M) = 96 and rowspace(M) ≅ (FS4)4 as an S4-module,
● nullity(M) = 24 and nullspace(M) ≅ FS4 as an S4-module.

Proof Regularity means that T(n) /J(n) ≅ FSn for all n ≥ 1, and so in particular
we have T(4) /J(4) ≅ FS4. Since Ω(4) is ûve-dimensional, we have T(4) ≅ (FS4)5,
which implies J(4) ≅ (FS4)4. Since rowspace(M) ≅ J(4), we have nullspace(M) ≅
T(4) /J(4).

Consider any subset A ⊆ {1, . . . , 6} and let M(A) be thematrix obtained by setting
x i = 0 for all i ∈ A in the cubic relation matrix M. If we apply Algorithm 1 to M(A),
then we obtain a block diagonal matrix diag(Ir , Bs) where r = r(A), s = s(A), and
r + s = 120. As before, Ir is the identity matrix of size r, and Bs is a square matrix of
size s in which no entry is a nonzero scalar. _e following result can be obtained by a
straightforward Maple computation.

Lemma 4.8 _e size s of B depends only on whether 5 or 6 is in A.
● If x5 = x6 = 0, then B has size 24.
● If x5 = 0, but x6 /= 0, then B has size 30.
● If x5 /= 0, then B has size 36.

We now consider the 16 cases in which x5 = x6 = 0; we can deal with them all at
once by allowing x1 , . . . , x4 to be free parameters. We shall be able to establish the
following rather attractive result, which shows how the four most familiar cases of
parametrized one-relation operads may be obtained directly from elementary obser-
vations using linear and commutative algebra. In fact, we shall provide two proofs of
this result, since each of them is somewhat instructive.

Proposition 4.9 _e only cases of Relation (LR) with x5 = x6 = 0 that are regular are
those deûning the trivial, associative, Leibniz, and Zinbiel operads.

First proof of Proposition 4.9 Algorithm 1 reduces M to an identity matrix of size
96 and a lower right block B of size 24. _us, in order for the nullity of M to be 24, it
is necessary and suõcient that B = 0, and this in turn is equivalent to DI1(B) = {0}.
In B, 432/576 = 3/4 of the entries are nonzero but there are only 18 distinct nonzero
entries, with degrees {3, 4}, coeõcients {±1, 2}, and numbers of terms {2, 6, 7, 8}.
Figure 1 lists these entries in grevlex order; those not factored are irreducible.
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1 x4x1(x2 + x3)
2 x2

4x2 − x2
3x2 − x2

3x1 + x4x2x1 − x4x2
1 − x3x2

1
3 (x2 + x3)(x2

1 − x1x2 + x1x3 − x2x4 + x3x4)
4 x2

4x3 − x3x2
2 + x4x3x1 + x2

2x1 + x4x2
1 − x2x2

1
5 x4x3x2

2 + x2
4x3x1 + x3x2

2x1 + x4x3x2
1 + x4x2

3 + x2
4x1 − x3x2

6 x2
4x

2
2 + x3x3

2 + x3
4x1 + x4x3x2x1 + x3

3 + x4x3x1 − x3x1

7 x4x2
3x2 + x2

4x2x1 + x2
3x2x1 + x4x2x2

1 − x4x2
2 − x2

4x1 + x3x2

8 x2
4x3x2 + 2x4x3x2x1 + x3x2x2

1 + x2
4x1 + x3x2x1 − x3x2

9 x4(x1x2
2 + x1x2x3 + x2

2x4 + x2x3x4 − x1x2 − x1x3 + x2)
10 x3

4x2 + x4x3x2
2 + x2

4x2x1 + x3x2
2x1 + x4x3x1 + x3x2

1 − x3x1

11 x4(x2 + x3)(2x1x4 + x2
2 + x2

3)
12 x2

4x
2
3 + x3

3x2 + x3
4x1 + x4x3x2x1 − x3

2 − x4x2x1 + x2x1

13 x4(x1x2x3 + x1x2
3 + x2x3x4 + x2

3x4 + x1x2 + x1x3 − x3)
14 x2

4x
2
3 + 2x2

4x3x2 + x2
4x

2
2 + x2

3x
2
2 + x4x2

3x1 + x4x2
2x1 + x2

4x
2
1 − x4

15 x3
4x3 + x4x2

3x2 + x2
4x3x1 + x2

3x2x1 + x4x2x1 + x2x2
1 − x2x1

16 x3
4x3 + x3

4x2 + x4x2
3x2 + x4x3x2

2 − x3x2x1 − x2
2x1 + x2

2
17 x3

4x3 + x3
4x2 + x4x2

3x2 + x4x3x2
2 + x2

3x1 + x3x2x1 − x2
3

18 x4
4 + 2x2

4x3x2 + x2
3x

2
2 + x3x2x1 + x3

1 − x2
1

Figure 1: Nonzero entries of lower right block B when x5 = x6 = 0

_e Gröbner basis for the ideal generated by these entries has seven elements:

x4 , x2(x2−x1), x3x2 , x3(x3+x1), x2
1 (x1−1), x2x1(x1−1), x3x1(x1−1).

_e Gröbner basis for the radical also has seven elements:

x4 , x1(x1−1), x2(x1−1), x3(x1−1), x2(x2−1), x3x2 , x3(x3+1).
From these results it is easy to verify that DI1(B) is zero-dimensional and that its zero
set V(DI1(B)) consists of exactly four points (x1 , x2 , x3 , x4) = (0, 0, 0, 0), (1, 0, 0, 0),
(1, 1, 0, 0), (1, 0,−1, 0). We have seen these coeõcients in Example 1.2: they corre-
spond to the le� nilpotent, associative, Zinbiel, and Leibniz operads.

Second proof of Proposition 4.9 While Relation (LR) allows reassociation of pa-
rentheses to the right when we deal with products of three arguments, that does not,
in general, help to reassociate parentheses in products of more than three arguments:
since we allow all permutations of arguments on the right side, an inûnite chain of
reassociations might happen. However, if we assume that x5 = x6 = 0, that cannot
happen, as the following lemma shows.

Lemma 4.10 Suppose that x5 = x6 = 0. _en every operation in the corresponding
operad is equal to a linear combination of right-normed products.

Proof Let us consider some balanced bracketing of k ≥ 2 arguments. It has the form
(AB), where A and B are balanced bracketings of fewer arguments, with l arguments
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in A and k − l arguments in B. We shall prove the statement by induction on k, and
for a ûxed k, by induction on l . In both cases, the basis of induction is trivial: for
k = 2, there is nothing to prove, and for each k and l = 1, we may use the induction
hypothesis and write B as a linear combination of right-normed products. _e right-
normed property does not change when we multiply by A.
Assume that l ≥ 2, so that A = (A1A2); we are in a situation where we can apply

the deûning relation of our operad, obtaining

(A1A2)B = x1A1(A2B) + x2A1(BA2) + x3A2(A1B) + x4A2(BA1).

_e ûrst four permutations are exactly those which do not bring the third argument
into the ûrst position, so each of these terms has the parameter l smaller than the
original one, and the induction hypothesis applies.

_is lemma shows that under the assumption x5 = x6 = 0 the spanning property
of the right-normed products is trivially satisûed, so there is a surjective map from
the regular representation of Sn onto the n-th component of our operad. It remains
to check that this map has no kernel. Let us start with arity 4. Note that the deûning
relation of our operad can be applied as a rewriting rule to the product ((a1a2)a3)a4
in two diòerent ways: by rewriting (a1a2)a3 ûrst, or by rewriting (ba3)a4 and setting
b = (a1a2), as in Example 2.14. _is leads to two a priori diòerent expressions for
((a1a2)a3)a4 as linear combinations of right-normed products.

We collect the nonzero coeõcients of the diòerence of those in the the following
table, where the polynomial in the row indexed τ ∈ S4 corresponds to the coeõcient
of a1(a2(a3a4)).τ:

1234 x2
2x

2
3 + 2x2x3x2

4 + x4
4 + x3

1 + x1x2x3 − x2
1

1243 x1x2x2
3 + x1x3x2

4 + x2x2
3x4 + x3x3

4 + x2
1 x2 + x1x2x4 − x1x2

1324 x2
1 x2 + x2

1 x3 − x1x2
2 + x1x2

3 − x2
2x4 + x2

3x4
1342 −x2

1 x2 + x2
1 x4 + x1x2

2 + x1x3x4 − x2
2x3 + x3x2

4
1423 x1x2x3x4 + x1x3

4 + x2x3
3 + x2

3x
2
4 − x1x2x4 − x3

2 + x1x2
1432 x2

2x3x4 + x2x2
3x4 + x2x3

4 + x3x3
4 − x1x2

2 − x1x2x3 + x2
2

2134 x1x2
2x3 + x1x2x2

4 + x2
2x3x4 + x2x3

4 + x2
1 x3 + x1x3x4 − x1x3

2143 x2
1 x2x3 + 2x1x2x3x4 + x2x3x2

4 + x1x2x3 + x1x2
4 − x2x3

2314 x2
1 x3 + x2

1 x4 − x1x2x4 + x1x2
3 + x2x2

3 − x2x2
4

2341 x1x2x4 + x1x3x4
2413 x2

1 x2x4 + x1x2x2
3 + x1x2x2

4 + x2x2
3x4 − x1x2

4 − x2
2x4 + x2x3

2431 x1x2
2x4 + x1x2x3x4 + x2

2x
2
4 + x2x3x2

4 − x1x2x4 − x1x3x4 + x2x4
3214 x2

2x3x4 + x2x2
3x4 + x2x3

4 + x3x3
4 + x1x2x3 + x1x2

3 − x2
3

3241 x1x2x3x4 + x1x2
3x4 + x2x3x2

4 + x2
3x

2
4 + x1x2x4 + x1x3x4 − x3x4

3124 x1x2x3x4 + x1x3
4 + x3

2x3 + x2
2x

2
4 + x1x3x4 + x3

3 − x1x3
3142 x2

1 x3x4 + x1x2
2x3 + x1x3x2

4 + x2
2x3x4 + x1x2

4 + x2
3x4 − x2x3

3412 2x1x2x2
4 + 2x1x3x2

4 + x2
2x3x4 + x2x2

3x4 + x3
2x4 + x3

3x4
3421 x2

1 x
2
4 + x1x2

2x4 + x1x2
3x4 + 2x2x3x2

4 + x2
2x

2
3 + x2

2x
2
4 + x2

3x
2
4 − x1x4

If the right-normed products are linearly independent, all those coeõcients must
be equal to zero. _eGröbner basis for the corresponding system of polynomial equa-
tions is x4

1 − x3
1 , x

4
4 + x3

1 − x2
1 , x

3
2 − x2

2 x3
3 + x2

3 , x1x2 − x2
2 , x1x3 + x2

3 , x2x3, x1x4, x2x4,
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x3x4. _is implies that every solution to this system has

x4 = 0, x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {−1, 0},
and x2x3 = x3(x1+x3) = x2(x1−x2) = 0, so the only solutions are (0, 0, 0, 0), the le�-
nilpotent operad, (1, 0, 0, 0), the associative operad, (1, 1, 0, 0), the Zinbiel operad,
and (1, 0,−1, 0), the Leibniz operad.

Proposition 4.9 shows that if we wish to ûnd new regular solutions, we must con-
sider the more diõcult cases in which either x5 or x6 is nonzero. Examining the two
proofs of that proposition, we see that since, according to Lemma 4.8, the matrix B
has size either 30 or 36, in these cases we must deal with either impractically large
numbers of minors (more than 1018 in the worst case of matrix of size 36), or a rewrit-
ing rule that has no termination property. We therefore need to introduce somemore
powerful techniques, and that is the topic of the next section.

5 Representation Theory of the Symmetric Groups

Because of the symmetric group actions on the components of any operad, it is to be
expected that representation theory of symmetric groups can be utilized in operad
theory. For an operad presented as a quotient of a free operad, the n-th component of
the ideal of relations is an Sn-submodule of the direct sum of a ûnite number of copies
of the regular Sn-module, FSn . In simplest terms, the motivation for using represen-
tation theory is to “divide and conquer”: to split one large intractable problem into
a number of smaller tractable pieces which are collectively equivalent to the original
problem. We refer the reader to [7] for a systematic development of the necessary
material using modern notation and terminology.

_ere are two signiûcant advantages to using the representation theory of the sym-
metric group to study algebraic operads. We have already mentioned the ûrst: this
method allows us to study a set of multilinear relations “one representation at a time”,
which greatly reduces the sizes of the matrices involved. _e second important rea-
son is that using representation theory allows us to specify beforehand the Sn-module
structure of the space of relations, not only its dimension, and this can save a great
deal of further computation.
For example, the regular S4-module FS4 has dimension 24, but there are other

S4-modules of dimension 24. Indeed, if m1 , . . . ,m5 ≥ 0 are the multiplicities of the
simple modules [4], [31], [22], [212], [14] in the S4-module T ,

T ≅ m1[4] ⊕m2[31] ⊕m3[22] ⊕m4[212] ⊕m5[14],
then dim(T) = 24 if and only ifm1 +3m2 +2m3 +3m4 +m5 = 24. _ere are 1615 solu-
tions to this equation, and no two of the corresponding modules are isomorphic, but
only FS4 has multiplicities [1, 3, 2, 3, 1]. If we consider only submodules of (FS4)5,
then we still have 529 solutions. If we restrict further to modules T which are sym-
metric in the sense that T ⊗ [14] ≅ T , where [14] is the sign module, or equivalently
m1 = m5, m2 = m4, then the number of solutions decreases to a more manageable 21.

Without representation theory, if we encounter amodule of dimension 24, wemust
determine its structure by computing the traces of the representationmatrices for a set
of conjugacy class representatives and then using the character table of S4 to express
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the character as a linear combination (with non-negative integer coeõcients) of the
simple characters. With representation theory, this extra work is unnecessary.

5.1 Structure Theory

When the characteristic of F is 0 or p > n, the group algebra FSn is semisimple, and
classical structure theory applies. Let λ range over the partitions of n; we write p(n)
for the number of partitions. _e regular module FSn decomposes into the (orthogo-
nal) direct sum of simple two-sided ideals M(λ), each of which is isomorphic to a full
matrix algebra Md(λ)(F), where dλ is the dimension of the simple Sn-module [λ]:
(5.1) FSn ≅ ⊕

λ
M(λ), M(λ) ≅ Md(λ)(F).

As a right (or le�) ideal,M(λ) decomposes as the direct sumof d(λ) copies of [λ] that
correspond to the rows (or columns) of Md(λ)(F). Eõcient algorithms are known
for computing the isomorphism (5.1) in both directions [7]. We will only require the
projections which take a partition λ and a permutation σ and produce the matrix
Rλ(σ) in Md(λ)(F) which represents the action of σ on [λ]. _e simplest algorithm
for computing the matrices Rλ(σ) was discovered by Cli�on [8].

_e isomorphism (5.1) expresses FSn , a single vector space of dimension n!, as the
direct sum of p(n) subspaces of dimensions d(λ)2, and these subspaces are orthog-
onal in the sense that xy = 0 if x ∈ M(λ) and y ∈ M(λ′) with λ /= λ′. _us we have
divided the original structure of size n! into a list of p(n) independent structures of
average size n!/p(n). But we have also converted the vector space FSn (a tensor of
rank 1) into a list of p(n) full matrix algebras (tensors of rank 2). _us the original
problem has decomposed into p(n) problems of size

√
n!/p(n), which is the average

dimension of a simple Sn-module.

5.2 Representation Matrices for Polynomial Identities of Arity 4

We now restrict to the case n = 4 which we need to continue our analysis of the cubic
relation matrix M. For each partition λ of 4, the dimension dλ of the simple module
[λ] is the number of standard tableaux; see Figure 2.

1 2 3 4 1 2 3
4

1 2 4
3

1 3 4
2

1 2
3 4

1 3
2 4

1 2
3
4

1 3
2
4

1 4
2
3

1
2
3
4

dλ = 1 dλ = 3 dλ = 2 dλ = 3 dλ = 1
λ = 4 λ = 31 λ = 22 λ = 212 λ = 14

Figure 2: Partitions, dimensions, standard tableaux (n = 4)

_e corresponding isomorphism (5.1) has the form

(5.2) FS4 ≅ F⊕M3(F) ⊕M2(F) ⊕M3(F) ⊕ F,
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which can be viewed as a map from permutations σ to quintuples of matrices Rλ(σ).
_e representationmatrices for the generators σ = (12), (23), (34) ∈ S4 are as follows:

(12) z→
⎡⎢⎢⎢⎢⎢⎣

[ 1 ] ,
⎡⎢⎢⎢⎢⎢⎣

1 0 −1
0 1 −1
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
, [1 −1

0 −1] ,
⎡⎢⎢⎢⎢⎢⎣

1 −1 1
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
, [ −1 ]

⎤⎥⎥⎥⎥⎥⎦
,

(23) z→
⎡⎢⎢⎢⎢⎢⎣

[ 1 ] ,
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
, [0 1

1 0] ,
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
, [ −1 ]

⎤⎥⎥⎥⎥⎥⎦
,

(34) z→
⎡⎢⎢⎢⎢⎢⎣

[ 1 ] ,
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
, [1 −1

0 −1] ,
⎡⎢⎢⎢⎢⎢⎣

−1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
, [ −1 ]

⎤⎥⎥⎥⎥⎥⎦
.

Recall from Notation 4.1 that the S4-module T(4) is isomorphic to the direct sum
of ûve copies of FS4 generated by the ûve basis monomials γ1 , . . . , γ5 of Ω(4). _us
every multilinear polynomial identity I of arity 4 can be decomposed into a sum of
ûve components, I = I1 + ⋅ ⋅ ⋅ + I5, where each I i can be identiûed with an element
of FS4 and each monomial in I i has the same bracketing as γ i . We combine this
decomposition of T(4) with the decomposition (5.2) and rearrange the components
to obtain the isotypic decomposition of T(4):

T(4) ≅
5
⊕
j=1

(F⊕M3(F) ⊕M2(F) ⊕M3(F) ⊕ F)

≅ F5 ⊕M3(F)5 ⊕M2(F)5 ⊕M3(F)5 ⊕ F5 .

To obtain the analogous decomposition of the multilinear identity I = I1 + ⋅ ⋅ ⋅ + I5,
we compute the representation matrices Rλ(I j) for λ = 4, . . . , 14 and j = 1, . . . , 5.
_e isotypic decomposition of I is a sequence of ûve matrices indexed by λ of sizes
dλ × 5dλ :

I z→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[R4(I1)∣R4(I2)∣R4(I3)∣R4(I4)∣R4(I5)] 1 × 5,
[R31(I1)∣R31(I2)∣R31(I3)∣R31(I4)∣R31(I5)] 3 × 15,
[R22(I1)∣R22(I2)∣R22(I3)∣R22(I4)∣R22(I5)] 2 × 10,
[R212(I1)∣R212(I2)∣R212(I3)∣R212(I4)∣R212(I5)] 3 × 15,
[R14(I1)∣R14(I2)∣R14(I3)∣R14(I4)∣R14(I5)] 1 × 5.

If G = {I(1) , . . . , I(r)} is a set of multilinear identities of arity 4, then for each λ and
each i = 1, . . . , r we compute the dλ × 5dλ matrix as above and stack them together to
obtain a matrix of size rd(λ) × 5d(λ):

(5.3) Rλ(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rλ(I(1)1 ) Rλ(I(1)2 ) Rλ(I(1)3 ) Rλ(I(1)4 ) Rλ(I(1)5 )
⋮ ⋮ ⋮ ⋮ ⋮

Rλ(I(i)1 ) Rλ(I(i)2 ) Rλ(I(i)3 ) Rλ(I(i)4 ) Rλ(I(i)5 )
⋮ ⋮ ⋮ ⋮ ⋮

Rλ(I(r)1 ) Rλ(I(r)2 ) Rλ(I(r)3 ) Rλ(I(r)4 ) Rλ(I(r)5 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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_e row space of this matrix is the isotypic component for partition λ of the submod-
ule of T(4) generated by G, and the rank of this matrix is themultiplicity of the simple
S4-module [λ] in that isotypic component.

5.3 Regularity in Terms of Representation Theory

Recall that Relation (LR) has ûve consequences (2.3) in arity 4 which generate the
S4-module J(4) ⊆ T(4) of relations in arity 4 for parametrized one-relation alge-
bras. We rewrite the expansions (4.1) of those ûve consequences by collecting terms
corresponding to the same underlying bracketings:

ρ(a1a2 , a3 , a4) = [1234]1 + [−x11234 − x21243]3 + [−x33124 − x54123]4
+ [−x43412 − x64312]5 ,

ρ(a1 , a2a3 , a4) = [1234]2 + [−x32314 − x42341]3 + [−x11234 − x64231]4
+ [−x21423 − x54123]5 ,

ρ(a1 , a2 , a3a4) = [1234 − x53412 − x63421]3 + [−x21342 − x42341]4
+ [−x11234 − x32134]5 ,

ρ(a1 , a2 , a3)a4 = [1234]1
+ [−x11234 − x21324 − x32134 − x42314 − x53124 − x63214]2 ,

a1ρ(a2 , a3 , a4) = [1234]4
+ [−x11234 − x21243 − x31324 − x41342 − x51423 − x61432]5 .

Each pair of square brackets in each of these expressions contains an element of the
group algebra FS4 with coeõcients extended to the polynomial ring F[x1 , . . . , x6].

We now apply equation (5.3) to compute the representation matrices Rλ(G) of the
relations G in each partition λ. In this way we replace the original 120× 120 cubic rela-
tionmatrixM by ûve smallermatrices of sizes 5dλ×5dλ for dλ = 1, 3, 2, 3, 1. Regularity
holds if and only if the nullity of Rλ(G) equals dλ for all λ. _is guarantees that T(4)
contains exactly dλ copies of the simple module [λ], and is therefore isomorphic to
the regular module FS4. Equivalently, the rank of Rλ(G) must equal 4dλ for all λ; in
terms of determinantal ideals, this means that for d = dλ we have DI4d(Rλ(G)) /= {0}
and DI4d+1(Rλ(G)) = {0} for all λ. _is proves the following result.

Lemma 5.1 _e parametrized one-relation operad is regular in arity 4 for particular
values of the parameters x1 , . . . , x6 if and only if all of the following conditions hold:

λ = 4∶ DI4(Rλ(G)) /= {0}, DI5(Rλ(G)) = {0},
λ = 31∶ DI12(Rλ(G)) /= {0}, DI13(Rλ(G)) = {0},
λ = 22∶ DI8(Rλ(G)) /= {0}, DI9(Rλ(G)) = {0},
λ = 212∶ DI12(Rλ(G)) /= {0}, DI13(Rλ(G)) = {0},
λ = 14∶ DI4(Rλ(G)) /= {0}, DI5(Rλ(G)) = {0}.

Remark 5.2 _e conditions in Lemma 5.1 may be combined and simpliûed. Let
G1 , . . . ,Gk be Gröbner bases for ideals I1 , . . . , Ik ⊆ F[x1 , . . . , xd]. Consider these two
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equations:

V(I1 + ⋅ ⋅ ⋅ + Ik ) = V(I1) ∩ ⋅ ⋅ ⋅ ∩ V(Ik), V(
√

I) = V(I) =
k
⋂
i=1

V(I i).

From the generating set G = G1 ∪ ⋅ ⋅ ⋅ ∪Gk for the ideal I = I1 + ⋅ ⋅ ⋅ + Ik we compute a
Gröbner basis H, and from this we compute a Gröbner basis K for the radical

√
I. We

solve the system of equations { f = 0 ∣ f ∈ K} to ûnd V(
√

I). To include the lower
rank conditions DI4d(Rλ(G)) /= {0}, we substitute each solution into the Gröbner
bases for the lower ideals DI4d(Rλ(G)), and retain a solution if and only if it is not in
Z(DI4d(Rλ(G))) for any λ.

We noted in Remark 4.5 that if the number of minors is too large, then it is not
practical to compute a Gröbner basis for a determinantal ideal. Using representation
theory allows us to go much further. To apply Lemma 5.1, we need to compute
● all minors of sizes 4 and 5 for the 5 × 5 matrix Rλ(G) when λ = 4 and λ = 14,
● all minors of sizes 12 and 13 for the 15 × 15 matrix Rλ(G) when λ = 31 and λ = 212,
● all minors of sizes 8 and 9 for the 10 × 10 matrix Rλ(G) when λ = 22.
_e total is extremely small compared to the numbers in Remark 4.5:

2 [(5
4
)

2
+ (5

5
)

2
] + 2 [(15

12
)

2
+ (15

13
)

2
] + (10

8
)

2
+ (10

9
)

2
= 438277.

Notably, those matrices have many zero entries; furthermore, they have entries which
are nonzero scalars (±1), sowe can applyAlgorithm 1 to reduce their sizes even further,
as we did in Section 4 when we extracted the 36 × 36 block B from the cubic relation
matrix M.

5.4 Reduction of the Representation Matrices

_e representation matrices Rλ(G) are square matrices of sizes 5, 15, 10, 15, 5, respec-
tively. Applying Algorithm 1 reduces each of these to a block diagonal matrix [I, B],
where I (identity matrix) and B (block with no nonzero scalars) have sizes r and s,
respectively, where [r, s] is one of the pairs [3, 2], [10, 5], [6, 4], [10, 5], and [3, 2]. We
write B(λ) for the block corresponding to partition λ. If B(λ) is s× s, then DIs(B(λ))
is the principal ideal generated by det(B(λ)), and so DIs(B(λ)) = {0} if and only if
det(B(λ)) = 0. _e next result is Lemma 5.1 reformulated in terms of the reduced
matrices B(λ).

Lemma 5.3 Regularity holds for particular values of the parameters x1 , . . . , x6 if and
only if the following conditions on the determinantal ideals of B(λ) hold for all λ:

λ B(λ) DIr(B(λ)) /= {0} DIr+1(B(λ)) = {0}
4 2 × 2 r = 1 r + 1 = 2, det(B(λ)) = 0
31 5 × 5 r = 2 r + 1 = 3
22 4 × 4 r = 2 r + 1 = 3
212 5 × 5 r = 2 r + 1 = 3
14 2 × 2 r = 1 r + 1 = 2, det(B(λ)) = 0
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6 Main Technical Result

In this section we describe the computations which allow us to complete the classiû-
cation of parametrized one-relation operads for which the arity 4 component is the
regular S4-module. _ese computations are based on the reduced representationma-
trices B(λ) collated in the online addendum to this paper [6]. Essentially the same
methods can be used to determine all instances of Relation (LR) that produce any
desired S4-module structure in arity 4, not necessarily the regular one.

We increase the complexity of the problem step by step, starting with the case of
one nonzero parameter, and ending with the general case in which all six parameters
are allowed to be nonzero. In order to avoid linguistic pedantry, when we say that the
parameters in some subset S ⊆ P = {x1 , x2 , x3 , x4 , x5 , x6} are nonzero, we mean that
we are setting the parameters in P ∖ S to zero and regarding those in S as free.

We call the ideals DI4dλ+1(Rλ(G)) upper determinantal ideals, and the ideals

DI4dλ(Rλ(G))
lower determinantal ideals; according to Lemma 5.1, for a parametrized one-relation
operad to be regular in arity 4, the set of parameters must be a common zero of all up-
per determinantal ideals, andmust be outside the zero set of each lower determinantal
ideal. We denote by the symbols Σ+ and

√
Σ+ the sum of the upper determinantal

ideals and its radical, respectively.

6.1 One Nonzero Parameter

When the only nonzero parameter is x1, for every representation [λ], the upper ideal
is generated by x2

1 (x1 − 1) and the lower ideal is generated by 1. _en clearly the sum
of the upper ideals is generated by x2

1 (x1 − 1) and its radical is generated by x1(x1 − 1).
For regularity, the sum of the upper ideals must be {0}, giving x1 = 0 or x1 = 1, and
each lower ideal must be nonzero (which is clear). _e solution x1 = 0 corresponds
to the le�-nilpotent identity (a1a2)a3 = 0, and x1 = 1 corresponds to associativity
(a1a2)a3 = a1(a2a3).

When the only nonzero parameter is x2, x3, or x4, the only regular solution is the
zero solution (le�-nilpotent identity).

When the only nonzero parameter is x5, for every representation [λ], the upper
ideal is zero, and the lower ideals are generated by

x5 − 1, (x5 − 1)(x5 + 1)2 , (x5 − 1)2 , (x5 − 1)(x5 + 1)2 , x5 − 1,

and we will have a regular solution if and only if every lower ideal is nonzero, and this
happens if and only if x5 /= ±1.

When the only nonzero parameter is x6, the upper ideals are generated by

x6(x6 + 1)(x6 − 1)2 , x6(x6 − 1)(x6 + 1)2 , x6(x6 − 1)2(x6 + 1)2 ,

x6(x6 + 1)(x6 − 1)2 , x6(x6 − 1)(x6 + 1)2 ,

and the radical of their sum consists of all multiples of x6(x6 − 1)(x6 + 1) and hence
will be zero if and only if x6 ∈ {0,±1}. _e lower ideals are generated by

x6 + 1, x6 − 1, x2
6 − 1, x6 − 1, x6 + 1,
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and the only one of these values which does not make at least one lower ideal equal
to zero is x6 = 0, and so here again we recover only the zero solution.

Proposition 6.1 (Summary for (at most) one nonzero parameter) When at most one
of the parameters in Relation (LR) is nonzero, there are three solutions giving the regular
module in arity 4, two isolated and one 1-dimensional (a one-parameter family):

(a1a2)a3 = 0, (a1a2)a3 = a1(a2a3), (a1a2)a3 = x5a3(a1a2) (x5 /= ±1).

6.2 Two Nonzero Parameters

Henceforth, ideals are not necessarily principal, so Gröbner bases typically contain
two or more elements. _ere are 15 cases when we choose two parameters from six,
but it will not be necessary to discuss all of them in detail. We begin with x1 , x2 and
continue in lex order.

x1 , x2 nonzero:
_e upper determinantal ideals have the following grevlex Gröbner bases:

DI+4 = ((x2 − x1)(x2 + x1)(x2 + x1 − 1)) ,
DI+31 = (x3

1 + x2
2 − x2x1 − x2

1 , x2(x2
1 − x2), x2x1(x2 − 1), x2

2(x2 − 1)) ,
DI+22 = (x3

1 + x2
2 − x2x1 − x2

1 , x2(x2
1 − x2), x2x1(x2 − 1), x2

2(x2 − 1)) ,
DI+212 = (x2(x2 − x1), x2

1 (x1 − 1), x2x1(x1 − 1)) ,
DI+14 = ((x2 − x1 + 1)(x2 − x1)2) .

_e sum of these ideals is the ideal Σ+ for λ = 212, and its radical has the following
Gröbner basis and zero set:

√
Σ+ = (x1(x1 − 1), x2(x1 − 1), x2(x2 − 1)) ,

V(
√

Σ+) = {(x1 , x2) = (0, 0), (1, 0), (1, 1)}
Every lower ideal has Gröbner basis {1}, so all three of the solutions are regular. We
have already seen the ûrst and second, but the third is new: it deûnes the Zinbiel
identity (a1a2)a3 = a1(a2a3) + a1(a3a2).
x1 , x3 nonzero: _is is the Koszul dual of the case x1 , x2 nonzero. To derive the results
in this case from those of the previous case, for each λ we replace x2 by −x3 and λ by
its conjugate; this corresponds to tensoring with the sign module. We obtain again
the trivial and associative identities, since they are self-dual, but the Zinbiel identity
is transformed into the Leibniz identity: (a1a2)a3 = a1(a2a3) − a2(a1a3).
x1 , x4 nonzero: _e radical of the sum of the upper ideals is generated by the poly-
nomials x4 and x1(x1 − 1), so x4 = 0, and there are no new solutions.

x1 , x5 nonzero: _e radical of the sumof the upper ideals is
√

Σ+ = (x1(x1−1), x5x1),
so x1x5 = 0, and there are no new solutions.

x1 , x6 nonzero: _e radical of the sum of the upper ideals is
√

Σ+ = (x1(x1 − 1), x6x1 , x6(x6 − 1)(x6 + 1)) ,
so x1x6 = 0, and there are no new solutions.
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x2 , x3 nonzero: We have
√

Σ+ = (x2 , x3), so there are no new solutions.

x2 , x4 nonzero to x4 , x6 nonzero: No new features; we omit the details.

x5 , x6 nonzero: _e radical of the sum of the upper ideals is
√

Σ+ = (x6x5 , x6(x6 − 1)(x6 + 1)) ,
so x5x6 = 0, and there are no new solutions.

Proposition 6.2 (Summary for two nonzero parameters) When exactly two param-
eters in Relation (LR) are diòerent from zero, there are two regular solutions, both iso-
lated, which are the Zinbiel and Leibniz identities:

(a1a2)a3 = a1(a2a3) + a(a3a2), (a1a2)a3 = a1(a2a3) − a2(a1a3).

6.3 Three Nonzero Parameters

_ere are (6
3) = 20 cases, starting with x1, x2, x3 in lex order and ending with x4, x5,

x6, but they produce no new regular solutions. We present details only for the ûrst
and last cases, since they illustrate the computations that are typical of all cases.

x1 , x2 , x3 nonzero: Once we compute Gröbner bases for the radicals of the upper
ideals, we note in particular that
√
DI+31 = ((x1− 1)(x2+x1), x3(x1− 1), x2(x2− 1), x3x2 , x3(x3+ 1), x1(x1− 1)(x1+ 1)) .

We see that x2x3 = 0, so there are no new solutions.

x1 , x2 , x4 to x3 , x5 , x6 nonzero: No new features; we omit the details.

x4 , x5 , x6 nonzero: Once we compute Gröbner bases for the radicals of the upper
ideals, we note in particular that

√
DI+31 = (x4 , x6x5(x6 + x5 + 1), x6(x6 + x5 + 1)(x6 − x5 − 1)) .

We see that x4 = 0, so there are no new solutions.

Proposition 6.3 (Summary for three nonzero parameters) When exactly three pa-
rameters in Relation (LR) are nonzero, there are no solutions that are regular in arity 4.

6.4 Four Nonzero Parameters

In this case, we obtain two new relations with irrational coeõcients that are regular;
but we will see shortly that these solutions belong to a one-parameter family, all of
whose other solutions have ûve nonzero coeõcients. We discuss these two cases,
x2 , x4 , x5 , x6 nonzero and x3 , x4 , x5 , x6 nonzero, and one other case, x2 , x3 , x4 , x6
nonzero that is remarkable for the complexity of the Gröbner bases that occur.

x2 , x3 , x4 , x6 nonzero: _e individual upper ideals have very complicated Gröbner
bases with dozens of terms, some of which have coeõcients of absolute value about
1023. However, when we consider the sum of the upper ideals, the complexity van-
ishes: the Gröbner basis for the sum contains only seven polynomials of degrees 1,2,3
with one or two terms and all coeõcients ±1. _e radical is slightly simpler: only four
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polynomials, and none of degree 2:
√

Σ+ = (x2 , x3 , x4 , x6(x6 + 1)(x6 − 1)) . We see
that x2 = x3 = x4 = 0, so there are no new solutions.

x2 , x4 , x5 , x6 nonzero: In this case the radical
√

Σ+ has the following Gröbner basis:

x4 + x2 , x2(x5 + x2), x2(x6 − 1), x5x6 + x2 ,

x2(x2
2 − x2 − 1), x6(x6 − 1)(x6 + 1).

We assume x2 /= 0, so we may cancel the factor x2 from three generators, obtaining

{x4 + x2 , x5 + x2 , x6 − 1, x5x6 + x2 , x2
2 − x2 − 1, x6(x6 − 1)(x6 + 1)} .

If we set x4 = −x2, x5 = −x2, x6 = 1, then this generating set reduces to {x2
2 − x2 − 1}.

_erefore, we obtain solutions

(6.1) [x1 , x2 , x3 , x4 , x5 , x6] = [0, ϕ, 0,−ϕ,−ϕ, 1],

where ϕ can be either of the roots of the polynomial x2 − x − 1. Before we can verify
that this is regular, we must consider the lower ideals, whose radicals are

λ = 4 (x2 , x6 + x5 − 1, x4(x4 + 1), x5x4),
λ = 31 (x2 , x4 , x2

5 − x6 − 1, x6x5 , x6(x6 + 1)) ,
λ = 22 (x2 , x4 , x5(x5 − 1), x6x5 , x2

6 + x5 − 1),
λ = 212 (x2 , x4 , x2

5 + x6 − 1, x6x5 , x6(x6 − 1)) ,
λ = 14 (x6 − x5 + 1, x2(x4 − x2), (x4 − x2)(x4 + x2 + 1), x5(x4 − x2)) .

For parameters equal to the values (6.1), some of these polynomials do not vanish: the
ûrst four ideals contain x2 = ϕ /= 0, and the û�h contains x6 − x5 + 1 = ϕ + 2 /= 0.

x3 , x4 , x5 , x6 nonzero: _e calculations are similar to those of the previous case, and
we obtain two new solutions: [x1 , x2 , x3 , x4 , x5 , x6] = [0, 0,−ϕ,−ϕ,−ϕ,−1].

Proposition 6.4 (Summary for four nonzero parameters) When exactly four param-
eters in Relation (LR) are diòerent from zero, there are four solutions that are regular in
arity 4, two for each root ϕ of the polynomial x2 − x − 1:

(a1a2)a3 = ϕa1(a3a2) − ϕa2(a3a1) − ϕa3(a1a2) + a3(a2a1),
(a1a2)a3 = −ϕa2(a1a3) − ϕa2(a3a1) − ϕa3(a1a2) − a3(a2a1).

6.5 Five Nonzero Parameters

We obtain a new one-parameter family involving the ûrst ûve parameters. We present
details of the computations in this case, and omit the others that do not produce any
new solutions.
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x1 , x2 , x3 , x4 , x5 nonzero: Although the individual upper ideals have very compli-
cated Gröbner bases with hundreds of terms, some of which have coeõcients of ab-
solute value about 1015, the radical

√
Σ+ has the following simple Gröbner basis:

(6.2)

(x3 + x2)(x1 − 1), (x1 − 1)(x4 + x1),
x3x2 + x2

2 − x5x1 − x2 , x4x2 − x2
2 + x2x1 + x2

1 − x4 − x1 ,
(x2 − x1)(x5 + x2 + x1 − 1), (x3 + x2)(x3 − x2 + 1),
x4x3 + x2

2 − x2x1 − x2
1 + x4 + x1 , x5x3 − x2

2 + x5x1 + x2
1 + x2 − x1 ,

x2
4 − x2

2 + x5x1 + x2 , x5x4 + x2
2 − x2

1 + x4 − x2 + x1 ,
(x1 − 1)(x5x1 + x2), (x1 − 1)(x2 − x1)(x2 + x1),
x2
5x1 − x2

2 + x5x1 + x2
1 + x2 − x1 .

We note that several of these polynomials are divisible by x1−1, so we can use a divide-
and-conquer strategy to ûnd the zero set of these polynomials.

Case 1: Setting x1 = 1 in the polynomials (6.2) and recomputing the Gröbner basis
produces the following nine polynomials:

(6.3)
x2
2 + x2x3 − x2 − x5 , (x2 − 1)(x4 − x2), (x2 − 1)(x5 + x2),

(x3 + x2)(x3 − x2 + 1), x3x4 + x2
2 − x2 + x4 , x3x5 − x2

2 + x2 + x5 ,
x2
4 − x2

2 + x2 + x5 , x4x5 + x2
2 − x2 + x4 , (x2 + x5)(x5 − x2 + 1).

We note that two of the polynomials are divisible by x2 − 1, so may use a divide-and-
conquer strategy again.

Subcase 1a: Setting x2 = 1 and recomputing the Gröbner basis produces

x5 − x3 , x3(x3 + 1), (x3 + 1)x4 , x2
4 + x3 .

Since x3 /= 0, we have x3 = −1, so that x4 = ±1 and x5 = −1, giving the solutions

[x1 , x2 , x3 , x4 , x5 , x6] = [1, 1,−1, 1,−1, 0], [1, 1,−1,−1,−1, 0].

Subcase 1b: If x2 /= 1, then we may divide by (= remove) the two factors x2 − 1 in the
polynomials (6.3) and recompute the Gröbner basis, obtaining

x4 − x2 , x2 + x5 , x2(x3 + x2), (x3 + x2)(x3 − x2 + 1).

Since x2 /= 0, we have x3 = −x2, so that x4 = x2 and x5 = −x2, giving the solution

[x1 , x2 , x3 , x4 , x5 , x6] = [1, x2 ,−x2 , x2 ,−x2 , 0], (x2 /= 1).

Case 2: If x1 /= 1, then we can remove the factors x1 − 1 from the polynomials (6.2)
and recompute the Gröbner basis, obtaining

(6.4) x3 + x2 , x4 + x1 , x1x5 + x2 , (x2 − x1)(x2 + x1), x2x5 + x1 .

If x2 = x1, then (6.4) reduces to {x3 + x1 , x4 + x1 , x1(x5 + 1)} and so we have one new
solution [x1 , x2 , x3 , x4 , x5 , x6] = [x1 , x1 ,−x1 ,−x1 ,−1, 0], (x1 /= 0, 1). If x2 /= x1, then
(6.4) reduces to {x3 − x1 , x4 + x1 , x1(x5 − 1)} and so we have one new solution

[x1 , x2 , x3 , x4 , x5 , x6] = [x1 ,−x1 , x1 ,−x1 , 1, 0] (x1 /= 0, 1).
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We sort the complete list of solutions by increasing number of nonzero parameters:

(6.5)

# [x1 , x2 , x3 , x4 , x5 , x6] Comments

1 [1, x2 ,−x2 , x2 ,−x2 , 0] including x2 = 1
2 [x1 ,−x1 , x1 ,−x1 , 1, 0] x1 /= 0, 1
3 [x1 , x1 ,−x1 ,−x1 ,−1, 0] x1 /= 0, including x1 = 1

_e solutions [1, 1,−1, 1,−1, 0] and [1, 1,−1,−1,−1, 0] now become special cases of #1
and #3, respectively. It is easy to verify by direct substitution that all these solutions
belong to the zero set of every polynomial in the Gröbner basis (6.2).

To determine which of the solutions (6.5) are regular, we need to look at the lower
ideals for the ûve partitions. _eir radicals have the following Gröbner bases:

DI−4 x5 − 1, x4x1 + x3x1 + x2x1 + x2
1 − x4 − x3

(x2 + x1)(x3 − x2 + 2x1 − 2) x4x2 + x2
2 − x3x1 − x2

1 + x4 + x3 + x2 + x1 ,
x4x3 + x2

3 − x2x1 − x2
1 + x4 + x3 − x2 − x1 , x2

4 − x2
3 − x4 − x3 + 2x2 + 2x1 ,

(x2 + x1)(x2x1 − x2
1 + 3x1 − 1),

DI−31 x4 + x3 + x2 + x1 , (x1 + 1)(x3 + x2), x5x1 − x3 ,
(x2 − x1)(x2 + x1), x3x2 + x2

1 − x3 − x2 , x5x2 + x3 + x2 + x1 ,
(x3 − x1)(x3 + x1), x5x3 − x1 , (x5 − 1)(x5 + 1),

DI−22 x3 − x2 , x4 − x1 , x5 − 1, x1(x1 − 1), x2(x1 − 1), x2
2 − x1 ,

DI−212 x4 − x3 − x2 + x1 , (x1 + 1)(x3 + x2), x5x1 + x2 ,
(x2 − x1)(x2 + x1), x3x2 + x2

1 + x3 + x2 , x5x2 + x1 ,
(x3 − x1)(x3 + x1), x5x3 + x3 + x2 − x1 , (x5 − 1)(x5 + 1),

DI−14 x5 − 1, x4x1 − x3x1 − x2x1 + x2
1 − x4 + x2 ,

x4x2 − x2
2 − x3x1 + x2

1 − x4 − x3 + x2 + x1 , (x3 − x1)(x3 − x2 + 2x1 − 2),
x4x3 − x3x2 + x3x1 − x2

1 − x4 − x3 + x2 + x1 ,
x2
4 − x2

2 − x4 − 2x3 + x2 + 2x1 , (x3 − x1)(x2x1 − x2
1 − x1 + 1).

We substitute the three solutions (6.5) into these Gröbner bases, which makes all the
polynomials univariate, and determine the ideals these univariate polynomials gen-
erate. For each of the solutions, we obtain a list of ûve ideals corresponding to the ûve
partitions, and each ideal must be nonzero in order for regularity to hold.

[x1 , x2 , x3 , x4 , x5 , x6] λ = 4 λ = 31 λ = 22 λ = 212 λ = 14

[1, x2 ,−x2 , x2 ,−x2 , 0] (x2 + 1) ( x2 + 1) (1) (x2 + 1) (x2 + 1)
[x1 ,−x1 , x1 ,−x1 , 1, 0] (0) (0) (x1) (0) (0)
[x1 , x1 ,−x1 ,−x1 ,−1, 0] (1) (0) (1) (0) (1)

_us the solution [1, x2 ,−x2 , x2 ,−x2 , 0] with x2 /= −1 is the only regular one.

Proposition 6.5 (Summary for ûve nonzero parameters) When exactly ûve param-
eters in Relation (LR) are nonzero, there is a one-dimensional family of solutions which
are regular in arity 4:

(a1a2)a3 = a1(a2a3)+ x2[ a1(a3a2)− a2(a1a3)+ a2(a3a1)− a3(a1a2)] (x2 /= −1).
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Remark 6.6 _e exceptional case x2 = −1 gives a relation that is not regular:

(a1a2)a3 = a1(a2a3) − a1(a3a2) + a2(a1a3) − a2(a3a1) + a3(a1a2).

In this case, the cubic relation matrix M has nullity 32 and multiplicities [2,4,2,4,2],
that is, the nullspace is isomorphic to the S4-module

2[4] ⊕ 4[31] ⊕ 2[22] ⊕ 4[212] ⊕ 2[14].

6.6 Six Nonzero Parameters

_ere is only one case (all parameters are free), and we may assume that each pa-
rameter is nonzero, since, if any parameter is zero, then we return to one of the cases
already considered.

Upper ideals: _e sum Σ+ of the upper ideals has a grevlex Gröbner basis con-
sisting of 83 elements, degrees 3 to 5, terms 2 to 117, and coeõcients −1642727092 to
1636813156. _ere are 5 elements of degree 3, 62 of degree 4, and 16 of degree 5. Ex-
actly two elements (numbers 2 and 5) have a parameter as an irreducible factor: in
both cases x6, g2 = −x6(x1x4 − x2x3), g5 = x6(x2

1 − x2
2 − x2

3 + x2
4). Since x6 /= 0 by as-

sumption, we may divide both g2 and g5 by x6 and replace them in the Gröbner basis
by g′2 = −x1x4 + x2x3 , g′5 = x2

1 − x2
2 − x2

3 + x2
4 . We recompute the Gröbner basis and

obtain 65 elements with degrees 2 to 5, terms 2 to 91, and coeõcients −3024000276 to
2254275346. _ere are two elements of degree 2, one of degree 3, 49 of degree 4, and
13 of degree 5. _e ûrst two elements of this new basis are g′2 and g′5. We call this the
simpliûed upper basis.

Since x1 /= 0 by assumption, we solve for x4 in g′2 = 0 and obtain x4 = x2x3/x1. We
substitute this in g′5 and factor the result, obtaining

(x1 − x2)(x1 + x2)(x1 − x3)(x1 + x3)
x2
1

.

For every solution, this must vanish, so we may split the computation of the zero set
of the simpliûed upper basis into four cases:

x2 = x1 , x2 = −x1 , x3 = x1 , x3 = −x1 .

Making these substitutions into g′2 we obtain

x1(x3 − x4), −x1(x3 + x4), x1(x2 − x4), −x1(x2 + x4).

Since x1 /= 0, in each case the other factor is 0, and so the four cases are deûned as
follows:

case substitutions relation coeõcients
1 x2 = x1 , x4 = x3 [ x1 , x1 , x3 , x3 , x5 , x6 ]
2 x2 = −x1 , x4 = −x3 [ x1 , −x1 , x3 , −x3 , x5 , x6 ]
3 x3 = x1 , x4 = x2 [ x1 , x2 , x1 , x2 , x5 , x6 ]
4 x3 = −x1 , x4 = −x2 [ x1 , x2 , −x1 , −x2 , x5 , x6 ]

In this way we reduce the original problem with six free parameters to four much
smaller problems each with four free parameters.
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For each of these cases, we make the corresponding substitutions into the sim-
pliûed upper basis, and recompute the Gröbner basis. We then repeatedly cancel ir-
reducible factors in basis elements that are parameters, and recompute the Gröbner
basis.
All these tricks seemnecessary to be able to compute aGröbner basis for the radical

of the sum of the upper ideals in a reasonable time. We obtain the following results.

Case 1: _e original basis of 65 elements reduces to 26, 21, 12 elements a�er cancelling
x1 ûve times; the resulting basis has 2, 4, 4, 2 elements of degrees 2, 3, 4, 5 respectively,
terms from 9 to 34, and coeõcients from −249 to 211. _e radical of this ideal has the
following Gröbner basis:

x6 + x5 − x3 − x1 + 1, (x5 − x3)(2x5 − x3 − x1 + 2),
2x2

3x1 − 2x3
1 + x5x3 − x2

3 − x5x1 + 3x3x1 + 4x2
1 − 2x1 ,

6x5x3x1 + 6x5x2
1 − 6x3x2

1 − 6x3
1 + x5x3 − x2

3 − 5x5x1 + 11x3x1 + 12x2
1 − 6x1 ,

2x3
3 − 2x3x2

1 − x5x3 + 3x2
3 + x5x1 + 3x3x1 − 2x3 ,

2x5x2
3 − 2x5x2

1 − x5x3 + 3x2
3 + x5x1 + 3x3x1 − 2x3 .

_e zero set of this radical ideal, excluding solutions in which any parameter is zero,
and using the equations x2 = x1 and x4 = x3, consists of the point [ 1

3 ,
1
3 ,

1
3 ,

1
3 ,−

2
3 ,

1
3 ]

and the family

(6.6) [x1 , x1 , x3 , x3 , x3 , x1 − 1] , where x2
3 + x3 − (x1 − 1)2 = 0 and x1 /= 0, 1.

Case 2: _e original basis of 65 elements reduces to 29 elements; the resulting basis
has 25, four elements of degrees 4, 5, respectively, terms from 20 to 32, and coeõcients
from −2509 to 5018. _e radical has the following Gröbner basis:

(3x1 − 1)(x3 − x1), 3x6x1 − 3x5x1 + 2x3 + x1 , (x3 − x1)(x3 + x1),
(x5 − 1)(x3 + x1), 3x6x3 + 3x5x1 − 2x3 − x1 , 3x5x6 − x1 + x3 ,

x1(x5 − 1)(3x1 − 1), 9x2
5x1 + 3x5x1 − 5x3 − 7x1 , 9x3

6 + 18x5x1 − 9x6 − 11x3 − 7x1 .

_e zero set of this radical ideal, excluding solutions in which any parameter is zero,
and using the equations x2 = −x1 and x4 = −x3, is as follows:

[x1 ,−x1 , x3 ,−x3 , x5 , x6] = [ 1
3 ,−

1
3 ,−

1
3 ,

1
3 ,−

2
3 ,−

1
3 ] , [

1
3 ,−

1
3 ,−

1
3 ,

1
3 ,

1
3 ,

2
3 ] .

Case 3: _e results are very similar to those of Case 2. _e radical of the ideal has the
following Gröbner basis:

(3x1 − 1)(x2 + x1), 3x6x1 + 3x5x1 + 2x2 − x1 , (x2 − x1)(x2 + x1),
(x5 − 1)(x2 − x1), 3x6x2 + 3x5x1 + 2x2 − x1 , 3x5x6 + x1 + x2 ,

x1(x5 − 1)(3x1 − 1), 9x2
5x1 + 3x5x1 + 5x2 − 7x1 , 9x3

6 − 18x5x1 − 9x6 − 11x2 + 7x1 .

_e zero set of this radical ideal, excluding solutions in which any parameter is zero,
and using the equations x3 = x1 and x4 = x2, is as follows:

[x1 , x2 , x1 , x2 , x5 , x6] = [ 1
3 ,

1
3 ,

1
3 ,

1
3 ,−

2
3 ,

1
3 ] , [

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,−

2
3 ] .
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Case 4: _e results are very similar to those of Case 1. _e radical of the ideal has the
following Gröbner basis:

x6 − x5 − x2 + x1 − 1, (x5 + x2)(2x5 + x2 − x1 + 2),
2x2

2x1 − 2x3
1 − x5x2 − x2

2 − x5x1 − 3x2x1 + 4x2
1 − 2x1 ,

6x5x2x1 − 6x5x2
1 − 6x2x2

1 + 6x3
1 + x5x2 + x2

2 + 5x5x1 + 11x2x1 − 12x2
1 + 6x1 ,

2x3
2 − 2x2x2

1 − x5x2 − 3x2
2 − x5x1 + 3x2x1 − 2x2 ,

2x5x2
2 − 2x5x2

1 + x5x2 + 3x2
2 + x5x1 − 3x2x1 + 2x2 .

_e zero set of this radical ideal, excluding solutions in which any parameter is zero,
and using the equations x3 = −x1 and x4 = −x2, consists of the point

[ 1
3 ,−

1
3 ,−

1
3 ,

1
3 ,−

2
3 ,−

1
3 ]

and the family

(6.7) [x1 , x2 ,−x1 ,−x2 ,−x2 , 1 − x1] , x2
2 − x2 − (x1 − 1)2 = 0, x1 /= 0, 1

To decidewhich (if any) of the solutionswe found are regular, wemust computeGröb-
ner bases for the radicals of the lower determinantal ideals of the matrices B(λ), and
then substitute the solutions into the Gröbner bases.

Lower ideals: ideals:

λ = 4∶ x6 + x5 − 1, (x4 + x2 + 1)(x2 + x1), (x2 + x1)(2x5 − x3 + x2 − 2x1),
x4x3 + x2

3 + x4x1 + x3x1 − x2 − x1 ,

x2
4 − x2

3 + x3x2 − x2
2 − 2x4x1 − x3x1 − x2x1 + x4 + x3 ,

2x5x4 + 2x5x3 + x3x2 − x2
2 − 2x4x1 − x3x1 − x2x1 − 2x2 − 2x1 ,

(x2 + x1)(x2
3 − x3x2 + x3x1 − x2x1 − x3 − x2 − 2x1)

λ = 31∶ x4 + x3 + x2 + x1 , x6x1 + x5x1 − x3 , (x2 − x1)(x2 + x1),
(x3 + x1)(x2 + x1), (x5 + 1)(x2 + x1), x6x2 − x5x1 + x3 ,
(x3 − x1)(x3 + x1), (x5 − 1)(x3 + x1), x6x3 − x5x1 + x3 ,

2x2
5 − 4x5x1 − x3x1 − x2x1 − 2x6 + 3x3 − x2 − 2,

2x6x5 + 4x5x1 + x3x1 + x2x1 − 3x3 + x2 ,

2x2
6 − 4x5x1 − x3x1 − x2x1 + 2x6 + 3x3 − x2

λ = 22∶ x3 − x2 , x4 − x1 , (x2 − x1)(x2 + x1), x5x2 − x6x1 − x2 ,
x6x2 − x5x1 + x1 , (x6 + x5 − 1)(x6 − x5 + 1),
(x5 − x1 − 1)(x5 − x1)(x5 + 2x1 − 1),
x6x2

5 − 3x6x2
1 + 2x2x2

1 − x6x5 + x6x1 − 2x2x1
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λ = 212∶ x4 − x3 − x2 + x1 , x6x1 − x5x1 − x2 , (x2 − x1)(x2 + x1),
(x3 − x1)(x2 − x1), (x5 − 1)(x2 − x1), x6x2 − x5x1 − x2 ,
(x3 − x1)(x3 + x1), (x5 + 1)(x3 − x1), x6x3 − x5x1 − x2 ,

2x2
5 − 4x5x1 + x3x1 + x2x1 + 2x6 + x3 − 3x2 − 2,

2x6x5 − 4x5x1 + x3x1 + x2x1 + x3 − 3x2 ,

2x2
6 − 4x5x1 + x3x1 + x2x1 − 2x6 + x3 − 3x2

λ = 14∶ x6 − x5 + 1, x4x2 − x2
2 − x4x1 + x2x1 − x3 + x1 ,

(x4 − x3 + 1)(x3 − x1), (x3 − x1)(2x5 − x3 + x2 − 2x1),
x2
4 − x2

3 + x3x2 − x2
2 − 2x4x1 + x3x1 + x2x1 + x4 − x2 ,

2x5x4 − x2
3 − 2x5x2 + x3x2 − 2x4x1 + x3x1 + x2x1 + 2x3 − 2x1 ,

(x3 − x1)(x3x2 − x2
2 − x3x1 + x2x1 − x3 − x2 + 2x1)

Comparison of Upper and Lower Ideals

Finally, we need to check if some of the parameter values (6.6)–(6.7) are common ze-
ros for at least one of the Gröbner bases for the lower ideals. For example, substituting
the solution [ 1

3 ,
1
3 ,

1
3 ,

1
3 ,−

2
3 ,

1
3 ] into the elements of the ûve Gröbner bases produces

the following lists of scalars:

λ = 4 − 4
3 ,

10
9 , −

4
3 , −

2
9 ,

2
9 , −

8
3 , −

8
9 ,

λ = 31 4
3 , −

4
9 , 0,

4
9 ,

2
9 ,

2
3 , 0, −

10
9 ,

2
3 , −

4
9 , −

16
9 ,

20
9 ,

λ = 22 0, 0, 0, − 2
3 ,

2
3 , −

8
3 , −2,

2
9 ,

λ = 212 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
λ = 14 2, 0, 0, 0, 0, 0, 0.

_e ûve ideals are therefore (1), (1), (1), (0), (1) and so regularity fails because the
fourth ideal is zero. Similar calculations eliminate the other isolated points, and so it
remains to check only the one-parameter solutions (6.6) and (6.7):

(6.8)
[x1 , x1 , x3 , x3 , x3 , x1 − 1] x2

3 + x3 − (x1 − 1)2 = 0, x1 /= 0, 1,
[x1 , x2 , −x1 , −x2 , −x2 , 1 − x1] x2

2 − x2 − (x1 − 1)2 = 0, x1 /= 0, 1.

Each of these solutions is a sextuple depending on two parameters subject to one
equation. We substitute these solutions into the elements of the Gröbner bases of
the radicals of the lower ideals, adjoin the equation relating the parameters to each of
the ûve Gröbner bases, and solve the corresponding systems of equations. _e union
of all those solutions is precisely the set of values of parameters we must exclude.
An example will make this clear. Consider the ûrst solution from (6.8). We sub-

stitute these values into the Gröbner basis for the radical of the lower determinantal
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ideal for λ = 22. _e eight generators of that ideal become

0, x3 − x1 , −x1(x1 − x3), x1(x1 − x3), (x1 − 2 + x3)(x1 − x3),
−(x1 − 1)(x1 − 1 + x3)(x1 − x3), (x3 + 2x1 − 1)(−x3 + 1 + x1)(x1 − x3),

and we see that all these are equal to zero only when x1 = x3. Taking into account
the equation x2

3 + x3 − (x1 − 1)2 = 0, we see that x1 = x3 = 1
3 . Doing these for all

determinantal ideals, we ûnd that the points that have to be removed from the ûrst
family are (1,−1) and ( 1

3 ,
1
3 ), and from the second family, (1, 1) and ( 1

3 ,−
1
3 ). (In fact,

the ûrst point in each pair has already been removed, since we assume x1 /= 1.)
_e formulation of the result becomes a little more elegant if we replace x3 by −x3

in the ûrst family.

Proposition 6.7 (Summary for six nonzero parameters) When all parameters in
Relation (LR) are nonzero, there are two one-dimensional families of solutions that are
regular in arity 4:

(a1a2)a3 = x1[ a1(a2a3) + a1(a3a2) + a3(a2a1)]
− x3[ a2(a1a3) + a2(a3a1) + a3(a1a2)] − a3(a2a1),

(a1a2)a3 = x1[ a1(a2a3) − a2(a1a3) − a3(a2a1)]
+ x2[ a1(a3a2) − a2(a3a1) − a3(a1a2)] + a3(a2a1),

where both (x1 , x2) and (x1 , x3) belong to the hyperbola y2 − y − (x − 1)2 = 0 with ûve
excluded points: (1, 0), (1, 1), ( 1

3 ,−
1
3 ), and (0, ϕ) for both roots ϕ of the polynomial

x2 − x − 1.

6.7 Statement of the Main Technical Result

A�er noticing that the excluded points (0, ϕ) in the last statement are precisely the
points with four nonzero parameters that we found previously, and the excluded point
(1, 0) corresponds to the Zinbiel operad in the ûrst case and to the Leibniz operad in
the second case, we see that Propositions 6.1–6.7 lead to the following conclusion.

_eorem 6.8 _eparametrized one-relation operads with the regularmodule in arity
4 are precisely the operads from the following list:
(i) (a1a2)a3 = s a3(a1a2),
(ii) (a1a2)a3 = a1(a2a3) + s[a1(a3a2) − a2(a1a3) + a2(a3a1) − a3(a1a2)],
(iii) (a1a2)a3 = u[a1(a2a3) + a1(a3a2) + a3(a2a1)]

− v[a2(a1a3) + a2(a3a1) + a3(a1a2)] − a3(a2a1),
(iv) (a1a2)a3 = u[a1(a2a3) − a2(a1a3) − a3(a2a1)]

+ v[a1(a3a2) − a2(a3a1) − a3(a1a2)] + a3(a2a1),
where in (i) we require s /= ±1, in (ii) we require s /= −1, and in both (iii) and (iv) the
point (u, v) belongs to the hyperbola y2 − y − (x − 1)2 = 0 with the points (1, 1) and
( 1

3 ,−
1
3 ) excluded.
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7 Classification Theorem

In this section, we prove the following classiûcation result which is the main result of
this paper.

_eorem 7.1
(i) Over any ûeldF of characteristic 0, each regular parametrized one-relation operad

is one of the operads of _eorem 6.8.
(ii) Over an algebraically closed ûeld F of characteristic 0, every regular parametrized

one-relation operad is isomorphic to one of the following ûve operads: the le�-
nilpotent operad deûned by the identity ((a1a2)a3) = 0, the associative operad,
the Leibniz operad Leib, the dual Leibniz (Zinbiel) operad Zinb, and the Poisson
operad.

Proof We shall go through the list of_eorem 6.8 and establish that each of the op-
erads which have the regular module in arity 4 is in fact regular and isomorphic to
one of the ûve operads listed above; we will use the following observation. For each
t ∈ F, one has the following endomorphism ϕt of the space of generators T(2) of the
free operad: ϕt(a1a2) = a1a2 + ta2a1, ϕt(a2a1) = a2a1 + ta1a2. _is endomorphism
commutes with the symmetric group action, and is invertible if and only if t /= ±1.
(_is change of basis was studied by Livernet and Loday in the context of relating the
Poisson operad to the associative operad [17]. See also a similar change of basis in the
space of operations in the work of Albert [1, §V] in the context of power-associative
and quasiassociative rings.) It extends to a well-deûned endomorphism of the free op-
erad T. We can replace Relation (LR) by its image under this endomorphism, which
is one of relations of the general type (2.5). Recall from Formula (2.6) that the general
space of relations is spanned by the rows of the 6×12matrixN = [W ∣ X]. If detW /= 0,
then, according to Lemma 2.15, there exists an equivalent relation of the type (LR).
Overall, this allows us to ûnd, for each regular parametrized one-relation operad, a
one-parameter family of regular parametrized one-relation operads which are iso-
morphic to it; the set of parameters is precisely the set of all t for which detW /= 0.
We now make this outlined strategy more precise.

Note that the endomorphism of T(3) induced by ϕt is given by the matrix

A(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . t . . . . . . . t t2

. 1 . . t . . . t t2 . .
t . 1 . . . . . . . t2 t
. . . 1 . t t t2 . . . .
. t . . 1 . . . t2 t . .
. . . t . 1 t2 t . . . .
. . . t . t2 1 t . . . .
. . . t2 . t t 1 . . . .
. t . . t2 . . . 1 t . .
. t2 . . t . . . t 1 . .
t . t2 . . . . . . . 1 t
t2 . t . . . . . . . t 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(zeros are replaced by dots for readability). _is can be established by a direct calcu-
lation. For instance,

ϕt((a1a2)a3) = (a1a2 + ta2a1)a3 + t(a3(a1a2 + t a2a1))
= (a1a2)a3 + t(a2a1)a3 + ta3(a1a2) + t2a3(a2a1),

which precisely corresponds to the ûrst column of the matrix A(t).
Suppose that N0 is the 6× 12 matrix whose rows form the S3-orbit of some relation

of the type (LR). _e change of basis we introduced amounts to multiplying N0 by
A(t) on the right. We let N(t) = N0A(t) = [W(t) ∣ Y(t)], whereW(t) and Y(t)
are 6 × 6 matrices with entries in F[t, x1 , . . . , x6]. _e module of quadratic relations
generated by the rows of this matrix contains a relation of type (LR) if and only if
detW(t) /= 0, and that in this case the matrix Ñ(t) = W(t)−1N(t) encodes that
relation.

We are now ready to investigate the isomorphism classes. We start with the para-
metric family (a1a2)a3 = sa3(a1a2), s /= ±1. We have

detW(t) = (1 − t)3(t + 1)3(1 − st)6 .

_e change of basis given by A(t) results in the following change of parametrization:
s̃ = t−s

st−1 . Clearly, if we put t = s, then detW(t) /= 0, and s̃ = 0. _erefore, each operad
of this family is isomorphic to the le�-nilpotent operad.

Next, we consider the parametric family

(a1a2)a3 = a1(a2a3) + s[a1(a3a2) − a2(a1a3) + a2(a3a1) − a3(a1a2)],
where s /= −1. We have detW(t) = (1 − t)5(t + 1)3(3st + t2 + t + 1)2. _e change of
basis given by A(t) results in the following change of parametrization:

s̃ = st2 − st + s + t
3st + t2 + t + 1

.

_e resultant with respect to t of the product of irreducible factors of detW(t) and
the numerator of s̃ is equal to (s + 1)3(3s − 1)3 , as one can check by an immediate
computation. _us, for each point s /= −1, 1

3 , it is possible to ûnd a value of t for which
detW(t) /= 0, and s̃ = 0. For such t, we see that there is a change of basis that makes
s̃ = 0, so each operad of this family, except for the operad for s = 1

3 , is isomorphic to
the associative operad. _e operad for s = 1

3 is a ûxed point for all changes of basis; it
is the one-operation presentation of the operad of Poisson algebras [17].
Finally, we consider the parametric families

(a1a2)a3 = u[a1(a2a3) + a1(a3a2) + a3(a2a1)]
− v[a2(a1a3) + a2(a3a1) + a3(a1a2)] − a3(a2a1),

(a1a2)a3 = u[a1(a2a3) − a2(a1a3) − a3(a2a1)]
+ v[a1(a3a2) − a2(a3a1) − a3(a1a2)] + a3(a2a1),

where the parameters u and v are related by the equation v2 − v − (u − 1)2 = 0, and
(u, v) /= (1, 1), ( 1

3 ,−
1
3 ). We have

detW(t) = (1 − t)3(t + 1)5(ut + vt − t + 1)3(1 + t − 3ut + 3vt).
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_e change of basis given by A(t) is the following change of parametrization:

ũ = 2u2 t2 + u2 t − ut2 − u − 2v2 t2 − v2 t − 2vt
3u2 t2 − 4ut2 + 2ut − 3v2 t2 + 2vt2 − 4vt + t2 − 1

,

ṽ = u2 t2 + 2u2 t − 2ut − v2 t2 − 2v2 t − vt2 − v
3u2 t2 − 4ut2 + 2ut − 3v2 t2 + 2vt2 − 4vt + t2 − 1

.

_e resultant with respect to t of the product of irreducible factors of detW(t) and
the numerator of ṽ is (u − v)2(u + v)2(u + v − 2)2(2u − v − 1)2(3u − 3v − 2)2. _is
polynomial has common roots with v2 − v − (u − 1)2 = 0 if and only if (u, v) =
(1, 1) or (u, v) = ( 1

3 ,−
1
3 ), which are precisely the points we excluded. _erefore, for

each operad in each of the two families, it is possible to ûnd a value of t for which
detW(t) /= 0, and ṽ = 0. For such t, we see that there is a change of basis that makes
ṽ = 0, which in turn forces ũ = 1. _is proves that each operad of the ûrst family is
isomorphic to the Zinbiel operad, and each operad of the second family is isomorphic
to the Leibniz operad.

8 Further Directions

8.1 Further Questions About the Cubic Relation Matrix

It would be interesting to extend the nilpotency result of Section 4 and classify all
parametrized one-relation operads that are nilpotent. _ere are two somewhat natural
questions one may ask here.

Problem 8.1 Determine explicitly the factorization of the determinant of the cubic
relation matrix M into the product of irreducible polynomials in F[x1 , . . . , x6]. Use
this to determine explicitly all parameter values a1 , . . . , a6 ∈ F for which the operad
Oa is nilpotent of index 3: these values form the complement F6 ∖ V(det(M)).

Problem 8.2 For every d ≥ 3, determine explicitly the setNd ⊆ F6 of all parameter
values a1 , . . . , a6 for which the operadOa is nilpotent of index d. For these values, we
have J(d) /= T(d) and J(d + 1) = T(d + 1). We have already seen in _eorem 4.6 that
the set N3 is a Zariski open subset of F6.

We have been able to use representation theory in order to avoid dealing with the
determinantal ideals of the cubic relation matrix M, or, equivalently, of the block B of
its partial Smith normal form. Understanding the structure of those ideals remains
an open problem.

Problem 8.3 For r = 1, the reduced Gröbner bases for the ûrst determinantal ideal
DI1(B) and its radical were presented in Lemma 4.3. For 2 ≤ r ≤ 36, an open prob-
lem (probably rather diõcult, at least computationally) is to determine the reduced
Gröbner bases for the r-th determinantal ideal DIr(B) and its radical. For r = 36,
the determinantal ideal DI36(B) is the principal ideal generated by det(B), and by
Algorithm 1 we know that det(B) = ±det(M), so this case overlaps with Problem 8.1.
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8.1.1 Rank Distribution for Relations With Small Coefficients

Let us conclude this subsection with some experimental data that sheds some light on
the rank distribution for the cubic relation matrix as a function of the parameter val-
ues. We consider the 729 relations (LR) with coeõcients in {0,±1}, and we partition
this set by the number q of nonzero coeõcients. In each case, we substitute the param-
eter values into B and compute r = rank(B), recalling that rank(M) = 84 + rank(B).
In the following table, the rows are indexed by q and the columns by r. _e (q, r) en-
try is the number of relations for which x1 , . . . , x6 ∈ {0,±1} and ∣ {i ∣ x i ∈ {±1}}∣ = q
and rank(B) = r, where 0 ≤ q ≤ 6 and 0 ≤ r ≤ 36 (as above, zeros are replaced by dots
for readability):

q/r 0 6 12 18 19

0 . . . . . . . . . . . . 1 . . . . . . .
1 2 . . . . . 2 . . . . . 1 . . . . . . .
2 . . . . . . . . . . . . 2 . . . 2 . . .
3 . . . . . . . . . . . . . . 2 2 . 8 3 .
4 . . . . . . . . . . . . . . . . . . . .
5 . . . . 2 . 2 . . . 2 . 3 4 . . . . 10 .
6 . . . . . . . . . . . . . . . . . . . .

∑ 2 . . . 2 . 4 . . . 2 . 7 4 2 2 2 8 13 .

q/r 24 30 36

0 . . . . . . . . . . . . . . . . .
1 . . . . 6 . . . . . . . . . . . 1
2 3 . . 2 5 . . . 6 . 8 2 4 2 2 2 20
3 5 18 . . 12 . 2 8 1 16 10 4 12 28 7 8 14
4 2 . 8 4 4 2 . . 26 12 12 8 20 14 12 18 98
5 . 8 2 . 20 . 1 6 2 8 14 4 9 38 4 12 41
6 . . . . 8 . 4 . . . 20 . 8 . . . 24

∑ 10 26 10 6 55 2 7 14 35 36 64 18 53 82 25 40 198

From column 36 we see that 198/729 ≅ 27.16% of these operads are nilpotent of in-
dex 3. Regularity implies rank(B) = 12, but not conversely; column 12 indicates that
there are respectively 1, 1, 2, 3 relations for q = 0, 1, 2, 5 with rank(M) = 96. In these
seven cases, the parameter values are the rows of the following matrix, and the last
column gives the multiplicities for the S4-action on the nullspace of M:

0 0 0 0 0 0 [1, 3, 2, 3, 1]
1 0 0 0 0 0 [1, 3, 2, 3, 1]
1 1 0 0 0 0 [1, 3, 2, 3, 1]
1 0 −1 0 0 0 [1, 3, 2, 3, 1]
1 1 −1 1 −1 0 [1, 3, 2, 3, 1]
−1 1 1 −1 0 1 [2, 3, 3, 2, 1]
−1 −1 −1 −1 0 −1 [1, 2, 3, 3, 2]
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8.2 Koszul Operads With One Relation

A question of Loday that we mentioned in the introduction still remains open.

Problem 8.4 Which of the parametrized one-relation operads Ox are Koszul?

_eorem 7.1, of course, implies that all regular parametrized one-relation operads
are Koszul, while _eorem 4.6 easily implies that generic parametrized one-relation
operads are not Koszul. _e Hilbert series of an index 3 nilpotent parametrized one
relation operad is f (t) = t + t2 + t3; the modiûed inverse series has negative coeõ-
cients:

− f ⟨−1⟩(−t) = t + t2 + t3 − 4t5 − 14t6 − 30t7 − 33t8 + 55t9 + O(x 10).
_e Koszul-ness criterion of Ginzburg and Kapranov [13, 15] instantly implies that
such an operad cannot be Koszul. Moreover, inspecting the list of 729 parametrized
one-relation operads with coeõcients in {0,±1} from §8.1.1, we discover that most of
those operads are not Koszul either because the modiûed inverse of the Hilbert series
has negative coeõcients, or because the Hilbert series of the operad is not equal to
the inverse of the modiûed Hilbert series of the Koszul dual operad (which is, as we
know, isomorphic to a parametrized one-relation operad). Among those 729 operads,
there are just six irregular cases where the Koszul-ness cannot be disproved using the
Ginzburg–Kapranov criterion. Four of those, (a1a2)a3 = ±a1(a2a3) and (a1a2)a3 =
±a1(a3a2), are Koszul and in fact have quadratic Gröbner bases for the (weighted)
pathdeglex ordering [11]. (We encountered two of those operads in Lemma 4.3;
notably, the corresponding S4-modules both have dimension 36 but are not isomor-
phic: the multiplicities are [2, 4, 4, 4, 2] for the relation (a1a2)a3 = a3(a1a2) and
[1, 5, 2, 5, 1] for the relation (a1a2)a3 = −a3(a1a2)). Two remaining operads forwhich
the Koszul-ness remains an open question are

(a1a2)a3 = ±[a1(a2a3) − a1(a3a2) + a2(a1a3) − a2(a3a1)] + a3(a1a2),
one of which we saw as an excluded point of an otherwise regular family of parame-
trized one-relation operads in Remark 6.6.

A Verification of Results in Magma

Our computer algebra system of choice for this project was Maple. Computations
above use various tricks and divide-and-conquer methods designed to avoid asking
Maple to compute the radical of an ideal: at least in Maple 18, whichwewere using at
the crucial stage of this project, the implementation of radical computation seemed to
have some bugs (which seem to have been ûxed in Maple 2016). As an independent
veriûcation, we used the RadicalDecomposition function of Magma [4], which ap-
pears to be extremely eõcient even in the free online calculator [16], which limits
the input to 50Kb and the calculation time to 120 seconds. We fed in the respective
blocks B(λ) [6] obtained by partial reduction of representation matrices (which were
obtained through simple linear algebra over the rational ûeld by a direct computation
not involving any complicated Maple functions, and thus represented the “foolproof ”
part of the computation), and requested the calculator to compute the following:
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● all the upper determinantal ideals DIr+1(B(λ));
● all the lower determinantal ideals DIr(B(λ));
● the prime decomposition of the radical of the sum of the upper determinantal

ideals;
● the prime decompositions of the radicals of the ûve ideals obtained as sums of upper

ideals for four out of ûve λ and the lower ideal for the remaining choice of λ.

(_e simple Magma script that we used is given in the online addendum [6].) _is
computation took less than ûve seconds, and the result obtained was as follows.

_eorem A.1 _ezero set of the sumof the upper ideal has ten irreducible components:

{[1 − x6 ,−x5 , x6 − 1, x5 , x5 , x6]∶ x2
6 = x2

5 + x5} ,(A.1)

{[1 + x6 , 1 + x6 , x5 , x5 , x5 , x6]∶ x2
6 = x2

5 + x5} ,(A.2)

{[−x4 ,−x4 , x4 , x4 ,−1, 0]} ,(A.3)

{[−x4 , x4 ,−x4 , x4 , 1, 0} ,(A.4)

{[1,−x5 , x5 ,−x5 , x5 , 0]} ,(A.5)

{[0, 0, 0, 0, x5 , 0]} ,(A.6)

{[ 1
3 ,−

1
3 ,−

1
3 ,

1
3 ,−

2
3 ,−

1
3 ]} ,(A.7)

{[ 1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,−

2
3 ,

1
3 ]} ,(A.8)

{[0, 0, 0, 0, 0,−1]} ,(A.9)

{[0, 0, 0, 0, 0, 1]} .(A.10)

_e zero sets of the ûve ideals obtained as sums of upper ideals for four out of ûve λ and
the lower ideal for the remaining choice of λ are as follows.

● for λ = 4

{[−x4 , x4 ,−x4 , x4 , 1, 0]} ,(A.11)

{[ 1
3 ,−

1
3 ,−

1
3 ,

1
3 ,

1
3 ,

2
3 ]} ,(A.12)

{[0, 0, 0, 0, 0, 1]}.(A.13)

● for λ = 31

{[−x4 ,−x4 , x4 , x4 ,−1, 0]},(A.14)

{[−x4 , x4 ,−x4 , x4 , 1, 0} ,(A.15)

{ [ 1
3 ,−

1
3 ,−

1
3 ,

1
3 ,−

2
3 ,−

1
3 ] } ,(A.16)

{[0, 0, 0, 0, 0,−1]} .(A.17)
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● for λ = 22

{ [ 1
3 ,−

1
3 ,−

1
3 ,

1
3 ,

1
3 ,

2
3 ] } ,(A.18)

{ [ 1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,−

2
3 ] } ,(A.19)

{[0, 0, 0, 0, 1, 0]} ,(A.20)

{[0, 0, 0, 0,−1, 0]} ,(A.21)

{[0, 0, 0, 0, 0, 1]} .(A.22)

● for λ = 212

{[−x4 ,−x4 , x4 , x4 ,−1, 0]} ,(A.23)

{[−x4 , x4 ,−x4 , x4 , 1, 0} ,(A.24)

{ [ 1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,−

2
3 ,

1
3 ] } ,(A.25)

{[0, 0, 0, 0, 0, 1]} .(A.26)

● for λ = 14

{[−x4 , x4 ,−x4 , x4 , 1, 0} ,(A.27)

{ [ 1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,−

2
3 ] } ,(A.28)

{[0, 0, 0, 0, 0,−1]} .(A.29)

_e answer to our problem is obtained by removing from the ûrst zero set the
union of the remaining ones. First, we note the following:
● the component (A.3) appears among the excluded ones as (A.14) and (A.23);
● the component (A.4) appears among the excluded ones as (A.11), (A.15), (A.24), and

(A.27);
● the component (A.7) appears among the excluded ones as (A.16);
● the component (A.8) appears among the excluded ones as (A.25);
● the component (A.9) appears among the excluded ones as (A.17) and (A.29);
● the component (A.10) appears among the excluded ones as (A.13), (A.22),
and (A.26).

_is means that we just need to examine which points are to be removed from
components (A.1), (A.2), (A.5), and (A.6). By amore careful inspection, we determine
the following:
● for component (A.1), there are two points to be removed: the point corresponding

to x5 = 1
3 , x6 = 2

3 (it is the excluded component (A.12), same as (A.18)) and the
point corresponding to x5 = −1, x6 = 0 (it corresponds to x4 = −1 in the excluded
component (A.3)),

● for component (A.2), there are two points to be removed: the point corresponding
to x5 = 1

3 , x6 = − 2
3 (it is the excluded component (A.19), same as (A.28)) and the

point corresponding to x5 = −1, x6 = 0 (it corresponds to x4 = −1 in the excluded
component (A.3)),
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● for component (A.5), there is one point to be removed: the point corresponding to
x5 = 1 (it corresponds to x4 = −1 in the excluded component (A.4))

● for component (A.6), there are two points to be removed: the point corresponding
to x5 = 1 (it is the excluded component (A.20)) and the point corresponding to
x5 = −1 (it is the excluded component (A.21)).

By a direct inspection, this coincides with the set obtained in _eorem 6.8, which
completes the veriûcation.
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