
Cover image: Kundoy/Moment/
Getty Image

Series Editors
Bob Coecke
Cambridge
Quantum Ltd

Joshua Tan
University of Oxford

About the Series
Elements in Applied Category
Theory features Elements intended
both for mathematicians familiar
with category theory and seeking
elegant, graduate-level introductions
to other fields in the language of
categories, and for subject-matter
experts outside of pure mathematics
interested in applications of category
theory to their field.

This Element defends a reading of Kant’s formulas of the moral
law in Groundwork of the Metaphysics of Morals. It disputes a
long tradition concerning what the first formula (Universal Law/
Law of Nature) attempts to do. The Element also expounds
the Formulas of Humanity, Autonomy and the Realm of Ends,
arguing that it is only the Formula of Humanity from which
Kant derives general duties, and that it is only the third formula
(Autonomy/Realm of Ends) that represents a complete and
definitive statement of the moral principle as Kant derives it
in the Groundwork. The Element also disputes the claim that
the various formulas are ‘equivalent’, arguing that this claim is
either false or else nonsensical because it is grounded on a false
premise about what Kant thinks a moral principle is for.

A
n

 In
tro

d
u

ctio
n

 to
 Strin

g
 D

iag
ram

s fo
r C

o
m

p
u

ter Scien
tists

P
IE

D
E

lE
u

 A
n

D
 Z

A
n

A
SI

ISSN 2633-1861 (online)
ISSN 2633-1853 (print)

Robin Piedeleu and
Fabio Zanasi

An Introduction to
String Diagrams for
Computer Scientists

Applied Category
Theory

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Elements in Applied Category Theory
edited by

Bob Coecke
Cambridge Quantum Ltd

Joshua Tan
University of Oxford

AN INTRODUCTION TO STRING
DIAGRAMS FOR COMPUTER

SCIENTISTS

Robin Piedeleu
University College London

Fabio Zanasi
University College London

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009625708

DOI: 10.1017/9781009625715
© Robin Piedeleu and Fabio Zanasi 2025

This publication is in copyright. Subject to statutory exception and to the provisions
of relevant collective licensing agreements, with the exception of the Creative

Commons version the link for which is provided below, no reproduction of any part
may take place without the written permission of Cambridge University Press &

Assessment.
Anonline version of thiswork is published at doi.org/10.1017/9781009625715

under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits
re-use, distribution and reproduction in any medium for non-commercial

purposes providing appropriate credit to the original work is given.
You may not distribute derivative works without permission. To view a

copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0
When citing thiswork, please include a reference to theDOI 10.1017/9781009625715

First published 2025
A catalogue record for this publication is available from the British Library

ISBN 978-1-009-62570-8 Hardback
ISBN 978-1-009-62574-6 Paperback

ISSN 2633-1861 (online)
ISSN 2633-1853 (print)

Cambridge University Press & Assessment has no responsibility for the persistence
or accuracy of URLs for external or third-party internet websites referred to in this
publication and does not guarantee that any content on such websites is, or will

remain, accurate or appropriate.
For EU product safety concerns, contact us at Calle de José Abascal, 56, 1◦, 28003

Madrid, Spain, or email eugpsr@cambridge.org.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

http://www.cambridge.org
http://www.cambridge.org/9781009625708
http://dx.doi.org/10.1017/9781009625715
http://dx.doi.org/10.1017/9781009625715
https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.1017/9781009625715
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams
for Computer Scientists

Elements in Applied Category Theory

DOI: 10.1017/9781009625715
First published online: April 2025

Robin Piedeleu
University College London

Fabio Zanasi
University College London

Author for correspondence: Fabio Zanasi, f.zanasi@ucl.ac.uk

Abstract: String diagrams are a powerful graphical language used to
represent computational phenomena across diverse scientific fields,

including computer science, physics, and linguistics, amongst others. The
appeal of string diagrams lies in their multi-faceted nature: they offer a
simple, visual representation of complex scientific ideas, while also

allowing rigorous mathematical treatment. Originating in category theory,
string diagrams have since evolved into a versatile formalism, extending
well beyond their abstract algebraic roots and offering alternative entry
points to their study. This Element provides an accessible introduction to
string diagrams from the perspective of computer science. Rather than
starting from categorical concepts, the authors draw on intuitions from
formal language theory, treating string diagrams as a syntax with its own
semantics. They survey the basic theory, outline fundamental principles,
and highlight modern applications of string diagrams in different fields.

This title is also available as open access on Cambridge Core.

Keywords: string diagram, monoidal category, semantics, programming
languages, category theory

© Robin Piedeleu and Fabio Zanasi 2025
ISBNs: 9781009625708 (HB), 9781009625746 (PB), 9781009625715 (OC)

ISSNs: 2633-1861 (online), 2633-1853 (print)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

mailto:f.zanasi@ucl.ac.uk
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Contents

1 The Case for String Diagrams 1

2 String Diagrams as Syntax 6

3 String Diagrams as Graphs 28

4 Categories of String Diagrams 34

5 Semantics 53

6 Other Trends in String Diagram Theory 79

7 String Diagrams in Science: Some Applications 88

Appendix: Category Theory: The Bare Minimum 100

References 103

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 1

1 The Case for String Diagrams
The Algebraic Structure of Programs

When learning a programming language, one of the most basic tasks is under-
standing how to correctly write programs in the language’s syntax. This syntax
is often specified inductively, as a context-free grammar. For instance, the
grammar shown in (1.1) defines the syntax of a very elementary imperative
programming language, where variables x,y, . . . and natural numbers n ∈ N
may occur:

b ::= True | x = y | x = n | ¬b | b ∧ b | b ∨ b
p ::= skip | x :=n | x :=y | x :=y+1 | while b do p | p ; p

(1.1)

With the second row of the grammar, we can write arbitrary programs p featur-
ing assignment of a value to a variable, while loops, and program concatenation.
In particular, while loops will depend upon a Boolean expression b, whose
construction is dictated by the first row of the grammar. For practitioners, this
information is essential to correctly write code in the given language: an inter-
preter will only execute programs that are written according to the grammar.
For computer scientists, who are interested in formal analysis of programs, this
information has deeper consequences: it gives us a powerful tool to provemath-
ematical properties of the language by induction over the syntax. This principle
is a generalisation of howwe usually reason about the natural numbers. Indeed,
the set N of natural numbers can also be specified via a grammar:

n ::= 0 | n + 1 (1.2)

When proving properties ofN by induction, what we are really doing is reason-
ing by case analysis on the clauses of grammar (1.2). For instance, suppose we
wish to prove by induction that, for each n ∈ N, n + 1 ≤ 2n. In the base case,
we assume that n is 0; we can verify that 0 + 1 ≤ 20 = 1. In the inductive step,
we consider the case that n is n′ + 1 for some n′. If we assume n′ + 1 ≤ 2n′ ,
then we can show the statement for n = n′ + 1, as follows: (n′ + 1) + 1 ≤ 2n′+
1 ≤ 2n′ + 2n′ = 2n′+1.
In the same way, we can reason by induction on programs, whenever their

syntax is specified by a grammar such as (1.1). For example, we can prove
that a certain property P holds for any program p defined by (1.1), as follows:
first, we need to show that P holds for skip, x := n, x := y, and x := y+1.
Then, assuming P holds for p, we show that it holds for while b to p. Finally,
assuming P holds for p and p′, we show that it holds for p ; p′.
This style of reasoning is extremely useful for several tasks. For instance,

we may prove by induction important properties of our program, such as

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

2 Applied Category Theory

its correctness, safety, or liveness, as studied in the research area of formal
verification. We may also define the semantics by induction, that is, assign pro-
grams their behaviour in a way that respects their structure. In programming
language theory, there are usually two different ways of defining the semantics
of a language: operational and denotational. The former specifies directly how
to execute every expression, while the latter specifieswhat an expressionmeans
by assigning it a mathematical object that abstracts its intended behaviour. An
inductively defined semantics is particularly important because it enables com-
positional (or modular) reasoning: the meaning of a complex program may be
entirely understood in terms of the semantics of its more elementary expres-
sions. For instance, if our semantics associates a function [p] to each program
p, and associates to p ; p′ the composite function [p′] ◦ [p], that means that the
semantics of the expression p ; p′ exclusively depends on the semantics of the
simpler expressions p and p′.
Moreover, the description of a language as a syntax equipped with a com-

positional semantics informs us about the algebraic structures underpinning
program behaviour. For instance, in any sensible semantics, the program con-
structs; and skip of the grammar (1.1) acquire a monoid structure, with the
binary operation; as its multiplication and the constant skip as its identity
element. Indeed, the laws of monoids, namely that [(p; q); r] = [p; (q; r)] (asso-
ciativity) and [p; skip] = [p] = [skip; p] (unitality), will usually hold for the
semantics of these operations.

Graphical Models of Computation

As we have seen, defining a formal language via an inductively defined syn-
tax brings clear benefits. However, not all computational phenomena may be
adequately captured via this kind of formalism. Think for instance about data
flowing through a digital controller. In this model, information propagates
through components in complex ways, requiring constraints on how resources
are processed. For example, a gate may only receive a certain quantity of data
at a time, or a deadlock could occur. Sophisticated forms of interaction, such
as entanglement in quantum processes, or conditional (in)dependence between
random variables in probabilistic systems, also require a language capable of
capturing resource exchange between components in a clear and expressive
manner.
Historically, scientists have adopted graphical formalisms to properly visu-

alise and reason about these phenomena. Graphs provide a simple pictorial
representation of how information flows through a component-based system,
which would otherwise be difficult to encode into a conventional textual
notation. Notable examples of these formalisms include electrical and digital

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 3

Figure 1.1 Some examples of graphical formalisms: a quantum circuit, an
electric circuit, a Petri net, a Bayesian network, and a neural network.

circuits, quantum circuits, signal flow graphs (used in control theory), Petri
nets (used in concurrency theory), probabilistic graphical models like Bayesian
networks and factor graphs, and neural networks. (See Figure 1.1.)
On the other hand, graphical models have clear drawbacks compared to syn-

tactically defined formal languages. Our ability to reason mathematically about
combinatorial, graph-like structures is limited. We typically miss a formal the-
ory of how to decompose these models into simpler components, and also of
how to compose them together to create more complex models. In short, graph-
ical models are often treated as monolithic rather than modular entities. In turn,
this means that we cannot use induction on the model structure to prove their
properties, as we would with a standard program syntax. Crucial features of
program analysis, such as the definition of a compositional semantics, and
the investigation of algebraic structures underpinning model behaviour, face
significant obstacles when adapted to graphical formalisms.

String Diagrams: The Best of Both Worlds

String diagrams originate in the abstract mathematical framework of category
theory, as a pictorial notation to describe themorphisms in amonoidal category.
However, over the past three decades their use has expanded significantly in
computer science and related fields, extending far beyond their initial purpose.
What makes string diagrams so appealing is their dual nature. Just like graph-

ical models, they are a pictorial formalism: we can specify and reason about a
string diagram as if it was a graph, with nodes and edges. However, just like
programming languages, string diagrams may also be regarded as a formal syn-
tax; we can think of them as made of elementary components (akin to the gates
of a circuit, but a lot more general than that), composed via syntactically defined
operations.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

4 Applied Category Theory

(a) (b)

Figure 1.2 An example of a string diagram regarded as a (hyper)graph
(a), with the side boxes signalling the interfaces for composing with other
string diagrams, and the same string diagram regarded as a piece of syntax
(b), with dotted boxes placed to emphasise where elementary components

compose, vertically and horizontally.

Remarkably, understanding string diagrams as syntactically defined objects
does not require switching to a different (textual) formalism – the graphical
representation itself is made of syntax (Figure 1.2). The theory of monoidal
categories provides a rigorous formalisation of how to switch between the com-
binatorial and the syntactic perspective on string diagrams, as well as a rich
framework to investigate their semantics and algebraic properties. Indeed, like
programming languages, we can assign a semantics to string diagrams com-
positionally, as a functor between categories. This gives us a modular way to
specify and reason about the behaviour of the models that they represent.

String Diagrams in Contemporary Research

Thanks to their versatility, string diagrams are increasingly adopted as a reason-
ing tool by scientists across various research fields. We may identify two major
trends in the use of string diagrams: as a way to reason about graphical models
syntactically, and as a way to reason about (textual) formal languages in a more
visual, resource-sensitive manner.
Within the first trend, string diagrammatic approaches have enabled the

adoption of compositional semantics and algebraic reasoning for graphical for-
malisms that previously lacked these features. Examples include Petri nets [16],
linear dynamical systems [6, 20, 55], quantum circuits [109], electrical cir-
cuits [11], and Bayesian networks [51, 57, 75], amongst others (see Figure 1.3).
Besides providing a unifying mathematical perspective on these models, string
diagrams have also demonstrated the ability to produce tangible outcomes,
employable at industrial scale. A convincing example is the ZX-calculus, a
diagrammatic language that generalises quantum circuits. It now serves as the
basis for the development of state-of-the-art quantum circuit optimisation algo-
rithms [48], and is seeing widespread adoption by companies dealing with
quantum computing.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 5

(a)

(b)

Figure 1.3 String diagrams representing the behaviour of an electrical circuit
(a) and a Petri net (b). The abstract perspective offered by the diagrammatic
approach reveals that seemingly very different phenomena may be captured

via the same set of elementary components.

(a) (b)

Figure 1.4 A major appeal of string diagrams is resource sensitivity: they
uncover any implicit assumption on how resources are handled during a
computation. For instance, in these string diagrams resources x and y are
being fed to processes f and g. Suppose applying g to x is an expensive

computation. In the scenario where f receives the value g(x) twice, we are able
to distinguish the case where we duplicate x and then feed it to g (a), and the

more efficient way, where we duplicate g(x) (b). Note that traditional
algebraic syntax would represent both cases as the same term, f(g(x),g(x),y).

As examples of the second trend, string diagrams have been instrumental in
the development of compilers [95] for higher-order functional languages, and
in a provably sound algorithm for reverse-mode automatic differentiation [3].
In both these examples, string diagrams serve as an intermediate formalism that
sits between high-level programming languages and lower-level implementa-
tions. As the former, they can be manipulated syntactically. As the latter, they
explicitly represent information propagation and other structural properties of
systems (see Figure 1.4).

Outline

This introduction provides a basic overview of string diagrams and their
applications. Section 2 introduces the formal syntax (for the most common
variant) of string diagrams, the rules to manipulate them, and equational the-
ories. Section 3 shows how string diagrams may also be thought of as certain
(hyper)graphs, thus providing an equivalent combinatorial perspective on these

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

6 Applied Category Theory

objects. In Section 4, we consider other flavours of string diagrams, which cor-
respond to a different syntax and can be manipulated in more permissive or
restrictive ways. Section 5 explains how to assign semantics to string diagrams;
we cover common examples of semantics and their equational properties. Sec-
tion 6 contains pointers to different trends that we do not cover in detail in this
introduction. Finally, Section 7 is a non-exhaustive list of applications of string
diagrams, both inside and outside of computer science.
The use of category theory is kept to a bareminimum, andwe have prioritised

intuition over technicalities whenever possible. For the reader’s convenience,
we have included an appendix containing the most rudimentary definitions of
category theory. However, it should not be treated as an introduction to the
topic, for which we recommend [86].

2 String Diagrams as Syntax
We have seen a couple of examples, (1.1) and (1.2), of how to specify expres-
sions of a formal language via a grammar. In order to generalise this technique
to diagrammatic expressions, it is best viewed through the lens of abstract
algebra. From an algebraic viewpoint, a grammar is a means of presenting
the signature of our language: the list of operations which we may use as the
building blocks to construct more complex expressions. Each operation comes
with its type, which remained implicit in (1.1) and (1.2). For instance, we may
regard; (program composition) in (1.1) as a binary operation, which takes as
inputs two programs p and p′ as arguments and returns as output a program p; p′

as value. The type of this operation is thus program × program → program.
Analogously, skip, x := y, x := y+1, and x := nmay be seen as constants (oper-
ations with no inputs) of type program, and the while loop yields an operation
of type boolean × program → program: given a Boolean expression b and a
program p, we obtain a program while b do p.
This example suggests that, more generally, a signature Σ should consist of

two pieces of information: a set Σ1 of generating operations, and a set Σ0 of
generating objects (e.g. program, boolean), which may be used to indicate the
type of operations. Once we fix Σ, we may construct the expressions over Σ
the same way we would build the valid programs out of the grammar (1.1). In
algebra, such expressions are called Σ-terms.
This process works in a fairly similar way for string diagrams, with some

key differences. String diagrams will be built from signatures, except that
now the type of operations may feature multiple outputs as well as multiple
inputs, as displayed pictorially in (2.1). We will also see that variables, usu-
ally a building block of Σ-terms, are not a native concept, but rather something

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 7

that may be encoded in the diagrammatic representation. More on this point in
Example 2.14, and Remarks 2.15 and 5.2.

Signatures

A string diagrammatic syntax may be specified starting from a signature Σ =
(Σ0,Σ1), with a set Σ0 of generating objects and a set Σ1 of generating oper-
ations. We will refer to either simply as generators when it is clear from the
context whether we mean a generating object or operation. Each generating
operation d has a type v→ w, where v ∈ Σ⋆0 (the set of words on alphabet Σ0)
is called the arity, and w ∈ Σ⋆0 the co-arity of d. Pictorially, an operation d with
arity v = a1 . . . am and co-arity w = b1 . . . bn will be represented as

(2.1)

or simply when we do not need to name the list of generating objects in
the arity and co-arity.

Example 2.1. Wemay form a signature Σ = (Σ0,Σ1)where Σ0 = {stack, int} and
We may think of

string diagrams on Σ as operations of a simple stackmachinewhich can perform
simple arithmetic on integers.

Terms

Terms are generated by combining the generators of the signature in a certain
way. Once again, let us look first at how terms would be specified in trad-
itional algebra. One would start with a set Var of variables and a signature Σ
of operations, and define terms inductively as follows:

• For each x ∈ Var, x is a term.
• For each f ∈ Σ, say of arity n, if t1, . . . , tn are terms, then f(t1, . . . , tn) is a
term.

For string diagrammatic syntax, terms are generated in a similar fashion, with
two important differences: (i) it is a variable-free approach, and (ii) the way
operations in Σ are combined in the inductive step depends on the richness of
the graphical structure we want to express.
A standard choice for string diagrams is to rely on symmetric monoidal struc-

ture. This means that the generating operations in Σ1 will be augmented with
some ‘built-in’ operations (‘identity’, ‘symmetry’, and ‘null’), and combined
via two forms of composition (‘sequential’ and ‘parallel’). As a preliminary

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

8 Applied Category Theory

intuition, we may think of the built-in operations as the minimal structure
needed to express graphical manipulations of terms, such as ‘stretching’ a wire
or crossing two wires. Fixing a signature Σ = (Σ0,Σ1), the Σ-terms are gener-
ated by a few simple derivation rules or term formation rules: these are written
in the form

list of terms
condition

term
Here, we may regard the list of terms above the line as hypotheses needed
to form the term in conclusion of the rule, below the line, provided that the
side-condition is satisfied. For symmetric monoidal diagrams, the rules are as
follows.

1. First, we have that every generating operation in Σ1 yields a term:

2. Next, each built-in operation (from left to right below: identity, symmetry,
and null) also yields a term:

3. For the inductive step, a new term may be built by combining two terms,
either sequentially (left) or in parallel (right). Note that, for sequential com-
position, the output of the leftmost term needs to match the input of the
rightmost term. For parallel composition, there is no such requirement, and
the resulting term has input (output) the concatenation of the words forming
the inputs (outputs) of the starting terms.

Using the composition rules, we can define by induction ‘identities’ and
‘symmetries’ for arbitrary words v,w in Σ∗0.

Varying the set of built-in terms (second clause) and the ways of combin-
ing terms (last two clauses) will capture structures different from symmetric
monoidal, as illustrated in Section 4.
Another important point: notice that null, the identity over the empty word
ε is not depicted (or is depicted as the empty diagram), which is shown in the

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 9

preceding as an empty dotted box. Furthermore, since the type of terms is a
pair of words over some generating alphabet, they can have the empty word ε
as arity or co-arity. A term of type d : ε → w, sometimes called a state, has an
empty left boundary,

while a term of type d : v → ε , sometimes called an effect, has an empty right
boundary,

Consequently, a term of type d : ε → ε , which is sometimes called a scalar,
or a closed term, by analogy with the corresponding algebraic notion of terms
containing no free variables, has no boundary at all; it is thus depicted as just a
box, with no wires:

The names ‘state’, ‘effect’, and ‘scalar’ originate from the role played by string
diagrams of this type in quantum theory [35].

From Terms to String Diagrams

Terms are not quite the same as string diagrams. As soon as we consider more
elaborate terms, we realise that the preceding definition requires us to decor-
ate pictures with extra notation to keep track of the order in which we have
applied the different forms of composition. For instance, (2.2) is a term from
the signature in Example 2.1.

(2.2)

It denotes a very simple protocol, which pops two values of the stack, deletes
the second one, and increments the first by one, before pushing it back onto
the stack. We have only kept outer object labels for readability. Its full deriv-
ation tree is given in Figure 2.1. Notice that a bracketing by dotted frames fully
specifies the corresponding derivation tree.
This example makes apparent that Σ-terms come with lots of extra informa-

tion on how the graphical representation has been put together: the dotted boxes
keep track of the order in which sequential and parallel composition have been

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Figure 2.1 An example derivation tree.

use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781009625715

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cam

bridge Core term
s of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 11

applied. The move to string diagrams allows us to abstract away this informa-
tion and focus solely on how the term components are wired together. More
formally, a string diagram on Σ is defined as an equivalence class of Σ-terms,
where the quotient is taken with respect to the reflexive, symmetric, and tran-
sitive closure of the following equations (where object labels are omitted for
readability, and c,ci, di range over Σ-terms of the appropriate arity/co-arity):

(2.3)

If we think of the dotted frames as two-dimensional brackets, these laws tell us
that the specific bracketing of a term does not matter. This is similar to how, in
algebra, (a · b) · c = a · (b · c) for an associative operation, justifying the use
of the unbracketed expression a · b · c. In fact, there’s an even better notation:
when dealing with a single associative binary operation, we can simply forget
it and write any product as a concatenation, abc! This is a simple instance of the
same key insight that allows us to draw string diagrams. It is helpful to think
of these diagrammatic rules as a higher-dimensional version of associativity.1

The rightmost identity of the first line in (2.3) is the interchange law, which
concerns the interplay between the two forms of composition: we can take the
parallel composition of two sequentially composed terms, or vice versa, and
the resulting string diagram will be the same. The remaining axioms of the first
two lines encode the associativity and unitality of the two forms of composition.
The last line contains two axioms involving wire crossings : the first, called
the naturality of , tells us that boxes can be pulled across wires; the second,
that the wire crossing is self-inverse. As a result, wires can be entangled or
disentangled as long as we do not modify how the boxes are connected. We
call these axioms the laws of symmetric monoidal categories (SMC).
Thanks to the laws of SMC, we can safely remove the brackets from the term

in (2.2) to obtain the corresponding string diagram:

(2.4)

1 In fact, there is a sense in which this is precisely true; see Section 6.2.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

12 Applied Category Theory

This representation is now unambiguous because the axioms in (2.3) imply that
any way of placing dotted frames around components of (2.4) leads to equiva-
lent Σ-terms. For instance, the following two bracketed terms are equivalent as
string diagrams:

There is an important subtlety: if, formally, a string diagram is an equivalence
class of terms quotiented by the laws of (2.3), there is not a uniqueway to depict
a string diagram. In other words, the graphical representation (evenwithout dot-
ted frames) sits in between terms and string diagrams, as it does not distinguish
certain equivalent terms. In some cases the depiction absorbs the laws of SMC,
for example, for the two sides of the interchange law:

(2.5)

In other cases, the way we draw them distinguishes string diagrams that are
equivalent under the laws of (2.3). Consider, for example,

This equality can be seen as an instance of the interchange law (2.5) with iden-
tity wires or as a consequence of the unitality of identity wires, which allows
us to stretch wires as much as we like.
A related point is that string diagrams do not distinguish different ways of

braiding wires, even if our drawings do:

The laws of (2.3) guarantee that any two string diagrams made entirely of wire
crossings over the same number of wires are equal when they define the same
permutation of the wires. If the other rules are two-dimensional versions of
associativity, the wire-crossing axioms are two-dimensional generalisations of
commutativity. In ordinary algebra, when we have a commutative and associa-
tive binary operation, we can write products using any ordering of its elements:
abc = bac = acb. For string diagrams, the vertical juxtaposition of boxes is not
strictly commutative; nevertheless, we are allowed to move boxes across wires,
which is the next best thing:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 13

(We invite the reader to show this as their first exercise in diagrammatic reason-
ing.) Furthermore, we need to keep track of how boxes are wired, but only
the specific permutation of the wires matters, not how we have constructed it.
Coming back to our stack-machine example, the following are equivalent string
diagrams:

While this situation may appear slightly confusing at first, these examples
show that in practice the distinction between string diagrams (as equivalence
classes) and how we depict them is harmless. The topological moves that are
captured by the equations of (2.3) are designed to be intuitive. They are often
summarised by the following slogan: only the connectivity matters. The rule
of thumb is that any deformation that preserves the connectivity between the
boxes and does not require us to bend the wires backwards will give two
equivalent string diagrams.
Finally, keep in mind that the connection points from which we attach

wires to boxes are ordered, so that the following two string diagrams are not
equivalent:

Definition 2.2 (String diagrams over Σ). String diagrams over Σ are Σ-terms
quotiented by the equations in (2.3).

Example 2.3. Following the preceding discussion, the reader should convince
themselves that the following two (unframed) terms depict the same string
diagram:

(Free) Symmetric Monoidal Categories

In algebra, the collection of terms obtained from a signature, without any
additional operations or equations, is often called the free structure over that

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

14 Applied Category Theory

signature. The diagrammatic language of string diagrams comes with an asso-
ciated notion of free structure: the free symmetric monoidal category (SMC)
over a given signature.2

At this point, the more mathematically inclined reader might object that we
still have not defined rigorously what an SMC is. Somewhat circularly, we
could say that an SMC is a structure in which we can interpret string diagrams!
Less tautologically, it is a category with an additional operation – the monoidal
product – on objects and morphisms that satisfies the laws shown in (2.3). To
state them without string diagrams, we need to introduce explicit notation for
composition and the monoidal product. We do so in the following definition.
Note that we assume basic knowledge of what a category is. The definition,
along with related notions, can be found in the Appendix.

Definition 2.4. A (strict) symmetricmonoidal category (C,⊗, I,σ) is a category
C equipped with a distinguished object I, a binary operation ⊗ on objects, an
operation of type C(X1,Y1) × C(X2,Y2) → C(X1 ⊗ X2,Y1 ⊗ Y2) on morphisms
which we also write as ⊗, such that idX⊗Y = idX ⊗ idY and

c1 ⊗ (c2 ⊗ c3) = (c1 ⊗ c2) ⊗ c3 idI ⊗ c = c = c ⊗ idI
(c1 ⊗ c2) ; (d1 ⊗ d2) = (c1 ; d1) ⊗ (c2 ; d2)

and a family of morphisms σY
X for any two objects X,Y, such that

(idX ⊗ c) ; σZ
X = σ

Y
X ; (c ⊗ idX) for any c :Y→ Z

σY
X ; σX

Y = idX ⊗ idY

Observe that these are exactly the laws shown in (2.3) in symbolic form: we can
simply replace ‘⊗’ by vertical composition and ‘ ; ’ by horizontal composition.
It is possible to translate any string diagrams into symbolic notation. For

instance, the diagram of Example 2.3 can be written as (d⊗ id⊗ f⊗ id); (id⊗g⊗
σ); (e ⊗ h ⊗ id). This expression can be obtained by successively decomposing
the diagrams into horizontal and vertical layers as follows:

2 The notion of a free category generalises the same construction in algebra. It can be understood
in terms of an adjunction, as explained, for instance, in [4, appendix A.2]. For the sake of our
exposition, Definition 2.6 suffices.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 15

As for string diagrams, there are multiple ways to write a given morphism in
symbolic notation. In fact, because string diagrams absorb some of the laws
of SMCs into the notation, there are usually more ways of writing a given
morphism in symbolic notation than there are diagrammatic representations
for it.

Remark 2.5 (On strictness). The last definition is not the one that the reader
is likely to encounter in the literature when looking up the term ‘symmetric
monoidal category’. It defines what is called a strict monoidal category; the
usual notion is more general and allows for the equalities to be replaced by iso-
morphisms. We will not give a rigorous definition of this more general notion
and refer the reader to any standard textbook on category theory for a general
introduction to SMCs [89, chapter XI]. Our approach is nevertheless theoret-
ically motivated by the following fundamental result: every SMC is equivalent
(in a sense that we will not cover here in detail, but do recall in the Appen-
dix, at Definition A.7) to a strict SMC. This fact is what allows us to draw
string diagrams. It is known as the coherence theorem for SMCs. Put differ-
ently, the coherence theorem allows us to forget explicit symbols for ‘⊗’ and
‘ ; ’, replacing them by vertical juxtaposition and horizontal composition with-
out any brackets to denote the order of application.3 Once again, the reader is
invited to think about this as a two-dimensional generalisation of well-known
facts about monoids: just like we can we can simply concatenate elements of
a monoid and omit the symbol for the multiplication and the parentheses to
bracket its application, we can use string diagrams to represent morphisms
of a SMC. It is then natural that more composition operations require more
dimensions to represent. In fact, some of the earliest appearances of string dia-
grams4 occurred to construct free SMCs with additional structure and prove a
coherence theorem for them [79, 80].

Definition 2.6 (Free SMC on a signature Σ). The symmetric monoidal category
FreeSMC(Σ) is formed by letting objects be elements of Σ∗0 and morphisms be
string diagrams over Σ, that is, Σ-terms quotiented by (2.3). Themonoidal prod-
uct is defined as word concatenation on objects. Composition and product of
string diagrams are defined respectively by sequential and parallel composition
of (some arbitrary representative of each equivalence class of) Σ-terms.

3 The coherence theorem is due to Mac Lane [89]. A recent exposition based on string diagrams
can be found in [111].

4 Though the difficulty of typesetting them at the time often meant that they did not appear as
string diagrams in print.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

16 Applied Category Theory

Example 2.7 (Free SMCover a single object). The free SMCover the signature
Σ = ({•},∅) is easy to describe explicitly. Its string diagrams are generated by
horizontal and vertical compositions of (where we omit labels for the single
generating object •), modulo the laws of SMCs. Here are a few examples:

In other words, they are permutations of the wires! If we write •n for the concat-
enation of n bullets, a string diagram •n → •n is a permutation of n elements,
and there are no diagrams •n → •m for n , m.
Free SMCs on a single generating object (and arbitrary generating oper-

ations) are usually called PROPs (Product and Permutation categories) [88].
The PROP of permutations, which we just described, is the ‘simplest’ possible
PROP. More formally, it is the initial object in the category of PROPs. Some-
times, the notion of a ‘coloured’ PROP is encountered: this is nothing but a
(strict) SMC whose set of objects is freely generated from any set of gener-
ating objects, instead of just a single generating object as in the case of plain
PROPs.
When we encounter PROPs, we will use natural numbers as objects, since

all objects are of the form •n, and write the type of a string diagram •n → •m
simply as n→ m.

Symmetric Monoidal Functors

Whenever we define a new mathematical structure, it is good practice to intro-
duce a corresponding notion of mapping between them. For SMCs, this is the
notion of a symmetric monoidal functor. We will need it when giving string
diagrams a semantic interpretation in Section 5.

Definition 2.8. Let (C,⊗, I,σ) and (D,⊠,J, θ) be two SMCs. A (strict) symmet-
ric monoidal functor F : C → D is a mapping from objects of C to those of D
that satisfies

F(X1 ⊗ X2) = F(X1)⊠ F(X2) and F(I) = J

and a mapping from morphisms of C to those of D that satisfies

F(c ; d) = F(c) ; F(d) F(idX) = idF(Y)

F(c1 ⊗ c2) = F(c1)⊠ F(c2) F(σY
X) = θ

F(Y)
F(X)

In this introduction, for pedagogical reasons, we will mostly use strict
monoidal functors, that is, functors that preserve the monoidal structure on the
nose. The reader should know that it is possible, and sometimes necessary, to

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 17

relax this requirement, replacing the equalities F(X1 ⊗ X2) = F(X1) ⊠ F(X2)
and F(I) = J by isomorphisms (which then have to satisfy certain compatibil-
ity conditions). See [89] for a standard treatment and [106] for the connections
with string diagrams.
If we have two such functors F : C → D and G : D → C that are inverses

to each other – FG and GF are identity functors – we say that the two SMCs
are isomorphic. We will also use the notion equivalence of SMCs. This is a
more relaxed notion than that of isomorphism, where FG and GF are merely
isomorphic to identity functors. It is more appropriate in some cases, in par-
ticular when the categories involved are not strict monoidal (see Remark
2.5, for example). We will not dwell on equivalences of categories much in
this Element, but refer the reader to Definition A.7 and Remark A.8 in the
Appendix.

Remark 2.9 (On functors from free SMCs). When defining a functor F out
of a free SMC FreeSMC(Σ), there is a clear recipe to follow: we only need to
specify to which object we want to map elements of Σ0, and to which morphism
Fd :Fu→ Fv we want to map each element of d : u→ v of Σ1. This is because
of the universal property of free constructions: if we have a mapping from the
set of generating operations of some signature Σ to morphisms of some SMC
C, there is a unique way of extending this mapping to a symmetric monoidal
functor FreeSMC(Σ) → C. This observation will come in handy when defining
the semantics of string diagrammatic theories, in Section 5.

Example 2.10. In Example 2.7, we saw that the morphisms/string diagrams of
the free SMC over a single object looked a lot like permutations. There is a way
of making this precise, by establishing an isomorphism between this SMC and
another whosemorphisms are permutations of finite sets. LetBij be the category
whose objects are natural numbers, and morphisms n→ n are permutations of
n= {0, . . . ,n−1}.We can equip it with amonoidal product, given by addition on
objects, and on morphisms θ1 : n1 → n1 and θ2 : n2 → n2 by θ1 ⊗ θ2(i) = θ1(i)
if i ≤ n1 and θ1 ⊗ θ2(i) = θ2(i) otherwise. The unit of the monoidal struc-
ture is the number 0 and the symmetry is the permutation over two elements,
which we write as σ : 2 → 2, given by σ(0) = 1 and σ(1) = 0. The iso-
morphism is straightforward. In one direction, let F : FreeSMC({•},∅) → Bij
be given by F(•n) = n on objects and F() = σ. This is enough to describe
F fully because all string diagrams of FreeSMC({•},∅) are vertical or horizon-
tal composites of and F has to preserve these two forms of composition, by
Definition 2.8. Furthermore, the required properties are immediately satisfied.
To build its inverse, we need to know that we can factor any permutation into a

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

18 Applied Category Theory

composition of adjacent transpositions (this fact is fairly intuitive and usually
covered in introductory algebra courses, so we will not prove it here). Then,
notice that the transposition (i i+ 1) over n elements should clearly be mapped
to the string diagram that is the identity everywhere and at the i-th and i + 1-th
wires. Call this diagram ati. Then, let G : Bij → FreeSMC({•},∅) be given
by G(n) = •n on objects and on morphisms by G(θ) = ati1ati2 . . . atik where
(i1 i1+1)(i2 i2+1) . . . (ik ik+1) = θ is a decomposition of θ into adjacent trans-
positions. One can check that this is well-defined and satisfies all the equations
of Definition 2.8. Moreover the two are inverses of each other. For example, to
see that GF(c) = c it is sufficient to check that equality for . It holds clearly
as GF() = G(1 2) = . The other direction is a bit more lengthy, but without
any major difficulties.
Thus (Bij,+) gives a semantic account of the free SMC over a single object.

Conversely, the latter can be seen as diagrammatic syntax for the former.
In fact, this SMC is also equivalent to the non-strict SMC of finite sets

and bijections between them, with the disjoint sum as monoidal product. The
equivalence is also straightforward to establish, but requires us to fix a total
ordering on every finite set.
This example is just a taster of an idea that we will develop further in

Section 5, dedicated to the semantics – that is, the interpretation – of string
diagrams.

2.1 Adding Equations
The equations shown in (2.3) only capture a very basic notion of equiva-
lence between string diagrams. When describing computational processes for
example, it is useful to include more equations, specific to the domain of inter-
est. In string diagram theory, these additional equations are encapsulated in the
notion of symmetric monoidal theory. More formally, a symmetric monoidal
theory – or simply theory when no ambiguity can arise – is a pair (Σ,E), where
Σ is a signature and E is a set of equalities l = r between string diagrams of
the same type over Σ. We write E

= for the smallest congruence relation (w.r.t.
sequential and parallel composition) containing E. We will see many examples
of symmetric monoidal theories in Section 2.2.

Remark 2.11 (Equations and diagrammatic rewriting.). It might be helpful to
see equations as two-way rewriting rules that can be applied in an arbitrary
context. More precisely, assume that we have some equation of the form l = r,
where l, r have the same type; to apply it in context, we need to identify l in a
larger string diagram c, that is, find c1 and c2 such that

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 19

and simply replace l by r, forming the new diagram . This is just
the diagrammatic version of standard algebraic reasoning. We can summarise
this process as follows:

For example,

where the context is

Wewill come back to this point, in the context of graph-rewriting, in Section 6.1.

In the sameway that string diagrams corresponded to a free structure, the free
symmetric monoidal category (SMC) over Σ, quotienting by further equations
also determines a free structure: given a signature Σ and a theoryE, we can form
the free SMC FreeSMC(Σ,E) obtained by quotienting the free SMC FreeSMC(Σ)
by the equivalence relation over string diagrams given by E

=.

Definition 2.12 (Free SMC over a theory (Σ,E)). The symmetric monoidal
category FreeSMC(Σ,E) is formed by letting objects be elements of Σ⋆0 and mor-
phisms be equivalence classes of string diagrams over Σ quotiented by E

=. The
monoidal product is defined as word concatenation on objects; composition
and product of morphisms are defined respectively by sequential and parallel
composition of arbitrary representatives of each equivalence class.

2.2 Common Equational Theories
Some theories occur frequently in the literature. Many authors assume famil-
iarity with the axioms hiding behind the words ‘monoids’, ‘comonoids’,
‘bimonoids/bialgebras’, or ‘Frobenius monoid/algebra’, and how all of these
theories relate to one another. For this reason it is valuable to know them well,
especially when trying to distinguish routine moves from key steps in dia-
grammatic proofs. This section describes a few of the most commonly found
examples.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

20 Applied Category Theory

Example 2.13 (Monoids). Let us begin with the deceptively easy example of
monoids. Many readers will undoubtedly be familiar with the algebraic theory
of monoids, which can be presented by two generating operations, say m(−,−)
of arity 2 and u of arity 0 (in other words, a constant) satisfying the following
three axioms:

m(m(x,y), z) = m(x,m(y, z)) and m(u,x) = x = m(x,u)

Analogously, the symmetric monoidal theory of monoids can be presented by a
signature Σ =

(
{•},

{
,

})
, based on a single object-type •, amultiplication

: 2 → 1, and a unit : 0 → 1, and three axioms, for associativity and
(two-sided) unitality:

Observe that we have just replaced variables with wires and algebraic
operations with diagrammatic generators. As in ordinary algebra, two
terms/diagrams are equal if one can be obtained from the other by applying
some sequence of these three equations (recall Remark 2.11).
We can also present commutative monoids in the same way. Recall that com-

mutative monoids are those that satisfy m(x,y) = m(y,x); diagrammatically,
we can present the corresponding symmetric monoidal theory with the same
signature and a single additional equality (note the use of the symmetry):

Of course, in the presence of commutativity, each of the unitality laws are deriv-
able from the other. In the usual algebraic theory of monoids we would show
this as follows: if m(x,y) = m(y,x), then m(u,x) = m(x,u) = x where the last
step is right-unitality. The corresponding diagrammatic proof is very similar,
with one additional step:

The second equality is a simple instance of the bottom left axiom of (2.3), for
a string diagram with no wires on the left (that is, of type ε → w for some w).
This makes an important point: two theories (Σ,E) and (Σ′,E′)might present

the same structure, in the sense that the corresponding free SMCs FreeSMC(Σ,E)
and FreeSMC(Σ′,E′)might be isomorphic. It is also a good place to mention that
theories do not have to be minimal in any way; they can contain axioms that are
derivable from the others. There are various reasons one might prefer a theory
that contains redundant axioms: to highlight some of the symmetries, to avoid
having to re-derive some equalities as a lemma later on, and others.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 21

When dealing with monoids, there are several straightforward syntactic
simplifications that the reader is likely to encounter in the literature. First,
a simple observation: in standard algebraic syntax, the associativity axiom
m(m(a,b),c) = m(a,m(b,c)) implies that any two ways of applying monoid
multiplication to the same list of elements are all equal. Therefore it is unam-
biguous to introduce a generalised monoid operation for any finite arity, for
example m(a,b,c), to denote all possible ways of applying m to these three
elements, and avoid a flurry of parentheses. (Note that, with this syntactic sugar,
the unit e denotes the application of m to zero elements.) The same trick works
for an associative : 2→ 1: we can define a generalised n-ary operation as
a dot with n-many wires

as syntactic sugar to denote multiple applications of . For this reason, the
reader might also encounter diagrammatic proofs that identify different ways
of applying a monoid operation to the same list of elements, much like a practi-
tioner well-versed in ordinary algebra will usually omit parentheses where they
can do so unambiguously.

Example 2.14 (Comonoids). Unlike algebraic syntax, string diagrams allow
for operations with co-arity different from 1, manifested by multiple (or no)
right boundary wires. It is therefore possible to flip the generators and axioms of
the theory of monoids to obtain the symmetric monoidal theory of comonoids!
Unsurprisingly, it is represented by a signature with a single object (which we
therefore omit in diagrams), two generators, called comultiplication and counit,

and the following three axioms:

called coassociativity and counitality. As one can see immediately, string dia-
grams for comonoids are just the mirrored version of those for monoids.
Therefore, any diagrammatic statement involving only comonoids can be
proved by simply flipping the corresponding proof about monoids along the
vertical axis. For example, as we did for monoids, it is possible to reason
silently modulo coassociativity and introduce syntactic sugar for a generalised
comultiplication node with co-arity n for any natural number:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

22 Applied Category Theory

A comonoid is furthemore cocommutative if

As we will see, distinguished cocommutative comonoid structures play a spe-
cial role in many theories: for example, they can be used to represent a form
of copying and discarding, which allows us to interpret the wires of our dia-
grams as variables in standard algebraic syntax. The comultiplication allows
us to reference a variable multiple times and the counit gives us the right to
omit some variable in a string diagram. Following this intuition, we may, for
instance, depict the term f(g(x),g(x),y) in the context given by variables x,y, z,
as follows:

For this reason, from the diagrammatic perspective, algebraic theories (or
Lawvere theories, their categorical cousins, see [74]) always carry a chosen
cocommutative comonoid structure [23], even though this structure does not
appear in the usual symbolic notation for variables (which relies instead on an
infinite supply of unique names to serve as identifiers for variables). We will
come back to this point in Remark 5.2.

Remark 2.15 (Symmetricmonoidal theories and linearity). Much like monoids
in ordinary algebra, monoids or comonoids in symmetric monoidal theories
can have additional properties. We have already encountered commutative
monoids and cocommutative comonoids. However, the analogy between sym-
metric monoidal theories and algebraic theories hides an important subtlety: if,
in the former, the wires play the role of variables, they have to be used precisely
once. Unlike variables in ordinary algebra, we cannot use wires more than once
or omit to use them at all! This restriction – termed resource-sensitivity – is an
important feature of diagrammatic syntax. Properties that do not involve mul-
tiple uses of variables can be specified completely analogously, as we saw for
commutativity. Axioms that use each variable precisely once on each side of
the equality sign are called linear axioms. Non-linear axioms cannot be trans-
lated directly in the diagrammatic context, however. For example, it makes no
sense to refer to the symmetric monoidal theory of idempotent monoids: those
monoids that satisfy m(x,x) = x. Indeed, to even state the idempotency axiom
one requires the ability to duplicate wires. As we will see, idempotency can also
be expressed diagrammatically, but as a property of a more complex algebraic
structure than a monoid; it can be stated as a property of a bimonoid, which is

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 23

our next example. This example is an instance of a more general pattern that
allows us recover the resource-insensitivity of ordinary algebraic syntax. We
will explore this correspondence more systematically in Section 4.2.5.

The respective theories of monoids and comonoids can interact in different
ways, as the next two examples illustrate. By ‘interact’ in this context, we mean
that there are different equations that one can impose when considering a sig-
nature that contains both the generators of monoids and those of comonoids
with their respective theories.

Example 2.16 (Co/commutative bimonoids). One possible theory axiomatises
a structure called a bimonoid. It is presented by the generators of monoids and
comonoids

together with their respective axioms, and the following additional four equa-
tions:

= = = =

Intuitively, these equalities can be seen as instances of the same general prin-
ciple: whenever one of the monoid generators is composed horizontally with
one of the comonoid generators, they pass through one another, producing mul-
tiple copies of each other. This is a two-dimensional form of distributivity.
For example, when the unit meets the comultiplication, the latter duplicates
the former; when the multiplication meets the comultiplication, they duplicate
each other (notice how this requires the symmetry, the ability to cross wires).
Using the generalised monoid and comonoid operations introduced in the pre-
vious examples, we can formulate a generalised bimonoid axiom scheme that
captures all four axioms (and more):

= (2.6)

Then, the four defining axioms can be recovered for the particular cases where
the number of wires on each side is zero or two.

As we have already mentioned in Example 2.14, comonoids can mimic the
multiple use of variables in ordinary algebra. Thus, in the context of bimonoids,
we can state ordinary equations that involve more or less than one occurrence
of the same variable. For example, a bimonoid is idempotent when it satisfies

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

24 Applied Category Theory

the following additional equality, which clearly translates the usual m(x,x) = x
into a diagrammatic axiom:

Example 2.17 (Frobenius monoids). Bimonoids are not the only way that
monoids and comonoids can interact – there is another structure that frequently
appears in the literature, under the name of Frobenius monoid, or Frobe-
nius algebra.5 This structure is presented by the generators of monoids and
comonoids. We will write them using nodes of the same colour, as this is how
Frobenius monoids tend to appear in the literature, and this will allow us to
distinguish them from bimonoids in the rest of the Element:

together with their respective axioms, and the following additional axiom,
called Frobenius’ law:

(2.7)

This equality provides an alternative way for the multiplication and comulti-
plication of the monoid and comonoid structures to interact: unlike the case
of bimonoids, this time they do not duplicate each other, but simply slide past
one another, on either side. This is a fundamental difference which, in fact,
turns out to be incompatible with the bimonoid axioms. We will examine this
incompatibility more closely in Section 4.2.10.
The reader might encounter other versions of this axiom in the literature,

such as:

In the presence of the other axioms (namely counitality and coassociativity),
these two equalities are derivable from (2.7). To get a feel for diagrammatic
reasoning, let us prove it:

5 The term ‘Frobenius monoid’ is due to monoids being traditionally more familiar than
comonoids, even though both structures play an equally prominent role in a Frobenius monoid.
As for the provenance of ‘Frobenius algebra’, the term ‘algebra’ usually refers to a monoid
which is also a vector space (and whose multiplication is a linear map). This is the context in
which Frobenius monoids were first studied.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 25

At first, the string diagram novice may find it difficult to internalise all the
laws that make up a theory such as that of Frobenius monoids. When proving
some equality, it is not always clear which axiom to apply at which point to
reach the desired goal and it is easy to get overwhelmed by all the choices
available. However, in some nice cases, as we saw for (co)monoids, there are
high-level principles that allow us to simplify reasoning and see more clearly
the key steps ahead. For example, reasoning up to associativity becomes second
nature after enough practice and one no longer sees two different composites
of (co)multiplication as different objects.
In the same way, the Frobenius law can be thought of as a form of two-

dimensional associativity; it simplifies reasoning about complex composites of
monoid and comonoid operations even further and allows us to identify at a
glance when any two string diagrams for this theory are equal. To explain this,
it is helpful to think of string diagrams for the theory of Frobenius monoids
as (undirected) graphs, whose vertices are any of the black dots, and edges
are wires. We say that a string diagram is connected if there is a path between
any two vertices in the corresponding graph. It turns out that, for Frobenius
monoids, any connected string diagram composed out of (finitely many) ,
, , or using vertical or horizontal composition (without wire crossings)

is equal to one of the following form [73, section 5.2.1]:

where we use an ellipsis to represent an arbitrarily large composite following
the same pattern. In other words, the only relevant structure for a connected
string diagram in the theory of Frobenius monoids is the number of left and
right wires it has, and how many paths there are from any left leg to any right
leg (how many loops it has in the normal form just depicted). This observation
is sometimes called the spider theorem and justifies introducing generalised
vertices we call spiders as syntactic sugar:

where the natural number k represents the number of inner loops in the normal
form just depicted. All the laws of Frobenius monoids can now be summarised
into a single convenient axiom scheme:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

26 Applied Category Theory

where k is the number of middle wires that connect the two spiders on the left-
hand side of the equality. As a result, we need only keep track of the number of
open wires and loops for any complicated string diagram; this greatly reduces
the mental load of reasoning about this theory.
Frobenius monoids that satisfy the following idempotency axiom occur

frequently in the literature:

In this case, the Frobenius monoid is called special (or sometimes, separable).
The normal form given by the spider theorem simplifies even further in this
case, since we can now forget about the inner loops:

The only relevant structure of any connected string diagram in the theory of
special Frobenius monoids is the number of its left and right wires. We can
thus introduce the same syntactic sugar, omitting the number of loops above
the spider. The spider fusion scheme also simplifies further, as we no longer
need to keep track of the number of legs that connect the two fusing spiders.

Example 2.18 (Special and commutative Frobenius monoids). The commuta-
tive and special Frobenius monoids are very common in the literature, as they
are an algebraic structure one finds naturally when reasoning about relations
(as we will see when we study the semantics of string diagrams in Section 5).
We summarise here the full equational theory for future reference:

(2.8)

In what follows, we will refer to this theory as scFrob.
When adding commutativity in the picture, the spider theorem still holds and

includes string diagrams composed out of (finitely many) , , , and
wire crossings, using vertical or horizontal composition. Any string diagram in
the free SMC over the theory of commutative and special Frobenius monoids
is fully determined by a list of spiders, and to where each of their respective
legs are connected on the left and on the right boundary. In other words, string

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 27

diagrams with n left wires and m right wires are in one-to-one correspondence
with maps n + m → k for some k. This result will be the basis of a concrete
description of the free SMC on the theory of a special commutative Frobenius
monoid in Example 5.11.

Example 2.19. A special Frobenius monoid that moreover satisfies the follow-
ing axiom is sometimes called extra-special:

(2.9)

This means that we can forget about networks of black nodes without any dan-
gling wires – they can always be eliminated. In this case, string diagrams with
n left wires and m right wires in the (free SMC over the) theory of a commu-
tative extra-special Frobenius monoid are in one-to-one correspondence with
partitions of {1, . . . ,n + m}. Intriguingly, one may think of (2.9) as a ‘garbage
collector’; in the relational interpretation of string diagrams, it allows us to
capture equivalence relations, as it eliminates empty equivalence classes. We
will come back to the case of extra-special commutative Frobenius monoids in
Example 5.12.

The reader will frequently encounter the theories we covered here as the
building blocks of more complex diagrammatic calculi, designed to capture
different kinds of phenomena. For example, the ZX-calculus, a theory that
generalises quantum circuits (see Section 7), contains not one, but two spe-
cial commutative Frobenius monoids, often denoted by a red and a green dot
respectively. They interact together to form two bimonoids: the green monoid
with the red comonoid forms a bimonoid, and so does the red monoid with
the green comonoid. At first, this seems like a lot of structure to absorb, but
quickly, one learns to use the spider theorem to think of monochromatic string
diagrams, so that most of the complexity comes from the interaction of the
two colours. And even then, the generalised bimonoid law we saw in Example
2.16 helps a lot. In fact, modern presentations of the ZX-calculus prefer to give
the theory using spiders of arbitrary arity and co-arity as operations and the
spider fusion rules as axioms. Strikingly, very similar equational theories can
be found ubiquitously in a number of different applications, across different
fields of science: it appears there is something fundamental to the interaction
of monoid–comonoid pairs in the way we model computational phenomena.
We will see several example applications in Section 7.

Remark 2.20 (Distributive Laws). It is noteworthy that both the equations of
bimonoids (Example 2.16) and of Frobenius monoids (Example 2.17) describe

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

28 Applied Category Theory

the interaction of a monoid and a comonoid, even though they do it in dif-
ferent ways. A way to put it is in terms of factorisations: the bimonoid laws
allow us to factorise any string diagram as one where all the comonoid gen-
erators precede the monoid generators, as in (2.6); conversely, the Frobenius
laws yield a monoid-followed-by-comonoid factorisation, as in the spider the-
orem.More abstractly, the two equational theories can be described as different
specifications of a distributive law involving themonoid and the comonoid. Dis-
tributive laws are a familiar concept in algebra: the chief example is the one of
a ring, whose equations describe the distributivity of a monoid over an abelian
group. In the context of symmetric monoidal theories, distributive laws are even
more powerful, as they can be used to study the interaction of theories with
generators with arbitrary co-arity, such as comonoids, Frobenius monoids,
and so on. The systematic study of distributive laws of symmetric monoidal
theories has been initiated by Lack [84] and expanded in more recent works
[22, 23, 116]. Understanding a theory as the result of a distributive law allows
us to obtain a factorisation theorem for its string diagrams, such as (2.6) and
the spider theorem. Moreover, it provides insights on a more concrete represen-
tation (a semantics) for syntactically specified theories of string diagrams – a
theme which we will explore in Section 5. For example, the phase-free fragment
of the aforementioned ZX-calculus can be understood in terms of a distributive
law between two bimonoids. This observation is instrumental in showing that
the free model of the phase-free ZX-calculus is a category of linear subspaces
[19]. We refer to [116] for a more systematic introduction to distributive laws
of symmetric monoidal theories, as well as other ways of combining together
theories of string diagrams.

3 String Diagrams as Graphs
The previous section introduced string diagrams as a syntax. However, a
strength of the formalism is that string diagrams may be also treated as graphs,
with nodes and edges. This perspective is often convenient to investigate
properties of string diagrams having to do with their combinatorial rather
than syntactic structure, such as whether there is a path between two com-
ponents. Another important reason to explore a combinatorial perspective to
string diagrams is that their graph representation ‘absorbs’ the laws of sym-
metric monoidal categories shown in (2.3). It is thus more adapted than the
syntactic representation for certain computation tasks, such as rewriting (see
Section 6.1). The goal of this section is to illustrate how string diagrams can be
formally interpreted as graphs.
As a starting point, let us take, for example, a string diagram we have

previously considered:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 29

If we forget about the term structure that underpins this representation, and try
to understand it as a graph-like structure, the seemingly most natural approach
is to think of boxes as nodes and the wires as edges of a graph. In fact, this is
usually the intended interpretation adopted in the early days of string diagrams
as a mathematical notation; see, for example, [77]. An immediate challenge
for this approach is that ‘vanilla’ graphs do not suffice: string diagrams present
loose, open-ended edges, which only connect to a node on one side, or even on
no side, as, for instance, the graph representation of the ‘identity’ wires: x .
Historically, a solution to this problem has been to consider as interpretation a
more sophisticated notion of graph, endowed with a topology from which one
can define when edges are ‘loose’, ‘half-loose’, ‘pinned’, and so on; see [77].
Another, more recent approach understands string diagrams as graphs with two
sorts of nodes, where the second sort just plays the bureaucratic role of giving
an end to edges that otherwise would be drawn as loose [46].
The approach we present follows [13]. We do not regard boxes as nodes, but

rather as hyperedges: edges that connect lists of nodes, instead of individual
nodes. This perspective allows us to work with a well-known data structure
(simpler than the ones above) called a hypergraph: the only entities appearing in
a hypergraph are hyperedges and nodes: these interpret the boxes and the loose
ends of wires in a string diagram, respectively. And the wires themselves? They
are simply a depiction of how hyperedges connect with the associated nodes.
Such an interpretation applies as follows to our leading example:

Note that, even though they are seemingly very close in shape, the two entities
just displayed are of a very different nature. The one on the left is a syn-
tactic object: the string diagram representing some term modulo the laws of
SMCs. The one on the right is a combinatorial object: a hypergraph, with
nodes indicated as dots and hyperedges indicated as boxes with round corners,
labelled with Σ-operations.6

6 The reader may wonder what happens when there is more than one generating object, so that
string diagrams have non-trivial labels on wires. All of this section generalises to that more
general setting: in the hypergraph interpretation, nodes may be labelled with the appropriate
object, and constructions that merge nodes are disallowed unless the label matches. As this

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

30 Applied Category Theory

In order to turn this mapping into a formal interpretation, we need an under-
standing of how to handle composition of string diagrams. Intuitively, parallel
composition is simple: if we stack one hypergraph over the other, we still obtain
a valid hypergraph. For instance:

Sequential composition is subtler, as we need to formally specify how loose
wires of one string diagram are ‘plugged in’ loose wires of another diagram.

?

A proper definition of this composition operation is what leads to the notion
of an open hypergraph: a hypergraph with a record of what nodes form its left
interface and what nodes form its right interface. Note that one node can be in
both, as in (3.1). Pictorially, we will display the interfaces as separate discrete
hypergraphs,7 one on the left and one on the right, with dotted lines indicat-
ing which nodes of the actual hypergraph lie on which interface. Our leading
example corresponds to the following open hypergraph on the right.

Thanks to this additional information, the open hypergraph comes endowed
with a built-in notion of sequential composition, mimicking the sequen-
tial composition of string diagrams. We are allowed to compose two open

generalisation poses no significant conceptual difficulty, for the sake of clarity we opted for
focussing our exposition on the case of theories with one generating object.

7 A hypergraph is discrete when it has just nodes and no hyperedge.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 31

hypergraphs sequentially whenever the right interface of the first coincides with
the left interface of the second.

Equipped with this notion, we may define the interpretation of string diagrams
as open hypergraphs, inductively on Σ-terms: for each g : v → w in Σ1, we
have

In words, the vertical composition takes the disjoint sum of each of the inter-
faces and hypergraphs, while the horizontal composition identifies the middle
interface labels and includes them as nodes into the composite hypergraph.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

32 Applied Category Theory

Note that this definition extends to an interpretation of string diagrams by veri-
fying that it respects equality modulo the laws of SMCs – that is, if two Σ-terms
are represented by the same string diagram, then they are mapped to the same
open hypergraph.
As a side note, it is significant that moving from hypergraphs to open hyper-

graphs does not force us to complicate the notion of graph at hand, for instance
by adding a different sort of nodes. From a mathematical viewpoint, an open
hypergraph G may be simply expressed as a structure consisting of two hyper-
graph homomorphisms 〈 p :GL → G,q :GR → G〉, where GL and GR are
discrete hypergraphs, and the image p[GL] (resp. q[GR]) identifies the nodes
in the left (resp. right) interface of G. The visualisation in (3.1) shows such
encoding: GL is the hypergraph on the left side, GR is the one on the right side,
and G is the one in the middle. The dotted lines, identifying the interfaces of
G, now take formal meaning as the definition of functions p :GL → G and
q :GR → G.

(3.1)

The structure 〈 p :GL → G,q :GR → G〉 is often called a cospan of hyper-
graphs (see Example 5.11 on the simpler cospans of sets), with carrierG. When
referring to G as an open hypergraph, we always implicitly refer to G together
with one such cospan structure. Reasoning with cospans is convenient as they
come with a built-in notion of composition (by ‘pushout’ in the category of
hypergraphs) which is exactly how the informal composition of open hyper-
graphs given earlier is formally defined. We will come back to this point in
Section 6.1, as it plays a role in how we rewrite with string diagrams.

The interpretation of string diagrams as open hypergraphs given in (3.1)
defines a monoidal functor ⟦·⟧ from the free SMC over signature Σ to the SMC
of cospans of hypergraphs.
An important question stemming from the interpretation (3.1) is: to what

extent are the syntactic and the combinatorial perspectives on string dia-
grams interchangeable? First, one may show that ⟦·⟧ is an injective mapping:
string diagrams that are distinct (modulo the laws of SMCs) are mapped
to distinct open hypergraphs. However, it is clearly not surjective. Here are
some examples of open hypergraphs over a signature Σ which are not the
interpretation of any Σ-string diagram.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 33

These examples have something in common: nodes are allowed to behavemore
freely than in the image of interpretation of (3.1). For instance, in the first
hypergraph there is an ‘internal’ node (not on the interface) that has multiple
outgoing links to hyperedges. In the second hypergraph, there is an internal
node that has no incoming links. Finally, the third hypergraph features a node
that can be plugged in twice on the left interface; when composing with another
hypergraph on the left, it will have two incoming links.
We can prove that such features are forbidden in the image of ⟦·⟧. The

property that disallows them is called monogamy [13].

Definition 3.1 (Degree of a node). The in-degree of a node v in a hypergraph
G is the number of pairs (h, i) where h is a hyperedge with v as its i-th target.
Similarly, the out-degree of v in G is the number of pairs (h, i) where h is a
hyperedge with v as its i-th source.

Definition 3.2 (Monogamy). An open hypergraphm
f
−→ G

g
←− n is monogamous

if f and g are injective and, for all nodes v of G,

• the in-degree of v is 0 if v is in the image of f and 1 otherwise;
• the out-degree of v is 0 if v is in the image of g and 1 otherwise.

Moreover, any hypergraph that corresponds to a string diagram is acyc-
lic: there are no directed paths containing the same node twice. These two
properties are enough to characterise string diagrams.

Theorem 3.3. An open hypergraph is in the image of ⟦·⟧ if and only if it is
monogamous and acyclic.

Corollary 3.4. String diagrams over Σ are in one-to-one correspondence with
Σ-labelled monogamous and acyclic open hypergraphs.

Theorem 3.3 settles the question of what kind of open hypergraphs cor-
respond to ‘syntactically generated’ string diagrams. We may also ask the
converse question: what do we need to add to the algebraic specification of
string diagrams in order to capture all the open hypergraphs?
Remarkably, the special and commutative Frobenius monoid from Example

2.18 is tailored to the role. Indeedwe can give an interpretation to the operations
of Example 2.18, as discrete open hypergraphs:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

34 Applied Category Theory

Intuitively, the Frobenius generators are modelling the possibility that a node
has multiple or no ingoing/outgoing links, just as in the above examples. If we
now consider string diagrams over Σ augmented with the generating operations
of a Frobenius monoid, we can infer the string diagrams for the preceding open
hypergraphs:

These observations generalise to the following result, thus completing the pic-
ture of the correspondence between string diagrams and open hypergraphs. In
stating it, we write Σ+scFrob for the signature given by the disjoint union of the
generators of Σ and of scFrob, the theory of a special commutative Frobenius
monoid given in (2.8).

Theorem 3.5. String diagrams on the signature Σ+ scFrob modulo the axioms
of special commutative Frobenius monoids given in (2.8) are in one-to-one
correspondence with Σ-labelled open hypergraphs.

Note that it is not just the signature: the axioms of special commutative
Frobenius monoids also play a role in the result, as they model precisely
equivalence of open hypergraphs.

Remark 3.6. Given a signature Σ = (Σ0,Σ1), Open hypergraph with Σ0-
labelled nodes and Σ1-labelled hyperedges form a symmetric monoidal cat-
egory Hyp

Σ
, whose morphisms are hypergraph homomorphisms respecting the

labels. The monogamous and acyclic open hypergraphs form a subcategory
MHyp

Σ
of Hyp

Σ
. One may phrase Theorem 3.3 and Theorem 3.5 in terms of

these categories by saying that there is an isomorphism between FreeSMC(Σ)
and MHyp

Σ
, and an isomorphism between FreeSMC(Σ + scFrob) and Hyp

Σ
.

4 Categories of String Diagrams
Manipulating string diagrams can be confusing to the newcomer because
there are actually many flavours, each of which authorises or forbids differ-
ent deformations and manipulations. To make matters worse, many papers

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 35

will assume that the reader is comfortable with the rules of the game for the
authors’ specific flavour, and gloss over the basic transformations. This is not
necessarily a bad thing, as the point of string diagrams is to serve as a useful
computational tool, a syntax that empowers its users by absorbing irrelevant
details into the topology of the notation itself. This section is here to convey
the basic rules for the most common forms one is likely to encounter in the
literature. We will give some insight into the manipulations that are authorised
and those that are forbidden in each context, illustrating them through several
examples.
In previous sections, we made the conscious choice of starting with string

diagrams for symmetric monoidal categories. Let us recall the rules of the game
briefly: we were allowed to compose boxes horizontally, as long as the types
of the wires matched, and vertically, without restriction. In addition, we were
allowed to cross wires however we wanted, and the only relevant structure of
an arbitrary vertical or horizontal composite of multiple wire-crossings is the
resulting permutation of the wires that it defines.
We will now see that there are various ways of strengthening or weakening

these rules and the class of string diagrams under consideration. For the reader
willing to delve further into this subject, we recommend Selinger’s extensive
survey of diagrammatic languages for monoidal categories [106].

4.1 Fewer Structural Laws
4.1.1 Monoidal Categories What if we take away the ability to cross wires?
Terms of the free monoidal category over a chosen signature Σ = (Σ0,Σ1) are
generated by the following derivation rules:

The difference with symmetric monoidal categories is that we no longer have
the built-in symmetry components at our disposal. We consider two terms
structurally equivalent when they can be obtained from one another using
the axioms of monoidal category, that is, the strict subset of those symmetric
monoidal categories that do not involve the symmetry/wire-crossing, as found
in (2.3). For example, we still have the interchange law

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

36 Applied Category Theory

but we do not have x
y = , as is not even a term of our syntax.

Intuitively, they are the planar cousins of their symmetric counterpart, that is,
the subset of string diagrams we can draw in the plane in a symmetric monoidal
categorywithout crossing anywires. In away, the rules are simpler: we can only
compose string diagrams horizontally (with the usual caveat that the right ports
of the first have to match the left ports of the second) and vertically. That’s it.
Then, two string diagrams are equivalent if one can be deformed into the other
without any intermediate steps that involve crossing wires. For example,

The last caveat is important, as two monoidal diagrams could be equivalent
if we interpreted them (via the obvious embedding) as symmetric monoidal
diagrams, but not equivalent as monoidal diagrams. This is the case for the two
following diagrams:

Thus, in the monoidal case, certain string diagrams can be trapped between
some wires, without any way to move them on either side – whereas, in the
symmetric monoidal case, we could have just pulled the middle diagram out,
past the surrounding wires.

4.1.2 Braided Monoidal Categories Braided monoidal categories [76] are
one step up frommonoidal categories, but are not symmetric. They allow a form
of wire crossing that keeps track of which wire goes over which. To this effect,
we introduce a braiding for each of the two possibilities depicted suggestively
as follows:

Term formation rules for the free braided monoidal category over a given
signature Σ are those of monoidal categories plus the following two:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 37

The notion of structural equivalence is up to the axioms of braided monoidal
categories, which we now give:

As the drawings suggest, the intuition for the braiding is that string diagrams
now inhabit a three-dimensional space in which we are free to cross wires by
moving them over or under each other. The first two laws state that the two
braidings are inverses of each other, and the third is an instance of the naturality
of the wire crossings, called the Yang–Baxter equation [29]. Notice that these
axioms are similar to those for the symmetry in SMCs except that braidings
are not self-inverse: x

y = does not hold if we take instead (see
what follows). As a result, we can draw any string diagram we could draw in a
symmetric monoidal category, but we have to pick which wire goes under and
which goes over for each crossing.
Two string diagrams are equivalent if they can be deformed into each other

without ever moving two wires through one another to magically disentangle
them. Once more, this gives an equivalence that is finer than that of symmetric
monoidal categories.8 A simple illustrative example of this phenomenon is the
following twist:

If we replaced the two braidings by the symmetry to obtain a term of a symmet-
ric monoidal category, this string diagram would simply be the identity .
This serves as a reminder that the braiding is not self-inverse. One can find
much more interesting examples – in fact, we can draw arbitrary braids:

or string diagrams containing other generators with arbitrary braidings between
them, which can be transformed like those of symmetric monoidal categories,
as long as we do not move any of the wires through one another:

8 From a formal viewpoint, this statement is not entirely accurate, because the terms of free
braided and symmetric monoidal categories are different. However, we can map those of the
former to the latter by sending the braid to the symmetry. Our statement then amounts to saying
that this mapping is not injective, that is, that two different braided monoidal diagrams may be
mapped to the same symmetric monoidal diagram.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

38 Applied Category Theory

Remark 4.1. Contrary to the case of SMCs (see Section 3), there is no known
representation of string diagrams for braided monoidal categories as graphs.

4.2 More Structural Laws
Just like we can weaken the structure of symmetric monoidal categories and
draw more restricted diagrams, we can also extend our diagrammatic powers.
The following is a non-exhaustive list of themost common variations onemight
find in the literature.

4.2.1 TracedMonoidal Categories String diagrams in a (symmetric) mono-
idal category keep to a strict discipline of acyclicity: we can only connect the
right and left ports of two boxes. One could imagine relaxing this requirement,
while keeping a clear correspondence between left ports as inputs and right
ports as outputs.
Term formation rules for traced monoidal categories are those of symmetric

monoidal categories with the addition of an operation that allows us to form
loops, called the partial trace:9

The corresponding notion of structural equivalence is given by the following
axioms (with object labels removed for clarity).

Here, we had to briefly go back to using dotted frames, because the axioms of
traced monoidal categories are almost diagrammatic tautologies (which is the
point of adopting a diagrammatic notation for them).

9 The name comes from the usual linear algebraic notion of trace. We will examine this concrete
case in Example 5.13.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 39

In short, string diagrams for tracedmonoidal categories include those of sym-
metric monoidal ones, but add the possibility of connecting any right port of
any diagram to any left port of any other with the same type, as in the following
example:

In essence, we have the ability to draw loops, breaking free from the acyclicity
requirement of plain symmetric monoidal diagrams. However, we cannot bend
wires arbitrarily, or connect right (resp. left) ports to right (resp. left) ports. For
example, the following is not allowed:

(although we will soon introduce a syntax for which this kind of diagrams is
allowed.)
The reader should convince themselves that the preceding string diagram is

equivalent to the following one on the right:

As for symmetric monoidal diagrams, the trick to check this equality lies in
verifying that the connectivity of the different boxes is preserved.

Remark 4.2. Traced string diagrams are often used when describing com-
putational processes that feature some form of recursion or iteration. In this
context, it is also natural to consider trace-like operations that do not satisfy
the yanking axiom. This makes sense when the trace-like operation is intended
to represent a form of feedback which introduces a temporal delay. Examples
abound in the theory of automata. Note that the sliding rule might also fail in
this case. The associated graphical language generalises that of traced cat-
egories, and the associated structure is sometimes called a delayed or guarded
traced category, or a category with feedback [44, 45, 78].

4.2.2 Compact Closed Categories Compact closed (or more simply, com-
pact) categories are special cases of traced monoidal categories where, rather
than adding a global trace operation, we add ways of moving ports from left to

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

40 Applied Category Theory

right and vice versa, using extra generators that represent wire-bending directly,
as built-in operations.
The term formation rules are those of symmetric monoidal categories except

the identity introduction rules, with the following additions:

In words, we introduce a new object x∗ (called the dual of x) for every object
x and write for the identity on x and for the identity on x∗. The objects
x and x∗ are related by two wire-bending diagrams and , called cup and
cap respectively.
The corresponding notion of structural equivalence is defined by the axioms

of symmetric monoidal category and the following two axioms, which capture
the duality between inputs and outputs:

(4.1)

These are sometimes called the snake or yanking equalities.
Using the symmetry, we can define syntactic sugar for two other cups and

caps, bending wires in the other direction, which we write as:

From cups and caps, we also obtain a partial trace operation given simply by

This operation satisfies all the required axioms of traced monoidal categories
(it is an instructive exercise to prove them). Importantly, what was a global
operation before is now decomposed into smaller components that use the
added generators. This is particularly helpful in applications, whenever we aim
at reasoning compositionally about feedback loops in a system. Whereas the
notion of trace is ‘native’ to traced monoidal categories, it is a derived concept
in compact closed categories.
For traced monoidal categories, we could draw loops directly, to connect any

left port to any right port of a diagram. We could always read information in a
given diagram as flowing from left to right, except in a looping wire, where it
flows backwards at the top of the loop until it reaches its destination. Now that
we can move left ports to the right of a diagram and right ports to the left, we
have to be a bit more careful. This is why we have to annotate each wire with
a direction.
We can understand this as layering a notion of input and output on top of

those of left and right ports. We can call inputs those wires that flow into a

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 41

diagram and outputs those that flow out of a diagram, whether they are on the
left or right boundary. Then, in a compact closed category, we are allowed to
connect any input to any output, that is, we can assign a consistent direction to
any wiring:

Furthermore, as it is now a leitmotiv, only the connectivity matters: we are
allowed to straighten or bend wires at will, as long as we preserve the con-
nections between the different sub-diagrams. For example, the following two
diagrams are equivalent:

Finally, compact closed categories have the following very important prop-
erty: diagrams of type uv→ w are in one-to-one correspondence with diagrams
u → wv∗. Diagrammatically, moving v from the domain to the codomain is
realised by bending the corresponding wire(s) using the cup ; moving in the
other direction simply uses to bend the v-wires back in place.

The fact that these operations are inverses to each other is an easy consequence
of the snake equalities (4.1), with which we can straighten the wires back into
place. As a result, wv∗ can be seen as an internal analogue of the set of string
diagrams v → w. This property is found more generally in closed monoidal
categories, which we cover in Section 4.2.9.

4.2.3 Self-Dual Compact Closed Categories There are significant
instances of compact closed category where the distinction between inputs and
outputs disappears completely: they are called self-dual. The term formation
rules are the same as those symmetric monoidal categories, with the following
additions:

They are also very close to those of compact closed categories, but we identify
x and its dual. As a result, there is no need to introduce a direction on wires. The

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

42 Applied Category Theory

added constants and satisfy the same equations as their directed cousins:

Without distinct duals there is no need to keep track of the directionality of
wires, and the resulting diagrammatic calculus is even more permissive – there
are no inputs or outputs, and we are now allowed to connect any two ports
together:

As before, the structural equivalence on diagrams allows us to identify any two
diagrams where the same ports are connected:

The previous three examples progressively relax which two ports we can con-
nect together; in the following examples, we relax the requirement that only
two ports can be connected at a time by introducing different ways to split and
end wires.

4.2.4 Copy-Delete Monoidal Categories The first of these adds the ability
to split and end wires in order to connect some wire in the right boundary of a
diagram to a (possibly empty) set of wires in the left boundary of another. There
are several names for these in the literature (Copy-Delete monoidal categories,
gs-monoidal categories, etc.), but we will call them CD categories for short.
The term formation rules for CD categories are the same as those for sym-

metric monoidal categories, with the addition of wire splitting and ending for
each generator:

As anticipated, the copying and deleting operations allow us to connect a given
right port of a diagram to a (possibly empty) set of left ports of another:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 43

Notice, however, that there are several ways of connecting the same set of wires.
For example, we could have connected the left boundary wire to f,h, and c as
follows:

or any other way of connecting this wire to the same three boxes. To define a
sensible notion ofmulti-wire connection, we need to add axioms that allow us to
consider all these different ways of composing and equal if they connect
the same wire to the same set of wires. To achieve this, and obtain a suit-
able notion of structural equivalence for CD categories, we add the following
equalities to those of SMCs:

(4.2)

The reader will recognise these laws from Example 2.14 as those of a commu-
tative comonoid: they tell us that there is only one way of splitting a single wire
into n wires, for any natural n.
Using

xx x and x for generating objects x ∈ Σ0, we can define
ww w and

w for any word w over Σ0 or, more plainly, for arbitrarily many wires. We do
so by induction:

(4.3)

As mentioned in Example 2.14, it is typical in applications that and are
interpreted as gates that duplicate and discard a resource.With this perspective,
CD categories are categories whose structure makes duplicating and discarding
of a resource explicit when it is used in some computation. This feature allows
for a resource-sensitive analysis of processes. For instance, in CD categories
we generally have that

(4.4)

Intuitively, this means that we distinguish the case of a process d using resource
of type v once and then copying its output, from a process which duplicates it
before letting two copies of d consume it.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

44 Applied Category Theory

4.2.5 Cartesian Categories Often, one would like to go further than hav-
ing an operation that allows us to split and end wires – certain SMCs extend the
capability of these operations to copy and delete boxes too. This is the ability
that cartesian categories10 give us.
The term formation rules for cartesian categories are the same as those for

CD categories. The corresponding notion of structural equivalence further quo-
tients that of CD categories with the following axioms, which capture the ability
to copy and delete diagrams: for any d : v→ w in Σ1, we have

(4.5)

Note that this axiom scheme applies to generating operations with potentially
multiple wires. To instantiate it, recall the definition of and for multiple
wires given in (4.3). Then, if we apply these to g : x1x2 → y1y2, we get

where we omit object labels for clarity. As for CD categories, we can now
connect a given right port of a diagram to a (possibly empty) set of left ports
of another:

But the structural notion of equivalence for cartesian categories is much
coarser. For the first time in this Element, we encounter a diagrammatic
language where the structural equivalence is not topological, and where equiva-
lence cannot simply be checked by examining the connectivity of the different
sub-diagrams. In practice, this can make it more difficult to identify when
two diagrams are equivalent. As well as those that have the same connectivity
between their different components, we can identify diagrams where one con-
tains several copies of the same sub-diagram, connected by the same , or
where one contains a sub-diagram connected to a and the other does not, for
example,

10 The reader familiar with categories will know that a cartesian category is a category with finite
cartesian products. Having cartesian products is a property of a category. A monoidal product,
on the other hand, is a structure over a category. While cartesian products do define a monoidal
product, a given category may be equipped with a monoidal product that is not its cartesian
product.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 45

In this diagram, from left to right, we have merged the two occurrences of f and
copied d; (⊗ id). It is helpful to break down the required equational steps:

In plain English, we first merge the two occurrences of f using the dup equation
(from right to left); apply the counitality axiom of the comonoid structure to get
rid of the extra counit and leave a plain wire; and apply the counitality axiom
of the comonoid twice (from right to left this time) to produce a diagram from
which the dup axiom applies to d, which is the last equality.

Remark 4.3 (Cartesian categories and algebraic theories). The diagrammatic
syntax of cartesian categories is the diagrammatic counterpart of the standard
symbolic notation for algebraic theories. In this correspondence, wires take the
place of variables. Since variables can be used arbitrarily many times, we need
additional machinery in the diagrammatic setting to handle variable manage-
ment: this is where and come in. Moreover, just like we can substitute an
arbitrary term for all occurrences of a given variable, we can copy and delete
arbitrary diagrams using and with the axioms dup-del. This is what
allows us to interpret composition as substitution.
Let us examine the correspondence for a simple example; the general case

is worked out (for the single-sorted case) in [23]. Consider the algebraic the-
ory of monoids. It can be presented by two generating operations, m(−,−) of
arity 2 and e of arity 0 (a constant) satisfying the following three axioms:
m(m(x,y), z) = m(x,m(y, z)) and m(e,x) = x = m(x,e). Terms of this algebraic
theory are syntax trees whose leaves are labelled with variable names, as on
the left in the following diagram:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

46 Applied Category Theory

By simply turning the tree on its side and gathering all leaves labelled by the
same variable with (or deleting those that we do not use with) we obtain
the corresponding string diagram in the theory of cartesian categories, as on
the right side.
We can also go in the other direction: from the diagrammatic syntax of a

cartesian category over some signature, we can obtain an algebraic theory.
This is done by noticing that every string diagram of such a category can
be expressed as the composition of , with diagrams that have a single
outgoing wire. Indeed, the copying and deleting axioms imply that all string
diagrams d : v → w, with w = x1 . . . xn, can be decomposed uniquely into n
diagrams di : v→ xi, 1 ≤ i ≤ n, where xi are generating objects. Let us see con-
cretely what this decomposition looks like and how to obtain the components
for the case w = x1x2. Let

We can then check that

The general case is completely analogous.
In the single-sorted case, that is, when the set of objects contains a single

generator, the connection is clear: the decomposition property just presented
implies that every string diagram in a cartesian category can be seen as a
composite of and with operations with arity corresponding to the number
of left wires they have (and implicitly, co-arity one).

Resuming our resource interpretation, observe that string diagrams in (4.4),
whose equality is not enforced in CD categories, are always equated in carte-
sian categories. This means that cartesian categories are resource-insensitive
by default, because they do not keep track of the interplay of processes and
resources the same way CD categories do.
In applications, it is often interesting to enforce only a certain degree of

(in)sensitivity, intermediate between CD and cartesian categories. A notable
example is the one ofMarkov categories. In a Markov category we can always
discard string diagrams, but we cannot copy them at will. More formally, their
structure is defined by dropping from the definition of cartesian category the
leftmost equation in (4.5). It turns out this setup is convenient for studying prob-
abilistic computation, as it provides a baseline for interpreting string diagrams
as stochastic processes. See Section 7 for more pointers to the literature on the
topic.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 47

4.2.6 Cocartesian Categories If we flip all the diagrams of the previous sec-
tion along the vertical axis, we obtain the duals of cartesian categories, namely
cocartesian categories. They extend the language of symmetric monoidal cat-
egories, not with a commutative comonoid, but with a commutative monoid
(see Example 2.13) instead:

Furthermore, we want these to merge (or co-copy) and spawn (or co-delete)
any diagram as follows:

(4.6)

4.2.7 Biproduct Categories Categories that are both cartesian and cocarte-
sian are called biproduct categories. They feature a comonoid and a monoid
structure on each object, satisfying the dup-del and codup-codel axioms. Note
one important consequence: if we apply dup to d = , dup to d = , codup
to d = , and del to d = , we get the following:

These are the defining axioms of bimonoids, as introduced in Example 2.16.

4.2.8 Hypergraph Categories Hypergraph categories further extend the
capabilities of CD categories. Similar to biproduct categories, they include both
a monoid and a comonoid but, as we will see, these interact differently.
The term formation rules are the same as for biproduct categories, that is,

those for symmetric monoidal categories, with the following additions:

The first two are similar to the extra generators of CD categories. The last two
are their mirror image. We write them in black instead of the white generators
of cocartesian and biproduct categories since they will play a different role, as
we will now see.
The corresponding notion of structural equivalence is given by the laws

of symmetric monoidal categories with the addition of the axioms of special
commutative Frobenius monoids (Example 2.18) summarised in (2.8). How-
ever, observe that we do not impose that every diagram can be (co)copied or
(co)deleted, as we did for (co)cartesian categories. This is a key difference – in

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

48 Applied Category Theory

fact, as we will see later, these two requirements turn out to be incompatible in
a rather fundamental way.
The diagrammatic language of hypergraph categories is the most permissive:

it allows any set of ports (left or right) of the same sort to be connected together
via

xx x , x ,
x
x x , and x . In fact, as we have seen in Example 2.17, any two

connected11 diagrams made exclusively of these black generators, are equal if
and only if they have the same number of left and right ports, a fact known as
the spider theorem. For example, we can use the defining axioms of Frobenius
monoids to show that the following two diagrams are equivalent:

This means that the only relevant structure of a given connected diagram made
entirely of

xx x , x ,
x
x x , and x is the number of ports on the left and on the

right. As a result, as we saw in Example 2.17, we can introduce the following
black nodes as syntactic sugar for any such diagram with m dangling wires on
the left and n on the right:

Using this convenient notation, any string diagram in a hypergraph category
will look like a hypergraph, as introduced in Section 3: boxes act as hyperedges,
which may be wired together via black nodes.

In fact, this observation is what justifies the name ‘hypergraph category’ for
these structures. Once more, two diagrams are equivalent if they connect the
same ports via black nodes. For example, the following two are equivalent:

We could justify this equality through a sequence of Frobenius monoid axioms
and the laws of symmetric monoidal categories, but it would be very time-
consuming! It suffices to check that the connectivity of the different labelled

11 In the sense that there is a path from any two nodes.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 49

boxes and black nodes remains the same. This is why hypergraph categories
are very appealing.
These examples lead us to observe that hypergraph categories are always

self-dual compact closed.12 With the previous intuition, this observation is not
too surprising: if we are able to connect any set of ports, we can connect any
two pairs of ports. More formally, we can define cups and caps as and

, for any x in the signature. That they satisfy the axioms of compact
closed categories is a consequence of the Frobenius monoid axioms (or, more
generally, of the spider theorem). We give the diagrammatic proof explicitly
here, as it is instructive:

The other equation can be proved in the same way. That the resulting compact
structure is also self-dual is immediate, since the cups and caps we have defined
relate any given object to itself.

Remark 4.4 (A matter of perspective.). The reader may have noticed that the
additional structure of CD categories, self-dual compact closed, and hyper-
graph categories can also be seen as the free SMC over a theory that includes
some additional generators and equations (cf. Section 2.1). For example, the
free CD category over the theory (Σ,E) is definable as the free SMC over the
theory formed by signature

(
Σ0,Σ1 ∪

{ xx x , x | x ∈ Σ0
})

and equations, those
in E plus those in (4.2). Whether we pick one perspective or the other depends
on which structure we want to see as built-in and which we want to see as
domain-specific in the considered application.

4.2.9 Closed Monoidal Categories In monoidal categories that are closed,
the set of string diagrams v→ w can be seen as an object v⊸ w of the category
itself. Closedmonoidal categories arise naturally in applications where it makes
sense to consider higher-order functions: processes that can take functions as
inputs and can output other functions. Objects of the form v ⊸ w are called
exponentials.
The existence of exponentials v ⊸ w for all v,w is not sufficient to form a

closed monoidal category. We need extra conditions that encode the behaviour
of v⊸ w as some sort of function space. For this, we require the existence of
a family of morphisms evalv,w : v(v⊸ w) → w depicted as

12 This is in fact why they were called well-supported compact closed categories, when initially
studied in [27].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

50 Applied Category Theory

with the following property: for every d : uv → w, there exists a unique
morphism Λud : u→ (v⊸ w), such that

(4.7)

Intuitively, evalv,w acts like an evaluation map that applies a function v → w
to a value of type v and returns a w. In usual programming terms, Λud is a
curried version of d which, given an argument of type u, returns a morphism
v → w. We can also see Λ as a family of morphisms, sending objects u and
morphisms of type uv→ w to morphisms of type u→ (v⊸ w), for any u,v,w.
In fact, this defines a natural one-to-one correspondences between sets of mor-
phisms of these types13. This construction is also known as (λ-)abstraction in
programming language theory.
It is possible to make the string diagrammatic language of closed monoidal

categories even more appealing, by introducing a pictorial notation for the
abstraction map Λ, represented as a box surrounding a given string diagram.
For instance, given d : uv→ w, Λud : u→ (v⊸ w) becomes

The different orientation of wires u and v in the box signals the different roles
they play: intuitively, d awaits an input of type u on its left, in order to form
a function with input of type v. As is the case with any string diagrammatic
language introduced so far, this notation finds formal justification in terms of
categorical structures: it is syntactic sugar for so-called functorial boxes [91],
which capture the behaviour of Λ. We will not cover functorial boxes in detail
here, though we recall briefly what they are in the Appendix.
The reader may find further details about the string diagrammatic language

of closed monoidal categories in [65, section 3]. We do not discuss it further,
given how different it is from our other examples. We conclude by linking the
closed monoidal structure to other categorical structures seen in this section.
First, as the name suggests, compact closed categories (Section 4.2.2) are

closed monoidal. The objects v ⊸ w are defined as wv∗ and the evaluation
maps evalv,w are defined by:

13 For a refresher on the categorical concept of naturality, see Definition A.5 in the Appendix.
The categorically minded reader might also recognise an adjunction (cf. Definition A.9 in the
Appendix) between the functor (−)v, which takes the monoidal product with an object v, and
the exponential functor v⊸ (−). In fact, a closed monoidal category is succinctly defined by
the existence of such adjunction. We opted for a slightly different presentation, to emphasise
the shape of string diagrams determining the closed structure.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 51

where v ⊸ w := wv∗ in compact closed categories. Moreover, in compact
closed categories, abstraction can be realised by bending a wire as follows:

We see that the resulting diagram has type u→ wv∗ as required. The ability to
represent evaluation and abstraction as just wire bending is a special property
of compact closed categories, which does not hold for generic closed monoidal
ones.
Second, another important class of closed categories are those that are also

cartesian (Section 4.2.5). Cartesian closed categories are the semantics of
choice formost functional programming languages. The cartesian structurewit-
nesses the fact that resources (represented as variables) may be used arbitrarily
many times in most programming languages, while the closed structure reflects
the ability tomanipulate higher-order functions. Once again, we refer the reader
to [65] for an extensive discussion.

4.2.10 Mix and Match We have seen several cases in which categorical
structures blend together to give rise to interesting combinations. But beware!
Certain combinations have undesired consequences. The classic example is that
of the incompatibility between cartesian and compact closed categories. This
can be made precise as the following claim: a category that is both cartesian
and compact closed is degenerate, in the sense that it has at most one morphism
between any two objects.14 To show this, it suffices to derive from the axioms
of cartesian and compact closed categories that all morphisms between any two
objects are equal. We achieve this by proving that we can disconnect any wire,
in two steps: first we show that the cup splits as follows,

(4.8)

(the reader might recognise this as an instance of Remark 4.3). Then we show
that the identity can be disconnected

(4.9)

14 Another way to phrase this is to say that the category collapses to a partially ordered set (poset).
Indeed, we may regard a poset as a category whose objects are the poset elements and there is
a morphism from x to y only when x ≤ y. Thus each homset contains at most one morphism.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

52 Applied Category Theory

Finally, we can show what we wanted: for any f : v→ w,

Therefore, modulo equivalence there is at most one string diagram of type v→
w. Note that the incompatibility between compact closed and cartesian structure
implies that hypergraph and cartesian structure are also incompatible.
Interestingly, if we weaken the cartesian compact closed structure to that

of a cartesian traced monoidal category, the resulting combination not only
avoids degeneracy, but turns out to be closely related to the notion of (param-
eterised) fixed point [71]. A parameterised fixed-point operator in a cartesian
SMC (C,×,1) takes a morphism f :X × A → X and produces f †:A → X. The
operator (−)† is then required to satisfy a certain number of intuitive axioms.
For instance, f † should indeed be a fixed points of f, that is,

(4.10)

It is easy to see how to define such an operation in a traced category: let

The axioms the fixed-point operator is required to satisfy are consequences of
the axioms of traced monoidal categories with those of cartesian categories.
For instance, it does satisfy (4.10):

where the second equality holds by the yanking and sliding axioms of the trace.
Conversely, from a given fixed-point operator, we can define a trace. In fact, the
notions of parameterised fixed points and cartesian traces are equivalent [71,
Theorem 3.1].
We conclude by mentioning another example of a useful interaction between

different structures. String diagrams for braided and self-dual compact closed
categories allow us to draw arbitrary knots:

The central result for these categories is that two different, closed (i.e. with
empty left and right boundaries) diagrams are equal if and only if the cor-
responding knots can be topologically deformed into one another – thus, the
topological notion of knot is fully captured by a few algebraic axioms. We see

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 53

here another advantage of working with string diagrams: they give an algebraic
home to topological concepts that are otherwise difficult to express in standard
algebraic syntax.

5 Semantics
So far, we have thoroughly explored an arsenal of diagrammatic syntax, each
kind corresponding to a specific flavour of monoidal category. We have occa-
sionally discussed what is the intended ‘meaning’ of these structures, that
scientists have in mind when reasoning about a certain phenomenon with string
diagrams. In this section, we explain how assigning meaning to string diagrams
can be made formal, as a semantics.
Our approach to string diagram semantics draws inspiration from the study of

denotational semantics of programming languages. In programming practice,
computations are not mere manipulations of symbols, devoid of content; there
is a task, a mathematical object, which we intend to describe with the program.
A denotational semantics specifies what that ‘something’ is intended to be. It
allows us to define the behaviour of programs in a given language rigorously,
and prove more easily certain properties that they satisfy. The same language
can even have different semantic interpretations. A well-chosen semantics may
allow us to circumscribe more precisely the expressiveness of the language, or
to rule out certain classes of behaviour.

5.1 From Syntax to Semantics, Functorially
Generally speaking, a semantics is a mapping from syntax to a domain of inter-
pretation. Categorically, this idea may be applied to string diagrams using the
ingredients introduced in the previous sections. Our starting point is a sym-
metric monoidal theory (Σ,E). Then string diagrams of the free symmetric
monoidal category FreeSMC(Σ,E) over (Σ,E) is our syntax.
Now, in order to interpret such syntax, a domain of interpretation should

mirror its basic structure. This is why we consider categories Sem that are
symmetric monoidal for the task. A semantics for FreeSMC(Σ,E) will then be
a mapping that preserves such structure, that is, a symmetric monoidal functor
⟦·⟧ : FreeSMC(Σ,E) → Sem.
If FreeSMC(Σ,E)was a generic category, in order to define ⟦·⟧wewould need

to come upwith a definition of ⟦v⟧ and ⟦d⟧ for any object v and string diagram d
of FreeSMC(Σ,E). However, because FreeSMC(Σ,E) is freely generated by (Σ,E),
our task is simpler. In order to fully define ⟦·⟧, it suffices to assign it a value
only on the generating objects and operations of Σ, and make sure they satisfy
the relevant equations.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

54 Applied Category Theory

More explicitly, giving a semantic interpretation of FreeSMC(Σ,E) in Sem
amounts to specifying:

• an object ⟦x⟧ of Sem for each generating object x ∈ Σ0;
• a morphism ⟦c⟧ : ⟦x1⟧ ⊗ · · · ⊗ ⟦xn⟧→ ⟦ y1⟧ ⊗ · · · ⊗ ⟦ ym⟧ of Sem for each
generating operation c ∈ Σ1 of type x1 . . . xn → y1 . . . yn;

Moveover, this should be done in such a way that the equations of E are
satisfied, in the sense that c E

= d implies ⟦c⟧ = ⟦d⟧.
Giving such an interpretation for the generators completely defines a sym-

metric monoidal functor ⟦·⟧ : FreeSMC(Σ,E) → Sem, in a canonical way. The
semantics of an arbitrary object of FreeSMC(Σ,E), which is a word w = x1 . . . xn
of generating objects, is computed as ⟦w⟧ = ⟦x1⟧ ⊗ · · · ⊗ ⟦xn⟧. The semantics
of an arbitrary (composite) string diagram is computed using the composition
and monoidal product in the semantics, as long as the latter has the appropriate
structure:

(5.1)

Finally, because ⟦·⟧ should be a symmetric monoidal functor, symmetries y
x

x
y

are mapped to symmetries ⟦x⟧ ⊗ ⟦ y⟧ → ⟦ y⟧ ⊗ ⟦x⟧ of Sem, and similarly for
the identities.
In a sense, one may regard such description of ⟦·⟧ as a definition of seman-

tics by structural induction on string diagrammatic syntax. Remarkably, it is
an inductive definition where we just need to specify the base cases, and the
inductive step is always given by (5.1). It is worth emphasising once more that
this style of definition is only possible because FreeSMC(Σ,E) is a free sym-
metric monoidal category. Our recipe for ⟦·⟧ implicitly exploits the universal
property of free constructions; see Remark 2.9. Also, note that (5.1) is what
we commonly refer to as the property of compositionality: the semantics of a
compound diagram is entirely determined by the semantics of its elementary
components. Compositionality is a crucial property in software analysis, as it
makes formal reasoning feasible at a large scale. Being able to reason seman-
tically about graphical models using decompositions based on (5.1) is a major
appeal of string diagrammatic approaches.
One last word about syntax. In the examples of semantics that we consider

in the following sections, we will often remark that the domain of interpret-
ation Sem has more structure than just symmetric monoidal. In particular, we
will see categories that are also cartesian, hypergraph, and so on, in the sense

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 55

of Section 4. In such cases, it is often interesting to consider string diagram-
matic syntax that also exhibits such structure, and study structure-preserving
interpretations. To do so, we can introduce FreeX(Σ,E) for the free X-category
over (Σ,E), where X stands for one of the structures considered in Section 4, for
example, cartesian, hypergraph, and so on. These can be defined analogously
to the free symmetric monoidal category FreeSMC(Σ,E), except that the built-in
generators are not just the symmetries y

x
x
y and identities , but also the

generators and equations specific to that structure. For instance, the free car-
tesian category FreeCart(Σ,E) will have additional generators

xx x and x for
each generating object x, satisfying all the appropriate axioms.

5.2 Soundness and Completeness
Given a semantics ⟦·⟧ : FreeSMC(Σ,E) → Sem, it is often insightful to under-
stand which string diagrams c and d are identified by ⟦·⟧, that is, when ⟦c⟧ =
⟦d⟧. These equalities may inform us on the behaviour of the processes repre-
sented by string diagrams, and the differences of picking one semantics over
another. First, the very existence of such a functor ⟦·⟧ requires that c E

= d
implies ⟦c⟧ = ⟦d⟧; otherwise, ⟦·⟧ would not be well defined. Borrowing ter-
minology from logic, in this case we say that E is sound for ⟦·⟧. Furthermore E
is said to be complete if the reverse implication holds. Compared to soundness,
completeness is typically much harder to prove and often relies on identifying
a ‘canonical shape’ for the morphisms of Sem. When we have that c E

= d if and
only if ⟦c⟧ = ⟦d⟧, we say that the theory E is sound and complete, and call it
an axiomatisation of the target SMC Sem. In categorical terms, E is sound and
complete if ⟦·⟧ is a faithful symmetric monoidal functor. The reader will often
read that a theory is ‘complete for Sem’, rather than ⟦·⟧, when the functor ⟦·⟧ is
clear from the context. Another question that is often relevant is how expressive
a diagrammatic language is. That means we may investigate which behaviours
lie in the image of ⟦·⟧, and whether this image may be characterised by some
property. In particular, if this image is (equivalent to) the whole of Sem, we
say that ⟦·⟧ is full.

5.3 Examples
We now cover useful examples of SMCs in which we can interpret different
flavours of string diagrams. As we will see, some allow us to interpret sym-
metric monoidal theories with varying degrees of complexity. Some semantics
have a special link with certain commonly occurring theories, in that the latter
is complete for the former. In these cases, the string diagrams for a given theory
capture exactly the semantics of interest.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

56 Applied Category Theory

Each time, we will use the same notation ⟦·⟧ for the semantic functor, and
only specify its domain and codomain when necessary.

Example 5.1 (Functions, ×). The category Set of sets and functions can be
equipped with a monoidal structure in different ways. The cartesian product
of sets is one example of a monoidal product. On objects, it is simply the set
of pairs, given by X1 × X2 = {(x1,x2) | x1 ∈ X1 ∧ x2 ∈ X2}; on morphisms,
it is given by (f1 × f2)(x1,x2) = (f(x1), f2(x2)). The unit for the product is the
singleton set 1 = {•} (any singleton set will do). It is straightforward to check
that these satisfy the axioms of monoidal categories from (2.3). As an exercise,
let us prove the interchange law:(

(f1 × f2) ; (g1 × g2)
)
(x1,x2) = (g1 × g2)(f1(x1), f2(x2))

=
(
g1(f1(x1)),g2(f2(x2))

)
=

(
(f1 ; g1)(x1), (f2 ; g2)(x2)

)
=

(
(f1 ; g1) × (f2 ; g2)

)
(x1,x2).

(Side note: strictly speaking, using pairs for ‘×’ does not define an associa-
tive monoidal product, because (X1 × X2) × X3 is not equal to X1 × (X2 × X3),
but merely isomorphic to it. See Remarks 2.5 and 5.4.) Furthermore, (Set,×)
is a symmetric monoidal category, with symmetry given by the function σY

X :
X × Y→ Y × X defined by σY

X (x,y) = (y,x).
Since Set is a symmetric monoidal category, we can use it to interpret string

diagrams from a symmetric monoidal theory (Σ,E). Formally, this amounts to
defining a symmetric monoidal functor

⟦·⟧ : FreeSMC(Σ,E) → Set

As explained in Section 5.1, this places significant constraints on ⟦·⟧:
1. Monoidal functoriality means that ⟦v1v2⟧ = ⟦v1⟧ × ⟦v2⟧ for all v1,v2 ∈ Σ∗0,

that the identity wire v over any object v ∈ Σ∗0 is sent to the identity map
over ⟦v⟧, and that the two compositions are preserved by ⟦·⟧:

(5.2)

In addition, ⟦·⟧ is also a symmetric monoidal functor, so we necessarily
have

⟦ v
w
⟧
= σX

Y , for ⟦v⟧ = X, ⟦w⟧ = Y.
2. Since FreeSMC(Σ,E) is free, to fully specify such a monoidal functor

⟦·⟧ : FreeSMC(Σ) → Set, it suffices to assign a set to each element of Σ0

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 57

and a function ⟦c⟧ : ⟦v⟧ → ⟦w⟧ for each operation c : v → w in Σ1, such
that they verify the axioms in E.

We see from points 1 and 2 that the semantics of an arbitrary string diagram d
can be computed from the semantics of the generating operations of Σ and how
they are composed together to form d, using (5.2).
This symmetric monoidal category also has the structure to interpret string

diagrams for cartesian categories (Section 4.2.5). In fact, there is only one such
structure. For an object v of a given signature, the comonoid structure

vv v , v

is given by the following copy ∆ : ⟦v⟧→ ⟦v⟧× ⟦v⟧ and discarding ! : ⟦v⟧→ 1
maps, defined respectively by:

One can easily check that these satisfy the axioms of commutative comonoids
(Example 2.13) and that any function satisfies the equations dup and del from
(4.5). To build a bit more intuition, let us verify dup, for example. For any
x ∈ ⟦v⟧, we have

We encourage the reader to verify the other axioms as an exercise.
Note that there is only one map X → 1 for any set X, namely the discard-

ing map !X, given by !X(x) = •. In conjunction with the counitality axiom of
the comonoid structure, this condition forces the interpretation of the cartesian
structure to be the one we have given – there are no other possible choices.

Remark 5.2 (Models of algebraic theories and cartesian categories). We have
seen in Remark 4.3 that there is a close syntactic correspondence between car-
tesian categories and algebraic theories. It is natural to wonder whether the
correspondence carries over to the semantic side. This is indeed the case: sym-
metric monoidal functors out of the free cartesian category over a given theory
into the SMC (Set,×) are models (in the usual algebraic sense) of the cor-
responding algebraic theory. For example, to specify such a functor for the
cartesian theory of monoids involves choosing a carrier set X and functions
⟦m⟧ :X× X→ X, ⟦e⟧ : 1→ X of the appropriate arity that satisfy the relevant
axioms, which is precisely a model of the algebraic theory of monoids.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

58 Applied Category Theory

Example 5.3 (Relations, ×). The category Rel has as objects, sets, and as mor-
phisms R :X→ Y, binary relations, that is, subsets R ⊆ X×Y. The composition
of two relations R :X → Y and S :Y → Z is defined by R ; S = {(x, z) |
∃y(x,y) ∈ R ∧ (y, z) ∈ S}. The cartesian product X × Y further defines a
monoidal product on Rel, with unit the singleton set 1 = {•}. Furthermore,
Rel is symmetric monoidal, with the symmetry X × Y → Y × X given by the
relation {((x,y), (y,x)) | x ∈ X,y ∈ Y}. It is easy to verify that these satisfy all
the laws of symmetric monoidal categories. Even though this monoidal prod-
uct is the same as in Set on objects, the properties of the two SMCs are very
different.
Once again, given the free symmetric monoidal category FreeSMC(Σ,E) over

some theory (Σ,E), specifying a symmetricmonoidal functor ⟦·⟧ : FreeSMC(Σ,E)
→ Rel means assigning a set to each element of Σ0 and a relation ⟦c⟧ ⊆
⟦v⟧ × ⟦w⟧ for each c : v → w in Σ1 such that the axioms of E are satisfied
in Rel. Here, monoidal functoriality, aka compositionality, means that, in
particular:

One canmoreover interpret string diagrams for self-dual compact closed cat-
egories (Section 4.2.3) into Rel, by choosing a relation for the cups and
caps on every generating object v of our signature, such that axiom (4.1)
is satisfied. Once more, there are many possible choices, but the following
interpretation is a common one:

It is clear that these two relations satisfy the defining axiom (4.1) of (self-dual)
compact closed categories.
In fact, we can go even further: Rel can interpret string diagrams for

hypergraph categories (Section 4.2.8). For this we need to choose a special,
commutative Frobenius monoid to which we map

vv v , v , v ,
v
v v , for every

generating object v of our chosen signature. There are many possibilities. One
that occurs often in the literature is an extension of the comonoid structure
chosen for functions in Example 5.1. We take the diagonal relation as comul-
tiplication and the projection as counit, with the multiplication and unit given
by the converse relations. Formally:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 59

(5.3)

Let us check (one side of) the Frobenius law, to see how this works in more
detail. In the following, all xs belong to ⟦v⟧ for some v, which we omit:

In practice, one rarely reasons this way about string diagrams for relations.
There is a much more intuitive way: if we think of each wire of the diagram as
being labelled by a variable, then connected networks of black nodes force all
variables labelling its left and right legs to be equal. With this in mind, one may
observe that any connected network of black nodes forces all the corresponding
variables to be the same. This can be seen as a semantic rendition of the spider
theorem (covered in Example 2.17)! The special case we have shown earlier
falls out as a corollary. Functions can also be seen as relations via their graph:

Graph(f) = {(x,y) | y = f (x)}

Moreover, the composite (as relations) of two functional relations is the graph
of the composite of the two corresponding functions, that is, Graph(g ◦ f) =
Graph(f) ; Graph(g). In other words, Graph defines a functor Graph : Set →
Rel. We call relations that are the graph of some function, functional.
Using , as above, we can interpret string diagrams for cartesian cat-

egories in Rel, since, as we have just seen, it contains Set. However, not all
interpretations of a signature that includes , will satisfy the axioms of
cartesian categories, unlike in Set. In fact, in Rel, it is possible to characterise
functional relations purely by how they interact with , : they are precisely
those that satisfy the dup and del axioms in (4.5), as in the example ofSet above.
Indeed, a relation f satisfies dup if and only if it is single-valued, and it satisfies

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

60 Applied Category Theory

del if and only if it is total. This is a useful characterisation that often comes up
in the literature.
Finally, as we have mentioned, there are other choices of special, commu-

tative Frobenius monoids in this SMC. The interested reader will find a full
classification of all such choices in [96].

Remark 5.4 (Not strict?). The observant reader may have noticed an issue
with the previous examples: the SMCs of functions and relations are not strict.
This is because taking the cartesian product is not strictly associative, that is,
the set (X × Y) × Z is not equal to the set X × (Y × Z). However, because of the
coherence theorem for SMCs (Remark 2.5) it is harmless to pretend that they
are – and again, this is why we can draw string diagrams in this category. If the
reader is still uncomfortable with this idea, we invite them to give an equivalent
presentation of the same SMC that does not rely on taking pairs, but tuples of
arbitrary length. This SMC would then be the strictification of Set or Rel, and
nothing of importance would be lost.
Similarly, we required the semantic functor ⟦·⟧ to be strict. To be fully formal,

for many examples, we should allow ⟦w1w2⟧ to merely be isomorphic to ⟦w1⟧⊗
⟦w2⟧. However, for all intents and purposes, we can act as if ⟦·⟧was strict, with
codomain the strictification of the semantics we have in mind, as we do here.

Example 5.5 (Functions, +). The cartesian product is only one among several
possible choices of monoidal structures that one can impose on the category of
sets and functions. In fact, we can turn it into an SMC in at least one other inter-
estingway: instead of taking themonoidal product to be the cartesian product of
sets, we consider the disjoint sum, defined as X1+X2 := ((X1×{1})∪(X2×{2}))
on objects, and given by f1+ f2 = (f1+ f2)(x, i) = fi(x) on maps. The unit for this
monoidal product is the empty set. Moreover, it is also symmetric monoidal,
with symmetry ς XY :X + Y→ Y + X given by ς(z,1) = (z,2) and ς(z,2) = (z,1).
If we can no longer interpret diagrams for cartesian categories in this SMC,

we can, however, interpret those for cocartesian categories (Section 4.2.6).
For each generating object v of our chosen signature, we can interpret the
commutative monoid operations

v
v v and v as the following maps:

It is a straightforward exercise to check that these are associative, unital and
commutative.Moreover, everymap (of the appropriate type) satisfies the codup
and codel axioms with respect to

v
v v and v .

Amazingly, everymap between finite sets can be represented using this syn-
tax.We only need to give ourselves a single generating object • in our signature,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 61

which we interpret as the singleton set ⟦•⟧ = 1. Then we simply write
•
• •

and • as and since object labels are redundant in this context. Given
a map f : X → Y, for X and Y two finite sets, we first fix some ordering of X
and Y. In this way, we can identify them with finite sets of the form {0, . . . ,n}.
This allows us to encode finite sets as sequences of wires in the diagrammatic
setting (we will assume a similar encoding for several of the other examples
that follow). With this encoding fixed, we can represent any map f :X → Y:
use as many as necessary to connect all elements x in the domain to the
single y = f(x) in the codomain to which f sends them; those elements of Y that
are not in the image of f are each connected to a . Here are a few examples
of the translation:

f : {0,1,2} → {0,1} g : {0,1,2,3} → {0,1} ! :∅→ {0,1}

where the first is given by f(0) = f(1) = f(2) = 1, the second by g(0) = g(2) = 0
and g(1) = g(3) = 1, and the last is the unique map from the empty set to {0,1}.
Notice that there are several ways of drawing the same function, depending

on how we choose to arrange the different and . The following diagrams
all represent f : {0,1,2} → {0,1} above:

In a cocartesian category, all these diagrams are equal, as and form a
commutative monoid. This is the first instance of a monoidal theory we encoun-
ter that fully characterises the chosen semantics: the free cocartesian category
over a single object (and no morphisms) is equivalent to the SMC (fSet,+) of
finite sets and functions, with the disjoint sum as monoidal product. In other
words, the symmetric monoidal theory of a commutative monoid is complete
for this semantics (in the sense explained in Section 5.2). This also means that
FreeSMC(Σ,E), the free symmetric monoidal category over Σ = (•, { , })
and where E is the theory of commutative monoids (Example 2.13), is equiva-
lent to (fSet,+). Any two diagrams made of and that denote the same
map can be shown equal using only the axioms of commutative monoids.
The proof of this fact is typical for this kind of completeness result: it works

by showing how, given an arbitrary Σ-diagram d, we can rewrite it to some
normal form, using only the equations of commutative monoids. The chosen
normal form is one from which the corresponding relation can be recovered
uniquely: we can choose, for example, to eliminate all connected to a

using unitality (un) and to associate all connected to the top using

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

62 Applied Category Theory

associativity (as). Then, any two diagrams have the same normal form if and
only if they are interpreted as the same map. The fact that any diagram can
be rewritten to a normal form using only the preceding axioms, is typically
proven by induction, considering each individual case, much like normalisa-
tion proofs in programming language theory, or cut elimination proofs in logic.
Also, much like these, they tend to be quite tedious and combinatorial, so we
do not reproduce them here.

Example 5.6 (Bijections, +). If we restrict the previous example to bijections
(one-to-one and onto functions), we obtain the simplest example of a SMC –
call it Bij. String diagrams for Bij are simply permutations of the wires! If we
restrict further to finite ordinals, the resulting SMC is equivalent to FreeSMC(Σ),
the free SMC over the signature Σ = ({•},∅), the SMCof permutations we have
already encountered in Example 2.7.

Example 5.7 (Relations, +). As for functions, the disjoint sum gives another
interesting monoidal product on relations. On objects, it remains the same: X1+

X2 := ((X1×{1})∪(X2×{2}). On morphisms, R1+R2 is given by ((x, i), (y, i)) ∈
R1 + R2 if and only if (x,y) ∈ Ri for some i ∈ {1,2}. Once again, the unit is the
empty set and the symmetry is the graph of the corresponding function ς seen
earlier. In this case, we cannot interpret string diagrams for compact closed nor
hypergraph categories.
However, with the disjoint sum as monoidal product, we can interpret string

diagrams for cartesian as well as cocartesian categories in (Rel,+). For each
generating object v of a given signature, the monoid of the cocartesian struc-
ture is given by the graph of the relations that give the cocartesian structure to
(Set,+):

For the cartesian structure on with copying and deleting relations given by the
converse of the preceding relations:

One can check that
vv v , v form a commutative comonoid for any interpret-

ation of v, and that they can copy and delete any relation, that is, that they
satisfy the dup and del axioms from (4.5). This means that we can interpret
string diagrams for biproduct categories (Section 4.2.7) in (Rel,+).
Intuitively, we can think of the diagrams , , , in this category as

directing the flow of a single token that travels around the wires. The intuition
here is that the transfers to the right wire the token that comes through any

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 63

one of its left wires, is able to generate a token, is a non-deterministic
fork and a dead end. As we have already said, the relations for and are
simply the graphs of the functions defined in the category of sets and functions.
This makes sense: functions can only direct the token deterministically from
left to right. Hence, they lack the non-deterministic and .
Note that the particle intuition for diagrams in Rel with the disjoint sum

as monoidal product is quite different from the intuition for diagrams in Rel
with the cartesian product, where the variables for all wires are set to com-
patible values globally, all at once. For this reason, diagrams in biproduct
categories are sometimes called particle-style, while those of self-dual com-
pact closed categories are said to be wave-style. A more systematic discussion
of this perspective can be found in [1].
As in the previous example, we can represent any relation between finite sets,

using only the signature Σ = ({•}, { , , , }), where we set ⟦•⟧ = 1
and interpret , , , as the preceding relations. In our interpretation, a
relation R :X → Y corresponds to a diagram d with |X| wires on the left and
|Y| wires on the right. The j-th port on the left is connected to the i-th port on
the right exactly when (i, j) ∈ R. For example, the relation R : {0,1,2} → {0,1}
given by {(0,0), (0,1), (2,1)} can be represented by the following diagram:

(5.4)

We see that this representation extends that of functions by adding the possibil-
ity of connecting one wire on the left to several (or none) on the right. This is
precisely the difference between functions and relations, between determinism
and non-determinism, reflected in the diagrams.
Note that a relation can also be seen as a matrix with Boolean coefficients.

The relationship between the preceding string diagrams and matrices (over
arbitrary semirings) will be explained in Example 5.14.
Not only do these string diagrams allow us to represent any relation between

finite sets, we can also produce an axiomatisation of this SMC, that is, a sound
and complete equational theory for the chosen semantics. To do this, we simply
quotient Σ-diagrams by the axioms of an idempotent, commutative bimonoid:

(5.5)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

64 Applied Category Theory

This equational theory turns out to be complete for our choice of ⟦·⟧. In other
words, any two diagrams c,d made from , , , are equal modulo the
axioms in (5.5) if and only if ⟦c⟧ = ⟦d⟧, that is, if and only if they denote the
same relation.

Remark 5.8. We just saw that going straight from functions to relations (with
the disjoint sum as product) amounts to adding and to and . These
two examples fit into a hierarchy of expressiveness, from bijections to relations:

Of course, any subset of the generators , , , gives a well-defined
sub-SMC of (Rel,+). We have not included all 24 of them as they do not all
correspond to well-known mathematical notions.
We should also note that the ways in which these theories are combined define

distributive laws, a topic we mentioned in Remark 2.20.

Example 5.9 (Spans, ×). The category Span(Set) has sets as objects and, as
morphisms X → Y, pairs of maps f :A → X,g :A → Y with the same set A as

domain. We will write spans as X
f
←− A

g
−→ Y. One way to think about spans

is as witnessed or proof-relevant relations. In other words, they keep track of
the way in which two elements are related: an element a of the apex A can
be thought of as a witness or a proof of the fact that (f(a),g(a)) are related by
the span. Thus, the difference with relations is that there may be several ways
in which two elements from X and Y are related by the same span (A, f,g); if
f(a) = f(a′) = x and g(a) = g(a′) = y, then (x,y) are related by two different
witnesses a and a′.
The composition of two spans is obtained by computing what is called the

pullback of g and p and composing the resulting outer two functions on each
side:

where A ×Y B := {(a,b) | (g(a) = p(b)} and π1, π2 are the two projections onto

A and B. Thus, the composition of X
f
←− A

g
−→ Y followed by Y

p
←− B

q
−→ Z is

X
f◦π1←−−− A ×Y B

q◦π2−−−→ Y. For a set X, the identity span is X
idX←−− X

idX−−→ X. As

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 65

given, this operation is not strictly associative or unital. To make Span(Set)
into a bona fide category, we need to identify all isomorphic spans: two spans

X
f
←− A

g
−→ Y and Y

p
←− B

q
−→ Z are isomorphic when there is a bijection h :A→ B

such that p ◦ h = f and q ◦ h = g.
Span(Set) can be made into a symmetric monoidal category with the car-

tesian product of sets: on objects X1 × X2 is the usual set of pairs of elements

of X1 and X2, on morphisms (X1
f1←− A1

g1−→ Y1) ⊗ (X2
f2←− A2

g2−→ Y2) =
(X1 × X2

f1×f2←−−− A1 × A2
g1×g2−−−−→ Y1 × Y2). With the singleton set as unit and the

symmetry as X × Y id←− X × Y
σY
X−−→ Y × X where σY

X (x,y) = (y,x) as before, this
equips Span(Set) with a symmetric monoidal structure.
Furthermore, like relations, we can interpret string diagrams for hypergraph

categories in the SMC of spans. There are many possible choices of where
to map the Frobenius monoid

vv v , v , v ,
v
v v for a given generating object

v of a given signature. However, there is one evident choice, dictated by the
presence of finite products:

(5.6)

Here ∆ is the usual diagonal map, defined by ∆(x) = (x,x), and ! is the
unique map ⟦v⟧ → 1. The proof that these satisfy the axioms of commutative
Frobenius monoids can be computed much like for relations, with the added
complexity that one has to keep track of the witnesses in each apex.
Notice that if we forget the apex of each of these, and only keep track of the

pairs that they relate, the resulting relations are exactly those that give Rel its
hypergraph structure, in (5.3). This stems from a more general fact about spans
and relations. If spans (of sets or any category with categorical products) of
type X → Y can be seen as maps A → X × Y, relations are precisely injective
(or monomorphic, in the general categorical setting) spans. One can always
obtain a relation from a span A → X × Y by first factorising the map into a
surjective map (epimorphism) followed by an injective (monomorphism) one,
and keeping only the latter. The interested reader will find the construction of
Rel from Span(Set) explained in more detail in [61, 117].

Example 5.10 (Spans,+). As for functions and relations, spans can also be
made into a symmetric monoidal category with the disjoint sum as monoidal
product. On objects, it is defined in the same way, and on spans, it is given by
taking the disjoint sum of each pair of legs of the two spans.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

66 Applied Category Theory

With this monoidal product, we can use the same signature as in Example
5.7 to represent any span of finite sets. Let Σ = ({•}, { , , , }) with
the following slightly modified interpretation: ⟦•⟧ = 1 and (omitting the only
object label)

where ∇ : 1+1→ 1 is defined by ∇(x, i) = x and 0 :∅→ 1 is the only map from
the empty set. These also satisfy the axioms for string diagrams of biproduct
categories; see Section 4.2.7. In fact, it is the free biproduct category over a
single object and no additional morphism [84, section 5.3].
As for relations, we can use this signature to represent any span of finite

sets with + as monoidal product: for the span {0, . . . ,n}
f
←− A

g
−→ {0, . . . ,n},

there is a path from the i-th wire on the left to the j-th one on the right in the
corresponding diagram for each element of {a ∈ A | f(a) = j,g(a) = i}. For
example, the span {0,1,2}

f
←− {0,1,2,3}

g
−→ {0,1}, with f(0) = f(1) = f(2) = 0,

f(3) = 2 and g(0) = 0,g(1) = g(2) = g(3) = 1, can be represented by the
following diagram:

Notice that this diagram denotes the same relation as in (5.4), but the two
represent different spans.
Another way to understand the correspondence is to observe that spans of

finite sets can be seen as matrices with coefficients in N. Because we identify
isomorphic spans, the specific label of each witness in the apex plays no role. In
this sense a span just keeps track of how many ways two elements in each of its

legs are related. More precisely, given the span {0, . . . ,n}
f
←− A

g
−→ {0, . . . ,n},

we can represent it as anm×nmatrix whose (i, j)-th coefficient is the cardinality
of {a ∈ A | f(a) = j,g(a) = i}. The diagrammatic calculus for matrices will be
explained in more detail in Example 5.14. This perspective is also developed
in [24], where the authors study some of the algebraic properties of the SMC
of spans and their dual, cospans, which we introduce next.

Example 5.11 (Cospans). Cospans, as their name indicates, are formed by
inverting the arrows in the definition of spans. LetCospan(Set) be the category
with sets as objects and morphisms X → Y given by pairs of maps f :X → A
and g :Y→ Awith the same set A as codomain, which we write as X

f
−→ A

g
←− Y.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 67

The composition of two cospans is obtained by computing what is called the
pushout of g and p and composing the resulting outer two functions on each
side:

where A +Y B =
(
{(a,1) | a ∈ A} ∪ {(b,2) | b ∈ B}

)
/∼ where ∼ is the

equivalence relation defined by (a,1) ∼ (b,2) if and only if a = g(y) and b =
p(y) for some y ∈ Y, and ι1, ι2 are the obvious inclusion maps of A and B into

A +Y B. Then, the composition of X
f
−→ A

g
←− Y with Y

p
−→ B

q
←− Z is X

ι1◦f−−→
A×Y B

ι2◦q←−−− Y. For a set X, the identity cospan is X
idX−−→ X

idX←−− X. As for spans,
this operation is not strictly associative or unital. To make Cospan(Set) into
a bona fide category, we need to identify all isomorphic cospans: two cospans

X
f
−→ A

g
←− Y and Y

p
−→ B

q
←− Z are isomorphic when there is a bijection h :A→ B

that makes the two resulting triangles commute.
Like for spans, we can equip cospans with the structure of a SMC – this time

with the disjoint sum as monoidal product. Take X1 + X2 to be the monoidal

product on objects and, on morphisms, (X1
f1−→ A1

g1←− Y1) ⊗ (X2
f2−→ A2

g2←−
Y2) = X1 + X2

f1+f2−−−→ A1 + A2
g1+g2←−−−− Y1 + Y2 where (f1 + f2)(x, i) = fi(x); the

empty set is the unit of this monoidal product and the symmetry is given by
X + Y id−→ X + Y

ι2+ι1←−−−− Y + X, where ι1 :X ↪→ X, ι2 :Y ↪→ X are the injections
into the first and second components given respectively by ι1(x) = (x,1) and
ι2(y) = (y,2).
Once again, we can interpret Frobenius monoids into the SMC of cospans

and thus draw string diagrams for hypergraph categories. For any generating
object v of a chosen signature, let

(5.7)

where ∇ : ⟦v⟧ + ⟦v⟧ → ⟦v⟧ is defined as before by ∇(x, i) = x and 0 :∅ →
⟦v⟧ is the unique map from the empty set to ⟦v⟧. Notice the similarity (and
differences) with (5.6).
In fact, there is more than a coincidental relationship between cospans and

hypergraph categories: (Cospan(fSet),+), the SMC of cospans restricted to
finite sets, is equivalent to the free hypergraph category on a single object
and no morphisms [84, section 5.4], that is, on the signature Σ = ({•},∅).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

68 Applied Category Theory

Another way to say the same thing is that (Cospan(fSet),+) is equivalent
to FreeSMC(scFrob), the free SMC over the theory of a special commutative
Frobenius monoid (see Example 2.18).
This means in particular that any cospan between finite sets (seen again as

ordinals {0, . . . ,n}) can be represented as a diagram using only , , ,

(where we omit the single object label • once again) and ⟦•⟧ = 1. To build some
intuition for this correspondence, take for example the pair f : {0,1,2,3} →
{0,1,2} and g : {0,1} → {0,1,2}, given by f(0) = f(2) = 0, f(1) = f(3) = 1, and
g(0) = g(1) = 1; this cospan can be depicted as:

(5.8)

The rule of thumb is easy to formulate: each element of the apex of the cospan –
here, {0,1,2} – corresponds to one connected network of black generators, and
a boundary point is connected to a black dot if it is mapped to the correspond-
ing apex element by (one of the legs of) the cospan. There is only one way
of forming such a network from the generators modulo the axioms of special
commutative Frobenius monoids, by the spider theorem, a result we saw in
Example 2.17.
Completeness means that string diagrams in FreeSMC(scFrob) are equal if

and only if they denote the same cospan. The proof of this fact is essentially
the spider theorem from Example 2.18. This theorem gives a normal form from
which we can uniquely read the corresponding cospan: any diagram of the free
hypergraph category on a single object is fully and uniquely characterised by
the number of disconnected components (spiders) and to which of these each
boundary point is connected. This is the same as defining a cospan!
Finally, many hypergraph categories can be seen as categories of cospans

equipped with additional structure [52]. Interestingly, not all hypergraph cat-
egories can be described in this way. For that, we need the notion of corelation,
which we cover in the next example.

Example 5.12 (Corelations). After seeing the last few examples, it is natural
to wonder: spans are to relations as cospans are to what? The answer is equiva-
lence relations, also known as corelations in this context [38]. It turns out that
we can organise equivalence relations into a SMC. In fact, they can be organised
into a hypergraph category.
A corelation C :X → Y is an equivalence relation (i.e. a reflexive, symmet-

ric and transitive relation) over X + Y. Given two corelations C :X → Y and
D :Y → Z, their composition C ; D :X → Z is defined by glueing together
equivalence classes from C andD along shared elements. To define it formally,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 69

we temporarily rename C.D the usual composition of relations (cf. Example
5.3) and let R∗ be the transitive closure of a relation R; then C ; D is the restric-
tion of C ∪ D ∪ (C.D)∗ to elements of X + Z. Intuitively, two elements a and
b are in the same equivalence class of C ; D if there exists some sequence of
elements of X+Y+Z that are equivalent either according toC orD, starting with
a and ending with b. The disjoint sum of sets can be extended to corelations
to give a monoidal product. It is moreover symmetric with symmetry given by
⟦ v

w
⟧
= {{(x,1), (x,2)}x ∈ ⟦v⟧} ∪ {{(y,1), (y,2)}y ∈ ⟦w⟧}. Once more, we

can interpret the Frobenius monoids that define hypergraph categories in this
SMC – for a generator v of our signature; let

(5.9)

In plain English,
vv v (resp.

v
v v) is mapped to the equivalence relation over

⟦v⟧ + (⟦v⟧ + ⟦v⟧) (resp. (⟦v⟧ + ⟦v⟧) + ⟦v⟧) that identifies all occurrences of
x ∈ ⟦v⟧ in the different components of the disjoint sum.
As we did for cospans, it is easy to represent any corelation between

finite sets as a diagram using only , , , . For example, the corela-
tion {0,1,2,3} → {0,1} given by the two equivalence classes {{(0,1), (2,1)},
{(1,1), (3,1), (0,2), (1,2)}} over the disjoint sum {0,1,2,3} + {0,1}, can be
depicted by any of the following string diagrams, using spider notation:

Observe that the first is the same diagram as in (5.8). The individual black dot,
which represents an element of the apex of the cospan that was not in the image
of any of the two leg maps, is missing in the second diagram. These two string
diagrams represent the same corelation, since an isolated black dot represents
an empty equivalence class: ⟦•⟧ := ⟦ ⟧ = ∅. In diagrammatic terms, this
means that we can always remove networks of black generators that are not con-
nected to any boundary points, using the fact that . However, the two
string diagrams represent different cospans. This is an instance of a more gen-
eral observation: at the semantic level, the only difference between corelations
and cospans is that the former do not allow empty equivalence classes.
By the spider theorem, a network of black generators is fully characterised

by its number of legs. Thus, there is only one such network, up to the laws of
special commutative Frobenius monoids: the single dot • := . Putting all
of the above together with the completeness result for cospans, we can get a

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

70 Applied Category Theory

similar completeness result for corelations: for this, we need only add a single
axiom to remove isolated dots to the theory of special commutative Frobenius
monoids:

The resulting theory is known as the theory of extraspecial commutative
Frobenius monoids [38, theorem 1.1].
Recall that relations can be seen as jointly injective spans, that is, inject-

ive maps R ↪→ X × Y. Dually, corelations C :X → Y are jointly surjective
cospans, that is, surjective maps X + Y ↠ S. We have already seen that,
given a span A → X × Y, one can extract a relation R by factorising it into
A ↠ R ↪→ X × Y, a surjective map followed by an injective map. Similarly,
one can obtain a corelation from a cospan by keeping only the surjective map
in the factorisation of the corresponding map X + Y → S. As we have just
seen, diagrammatically, this corresponds to removing isolated black dots. In
category theory, the factorisation of Set maps into a surjective map followed
by an injective one can be abstracted into a notion called a factorisation system.
It turns out that corelations can be defined for different factorisation systems
than the surjective-injective one. Moreover, their apex can be decorated with
additional structure. In fact, these two generalisations are so powerful that every
hypergraph category can be constructed as a category of decorated corelations
[53, 54].

Example 5.13 (Linearmaps, ⊗). The category fVect of finite-dimensional vec-
tor spaces (over some chosen field K) and linear maps is also a symmetric
monoidal category, in at least two different ways. This example deals with the
tensor product, while the next one considers the direct product.
We will not go over the rigorous definition of the tensor product of vector

spaces here; suffice it to say that X1 ⊗X2 can be defined as a quotient of the free
vector space over X1 × X2 that make ⊗ bilinear. On morphisms, it is uniquely
specified as the linear map (f1⊗f2) that satisfies (f1⊗f2)(u1⊗u2) = f(x1)⊗f2(x2).
This defines a SMC, with unit the fieldK itself, since X⊗K � X, and symmetry
the map fully characterised by σ(x1 ⊗ x2) = x2 ⊗ x1.
Crucially, this SMC is not cartesian: like in Rel, not all interpretations of a

theory containing a commutative comonoid structure
vv v , v for each gen-

erating object of the signature, satisfy the axioms of cartesian categories (dup
and del). The intuition here is that, when we choose an interpretation of the
comultiplication operation

vv v over ⟦v⟧, we also choose some set of vectors
x ∈ ⟦v⟧ that this operation copies, that is, that verify:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 71

(5.10)

But then, given two such copyable vectors x1,x2, consider their sum x = x1+x2
– we should have

= x1 ⊗ x1 + x2 ⊗ x2

On the other hand:

= x1 ⊗ x1 + x1 ⊗ x2 + x2 ⊗ x1 + x2 ⊗ x2

Thus, no linear map can copy all elements of a given vector space, as is required
for the comonoid structure of a cartesian category.
In fact, we can interpret string diagrams for compact closed categories in

(fVect, ⊗) (recall that the requirement of cartesian-ness and compact closed-
ness are incompatible in the sense explained in Section 4). For a given
generating object v, its dual v∗ is interpreted as the algebraic dual of ⟦v⟧ in
the usual sense, that is, as ⟦v⟧∗, the space of linear maps ⟦v⟧ → K. Then, the
cap on a vector space ⟦v⟧ is the unique linear map ⟦v⟧∗⊗⟦v⟧→ K that satisfies
⟦ ⟧

(f ⊗ x) = f(x) (also known as the evaluation map). The cup is its adjoint:
to describe it explicitly, we need to pick a basis {ei}i of ⟦v⟧ and a dual basis
{fi}i of ⟦v⟧∗ in the sense that fi(ej) = 1 if i = j and 0 otherwise;

⟦ ⟧
is then

the map K → ⟦v⟧ × ⟦v⟧∗ given by extending 1 7→ ∑
i ei ⊗ fi by linearity. In

summary, using the bases {ei}i and {fi}i for both cups and caps, we have:

However, observe that the resulting maps are independent of the specific choice
of bases. With these expressions, we can verify the yanking equation for and

. Let u of ⟦v⟧ such that x :=
∑

i λiei; we have:

=
∑
i
fi

(∑
i
λjej

)
ei =

∑
i

∑
j
λj fj(ej)ei =

∑
i
λiei =: x.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

72 Applied Category Theory

In this SMC, the elements of the vector space ⟦v⟧ are precisely the morphisms
K→ ⟦v⟧.
As we have seen, every compact closed category is also traced. In fact,

the name (partial) trace comes from linear algebra, where the trace Tr f of a
linear map f :Rn → Rn is the sum of the diagonal coefficients of its matrix
representation in any basis. Thus, we expect that,

whereA = (aij) is thematrix that represents the action of f on some chosen basis.
It is a nice exercise to show that this is indeed the case. It is then immediate
to derive certain well-known properties of the trace in linear algebra, such as
Tr(AB) = Tr(BA) or, more generally, that it is invariant under circular shifts.
Another important feature is that commutative and special Frobeniusmonoid

in (fVect, ⊗) correspond to a choice of a basis for the supporting vector space
[36, section 6]. Even if there is no linear copying map for all the elements
of a vector space, we have seen earlier that, when we choose a comultiplica-
tion operation

vv v over ⟦v⟧ we also choose some set of elements x ∈ ⟦v⟧
that

vv v copies. Conversely, given any basis, we can define a comonoid oper-
ation that copies its elements, that is, whose comultiplication and counit are
defined respectively by extending the following maps by linearity: ei 7→ ei ⊗ ei
and e1 7→ 1. What about the monoid? A monoid in (fVect, ⊗) is more com-
monly known as an algebra. Any basis defines not only a comonoid but an
algebra given by extending the comparison map ei ⊗ ej 7→ δijei by linearity.
Not only that, the corresponding monoid–comonoid pair satisfies the Frobenius
axioms and defines a special and commutative Frobenius monoid. Conversely,
the copyable states of any commutative and special Frobenius monoid form a
basis of ⟦v⟧. The last direction is more difficult to prove, and we will not do so
here. Instead, we refer the interested reader to the lecture notes of Vicary and
Heunen, who deal with a related case in detail [73, chapter 5] and use string
diagrams throughout.
A historical note: one of the earliest instances of string diagrams is Penrose

graphical notation [101] for working with tensors, which are precisely string
diagrams for (fVect, ⊗), later systematised and generalised in [77].

Example 5.14 (Matrices, ⊕). Another possible monoidal product is given by
the direct sum of vector spaces X1 ⊕ X2 on objects and by (f1 ⊕ f2)(x1,x2) =
(f1(x1), f2(x2)) on morphisms. The unit of the product is the vector space {0} �
K0 and, with the symmetry given by σY

X (x,y) = (y,x), the resulting structure
is a SMC. It is well known that isomorphic finite-dimensional vector spaces

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 73

are uniquely identified by their dimension. Therefore, in the same way that we
identified finite sets with finite ordinals, we will restrict our attention to the
subcategory of fVect whose objects are Kn for some n ∈ N. We can go even
further: given a linear map Km → Kn, we can identify it with its representation
in the canonical bases of Km and Kn. We call MatK the category whose objects
are natural numbers (representing the dimension of a vector space) and mor-
phisms m → n are n × m matrices (notice the reversal). Nothing is lost, since
MatK and fVect are equivalent.
The SMC (MatK,⊕) can interpret diagrams for cartesian categories: given

any object v of some signature, the canonical comonoid structure over the
vector space ⟦v⟧ = Kn is given by

Since linear maps aremaps with extra structure, this comonoid is inherited from
Set (see Example 5.1) and the proof that it satisfies the axioms of comonoid as
well as the copying and deleting axioms dup and del, is similar. We can also
interpret diagrams for cocartesian categories in MatK: for any object v, the
monoid structure is given by addition and zero:

Note that the comonoid and monoid do not interact to form a Frobenius monoid
but a bimonoid (see Section 2.16). In fact, we have even more structure: these
string diagrams satisfy the axioms of biproduct categories (Section 4.2.7). This
means that maps satisfy not only the dup and del axioms of cartesian categor-
ies, but the dual axioms of cocartesian categories codup and codel. In semantic
terms, these last two axioms are simply implied by linearity: all maps preserve
addition. Note that this structure is very similar to that of relations with the
disjoint sum as monoidal product (see Example 5.7), the chief difference being
that the bimonoid is not idempotent for matrices over a field. The close simi-
larity between the two cases comes from the fact that relations can be seen as
matrices, not over field, but over the semiring of the Booleans.
With the preceding bimonoid, we are very close to being able to express

all matrices diagrammatically. As before, we will use the signature Σ = ({•},
{ , , , }∪{ a | a ∈ K}. We interpret the single generating object as
⟦•⟧ = K. Contrary to the case of relations, we cannot express arbitrary matrices
with just , , , ; this is whywe have added a new generating operation

a for each a ∈ K, intended to represent scalar multiplication and interpreted
correspondingly:

⟦ a ⟧ (x) = ax

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

74 Applied Category Theory

Before explaining the encoding of matrices, there are a few special cases of
a that we should mention: multiplying by one is the same as the identity,

so
⟦

1
⟧
= ⟦ ⟧, and the result of multiplying by zero is always zero, so

⟦
0

⟧
= .

Putting all these ingredients together, we are now ready to represent matrices.
An n × m matrix A = (aij) corresponds to a diagram d with m wires on the
left and n wires on the right – the left ports can be interpreted as the columns
and the right ports as the rows of A. The left j-th port is connected to the i-
th port on the right through an a-weighted wire whenever coefficient aij is a
scalar a ∈ K. When coefficient aij is 0, they are disconnected. In addition,
given that ⟦ a ⟧ = ⟦ ⟧, we can simply draw the connection as a plain wire
when aij = 1 and since

⟦
0

⟧
= we can also omit a connecting wire

when aij = 0. Conversely, given a diagram, we recover the matrix by summing
weighted paths from left to right ports. For example, the matrix

A =

(
a 0 0
b 0 1

)
can be represented by any of the following diagrams, which are all semantically
equal (i.e., represent the same matrix):

The dotted boxes in the diagram on the left represent the columns of the
corresponding matrix.
Amazingly, we can then quotient the diagrammatic syntax by an equational

theory that makes these three equal. More generally, we can give an axioma-
tisation of (MatK,⊕). The equational theory is very similar to that of relations
with the disjoint union. It has all axioms of (5.5) except the last one, namely

= (which encodes x+x = x, a specific feature of the Boolean semir-
ing). Furthermore, we need axioms that encode the additive and multiplicative
structure of K, namely:

(5.11)

Finally, we need to make sure that the scalars can be copied and deleted and
that scalar multiplication distributes over addition; we can obtain these from
the usual dup-del and codup-codel for scalars:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 75

(5.12)

Taken with the axioms of (5.5) minus the last one, the axioms listed in (5.11)–
(5.12) give a complete theory for matrices over K: diagrams modulo these
equations are equal if and only if they denote the same matrix.
Note that everything we have claimed in this example would have worked as

well with an arbitrary semiring R, instead of a field: we would just need to con-
sider matrices with coefficients inR and have generating operations a for all
a ∈ R. From this general result, combined with the equivalence between spans
and matrices with coefficients in N, we can derive the following corollary: the
free biproduct category over a single generating object (and no morphism) is
an axiomatisation of the SMC (Span(fSet),+) (Example 5.10).

Example 5.15 (Linear relations, ×). In the last two examples, we have con-
sidered linear maps with different monoidal products. It is possible to extend
the notion of linearity to relations: given two vector spaces X and Y, a linear
relation X → Y is a linear subspace of X ⊕ Y, that is, a subset of the direct
sum that is closed under linear combinations. The composition (as relations)
of two linear relations is still a linear relation (exercise), and the identity rela-
tion is linear. Therefore, linear relations can be organised into a category. We
call LinRelK the category whose objects are natural numbers and morphisms
m → n are linear relation Km → Kn. With the direct sum, LinRelK becomes
a SMC, with unit and symmetry the same as those of MatK (see the previous
example).
This SMC has a very rich structure. Firstly, just like any function can be

seen as a relation, any linear map f can be seen as a linear relation Graph(f), by
taking its graph: Graph(f) := {(x,y) | y = f(x)}. Thus, we can also interpret the
diagrams that allowed us to depict linear maps/matrices diagrammatically in
LinRelK: taking , , , , where each wire represent a single generating
object •, interpreted as ⟦•⟧ = K. Their interpretation as relations is given by
the graph of the corresponding maps:

⟦ ⟧
= {(x, (x,x)) | x ∈ K} ⟦ ⟧ = {(x,•) | x ∈ K}

⟦ ⟧
= {((x1,x2),x1 + x2) | x1,x2 ∈ K} ⟦ ⟧ = {(0,•)}

Interestingly, the converses of these relations are also linear; to depict them,
we add to our signature the mirror image of the corresponding diagrams:
, , , , with semantics given by

⟦ ⟧
= {((x,x),x) | x ∈ K} ⟦ ⟧ = {(•,x) | x ∈ K}

⟦ ⟧
= {(x1 + x2, (x1,x2)) | x1,x2 ∈ K} ⟦ ⟧ = {(•,0)}

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

76 Applied Category Theory

Notice that these are the same relations as the first two, with the pairs flipped.
We can do this for any map f: let coGraph(f) := {(y,x) | f(x) = y}. If f is
linear, its cograph will also be a linear relation. This duality will translate into
a pleasant symmetry of the equational theory, which we now cover.
There is a complete axiomatisation of LinRelK with the direct sum, which is

sometimes called the theory of Interacting Hopf algebras, or IH for short. The
reader will find the complete theory and further details in [22]. We discuss its
most salient features in what follows, less formally.
As for Example 5.7, the image by ⟦·⟧ of diagrams made from , , ,
are precisely those relations that are the graph of some linear map (aka a

matrix). For these, the equational theory is the same as in that example: essen-
tially, a commutative bimonoid, with additional axioms to encode scalar multi-
plication and addition. The nice thing is that their colour-swap , , ,

satisfy exactly the same axioms. These two facts take care of all interactions
between the black and white generators. We also need to specify how dia-
grams of the same colour interact: , , , and , , , both form
extraspecial commutative Frobenius monoids (Example 2.17)! The remaining
axioms specify the behaviour of scalars a , which may now encounter their
mirrored version:

where

These axioms force the mirrored version of a to be division by a, which we
have over any field, as long as a is non-zero. The two cups and caps are also
related in an obvious way:

From these axioms, most of linear algebra can be reformulated, with subspaces
and linear maps on an equal (diagrammatic) footing.
As an elementary illustration of the basic principles of diagrammatic reason-

ing in linear algebra, let us look at systems of linear equations. The idea is
simple: a system of linear equations in the form Ax = 0 can be expressed by
simply plugging into the right side of a diagram that encodes the matrix A
(Example 5.14), that is, by the diagram . For example,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 77

(
a 1 0
b 0 1

) ©«
x1
x2
x3

ª®®¬
(
0
0

)
becomes

Computing a basis of the set of solutions then involves rewriting the diagram
into a form from which any solution can be generated easily:

Here we find that the kernel of A has dimension 1, with basis vector, for
example,

(
1 −a −b

)T
.

Remark 5.16. If we identify the complete equational theory of a particular
structure in a semantic model, we can seek it in different models, and thereby
identify seemingly unrelated algebraic objects as instances of the same abstract
structure. For example, we have seen many different interpretations of Frobe-
nius monoids or bimonoids in different models (i.e. in different symmetric
monoidal categories). Another common example is that of groups and Hopf
algebras, both instances of bimonoids in different symmetric monoidal cat-
egories (sets and functions with the cartesian product for the former, and vector
spaces and linear maps with the tensor product for the latter). Even a compli-
cated theory such as IH occurs in other contexts than that of linear relations.
Indeed, IH can be interpreted in the category of vector spaces with the tensor
product as monoidal product, where its models are closely related to the notion
of complementary observables in quantum physics [34, 47].

Example 5.17 (Monotone relations, ×). So far, all the examples of compact
closed categories we have covered (spans, relations, cospans, corelations) also
have the structure of hypergraph categories. Of course, there are compact
closed categories where the compact structure does not come from some chosen
Frobenius monoid. The category of monotone relations is one such example. It
has pre-ordered sets as objects (that is, sets equipped with a reflexive and tran-
sitive binary relation); its morphisms (X,�) → (Y,≤) are relations R ⊆ X × Y
that preserve the order in the following sense: if (x,y) ∈ R and x′ � x, y ≤ y′,
then (x′,y′) ∈ R. The composition of monotone relation is the same as the usual
composition of relations (recalled in Example 5.3). Since the composition of

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

78 Applied Category Theory

two monotone relations is monotone, they form a category, with identity on
each object (X,�) given by the pre-order relation �⊆ X × X itself.
As for plain relations, the cartesian product defines a monoidal product:
(X,�) × (Y,≤) := (X × Y,� × ≤) with (x,y) � × ≤ (x′,y′) if and only if
x � x′ and y ≤ y′. The unit is still the singleton set 1 = {•} with the only
possible pre-order.
As anticipated, this category can interpret the string diagrams of compact

closed categories. For this, given an object v of a given signature, we need to
define its dual v∗: if ⟦v⟧ = (X,�), then ⟦v∗⟧ = (X,�), the same underlying set
with the opposite pre-order relation �:=�op. The cups and caps on each object
are then given by

⟦ ⟧
= {(•, (x′,x)) | x � x′}

⟦ ⟧
= {((x,x′),•) | x′ � x}

Let us check one of the defining equations of compact closed categories:

The left-hand side of this equation has the following semantics:

=
(
{(•, (x,x′)) | x � x′}× �

)
;
(
� ×{((x,x′),•) | x � x′}

)
=

(
{(x, (x1,x2,x3)) | x2 � x1 ∧ x � x3}

)
;(

{(x1, (x2,x3),x′) | x1 � x′ ∧ x3 � x2}
)

=
{
(x,x′) | ∃x1∃x2∃x3

[
x � x3 ∧ x3 � x2 ∧ x2 � x1 ∧ x1 � x′

]}
= {(x,x′) | x � x′}

where the last step holds by transitivity of �. This is clearly the same relation
as � itself, which is the identity on (X,�), as we wanted.
Finally, in this SMC, every partial order is equipped with an interesting

monoid and comonoid structure: given the signature
()

,
we can interpret its generators as follows: let ⟦•⟧ = (X,�) and

(5.13)

(5.14)

That these satisfy the monoid and comonoid axioms respectively is a simple
exercise. Note that they are very similar to their standard relational cousins from
Example 5.3. In fact, the former can be seen as the latter, composed with the

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 79

partial order relation on each wire: for example, if we momentarily reinterpret
⟦·⟧ as a mapping into Rel (since monotone relations are, after all, relations), we
have that

since = {(x,x′) | x � x′}.
It should be noted that interpreted in this way do not

necessarily form a Frobenius monoid, nor do they give rise to a (co)cartesian
structure. Their interaction is still interesting, and can be axiomatised, but doing
so requires turning to theories with inequalities rather than just equalities. We
will look at these briefly in Section 6.3 and at monotone relations again in
Example 6.5.

6 Other Trends in String Diagram Theory
6.1 Rewriting

When reasoning about programs, reductions of a program p into another one
q are important objects of study: such reductions may witness, for instance,
the evaluation of p on a certain input (akin to β-reduction in the λ-calculus
[8]), or more generically its transformation into a simpler program q. When
considering programs as terms of an algebraic theory, reductions are typically
formalised as rewriting steps: we may apply a rewrite rule l ⇒ r inside p if
the term l appears as a subterm of p, in which case we say that the rule has a
matching in p; if there is such a matching, then the outcome q of the rewriting
step is the term p[r/l] obtained by replacing r for l in p.
When it comes to string diagrams, rewriting presents additional challenges

that we do not experience with terms. The crux of the matter is matching: as
string diagrams are invariant under certain topological transformations – cross-
ing of wires, shifting of boxes, etc. – we would like matchings to exist or not
regardless of which graphical presentation we choose for our string diagram.
For example, consider the rule

We claim the rule has a matching in the following string diagram on the left.
However, strictly speaking, the matching isolates a subterm only when we
‘massage’ the string diagram as on the right:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

80 Applied Category Theory

More formally, the point is that string diagrams are equivalence classes of
terms, modulo the laws of SMCs. We want to be able to match a rewriting
rule l ⇝ r on a string diagram c whenever a term in the equivalence class of
the string diagram l appears as a subterm in the equivalence class of the string
diagram c.

Definition 6.1. Let Σ be a signature, l⇝ r be a rewrite rule of Σ-terms, and c
be a Σ-term. We say that c rewrites into d modulo E if and

(6.1)

The standard case is when E are the laws of SMCs, but the notion can
be adapted to fit other categorical structures where string diagrams occur, as
those illustrated in Section 4. This definition seems reasonable enough from a
mathematical viewpoint. However, it is completely unpractical when it comes
to implementing string diagram rewriting. Exploring the space of all Σ-terms
equivalent to a given one is an expensive computational task, and if done
naively it may not even terminate given that, in principle, there are infinitely
many equivalent terms to be checked for a matching. This is an issue especially
because rewriting is the way we formally reason about string diagrams with a
computer: whenever we want to apply the equations of a theory such as those
considered in Section 2.2, the first thing to do is to orient such equations to turn
them into rewrite rules.
The way out of this impasse comes from the combinatorial interpretation of

string diagrams, introduced in Section 3. Recall that under this interpretation,
equivalent Σ-terms are mapped to a single open hypergraph. In other words,
if c is mapped to ⟦c⟧, and c and d are equivalent modulo the laws of SMCs,
then ⟦c⟧ = ⟦d⟧. This feature makes open hypergraphs suitable data structures
to reason about string diagram rewriting: if we want to rewrite with a rule l⇝ r
and a string diagram c as just presented, we do not need to bother with the many
equivalent syntactic presentations of these diagrams, but just need to consider
the corresponding open hypergraphs. In fact, open hypergraphs do come with
their own rewriting theory, called double-pushout rewriting [50]. The funda-
mental result linking double-pushout rewriting and syntactic rewriting is the
following:

Theorem 6.2. c rewrites into d modulo scFrob if and only if the open
hypergraph ⟦c⟧ rewrites into ⟦d⟧ modulo double-pushout rewriting.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 81

Example 6.3. The rule is interpreted as the span

Its application in the rewrite step is interpreted

as the double-pushout rewriting step

Intuitively, double-pushout rewriting matches the left-hand side of the rewrite
rule to a subgraph and replaces it with the right-hand side.

Theorem 6.2 is a consequence of the correspondence established by Theorem
3.5 between string diagrams modulo Frobenius monoid and open hypergraphs.
However, it is not completely satisfactory: we would like to interpret faithfully
rewriting modulo the laws of SMCs, without the need of considering Frobenius
equations too. It turns out it is still possible to obtain a correspondence, with a
more restrictive notion of double-pushout rewriting, called convex.

Theorem 6.4. c rewrites into d modulo the laws of SMCs if and only if ⟦c⟧
rewrites into ⟦d⟧ modulo convex double-pushout rewriting.

We omit the details of the definition of convexity, which would require
us to delve into the theory of double-pushout rewriting. Instead, we refer
the interested reader to the overview of string diagram rewriting offered
in [14].
The preceding two theorems settle the question of rewriting for string

diagrams in symmetric monoidal categories (Theorem 6.4) and hypergraph
categories (Theorem 6.2). However, as we saw in Section 4, there are other
structures for which we can draw string diagrams considered both of lower and
higher complexity. Among the ones we have covered here, the question is not
settled for monoidal, braided monoidal, traced monoidal, (self-dual) compact
closed, and cartesian monoidal categories. It has been answered recently in [93]

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

82 Applied Category Theory

for copy-delete monoidal categories,15 and in [67] for traced copy-delete cat-
egories. Finally, we point out the recent work [2], which studied rewriting for
monoidal closed categories.

6.2 Higher-Dimensional Diagrams
The string diagrams we have considered so far are a particular case of a more
general notation for higher categories. We highlight the connection in this sec-
tion. First, we need to explain what an n-category is. Given the limited scope
of our work, we will confine ourselves to a sketch, which should, however, be
sufficient to grasp the link between the graphical language(s) of n-categories
and string diagrams. The reader should also know that there are several com-
peting definitions of n-categories, and that our lack of precision allows us to
avoid committing to any one notion.
Very roughly, an n-category is a category that may have 2-morphisms

between morphisms, 3-morphisms between 2-morphisms, and so on. For
example, in a 2-category there can be 2-morphisms between morphisms,
indicated as follows:

Like monoidal categories, 2-categories also admit a visual representation,
called surface diagrams: objects are represented as (labelled/shaded) regions of
space, morphisms as (labelled) strings or wires, and 2-morphisms as (labelled)
dots.

Let us see how these compose. There are two ways, just as there are two
directions of composition for string diagrams: horizontally,

15 The work [59], which appeared at the same time as [93] also establishes the correspondence
between string diagrams in copy-delete categories and suitably defined open hypergraphs, but
without considering the corresponding notion of rewriting.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 83

and vertically

The identity (1-)morphism idA :A → A can be depicted as a single-shaded
region of 2D space, while the identity 2-morphism idf : f ⇒ f can be depicted
as a plain wire separating the domain and codomain objects of f :A→ B:

For these diagrams to make sense, horizontal and vertical compositions should
satisfy additional associativity and unitality requirements, much like those of
(1-)categories. In addition, for the diagrams to work, horizontal and vertical
composition need to interact nicely; 2-categories should also verify a form of
interchange law between horizontal and vertical composition. This law says
that the two ways of decomposing the following diagram are equal:

There is a surprising correspondence between certain 2-categories and
monoidal categories: a monoidal category is simply a 2-category with a single
object! Take the 2-morphisms to be the ordinary morphisms of the correspond-
ing monoidal category, the 1-morphisms to be its objects, and the monoidal
product to be composition of 1-morphisms. Diagrammatically, we can simply
depict the single object as the (white here) background on which we draw our
diagrams. In this sense, 2-categories can be thought of as typed monoidal cat-
egories (where the monoidal product cannot be applied uniformly, but has to
match at the boundary 1-morphisms).
Note, however, that this correspondence is limited to monoidal categor-

ies, without any braiding or symmetry. To recover the ability to swap wires
of symmetric monoidal categories a lot more structure is required. Intuitively
this is because, strictly speaking, if all we have are two dimensions of ambi-
ent space, wires cannot cross – what would that even mean? Braidings can
occur in at least three dimensions where it makes sense to ask the question
of which wire went over or under which other wire. This is why we need to
move from 2-categories to 3-or-more-categories. This may sound complicated,
but just like 2-categories have morphisms between morphisms, we can define

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

84 Applied Category Theory

3-categories, which have 3-morphisms between 2-morphisms, 4-categories,
which have 4-morphisms between 3-morphisms, and so on. Each of these come
with different ways of composing n-morphisms. As it turns out, braided or sym-
metric monoidal categories and their graphical languages can be recovered as
special cases of degenerate 3-and 4-categories, respectively. More precisely,
a braided monoidal category is a 3-category with only a single object and
(1-)morphism, while a symmetric monoidal category is a 4-category with a
single object, 1- and 2-morphism. These correspondences are known as the
periodic table of n-categories [5].
One last point: the category of categories is itself a 2-category in which

objects are categories, (1-)morphisms are functors, and 2-morphisms are nat-
ural transformations between them. The graphical language of 2-categories can
therefore be used to present key concepts in category theory. For an excel-
lent introduction to category theory using this diagrammatic language (and an
excellent introduction to the diagrammatic language of 2-categories itself) we
recommend [90].

6.3 Inequalities
In the same way that we can reason equationally about string diagrams (see
Section 2.1), it is also possible to reason with inequalities. From the syntactic
point of view, the changes are minimal: we can define theory with inequalities
in the same way that we defined equational theories (equalities are recovered
as two inequalities in both directions). To interpret inequalities requires a SMC
with an order between the morphisms of the semantics that is coherent with
the rest of the structure (composition, monoidal product, etc.). More formally,
we need a SMC in which the morphisms are partially ordered and for which
the composition and monoidal product are monotone. This kind of structure
appears naturally in the examples of relations that we have covered earlier,
where morphisms can be ordered by inclusion: for two relations R,S :X → Y,
wewriteR ≤ S ifR is included in S as a subset ofX×Y. If we look at inequalities,
some fascinating structure starts to emerge.

Example 6.5 (Cartesian bicategories). Cartesian bicategories [27] are SMCs
in which we can assign to each object v of our chosen signature a monoid
and comonoid structure, which we draw once again as

v
v v , v and

vv v , v ,
respectively. These have to satisfy the following additional axioms:16

16 The categorically minded reader will notice that these define an adjunction in the 2-categorical
sense, between the comonoid and monoid structures, between and on the one hand,
and and on the other.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 85

(6.2)

The SMC of monotone relations (Example 5.17) is an example of a cartesian
bicategory, with a monoid-comonoid pair given by those of (5.14)–(5.13) for
each pre-ordered set ⟦v⟧ = (X,�). Note however that these, as we have seen,
do not form a Frobenius monoid in general. In fact, one can show that this is
only the case when the underlying partial order is given by equality. In other
words, the objects ⟦v⟧ in the category of monotone relations for which the
interpretations of

v
v v , v and

vv v , v form a Frobenius monoid are just plain
sets and monotone relations between them are just ordinary relations! This pre-
cisely characterises the SMC of relations within the larger SMC of monotone
relations.
We can characterise other well-known structures in this SMC. For example,

we can require that there exist two more generating operations on the same
object v, which we write as

v
v v , v , and such that the duals of the inequalities

(6.2) hold:

A set ⟦v⟧ equipped with this structure in the SMC of monotone relations is
precisely a semi-lattice whose binary meet and top can be identified with

v
v v

and v respectively. To get a lattice, we need to add
vv v , v satisfying the same

inequalities:

Onemight also wonder how , and , interact. For an arbitrary lattice,
there is not much one can say. However, when the lattice is a Boolean algebra,
they form a commutative Frobenius monoid!

6.4 Relationship with Proof Nets
Readers who have encountered proof nets before might wonder if there is a
relationship with string diagrams. Given that proof nets are a graphical proof
system for (multiplicative) linear logic [69] and that the natural categorical
semantics for linear logic takes place in monoidal categories [92], there should
be a connection between the two. However, classical multiplicative linear logic
usually requires two different monoidal products: one for the multiplicative
conjunction, usually written ⊗, and one for the multiplicative disjunction, usu-
ally written `. These have non-trivial interplay, axiomatised in the notion
of linearly (or weakly) distributive category [33]; if we also want a classical

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

86 Applied Category Theory

negation, they are related via the usual DeMorgan duality, and the relevant
semantics given by ∗-autonomous categories [9].
The problem is that our diagrams already use two dimensions: one for the

composition operation and one for the monoidal product. How should we deal
with two monoidal products? There are different answers. The first (though not
the first one historically) is to move one dimension up, from string diagrams in
two-dimensional space, to surface diagrams in three-dimensional space. This
is what the authors in [49] propose.
However, if we prefer to retain the typesetting ease of a two-dimensional

notation, proof nets come to the rescue. Unlike standard string diagrams (for
strict SMCs that is), proof nets include explicit generators for the two monoidal
products17

Like for compact closed categories, we also need cups and caps satisfying
the usual snake equations, which the proof net literature tends to depict as
undirected:

However, not all diagrams we can draw in the free SMC over these generators
are proof nets, in the sense they do not necessarily denote well-formed proofs
in linear logic. For example, the following diagram is not a proof net and its
conclusion (A ⊗ A∗) is not a theorem of linear logic:

This is why we need an additional criterion to distinguish correct proof nets
among all the diagrams we are allowed to draw. There are several such criteria
in the literature, under the name of correctness criteria [41, 69]. We will not
cover these criteria here – the reader should just know that they usually boil
down to detecting some form of acyclicity in graphs derived from the string
diagram.
Proof nets can also be understood as a two-dimensional shadow of the nat-

ural three-dimensional notation used to represent both monoidal products in
[49]. This projection comes at a cost: not all two-dimensional diagrams are
shadows of a three-dimensional surface. Correctness criteria can therefore be

17 Note that, in the literature, proof nets are usually depicted going from top to bottom, but we
prefer to maintain our convention here in order to make the link with string diagrams clearer.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 87

seen as conditions guaranteeing that a proof net is the projection of some
higher-dimensional surface diagram.
In the most degenerate cases (from the logic perspective), ⊗ = `, and

we are left with the diagrammatic language of compact closed categories
(Section 4.2.2).

6.5 Software
With the spread of diagrammatic reasoning, it is natural to wonder to what
extent it may be automated, and more generally how computers can assist
humans in manipulating string diagrams. There are several tools dedicated
to this task, each with their specific focus and area of predilection. Here is a
(non-exhaustive) list.

• CARTOGRAPHER [108] deals with string diagrams for SMCs, the central con-
cept of this introduction. It allows the user to specify arbitrary theories in
this setting, and apply them as rewrites. String diagram rewriting is imple-
mented as double-pushout hypergraph rewriting, following the approach of
Section 6.1.
• CHYP (available at https://github.com/akissinger/chyp) is an interactive
proof assistant for free SMCs over some signature and equational theory.
The application works both with a conventional term syntax and with string
diagrams. It also supports a hole-directed rewriting of terms (in the style of
Agda programming).
• DisCoPy [43] is a Python library that defines a DSL for diagrams given
by either, a free monoidal category or a free SMC over some signature.
Furthermore, DisCoPy allows the user to define a semantics for diagrams,
that is, to define functors out of free (symmetric) monoidal categories –
through these, diagrams can be evaluated to some Python programs (as lin-
ear maps, for example). Note, however, that the package does not act as a
proof assistant for diagrammatic equational theories.
• homotopy.io (the successor of a tool known as Globular [110]) is a
more general tool that allows the user to construct finitely generated n-
categories. As a result, it is possible to encode string diagrams for SMCs
into homotopy.io (using a correspondence that we have briefly covered
in Section 6.2). However, the increased generality comes at the cost of sig-
nificant sophistication: the user has to explicitly use the laws of SMCs in
proofs, having to show the functoriality of the monoidal product by sliding
two generators past each other, for example, instead of the two diagrams
being equal in the internal representation.
• rewalt [70] is a Python library for higher-dimensional diagrammatic
rewriting in which it is possible to build presentations of higher and

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://github.com/akissinger/chyp
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

88 Applied Category Theory

monoidal categories, among other applications to algebraic topology and
algebra. For SMCs, this requires an encoding similar to what was needed
with homotopy.io. As a bonus, rewalt can generate TikZ output to
embed diagrams directly into a LATEX document.
• Quantomatic [83] is one of the earliest tools, which deals with a restricted
subset of signatures (initially motivated by the ZX-calculus, see the para-
graph on quantum physics in Section 7), namely signatures containing only
commutative operations in compact closed categories. It allows the user to
specify theories and rewriting strategies, as well as higher-order rules using
so-called !-boxes.

An important theoretical question for these tools is which data structures
best implement string diagrams and diagrammatic reasoning. Considering that
string diagrams themselves are quotients of terms, it is a non-trivial task to rep-
resent their manipulation efficiently. This question has been explored recently
in [113, 115].
Finally, if one is exclusively interested in the typesetting of string dia-

grams into LATEXdocuments, we mention the TikZ library, which is especially
convenient when paired with TikZit (https://tikzit.github.io/), a GUI editor
designed to handle PGF/TikZ pictures.

7 String Diagrams in Science: Some Applications
In the last few years, string diagrams have found application in several fields
of science and engineering. This section is intended as a succinct overview
of such applications, with the main aim of providing to the reader references
for a more focussed study. Clearly, a survey of this type cannot possibly begin
to cover all the relevant material, and it will necessarily be a partial account.
Our perspective will be pedagogical rather than historical: we will typically
point to the most recent surveys and introductory materials, when available. A
comprehensive literature review, including a rigorous reconstruction of ‘who
did what first,’ is out of our scope.
Many of the applications that we will describe share the same methodology.

They involve noticing that the kind of systems and/or processes which consti-
tute the focus of a given research area can be understood as the objects and/or
morphisms of some SMC. This opens up the possibility of studying the topic
from a functorial standpoint, using string diagrams as a syntax and the relevant
systems and/or processes as semantics. In many cases the same approach also
opens up the possibility of studying the equational properties of the resulting
diagrammatic language. In some particular cases (this does not apply to all of

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://tikzit.github.io/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 89

the following examples), a universal set of generators can be found for the syn-
tax and, if we are even luckier, the equational theory can be axiomatised by a
complete monoidal theory.
It is fitting to start this section by applications of string diagrams in phys-

ics, since a notable ancestor of string diagrams is Penrose’s pictorial notation,
invented to carry out the complex tensor calculations in the differential geom-
etry of general relativity [101] (see [100] for a more recent overview).

Quantum Physics

One of the most outstanding modern applications of diagrammatic reasoning
has been to quantum computing. Mathematically, quantum systems are mod-
elled as Hilbert spaces, where joining two systems is represented by taking
the tensor product of the respective spaces, and processes acting on a system
are linear (unitary) maps. Linear maps between Hilbert spaces with the tensor
product as monoidal product form a SMC and are thus amenable to a string
diagrammatic study.
There are several diagrammatic calculi to reason about linear maps between

qubits (represented as vector spaces of dimension 2d for some natural d) with
the tensor product represented as a monoidal product. These generalise and
formalise the circuit representation that is ubiquitous in quantum computing.
The first and most well-known such calculus is the ZX-calculus: its diagrams
consist of nodes of two different colours18 called spiders, each labelled by an
angle:

The two colours denote one of two classical observables or measurement bases:
the Z (or computational) basis and X (or Hadamard) basis respectively. The
angle denotes a phase relative to this basis, that is, a rotation of the Bloch sphere
along the axis determined by the chosen observable.
Equationally, the spiders form a special commutative Frobenius monoid and

the two colours interact with each other to form a bimonoid (more specifically,
a Hopf algebra which is to a bimonoid what a group is to a monoid). Together
with some other more complex equalities, the ZX-calculus completely axioma-
tises linear maps between qubits so that any semantic equality can be obtained
by purely equational reasoning at the level of the diagrams themselves.
Because the ZX-calculus generalises quantum circuits, its axiomatisation

provides a completely equational way to reason about those (see Figure 7.1).

18 Traditionally, green and red, but white and gray (as shown in the diagram here) have been used
more recently, for accessibility.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

90 Applied Category Theory

Figure 7.1 The quantum circuit on the left prepares the GHZ state
|000〉 + |111〉; the ZX-calculus derivation is a diagrammatic proof of this

(unlabelled spiders have 0 phase and the square box is a Hadamard gate). See
[109, section 5] for similar examples of ZX-calculus proofs.

Reasoning equationally at the level of circuits is more difficult, so the ZX-
calculus provides a more compositional setting in which to study the behaviour
of circuits. In fact, one of its most successful applications has been to quantum
circuit synthesis and simplification. Given some measure of complexity of cir-
cuits, one can compile a given circuit to its corresponding ZX diagram and
simplify it using the axioms of the calculus, with the important caveat that one
needs to guarantee that a bona fide circuit can be recovered at the end. (There
are many technical papers on this topic; we could not find a more accessible
survey, though the general introduction [109] contains some pointers to the
literature.) String diagrams have now reached the mainstream quantum com-
puting community, as even one of the founders of the field has adopted the
ZX-calculus in a recent preprint [81].
There are other calculi with the same target semantics – linear maps between

qubits – with different sets of generators as building blocks. The ZW-calculus
was the first for which a completeness result was found and was instrumental
in deriving a complete equational theory for the ZX-calculus (by translating
one into the other). Its generators are further from the conventional gates of
the classical quantum circuit model, but closely related to linear optical quan-
tum circuits [42, 103]. This last reference builds a calculus that unifies both
ZX- and ZW-calculus and is shown complete for arbitrary dimension. The ZH-
calculus is a variation of the ZX-calculus with which it is easier to represent
certain multiply controlled logic gates, like the Toffoli or AND gates (on the
computational basis), and other related operations.
For a diagrammatic introduction to quantum computing and the foundations

of quantum theory, the reference textbook is [35]. Alternatively, [73] provides
a complementary (and more categorically minded) approach to some of the
same topics. A comprehensive survey of the ZX-calculus (and its cousins) for
the working computer scientist can be found in [109]. Beyond these, there is
a wealth of recent developments that have taken the original work in differ-
ent directions: a calculus which incorporates finite memory elements to the
ZX-calculus [28], several calculi for quantum linear optical circuits [31, 42],

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 91

and more. There are also automated tools to reason about large-scale ZX dia-
grams: the Python library PyZX which we have already mentioned is the most
recent [82]. Finally, the website https://zxcalculus.com/ contains tutorials, a
helpful guide to the publications in the field and even a map of ZX research
community.

Signal Flow Graphs and Control Theory

Engineers and control theorists have long expressed causal flow of information
between different components of a system by graphical means. One popular
formalism is that of signal flow graphs, sometimes called block diagrams. They
are directed graphs whose nodes represent system variables and edges func-
tional dependencies between variables. They are used to represent networks of
interconnected electronic components, amplifiers, filters, and so on. In signal
flow graphs, cycles represent feedback between different parts of the system.
Giving signal flow graphs a functorial semantics required a change of per-

spective: instead of only allowing functional dependencies between variables,
we can generalise signal flow graphs to allow relational dependencies between
them, that is, arbitrary systems of (usually linear) equations. This is entirely
consistent with the underlying physics, where laws tend to express relation-
ships between variables, without any explicit assumption about the direction
of causality. This change of perspective allowed the reinterpretation of the fun-
damental building blocks of signal flow graphs as relations, their connection
as relation composition, and their juxtaposition as taking the Cartesian prod-
uct of the corresponding relations. In other words, these generalised signal
flow graphs are string diagrams for a sub-category of the SMC (Rel,×)! One
important such subcategory is that of vector spaces over a field and linear rela-
tions (see Example 5.15) between them. It turns out that signal flow graphs are
intimately related to linear relations over the field of rational functions over R.
The connection was established independently in [20, 21] and [6], where the
authors also give a complete equational theory, called Interacting Hopf Algebra
(IH) by the first set of authors, to reason about the behaviour of these systems
entirely diagrammatically (see Figure 7.2). Since these early developments, the
theory IH has been employed to reason algebraically about various tasks related
to signal flow graphs: we mention the realisability of rational behaviours as
circuits [20], semantic refinement [15], and a compositional criterion for con-
trollability [55]. The interested reader should note, however, that there are some
subtle discrepancies between this generalisation of signal flow graphs and the
standard control-theoretic interpretation of their behaviour: a more accurate,
but closely related semantics in terms of bi-infinite streams is given in [55],
along with a complete equational theory.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://zxcalculus.com/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

92 Applied Category Theory

Figure 7.2 Steps of a derivation transforming the Fibonacci generating
function x

1−x−x2 into a signal flow graph [21]. The x can be interpreted as
derivation in the field R(x) of rational functions or as a time delay. Note that
both the specification (on the left), the signal flow graph which realises it (on

the right), and the intermediate steps are all string diagrams of the same
calculus, and all the steps apply laws of IH over R(x).

Finally, linear relations are not just important because of the relationship
with signal flow graphs; more generally the diagrammatic calculus and the
equational theory IH provide a playground in which a substantial amount of
standard linear algebra can be reformulated entirely diagrammatically. The
blog graphicallinearalgebra.net is a great introduction to this topic, aimed at
a general audience.

Circuit Theory

String diagrams are particularly compelling where they can give an algebraic
foundation to existing graphical representations that are usually treated purely
combinatorially. This is the case in many existing approaches to electrical or
digital circuits. Despite the existence of a standard graphical representation for
circuits, the string diagrammatic approach is not without challenges: taking the
original graphical representation as a starting point, one needs to decompose
them into a suitable set of generators from which all other circuits can be built
and, more importantly, give this syntax a functorial interpretation that assigns
to each circuit its intended behaviour. In traditional introductions to electrical
circuits, this last step usually appeals informally to some intuitive connection
between a circuit and the set of differential equations that it specifies. String
diagrams can make this connection precise and compositional (see Figure 7.3).
In some particular cases, it is even possible to equip the resulting syntax with a
complete equational theory that axiomatises semantic equivalence of circuits.
For electrical circuits with linear/affine behaviour (including resistors,

inductors, capacitors, for example) this ambitious goal has not yet been
achieved, though it is possible to compile them down to an intermediate repre-
sentation in IH (or its affine extension) for which, as mentioned in the previous
paragraph, we do have a complete diagrammatic calculus. The case of circuits

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

graphicallinearalgebra.net
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 93

Figure 7.3 Deriving textbook properties of electrical circuits by compiling
them to graphical linear algebra. The black diagrams represent the
voltage–current pairs enforced by elements of the circuit [11].

with passive components is treated in [4] while the extension to current and
voltage sources (in AC regime only) is carried out in [17]. Building on this,
[11] develops a convenient calculus that blends both circuit elements and their
compilation in IH; see Figure 7.3. The resulting language allows for entirely
diagrammatic proofs of standard textbook results of electrical engineering such
as the superposition theorem or Thévenin/Norton’s theorem. In this work, the
ability to reason inductively on circuits as a genuine syntax proves very useful
to prove these general theorems.
For digital circuits, there are many possible variants of interest to consider,

each at its own level of abstraction (and each with its own limitations). The sim-
ple case of acyclic circuits consisting only of logic gates, without any memory
elements, reduces to Boolean algebra and thus defines a cartesian monoidal
category, which can be presented by the symmetric monoidal version of the
algebraic theory of Boolean algebras, with onlyminor adaptations (as explained
in Remark 5.2 for example) – details can be found in the pioneering [85].
More complex cases, involving delays or cycles, are more delicate. Recently,

the sequential synchronous (i.e. where a global clock is assumed to define the
time at which signals can meaningfully change) case has found a complete
axiomatisation in [68]. Notably, this work also allows combinational (that is,
without any delay) cycles in the syntax. This feature is usually avoided in
traditional treatments of digital circuits because of the difficulty of handling
these types of cycles compositionally. The case of asynchronous (cyclic) cir-
cuits remains elusive and an important open problem, although some work has
already been done in this direction [66].

Probability and Statistics

Issues with the encoding of probability theory in set-theoretic measure the-
ory have pushed researchers to develop a different, synthetic approach to
probability theory. In recent years, some have sought alternative categorical
foundations.
One approach studies categories of measurable spaces and Markov kernels

(conditional probability measures) in an attempt to find an axiomatic setting

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

94 Applied Category Theory

for probability theory. This category is not only symmetric monoidal but a CD
category. Moreover, in general, its morphisms satisfy only the del equation
below:

At the semantic level, this equation simply means that conditional probabil-
ities are measures that normalise to 1. Crucially, not all morphisms satisfy this
dup equation, so that categories ofMarkov kernels are not cartesian; those mor-
phisms that can be copied and do satisfy dup are precisely deterministic kernels,
that is, those that, given a element of their domain, map it to a single element
in their codomain with probability one. We already see that a few elementary
properties of random variables can be expressed in these categories, calledMar-
kov categories; their string diagrams for Markov categories give a graphical
language to treat standard properties such as conditional independence, disin-
tegration, almost sure properties, sufficient statistics, and more. The interested
reader will find [57] to be a good introduction to the topic, with applications to
statistics.
Much like the existing graphical methods of Bayesian networks and related

representations, string diagrams make the flow of information between differ-
ent variables explicit, highlighting structural properties, such as (conditional)
independence. In fact, this connection was already explored in [51] which gave
a functorial account of Bayesian networks. Around the same time, the authors
of [37] proposed a diagrammatic calculus for Bayesian inference. Since then, a
surprising amount of probability theory has been recast in this synthetic mould:
a growing list of results have been reproven in this more general setting, many
ofwhich use string diagrams to streamline proofs, including zero-one laws [60],
de Finetti theorem [58], and the ergodic decomposition theorem [94].
The same diagrams (in Markov or CD categories) also allow for a treatment

of standard concepts in causal reasoning. In [75], the authors give a diagram-
matic account of interventions and a sufficient criterion to identify when a given
causal effect can be reliably estimated from observational data; see Figure 7.4.
The recent [87] extends this work to counterfactuals and shows how causal
inference calculations can be carried out fully diagrammatically. Beyond its
pedagogical value, one advantage of the diagrammatic approach is that it is
axiomatic: as such, it is not restricted to the category of Markov kernels, but
applies in all categories with the relevant structure.

Machine Learning with Neural Networks

Having mentioned string diagrammatic treatments of Bayesian networks, it is
natural to wonder about analogous studies of neural networks, another chief

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 95

Figure 7.4 In this scenario, from [75], we seek to identify the causal effect of
smoking on cancer. String diagrams represent generalised Bayesian networks,
encoding causal dependencies between a set of variables. The prior is ω, the
joint probability distribution of smoking (variable S), presence of tar in the
lungs (variable T), and developing cancer (variable C). A tobacco company
contends that, even though there is a statistical correlation between S and C,
there might be some confounding factor H (perhaps genetic) which causes

both smoking and cancer (decomposition of ω, on the left). How can we rule
out this causal scenario, when direct intervention is impossible? We see that
performing a ‘cut’ at S and replacing it with the uniform distribution, as on the
right, would remove any confounding influence of H over S. In this case, we
can infer from the structure of the diagram that the distribution corresponding
to the resulting diagram ω′ can be computed from observational data only. If,

under ω′, a smoker is still more likely to develop cancer, then we have
demonstrated that there is a causal relationship between S and C.

graphical model of machine learning. Categorical approaches to these struc-
tures are fairly recent and so far have mainly focussed on providing an abstract
account of the gradient-based learning process [39, 56, 63]. See, for example,
[107] for an overview. Use of string diagrams to describe the network struc-
ture only cursorily appears in [56]. String diagrams are heavily used in [39] to
represent the categorical language of lenses in the context of machine learn-
ing, but presentations by generators and equations of these diagrams are not
investigated. The works on gradient-based learning with “quantised” versions
of neural networks, such as Boolean circuits [112] and polynomial circuits
[114], adopt string diagrams in amore decisive way. These works define reverse
derivatives compositionally on the diagrammatic syntax for circuits, building
on the theory of reverse derivative categories [32] and Lafont’s algebraic pre-
sentation of Boolean circuits [85]. Going forward, the expectation is that such
an approach may work also for real-valued networks, once the different neural
network architectures are properly understood in terms of algebraic presenta-
tions. A starting point is provided in [56] for feedforward neural networks (see
also the diagrammatic presentation of piecewise-linear relations found in [10],
which may be used to model networks with ReLu activation units). Another
important research thread concerns automatic differentiation (AD): the work
[3] uses rewriting of string diagrams in monoidal closed categories to describe
an algorithm for AD and prove its soundness. In this context, string diagrams
are appealing as they can be reasoned about as a high-level language, while
at the same time exhibiting the same information of lower-level combinatorial

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

96 Applied Category Theory

formalisms, which in traditional AD are introduced via compilation. Finally,
we recommend the webpage [62] to the interested reader, as it maintains a list
of papers at the intersection of category theory and machine learning.

Automata Theory

Automata have always been represented graphically, as state-transition graphs.
However, the graphical representation is usually treated as a visual aid to con-
vey intuition, not as a formal syntax. Kleene introduced regular expressions to
give finite-state automata an algebraic syntax. Their equational theory – under
the name of Kleene algebra – is now well understood and multiple complete
axiomatisations have been given, for both language and relational models.
With string diagrams, however, it is possible to go directly from the oper-

ational model of automata to their equational properties, without going through
a symbolic algebraic syntax [102]. This approach lets us axiomatise the behav-
iour of automata directly, freeing us from the necessity of compressing them
down to a one-dimensional notation like regular expressions. In addition,
embracing the two-dimensional nature of automata guarantees a strong form of
compositionality that the one-dimensional syntax of regular expressions does
not have. In the string diagrammatic setting, automata may havemultiple inputs
and outputs and, as a result, can be decomposed into subcomponents that retain
a meaningful interpretation. For example, the Kleene star can be decomposed
into more elementary building blocks, which come together to form a feedback
loop:

It should be noted that a similar insight was already present in the work of Şte-
fănescu [40] who studied the algebraic properties of traced monoidal categories
with several additional axioms in order to capture the properties of automata,
flowchart schemes, Petri nets, data-flow networks, and more.

Databases and Logic

As we have discussed earlier in several places, string diagrams are a conveni-
ent syntax for relations. They are particularly well suited to conjunctive queries,
the first-order language that contains relation symbols, equality, truth, conjunc-
tion, and existential quantification. This is a core fragment of query languages
for relational databases with appealing theoretical properties, such as NP-
completeness (and thus, decidability) of query inclusion. Moreover, it admits a
flexible diagrammatic language, which is exactly that of cartesian bicategories

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 97

(Example 6.5). These were introduced in [27] in the 1980s (without a diagram-
matic syntax, most likely for typesetting reasons, though the authors give an
axiomatisation that is easy to translate into string diagrams). The precise con-
nection with conventional conjunctive query languages is worked out in [18].
More recently, the authors of [72] have generalised these diagrams to all of
(classical) predicate logic. This requires adding boxes that represent negation
to the diagrams of [18, 27]. Remarkably, these give a categorical account of a
graphical notation for first-order logic invented by the American philosopher
C. S. Peirce in a series of manuscripts [99] dating as far back as the nineteenth
century!

Computability Theory

Computers aremachines that can be programmed to exhibit a certain behaviour.
The range of behaviours that they can exhibit (its processes) can be axioma-
tised into a monoidal category with additional properties: we require that every
process the machine can perform has a name – its corresponding program –
encoding the intentional content of the process. In turn, the category contains
distinguished processes, called evaluators, which run a given program on an
input state of the machine. These simple requirements, with the ability to copy
and delete data, are what [97] calls amonoidal computer. This structure is suffi-
cient to reproduce a substantial chunk of computability (and complexity) theory
using string diagrams. A textbook that does just that is [98].

Concurrency Theory

Concurrency lends itself to graphical methods, a fact noticed early by Petri.
Initially, like so many other graphical representations, Petri nets were treated
monolithically, and little attention was given to their composition. Once again,
it is possible to take Petri nets seriously as a diagrammatic syntax with a func-
torial semantics. There are several ways to do so: one can either compose Petri
nets along shared states (places) or shared actions (transitions). The former was
developed in [7], while the latter was initiated in [25, 26]. The authors have
contributed to developing this last approach further, by studying and axioma-
tising the algebra of Petri net transitions [16]. Significantly, the syntax is the
same as that of signal flow graphs (see above) – only the semantics changes,
replacing real numbers (modelling signals) with natural numbers (modelling
non-negative finite resources like the tokens of Petri nets). This simple change
also changes the equational theory dramatically.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

98 Applied Category Theory

Linguistics

String diagrams have made a surprising appearance in formal linguistics and
natural language processing. The core idea relies on a formal analogy between
syntax and semantics of natural language. On the semantic side, vectors (in
other words, arrays of numbers) are a convenient way of encoding statis-
tical properties of words or features (word embeddings) extracted from large
amounts of text by training machine learning models. The semantics obtained
in this way is called distributional. On the syntax side, formal structures of
increasing complexity have been used to study the grammatical properties
of languages and explain what distinguishes a well-formed sentence from an
incorrect one.
Reconciling, or rather, combining the insights of these two perspectives

has been a long-standing problem. One possible approach, first proposed in
[30], is premised on a formal correspondence between grammatical struc-
ture and distributional semantics: both fit into monoidal categories! We have
seen that vector spaces and linear maps form a SMC, with the tensor as
monoidal product. Similarly, formal grammars can be recast as certain (non-
symmetric) monoidal categories in which objects are parts of speech (think
nouns, adjectives, transitive verbs, etc.) and morphisms derivations of well-
formed sentences. The analogy allows for a functorial mapping from one to the
other. With this correspondence in place, it becomes possible to interpret gram-
matical derivations of sentences as string diagrams in the category of vector
spaces and linear maps. This gives a compositional way to build the meaning
of sentences from the individual meaning of words. Moreover, certain sym-
metric monoidal theories can model grammatical features of language whose
distributional semantics is less clear. Relative pronouns, for example, have
been successfully interpreted as certain Frobenius algebras [104, 105], allow-
ing equational reasoning about the meaning of sentences that contain them.
String diagrams also reveal that two a priori distinct areas of scientific enquiry
can share some formal structure.

Game Theory

In classical game theory, games and their various solution concepts are usually
studied monolithically. Remarkably, a compositional approach was shown to
be possible in [64]. In this paper, the authors build games from smaller pieces,
called open games. An open game is a component that chooses its next move
strategically, given the state of its environment and some counterfactual reason-
ing about how the environment might react to its move (and what payoff it
would derive from it). They form an SMC with an interesting diagrammatic

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

An Introduction to String Diagrams 99

syntax which contains forward and backward flowing wires (the latter repre-
sent this counterfactual reasoning, flowing from future to present). In fact, these
diagrams are related to those for lenses, which we have encountered in the para-
graph on machine learning. Closed diagrams represent classical games, whose
semantics is given by the appropriate equilibrium condition. Initially devel-
oped only for standard games with pure Nash equilibria as solution concept,
open games have been extended to more general settings, such as Bayesian
games [12] with the appropriate solution concept.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Appendix
Category Theory: The Bare Minimum

In this appendix, we recall the most basic notions of category theory: category,
functor, natural transformation, adjunctions. This very brief recap is intended
as reference material for some of the explanations provided in the main text.
For a more pedagogical treatment, the reader should turn to an introductory
textbook on the topic, such as [86].

Definition A.1. A category C consists of

• a collection of objects;
• a collection of morphisms such that every morphism f of C has a unique
object x called its domain, and a unique object y called its codomain, which
we then write f : x→ y;
• for every pair of morphisms f : x → y and g : y → z, a morphism f; g : x
→ z which we call the composition of f and g;
• for every object x, a morphism id : x→ x which we call the identity on x;
• such that
1. composition is associative, that is,

f ; (g ; h) = (f ; g) ; h

2. identities are the (two-sided) unit for composition, that is,

f ; idy = f = idx ; f

Remark A.2. The order of composition in the preceding definition is chosen
to adhere to the diagrammatic order of composition, from left to right. It is
common to see the reverse-order operation, g ◦ f = f ; g, in particular when
dealing with maps between sets.

Remark A.3. In the main text, the first categorical structure in which we con-
sider string diagrams are (symmetric) monoidal categories (Definition 2.6).
However, plain categories already accommodate a representation of their mor-
phisms as string diagrams, albeit of a simpler kind. Just as in themonoidal case,
one may use wires to depict (the identity on) each object, and boxes for each
morphism:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Appendix 101

Sequential composition of boxes with matching wires in the middle is the only
allowed operation:

The diagrammatic notation has the benefit of absorbing the associativity and
unitality laws of Definition A.1:

The appropriate notion of structure-preserving mapping between categories
is called a functor.

Definition A.4. Given two categories C and D, a functor F : C → D is a map
from the objects of C to those of D, and a map from the morphisms of C to those
of D that preserves composition and identities, that is,

F(f ; g) = Ff ; Fg F(idx) = idFx
Clearly, functors can also be composed like ordinary maps. With functors as

morphisms, categories themselves form a category. A functor is called faithful
if it is injective on morphisms of the same type, that is, if Ff = Fg implies that
f = g; it is full if it is surjective on morphisms of the same type, that is, for any
g in D, there exists f in C such that Ff = g.
There is also a notion of mapping between functors, which we now recall.

Definition A.5. Given two functors F : C→ D and G : C→ D, a natural trans-
formation η :F ⇒ G is a family of morphisms ηx :Fx → Gx indexed by the
objects of C, such that ηx ; Gf = Ff ; ηy for every morphism f : x→ y.

Remark A.6. Functors can also be represented pictorially, via functorial
boxes [91]. Plainly, for a functor F : C → D, they are F-labelled boxes that
frame diagrams

Diagrams inside the box live in categoryC, and those outside inD. To represent
functors, functorial boxes have to be functorial! This means that they satisfy the
following equality:

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

102 Appendix

This is easily seen to be the translation of the first equality in Definition A.4.
Note that the preservation of identities required by Definition A.4 is already a
diagrammatic tautology, as it is absorbed by the diagrammatic notation.
We do not cover these here in detail, though we refer to their use in

representing diagrams for closed monoidal categories, in Section 4.2.9.

Recall that an isomorphism is a morphism f : x → y which has an inverse:
a morphism g : y → x such that f ; g = idx and g ; f = idy. We then say that x
is isomorphic to y. The notion of isomorphism makes sense for functors and
categories too. The inverse of a functor F : C→ D is a functor G : D→ C such
that F ; G = idC and G ; F = idD. However, it is sometimes too restrictive to
ask for isomorphisms between categories. Indeed, there are categories that we
would like to identify, which are not isomorphic. The more general notion of
equivalence of categories is often more appropriate.

Definition A.7. A functor F : C → D is an equivalence of categories if there
exists a functor G : D→ C and two natural transformations ε :FG⇒ idC and
η : idD ⇒ GF whose components are isomorphisms.

Remark A.8. In this Element, we make use of monoidal equivalences of
monoidal categories. The definition is the obvious modification of Defini-
tion A.7: it is a monoidal functor F : C → D (see Definition 2.8) for which
there exists a monoidal functor G satisfying the conditions of the preceding
definition. The same goes for symmetric monoidal categories.

We can even weaken further the notion of equivalence to that of adjunction.
Instead of requiring equalities F ; G = idC and G ; F = idD, we can consider
functors for which we have natural transformations G ; F ⇒ idC and idD ⇒
F ; G that satisfy some conditions that we now recall.

Definition A.9. An adjunction between two categories consists of a pair of
functors F : C→ D and G : D→ C and two natural transformations ε :FG⇒
idC (the unit) and η : idD ⇒ GF (the counit) such that

Fηx ; εFx = idFx and ηGa ; Gεa = idGa

We call F the left adjoint and G the right adjoint.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

References
[1] Samson Abramsky. Retracing some paths in process algebra. In Ugo

Montanari and Vladimiro Sassone (eds.), CONCUR’96 Proceedings,
pages 1–17. Springer, 2005.

[2] Mario Alvarez-Picallo, Dan R. Ghica, David Sprunger, and Fabio
Zanasi. Rewriting for monoidal closed categories. In Amy P. Felty
(ed.), FSCD’22 Proceedings, volume 228 of LIPIcs, pages 29:1–29:20.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

[3] Mario Alvarez-Picallo, Dan R. Ghica, David Sprunger, and Fabio
Zanasi. Functorial string diagrams for reverse-mode automatic differen-
tiation. In Bartek Klin and Elaine Pimentel (eds.), CSL’23 Proceedings,
volume 252 of LIPIcs, pages 6:1–6:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023.

[4] John C. Baez, Brandon Coya, and Franciscus Rebro. Props in network
theory. Theory and Applications of Categories, 33(25):727–783, 2018.

[5] John C. Baez and James Dolan. Higher-dimensional algebra and
topological quantum field theory. Journal of Mathematical Physics,
36(11):6073–6105, 1995.

[6] John C. Baez and Jason Erbele. Categories in control. Theory and
Applications of Categories, 30:836–881, 2015.

[7] John C. Baez and JadeMaster. Open petri nets.Mathematical Structures
in Computer Science, 30(3):314–341, 2020.

[8] Hendrik Pieter Barendregt (ed.). The Lambda Calculus: Its Syntax and
Semantics, volume 103 of Studies in Logic and the Foundations of
Mathematics. North-Holland, 1985.

[9] Michael Barr. ∗-Autonomous Categories, volume 752, Springer Lecture
Notes in Mathematics. Springer, 2006.

[10] Guillaume Boisseau and Robin Piedeleu. Graphical piecewise-linear
algebra. In Patricia Bouyer and Lutz Schröder (eds.), FOSSACS’22
(ETAPS) Proceedings, pages 101–119. Springer International Publish-
ing, 2022.

[11] Guillaume Boisseau and Paweł Sobociński. String diagrammatic elec-
trical circuit theory. In K. Kishida (Ed.), Fourth International Con-
ference on Applied Category Theory (ACT 2021). EPTCS 372, pp.
178–191. DOI: https://doi.org/10.4204/EPTCS.372.13, 2022.

[12] Joe Bolt, Jules Hedges, and Philipp Zahn. Bayesian open games.
Compositionality, October 4, Volume 5. DOI: https://doi.org/10.32408/
compositionality-5-9, 2023.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://doi.org/10.32408/compositionality-5-9
https://doi.org/10.32408/compositionality-5-9
https://doi.org/10.4204/EPTCS.372.13
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

104 References

[13] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński,
and Fabio Zanasi. Rewriting modulo symmetric monoidal structure. In
LICS’16 Proceedings, https://dl.acm.org/doi/proceedings/10.1145/293
3575, pages 710–719. Institute of Electrical and Electronics Engineers,
2016.

[14] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski,
and Fabio Zanasi. String diagram rewrite theory I: Rewriting with
Frobenius structure. Journal of the ACM, 69(2):14:1–14:58, 2022.

[15] Filippo Bonchi, Joshua Holland, Dusko Pavlovic, and Paweł Sobo-
ciński. Refinement for signal flow graphs. In Roland Meyer and Uwe
Nestmann (eds.),CONCUR’17 Proceedings, pages 24:1–24:16, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

[16] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and
Fabio Zanasi. Diagrammatic algebra: From linear to concurrent systems.
POPL’19 Proceedings, 3:1–28, Association for Computing Machinery,
2019.

[17] Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi.
Graphical affine algebra. In LICS’19 Proceedings, pages 1–12, 2019.

[18] Filippo Bonchi, Jens Seeber, and Paweł Sobociński. Graphical con-
junctive queries. In Dan R. Ghica and Achim Jung (eds.), CSL’18
Proceedings. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

[19] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Interacting bialge-
bras are Frobenius. In Anca Muscholl (ed.), FOSSACS’14 Proceedings,
volume 8412 of LNCS, pages 351–365. Springer, 2014.

[20] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Full abstraction
for signal flow graphs. ACM SIGPLAN Notices, 50(1):515–526, 2015.

[21] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. The calculus of
signal flow diagrams I: Linear relations on streams. Information and
Computation, 252:2–29, 2017.

[22] Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Interacting Hopf
algebras. Journal of Pure and Applied Algebra, 221(1):144–184, 2017.

[23] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Deconstruct-
ing Lawvere with distributive laws. Journal of Logical and Algebraic
Methods in Programming, 95:128–146, 2018.

[24] Roberto Bruni and Fabio Gadducci. Some algebraic laws for spans (and
their connections with multirelations). Electronic Notes in Theoretical
Computer Science, 44(3): 175–193, 2001.

[25] Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Connector alge-
bras, Petri nets, and BIP. In Edmund Clarke, Irina Virbitskaite, and
Andrei Voronkov (eds.), Perspectives of Systems Informatics. PSI 2011.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://dl.acm.org/doi/proceedings/10.1145/2933575
https://dl.acm.org/doi/proceedings/10.1145/2933575
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

References 105

Lecture Notes in Computer Science, vol. 7162, pages 19–38. Springer,
2011.

[26] Roberto Bruni, Hernán C. Melgratti, Ugo Montanari, and Paweł Sobo-
ciński. Connector algebras for C/E and P/T nets’ interactions. Logical
Methods in Computer Science, 9(16): n. pag., 2013.

[27] Aurelio Carboni and R. F. C. Walters. Cartesian bicategories I. Journal
of Pure and Applied Algebra, 49:11–32, 1987.

[28] Titouan Carette, Marc De Visme, and Simon Perdrix. Graphical lan-
guage with delayed trace: Picturing quantum computing with finite
memory. In LICS’21 Proceedings, pages 1–13. Institute of Electrical
and Electronics Engineers, 2021.

[29] Eugenia Cheng. Iterated distributive laws. Mathematical Proceedings
of the Cambridge Philosophical Society, 150(3):459–487, 2011.

[30] Stephen Clark, Bob Coecke, and Mehrnoosh Sadrzadeh. A compos-
itional distributional model of meaning. In Peter D. Bruza, William
F. Lawless, Keith van Rijsbergen, Donald A. Sofge, and Bob Coecke
(eds.), Proceedings of the Second Quantum Interaction Symposium
(QI-2008), pages 133–140. College Publications, 2008.

[31] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Per-
drix, and Benoît Valiron. LOv-calculus: A graphical language for linear
optical quantum circuits. In Stefan Szeider, Robert Ganian, and Alex-
andra Silva (eds.),MFCS’22 Proceedings, volume 241 of LIPIcs, pages
35:1–35:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

[32] J. Robin B. Cockett, Geoff S. H. Cruttwell, Jonathan Gallagher, Jean-
Simon Pacaud Lemay, Benjamin MacAdam, Gordon D. Plotkin, and
Dorette Pronk. Reverse derivative categories. In Maribel Fernández
and Anca Muscholl (eds.), CSL’20 Proceedings, volume 152 of LIPIcs,
pages 18:1–18:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020.

[33] J. Robin B. Cockett and Robert A. G. Seely. Weakly distributive cat-
egories. Journal of Pure and Applied Algebra, 114(2):133–173, 1997.

[34] Bob Coecke and Ross Duncan. Interacting quantum observables. In
Luca Aceto, Ivan B. Damgärd, and Leslie A. Goldberg (eds.), ICALP’08
Proceedings, Part II, pages 298–310. Springer, 2008.

[35] BobCoecke andAleks Kissinger.PicturingQuantumProcesses: A First
Course in Quantum Theory and Diagrammatic Reasoning. Cambridge
University Press, 2017.

[36] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description
of orthogonal bases. Mathematical Structures in Computer Science,
23(3):557–567, 2012.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

106 References

[37] Bob Coecke and Robert W. Spekkens. Picturing classical and quantum
Bayesian inference. Synthese, 186:651–696, 2012.

[38] Brandon Coya and Brendan Fong. Corelations are the prop for extraspe-
cial commutative Frobenius monoids. Theory and Applications of
Categories, 32(11):380–395, 2017.

[39] Geoffrey S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul W.
Wilson, and Fabio Zanasi. Categorical foundations of gradient-based
learning. In Ilya Sergey (ed.), ESOP’22, volume 13240 of LNCS, pages
1–28. Springer, 2022.

[40] Gheorghe Ştefănescu. Network Algebra. Discrete Mathematics and
Theoretical Computer Science. Springer, 2000.

[41] Vincent Danos and Laurent Regnier. The structure of multiplicatives.
Archive for Mathematical Logic, 28(3):181–203, 1989.

[42] Giovanni De Felice and Bob Coecke. Quantum linear optics via string
diagrams. arXiv:2204.12985, 2022.

[43] Giovanni de Felice, Alexis Toumi, and Bob Coecke. DisCoPy:
Monoidal categories in Python. Electronic Proceedings in Theoretical
Computer Science, 333:183–197, 2021.

[44] Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal
streams for dataflow programming. In Christel Baier (ed.), LICS’22
Proceedings, pages 1–14, 2022.

[45] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Saba-
dini, and Paweł Sobociński. A canonical algebra of open transition
systems. In Gwen Salaün and Anton Wijs (eds.), FACS’21 Proceedings
17, pages 63–81. Springer, 2021.

[46] Luca Dixon and Aleks Kissinger. Open-graphs and monoidal theories.
Mathematical Structures in Computer Science, 23(2):308–359, 2013.

[47] Ross Duncan and Kevin Dunne. Interacting Frobenius algebras are
Hopf. In LICS’16, pages 535–544, Institute of Electrical and Electronics
Engineers, 2016.

[48] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van DeWeter-
ing. Graph-theoretic simplification of quantum circuits with the ZX-
calculus. Quantum, 4:279, 2020.

[49] Lawrence Dunn and Jamie Vicary. Coherence for Frobenius pseu-
domonoids and the geometry of linear proofs. Logical Methods in
Computer Science, 15, 2019.

[50] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-
grammars: An algebraic approach. In SWAT’73 Proceedings, pages
167–180. Institute of Electrical and Electronics Engineers, 1973.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

References 107

[51] Brendan Fong. Causal theories: A categorical perspective on Bayes-
ian networks. Master’s thesis, University of Oxford, 2012. arXiv:
1301.6201.

[52] Brendan Fong. Decorated cospans. Theory and Applications of Categor-
ies, 30(33):1096–1120, 2015.

[53] Brendan Fong. The Algebra of Open and Interconnected Systems. PhD
thesis, University of Oxford, 2016. arXiv:1609.05382.

[54] Brendan Fong. Decorated corelations. Theory & Applications of Cat-
egories, 33, 2018.

[55] Brendan Fong, Paweł Sobociński, and Paolo Rapisarda. A categorical
approach to open and interconnected dynamical systems. In LICS’16
Proceedings, pages 495–504, Association for Computing Machinery,
2016.

[56] Brendan Fong, David I. Spivak, and Rémy Tuyéras. Backprop as func-
tor: A compositional perspective on supervised learning. In LICS’16
Proceedings, pages 1–13. IEEE, 2019.

[57] Tobias Fritz. A synthetic approach to Markov kernels, conditional
independence and theorems on sufficient statistics. Advances in Math-
ematics, 370:107239, 2020.

[58] Tobias Fritz, Tomáš Gonda, and Paolo Perrone. De Finetti’s theorem in
categorical probability. Journal of Stochastic Analysis, 2(4):6, 2021.

[59] Tobias Fritz and Wendong Liang. Free gs-monoidal categories and free
Markov categories. Applied Categorical Structures, 31(2):21, 2023.

[60] Tobias Fritz and Eigil Fjeldgren Rischel. The zero-one laws of Kol-
mogorov and Hewitt–Savage in categorical probability. Composition-
ality, 2:3, 2020.

[61] Fabio Gadducci and Reiko Heckel. An inductive view of graph trans-
formation. In Francesco Parisi Presicce (ed.), WADT’97 Proceedings,
pages 223–237, Springer, 1997.

[62] Bruno Gavranović. Category theory ∩ machine learning. https://github
.com/bgavran/Category_Theory_Machine_Learning. Accessed: 9 June
2023.

[63] Bruno Gavranović. Compositional deep learning. arXiv:1907.08292,
2019.

[64] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compos-
itional game theory. In LICS’18 Proceedings, pages 472–481, Associ-
ation for Computing Machinery, 2018.

[65] Dan Ghica and Fabio Zanasi. String diagrams for λ-calculi and func-
tional computation. arXiv:2305.18945, 2023.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://github.com/bgavran/Category_Theory_Machine_Learning
https://github.com/bgavran/Category_Theory_Machine_Learning
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

108 References

[66] DanR.Ghica. Diagrammatic reasoning for delay-insensitive asynchron-
ous circuits. In Bob Coecke, Luke Ong, and Prakash Panangaden (eds.),
Computation, Logic, Games, and Quantum Foundations: The Many
Facets of Samson Abramsky, pages 52–68. Springer, 2013.

[67] Dan R. Ghica and George Kaye. Rewriting modulo traced comonoid
structure. arXiv:2302.09631, 2023.

[68] Dan R. Ghica, George Kaye, and David Sprunger. Full abstraction for
digital circuits. arXiv:2201.10456, 2022.

[69] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[70] Amar Hadzihasanovic and Diana Kessler. Data structures for topologic-
ally sound higher-dimensional diagram rewriting. In ACT’22 Proceed-
ings. arXiv:2209.09509, 2022.

[71] Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal
categories and models of cyclic lambda calculi. In Philippe de Groote
and J. Roger Hindley (eds.), TLCA’97 Proceedings, pages 196–213.
Springer, 1997.

[72] Nathan Haydon and Paweł Sobociński. Compositional diagrammatic
first-order logic. In Ahti-Veikko Pietarinen, Peter Chapman, Leonie
Bosveld-de Smet, Valeria Giardino, James Corter, and Sven Linker
(eds.), Diagrams’20 Proceedings, pages 402–418. Springer, 2020.

[73] Chris Heunen and Jamie Vicary. Categories for Quantum Theory: An
Introduction. Oxford University Press, 2019.

[74] Martin Hyland and John Power. The category theoretic understanding
of universal algebra: Lawvere theories and monads. In Luca Cardelli,
Marco Fiore, and Glynn Winskel (eds.), Computation, Meaning, and
Logic: Articles Dedicated to Gordon Plotkin, volume 172 of Electronic
Notes in Theoretical Computer Science, pages 437–458. Elsevier, 2007.

[75] Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference via
string diagram surgery: A diagrammatic approach to interventions
and counterfactuals. Mathematical Structures in Computer Science,
31(5):553–574, 2021.

[76] André Joyal and Ross Street. Braidedmonoidal categories.Mathematics
Reports, 86008, 1986.

[77] André Joyal and Ross Street. The geometry of tensor calculus, I.
Advances in Mathematics, 88(1):55–112, 1991.

[78] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. Feed-
back, trace and fixed-point semantics. RAIRO-Theoretical Informatics
and Applications, 36(2):181–194, 2002.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

References 109

[79] Gregory Maxwell Kelly. Many-variable functorial calculus. I. In Greg-
ory M. Kelly, Miguel L. Laplaza, Geoffrey Lewis, and Saunders Mac
Lane (eds.), Coherence in Categories, pages 66–105. Springer, 1972.

[80] Gregory Maxwell Kelly andMiguel L. Laplaza. Coherence for compact
closed categories. Journal of Pure and Applied Algebra, 19:193–213,
1980.

[81] Andrey Boris Khesin, Jonathan Z. Lu, and Peter W. Shor. Graph-
ical quantum Clifford-encoder compilers from the ZX calculus. arXiv:
2301.02356, 2023.

[82] Aleks Kissinger and John van de Wetering. PyZX: Large scale auto-
mated diagrammatic reasoning. arXiv:1904.04735, 2019.

[83] Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assist-
ant for diagrammatic reasoning. In Amy P. Felty and Aart Middeldorp
(eds.), CADE-25 Proceedings, pages 326–336. Springer, 2015.

[84] Stephen Lack. Composing PROPs. Theory and Application of Categor-
ies, 13(9):147–163, 2004.

[85] Yves Lafont. Towards an algebraic theory of Boolean circuits. Journal
of Pure and Applied Algebra, 184(2–3):257–310, 2003.

[86] Tom Leinster. Basic Category Theory, volume 143. Cambridge Univer-
sity Press, 2014.

[87] Robin Lorenz and Sean Tull. Causal models in string diagrams.
arXiv:2304.07638, 2023.

[88] Saunders Mac Lane. Categorical algebra. Bulletin of the American
Mathematical Society, 71:40–106, 1965.

[89] SaundersMac Lane.Categories for theWorkingMathematician. Gradu-
ate Texts in Mathematics, Vol. 5. Springer, 1971.

[90] Daniel Marsden. Category theory using string diagrams. arXiv:1401.
7220, 2014.

[91] Paul-André Melliès. Functorial boxes in string diagrams. In Zoltán Ésik
(ed.), International Workshop on Computer Science Logic, pages 1–30.
Springer, 2006.

[92] Paul-André Mellies. Categorical semantics of linear logic. Panoramas
et Syntheses, 27:15–215, 2009.

[93] Aleksandar Milosavljevic and Fabio Zanasi. String diagram rewrit-
ing modulo commutative monoid structure. To appear in CALCO’23
Proceedings, arXiv:2204.04274, 2023.

[94] SeanMoss and Paolo Perrone. A category-theoretic proof of the ergodic
decomposition theorem. arXiv:2207.07353, 2022.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

110 References

[95] Koko Muroya and Dan R. Ghica. The dynamic geometry of inter-
action machine: A call-by-need graph rewriter. CSL’17 Proceed-
ings. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. DOI:
https://doi.org/10.4230/LIPIcs.CSL.2017.32.

[96] Dusko Pavlovic. Quantum and classical structures in nondeterministic
computation. In Peter Bruza, Donald Sofge, William Lawless, Keith
van Rijsbergen, and Matthias Klusch (eds.), International Symposium
on Quantum Interaction, pages 143–157. Springer, 2009.

[97] Dusko Pavlovic. Monoidal computer I: Basic computability by string
diagrams. Information and Computation, 226:94–116, 2013.

[98] Dusko Pavlovic. Categorical computability in monoidal computer: Pro-
grams as diagrams. arXiv:2208.03817, 2022.

[99] Charles Sanders Peirce. Collected Papers of Charles Sanders Peirce,
volume 4. Harvard University Press, 1974.

[100] Roger Penrose. Applications of negative dimension tensors. In Dominic
Welsh, editor, Combinatorial Mathematics and Its Applications, pages
221–244. Academic Press, 1971.

[101] Roger Penrose. Applications of negative dimensional tensors.Combina-
torial Mathematics and Its Applications, 1:221–244, 1971.

[102] Robin Piedeleu and Fabio Zanasi. A finite axiomatisation of finite-state
automata using string diagrams. Logical Methods in Computer Science,
19, 2023.

[103] Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie
Yeung, and Bob Coecke. Completeness for arbitrary finite dimensions
of ZXW-calculus, a unifying calculus. arXiv:2302.12135, 2023.

[104] Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. The Frobe-
nius anatomy of word meanings I: Subject and object relative pronouns.
Journal of Logic and Computation, 23(6):1293–1317, 2013.

[105] Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. The Frobenius
anatomy of word meanings II: Possessive relative pronouns. Journal of
Logic and Computation, 26(2):785–815, 2014.

[106] Peter Selinger. A survey of graphical languages for monoidal categories.
Springer Lecture Notes in Physics, 13(813):289–355, 2011.

[107] Dan Shiebler, Bruno Gavranović, and Paul Wilson. Category theory in
machine learning. arXiv:2106.07032, 2021.

[108] Paweł Sobociński, Paul W. Wilson, and Fabio Zanasi. CARTOG-
RAPHER: A tool for string diagrammatic reasoning. InCALCO’19 Pro-
ceedings, page 25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://doi.org/10.4230/LIPIcs.CSL.2017.32
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

References 111

[109] John van de Wetering. ZX-calculus for the working quantum computer
scientist. arXiv:2012.13966, 2020.

[110] Jamie Vicary, Aleks Kissinger, and Krzysztof Bar. Globular: An online
proof assistant for higher-dimensional rewriting. Logical Methods in
Computer Science, 14. arXiv:1612.01093v1, 2018.

[111] Paul W. Wilson, Dan R. Ghica, and Fabio Zanasi. String dia-
grams for non-strict monoidal categories. In Bartek Klin and Elaine
Pimentel (eds.), CSL, volume 252 of LIPIcs, pages 37:1–37:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

[112] Paul W. Wilson and Fabio Zanasi. Reverse derivative ascent: A cat-
egorical approach to learning Boolean circuits. In David I. Spivak and
Jamie Vicary (eds.), ACT’20 Proceedings, volume 333 of EPTCS, pages
247–260, 2020.

[113] Paul W. Wilson and Fabio Zanasi. The cost of compositionality:
A high-performance implementation of string diagram composition.
In ACT’21 Proceedings, volume 372 of EPTCS, pages 262–275.
arXiv:2105.09257, 2021.

[114] Paul W. Wilson and Fabio Zanasi. Categories of differentiable polyno-
mial circuits for machine learning. In Nicolas Behr and Daniel Strüber
(eds.), ICGT, volume 13349 of Lecture Notes in Computer Science,
pages 77–93. Springer, 2022.

[115] Paul W. Wilson and Fabio Zanasi. Data-parallel algorithms for string
diagrams. arXiv:2305.01041, 2023.

[116] Fabio Zanasi. Interacting Hopf Algebras: The Theory of Linear Systems.
PhD thesis, Ecole Normale Supérieure de Lyon, 2015.

[117] Fabio Zanasi. The algebra of partial equivalence relations. Electronic
Notes in Theoretical Computer Science, 325:313–333, 2016.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Acknowledgements
Funding from University College London made it possible for this book to be
published open access, making the digital version freely available for anyone
to read and reuse under a Creative Commons licence.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Applied Category Theory

Bob Coecke
Cambridge Quantum Ltd

Bob Coecke is Chief Scientist at Cambridge Quantum Ltd. and Emeritus Professor at
Wolfson College, University of Oxford. His pioneering research includes categorical
quantum mechanics, ZX-calculus, quantum causality, resource theories, and quantum

natural language processing. Other interests include cognitive architectures and
diagrams in education. Most of his work uses the language of tensor categories and their
diagrammatic representations. He co-authored the book Picturing Quantum Processes. A
First Course in Quantum Theory and Diagrammatic Reasoning. He is considered as one of

the fathers of the field of applied category theory, and a co-founder of the journal
Compositionality.

Joshua Tan
University of Oxford

Joshua Tan is a doctoral student at the University of Oxford and a Practitioner Fellow at
Stanford University. He is the executive director of the Metagovernance Project and an
executive editor of the journal Compositionality. He works on applications of category
theory and sheaf theory to theoretical machine learning and to the design of complex,

multi-agent systems.

About the Series
Elements in Applied Category Theory features Elements intended both for

mathematicians familiar with category theory and seeking elegant, graduate-level
introductions to other fields in the language of categories, and for subject-matter experts
outside of pure mathematics interested in applications of category theory to their field.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

Applied Category Theory

Elements in the Series
Theoretical Computer Science for the Working Category Theorist

Noson S. Yanofsky
An Introduction to String Diagrams for Computer Scientists

Robin Piedeleu and Fabio Zanasi

A full series listing is available at: www.cambridge.org/EACT

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009625715
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.224, on 09 Jul 2025 at 18:38:27, subject to the Cambridge Core terms of

http://www.cambridge.org/EACT
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009625715
https://www.cambridge.org/core

	Cover
	Title Page
	Imprints Page
	An Introduction to String Diagrams for Computer Scientists
	Contents
	1 The Case for String Diagrams
	2 String Diagrams as Syntax
	2.1 Adding Equations
	2.2 Common Equational Theories

	3 String Diagrams as Graphs
	4 Categories of String Diagrams
	4.1 Fewer Structural Laws
	4.2 More Structural Laws

	5 Semantics
	5.1 From Syntax to Semantics, Functorially
	5.2 Soundness and Completeness
	5.3 Examples

	6 Other Trends in String Diagram Theory
	6.1 Rewriting
	6.2 Higher-Dimensional Diagrams
	6.3 Inequalities
	6.4 Relationship with Proof Nets
	6.5 Software

	7 String Diagrams in Science: Some Applications

	Appendix: Category Theory: The Bare Minimum
	References
	Acknowledgements

