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Abstract. A module M is called a CS-module or an extending module if every
submodule is essential in a direct summand of M. A ring R is called a right CS-ring
or a right extending ring if RR is a CS-module. For several types of right CS-rings it
is known that either all right ideals or some large class of right ideals inherit the CS
property. For example, by a result of Dung-Smith or Vanaja-Purav, a ring R is
(right and left) Artinian, serial, and J�R�2 � 0 if and only if every R-module is CS. In
particular, if R is a QF-ring and J�R�2 � 0 (hence R is serial), then every R-module is
CS. However we exhibit a ®nite, serial, strongly bounded QF group algebra R with
J�R�3 � 0 for which there is a principal right ideal which is a right essential extension
of a CS-module and essential in RR but not CS itself.

1991 Mathematics Subject Classi®cation. Primary 16D80; secondary 16D50.

Throughout this paper R will denote an associative ring with unity, J�R� is its
Jacobson radical, and all modules will be unital right R-modules (unless otherwise
indicated). A submodule N of a module M is called a closed submodule if there is no
proper essential extension of N inside M. A module M is called a CS-module or an
extending module if every submodule of M is essential in a direct summand of M.
Thus a module M is CS if and only if every closed submodule of M is a direct
summand of M. The class of CS-modules includes all injective modules, all quasi-
continuous modules, and all uniform modules. A ring R is called right (resp. left) CS
or extending if RR (resp. RR) is CS or extending. The usefulness of the CS concept is
well documented in [10] or more recently [3].

A module is called uniserial if it has a unique composition series of ®nite length.
A ring R is called right (resp. left) serial if RR (resp. RR) is a ®nite direct sum of
uniserial right (resp. left) ideals. A ring R is called serial if it is both right and left serial.

Recall that a ring R is called quasi-Frobenius (or simply QF) if R is right or left
Artinian and right or left self-injective. For a QF-ring R, it is well known that the
right socle, Soc(RR), of R is equal to the left socle, Soc�RR�, of R. Without ambi-
guity, when R is a QF-ring, we simply denote the right or left socle of R by Soc�R�.
Also note that if a ring R is QF, then `�J�R�� � r�J�R�� � Soc�R� and
`�Soc�R�� � r�Soc�R�� � J�R�, where J�R�; `�ÿ�, and r�ÿ� are the Jacobson radical
of R, the left annihilator, and the right annihilator, respectively.
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A ring R is called strongly right (resp. left) bounded if every nonzero right (resp.
left) ideal of R contains a nonzero ideal. A ring R is called strongly bounded if R
is both strongly right and strongly left bounded. Observe that if R is strongly right
bounded then every nonzero right ideal of R is an essential extension of an ideal
of R.

Unfortunately, the class of CS-modules is somewhat pathological in that it is
not closed under homomorphic images, ®nite direct sums, or extensions. We shall
show that this pathology extends to closure with respect to submodules. When
investigating a class K of modules it is natural to ask: for M 2 K under what con-
ditions are the submodules (or some distinguished set of submodules) of M also in
K? In particular, we ask: if RR is CS, when are all right ideals (or some distinguished
set of right ideals) of R also CS? The following results provide some answers to this
question.

(1) [3, p.134]. If RR is nonsingular and (®nitely, countably) �-extending, then
every (®nitely, countably generated) right ideal is CS.

(2) [4, 13]. Every module is CS if and only if R is (right and left) Artinian, serial,
and J�R�2 � 0. From [6, 25.4.3], if R is a QF-ring with J�R�2 � 0, then R is serial.
Thus in this case every R-module is CS.

(3) [1, Corollaries 1.3 and 2.2]. Let RR be CS. We have the following:
(i) every ideal is CS;
(ii) if every idempotent is central, then every right ideal is CS;
(iii) if RR is nonsingular, then every principal right ideal is CS.

A serial QF-ring R with J�R� 6� 0 can arguably be considered a quintessential
example of a CS-module which is not nonsingular. Observe that a QF-ring is �-
injective and �-extending [3, p.95 and p.170]. From the above results one would
expect that the CS condition will be inherited by a large class of right ideals of a
serial QF-ring. In particular, in light of (1), (2), and (3), one could reasonably con-
jecture that if R is a stongly bounded, PI, serial QF-ring with J�R�3 � 0, then every
principal right ideal is CS. Surprisingly, this is not the case as is illustrated in the
following example of a ®nite group algebra.

Not only is the choice of this group algebra counterintuitive but the calculations
involve a degree of judgement (e.g., in Step 3 of Claim 4 there are three choices for
the appropriate injective hull of �2� ��R \ �1� � � ��R in the group algebra R).

Example. We consider the group algebra R � Z3�S3� of the symmetric group
S3 on three symbols f1; 2; 3g over the ®eld Z3 of three elements. Denote � � �123�
and � � �12� in S3.

Note that the ring R is right self-injective by [11, Theorem 2.8, p.79] and so R is
QF. Since R is a ®nite ring, it is a PI-ring. We shall show that R is serial, strongly
bounded, and J�R�3 � 0 such that there exists a principal right ideal of R that is a right
essential extension of a CS-module and it is essential in RR, but it is not CS itself.

Claim 1. J�R�3 � 0 and R is strongly bounded.

Proof. By [11, Exercise 8, p.106] J�R� is !�Z3�N��R, where
!�Z3�N�� � fa� b� � c�2 j a� b� c � 0; a; b; c 2 Z3g;
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which is the augmentation ideal of Z3�N� and N �< � >. Thus by direct calculation
J�R� � �2� ��R, which is

fa0 � a1� � 2�a0 � a1��2 � b0� � b1�� � 2�b0 � b1��2� j a0; a1; b0; b1 2 Z3g:

Hence it can be easily checked that J�R�3 � 0.
The vector space dimension of J�R� over the ®eld Z3 is four, and so the vector

space dimension of R=J�R� over Z3 is two. Therefore the number of elements of the
ring R=J�R� is nine. Since R is QF, the ring R=J�R� is semisimple Artinian. Note that
the ring R is not a local ring because there is a nontrivial idempotent in R, for
example 2� �. Hence, by Wedderburn-Artin, R=J�R� � Z3

L
Z3 as rings. Thus R is

basic. Now, by [7, Theorem 1.7B], R is a strongly bounded ring.
According to [2, De®nition 7.11, p.480], recall that an algebra A over a ®eld F is

called a separable algebra over F if A
N

F H is a semisimple algebra over H, for every
extension ®eld H of F. Following [12], for a prime number p, recall that a group is
called p-solvable if each of its composition factors is either a p-group or has order
prime to p.

Claim 2. R is a serial ring.

Proof. Now in our situation, since R=J�R� � Z3

L
Z3, it follows that the Z3-

algebra R=J�R� is separable over the ®eld Z3. Let Z3 be the algebraic closure of the
®eld Z3. Then the group ring Z3�S3� � Z3

N
Z3
R is serial by [12, Theorem 3] because

the group S3 is 3-solvable with a 3-Sylow subgroup. Since R=J�R� is separable over
Z3, the ring R is serial by [5, Theorem 4.1].

Remark 3. Explicitly, by direct calculation, �2� ��R has the unique composi-
tion series

0 �-- Soc��2� ��R� �-- �2� ��R \ �1� � � ��R �-- �2� ��R
and also �2� 2��R has the unique composition series

0 �-- Soc��2� 2��R� �-- �2� 2��R \ �1� � � ��R �-- �2� 2��R:

Thus R � �2� ��RL�2� 2��R is right serial. Similarly, R � R�2� ��LR�2� 2��
is left serial. Consequently, R is a serial ring.

Claim 4. There is a principal right ideal of R that is a right essential extension of
a CS-module and essential in RR, but it is not CS itself. In fact, we have that
�1� � � ��R is such a principal right ideal.

Step 1. The right uniform dimension of R is two.

Proof of Step 1. Soc�R� � `�J�R�� � �1� � � �2�R because R is QF. Hence

Soc�R� � fa�1� � � �2� � b�1� � � �2�� j a; b 2 Z3g:

Thus the vector space dimension of Soc�R� over the ®eld Z3 is two. Since R has a
nontrivial idempotent, the right uniform dimension of Soc�R� is greater than one.
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Therefore the right uniform dimension of R is two because Soc�R� is an essential R-
submodule of RR.

Step 2. The form of elements from �2� ��R \ �1� � � ��R is

a� b� � �2a� 2b��2 � 2a� � �a� b��� � 2b�2�;

for some a; b 2 Z3.

Proof of Step 2. Note that

�1� � � ��R � f�a0 � a2 � b0� � �a0 � a1 � b2�� � �a1 � a2 � b1��2 � �a0 � b0 � b2��
� �a2 � b0 � b1��� � �a1 � b1 � b2��2� j ai; bi 2 Z3; i � 0; 1; 2g

and

�2� ��R � fa� b� � c�2 � 2a� � 2c�� � 2b�2� j a; b; c 2 Z3g:

Direct calculation yields the desired form of elements in �2� ��R \ �1� � � ��R.

Step 3. �2� ��R \ �1� � � ��R has no proper essential extension in �1� � � ��R.
Moreover, �2� ��R \ �1� � � ��R has a unique injective hull in RR.

Proof of Step 3. For our convenience, let f � 2� �. Let K be a maximal essen-
tial extension of fR \ �1� � � ��R in �1� � � ��R. Then there is an injective hull
E�fR \ �1� � � ��R� � gR of fR \ �1� � � ��R with g � g2 2 R such that K � gR
and so K � gR \ �1� � � ��R. Since fR \ �1� � � ��R is essential in
gR \ �1� � � ��R, it follows that K � gR \ �1� � � ��R. Furthermore since gR is
an injective hull of fR \ �1� � � ��R, we have that fR � gR.

Since fR \ �1� � � ��R is essential in K and �fR \ �1� � � ��R� \ �1ÿ f�R � 0,
it follows that K \ �1ÿ f�R � 0. Also since K is essential in gR and K \ �1ÿ f�R � 0,
we have that gR \ �1ÿ f�R � 0. Since gR \ �1ÿ f�R � 0 and, by Step 1, the right
uniform dimension of R is two, it follows that R � gR

L�1ÿ f�R. We claim that

R � gR
M
�1ÿ f�R;

where R � R=J�R�. Obviously R � gR� �1ÿ f�R. Now if gR \ �1ÿ f�R 6� 0, then,
since R � Z3

L
Z3, gR \ �1ÿ f�R is a minimal ideal of R. If the uniform dimension

of gR is two, then gR � R and so g is invertible and hence g is invertible in R, which
is a contradiction. Thus the uniform dimension of gR is one, and so gR is a minimal
right ideal of R. Thus gR \ �1ÿ f�R � 0, so that

R � gR
M
�1ÿ f�R � f R

M
�1ÿ f�R:

Since R is commutative, gf is an idempotent. If gf � 0, then gR � �1ÿ f�R. Thus
gf 6� 0. Also gfR � f R and gfR � gR. But both f R and gR have the vector space
dimension one over Z3. Thus f R � gfR � gR: Consequently, since R is commu-
tative, f � g and so g � f� 
, for some 
 2 J�R� � �2� ��R.

Therefore in the proof of Claim 1,
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 � a0 � a1� � 2�a0 � a1��2 � b0� � b1�� � 2�b0 � b1��2�;

for some ai; bi 2 Z3; i � 0; 1; hence we have

g � �2� a0� � a1� � 2�a0 � a1��2 � �1� b0�� � b1�� � 2�b0 � b1��2�:

We now compute the coe�cients of g2 and compare them with those of g.

(i) The coe�cient of 1 in g2 is

�2� a0�2 � 2a1�a0 � a1� � 2�a0 � a1�a1 � �1� b0�2 � b21 � 4�b0 � b1�2;

which is equal to 2� a0. Thus we have the relation

a20 � a0a1 � a21 � 2b20 � 2b0b1 � 2b21 � 2b0 � 0:

(ii) The coe�cient of � in g2 is

�2� a0��1� b0� � 2a1�b0 � b1� � 2�a0 � a1�b1
� �1� b0��2� a0� � a1b1 � 4�a0 � a1��b0 � b1�;

which is equal to 1� b0. It follows that 2a0 � 0 and so a0 � 0.

(iii) The coe�cient of �� in g2 is

�2� a0�b1 � a1�1� b0� � 4�a0 � a1��b0 � b1�
� 2�b0 � b1��a0 � a1� � b1�2� a0� � 2�b0 � b1�a1;

which is equal to b1. Thus a0 � 2a1 � 0. Since a0 � 0, we have that a1 � 0.
From (i), (ii) and (iii), it follows that 2b20 � 2b0b1 � 2b21 � 2b0 � 0, and so

b20 � b0b1 � b21 � b0 � 0:

Thus there are only three possibilities for b0 and b1: b0 � b1 � 0; b0 � 2; b1 � 0; and
b0 � 2; b1 � 1. Therefore g � f; g � 2� �� or g � 2� �2�. Hence all candidates for
maximal essential extensions of �2� ��R \ �1� � � ��R in �1� � � ��R are
�2� ��R \ �1� � � ��R; �2� ���R \ �1� � � ��R, and �2� �2��R \ �1� � � ��R.

Note that 1� 2� � 2� � �2� � �2� ���2� �� � �1� � � ���1� � � 2�2 � ��,
and so we have 1� 2� � 2� � �2� 2 �2� ��R \ �1� � � ��R. However
1� 2� � 2� � �2� 62 �2� ���R and 1� 2� � 2� � �2� 62 �2� �2��R. Therefore it
follows that �2� ��R \ �1� � � ��R �= �2� ���R and �2� ��R \ �1� � � ��R
�= �2� �2��R. Consequently, �2� ��R \ �1� � � ��R is a closed submodule in
�1� � � ��R. Also �2� ��R is the unique injective hull of �2� ��R \ �1� � � ��R in
RR.

Step 4. �1� � � ��R is not CS as a right R-module.

Proof of Step 4. Assume to the contrary that �1� � � ��R is CS as a right R-
module. Then, since �2� ��R \ �1� � � ��R is a closed submodule in �1� � � ��R
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by Step 3, it is a direct summand of �1� � � ��R; and so we have a projection �
from �1� � � ��R onto �2� ��R \ �1� � � ��R. Since R is right self-injective,
there is an R-homomorphism � from R to R that extends the R-homomorphism
i � �, where i is the inclusion from �2� ��R \ �1� � � ��R to R. Hence
�i � �� �1� � � �� � � �1� � � �� � � �1� � � �� � � �1� �1� � � �� � x0 �1� � � ��,
where x0 � ��1� 2 R. Thus we have in this case

x0�1� � � �� 2 �2� ��R \ �1� � � ��R:

Say x0 � a0 � a1� � a2�
2 � b0� � b1�� � b2�

2�, for some ai; bi 2 Z3 for
i � 0; 1; 2. Then �a0 � a1� � a2�

2 � b0� � b1�� � b2�
2���1� � � ��

� � a0 � a2 � b0 � � � a0 � a1 � b1 �� � � a1 � a2 � b2 ��2 � � a0 � b0 � b1 ��
��a1 � b1 � b2��� � �a2 � b0 � b2� �2� is in �2� ��R \ �1� � � ��R. Since

�2� ��R \ �1� � � ��R �fa� b� � �2a� 2b��2� 2a� � �a� b��� � 2b�2� ja; b 2 Z3g

by Step 2, we have that

a0 � a2 � b0 � a;
a0 � a1 � b1 � b;

a1 � a2 � b2 � 2a� 2b
�1�

and

a0 � b0 � b1 � 2a;
a1 � b1 � b2 � a� b;
a2 � b0 � b2 � 2b;

�2�

for some a; b 2 Z3.
From the equations a0 � b0 � b1 � 2a, a1 � b1 � b2 � a� b, and

a2 � b0 � b2 � 2b in (2), we have a0 � 2a� 2b0 � 2b1; a1 � a� b� 2b1 � 2b2, and
a2 � 2b� 2b0 � 2b2, respectively. By substituting these equations into (1), we get
that 2b0 � 2b1 � 2b2 � 2a� b; b0 � b1 � b2 � 0, and 2b0 � 2b1 � 2b2 � a� 2b.
Thus we have that a� 2b � 0, or equivalently, a � b. Therefore, it follows that

x0�1� � � �� � a� a� � a�2 � 2a� � 2a�� � 2a�2� � a�1� � � �2� � 2a�1� � � �2��

and so it is in �1� � � �2�R. Thus ��1� � � �� 2 �1� � � �2�R, and hence

�2� ��R \ �1� � � ��R � ��1� � � ��R � �1� � � �2�R:

Finally as we previously noted, 1� 2� � 2� � �2� 2 �2� ��R \ �1� � � ��R.
However 1 � 2� � 2� � �2� 62 �1 � � � �2�R, and so we have a contradiction.
Consequently, �1� � � ��R is not CS as a right R-module.

Step 5. There exists an ideal I of R such that I is right CS and right essential in
�1� � � ��R and �1� � � ��R is essential in RR.

Proof of Step 5. By Claim 1, since R is strongly bounded, there exsits an ideal I
of R such that I � �1� � � ��R and I is right essential in �1� � � ��R. In this
situation, since RR is CS, I is CS by [1, Corollary 1.3 (ii)]. Since
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Soc��2� ��R�LSoc��2� 2��R� � �1� � � ��R by Remark 3 and the right uniform
dimension of R is two by Step 1, the uniform dimension of �1� � � ��R is two.
Hence �1� � � ��R is essential in RR.

Remark 5. It is well known that an Artinian CS-module is a ®nite direct sum of
uniform modules. But, in the proof of Example, we can show that the converse does
not hold even for a ®nite QF-ring. Since 2� �2� 2 �1� � � ��R and 2� �2� is an
idempotent, �1� � � ��R � �2� �2��RLY, for some submodule Y of �1� � � ��R.
Since �2� �2��R is injective and uniform, and by Steps 1 and 5 of Claim 4 the uni-
form dimension of �1� � � ��R is two, it follows that Y is also uniform. Hence the
direct sum of two Artinian uniform modules is not necessarily CS. For more on
®nite direct sums of CS-modules, see [8]. However in [9] it was proved that if R is a
QF-ring which is serial with J�R�3 � 0, then every right R-module is a direct sum of
a projective module and a CS-module. It follows that every principal right ideal of
Z3�S3� is a direct sum of an injective module and a CS-module.
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