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The nonlinear disturbance caused by either a localised pressure distribution moving at
constant speed on the free surface of a liquid of finite depth or a flow over a topographic
obstacle, is investigated using (i) the weakly nonlinear forced Kadomtsev–Petviashvili
equation which is valid for depth-based Froude numbers near unity and (ii) the fully
nonlinear free-surface Euler system. The presence of a steady v-shaped Kelvin wave
pattern downstream of the forcing is established for this model equation, and the wedge
angle is characterised as a function of the depth-based Froude number. Inspired by this
analysis, it is shown that the wake can be eliminated via a careful choice of the forcing
distribution and that, significantly, the corresponding nonlinear wave-free solution is stable
so that it could potentially be seen in a physical experiment. The stability is demonstrated
via the numerical solution of an initial value problem for both the model equation and the
fully nonlinear Euler system in which the steady wave-free state is attained in the long-time
limit.
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1. Introduction
The study of the wake produced by either a moving body on the surface of water
or for flow over a topographic obstacle is a classical problem in fluid dynamics. The
observed v-shaped wake pattern is a rare example of a fluid dynamics phenomenon that
is well known to everyone. Attempting to minimise or even eliminate the Kelvin wake
presents an important problem since in many applications its presence leads to undesirable
consequences. For example, it can cause erosion to waterways and river banks (e.g. Bishop
2004), and the wave drag it produces limits the fuel efficiency of boats and ships (Havelock
1908a).
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The mathematical description of the three-dimensional Kelvin wake has been well
known for over a century (Kelvin 1887). Typically, a moving body such as a ship is repre-
sented by a pressure disturbance that propagates over the fluid surface. The angle subtend-
ed by the characteristic v-shape bounding the linear surface disturbance is usually referred
to as the Kelvin wedge angle and is herein denoted by θk . Another way to measure the
wake angle is to measure when the amplitude of the wave peaks reach a certain percentile
of the highest wave Darmon, Benzaquen & Raphaël (2014), Pethiyagoda et al. (2021) or
by fitting a line to the peaks of the highest downstream waves (Pethiyagoda, McCue &
Moroney 2014; Miao & Liu 2015; Pethiyagoda et al. 2021); both of these methods are
used to calculate a so-called ‘apparent’ wake angle, which we emphasise differs from θk .

In deep water θk can be found using a linear simplification of the full Euler system on
the assumption that the disturbance to the surface is small. Treating the external moving-
pressure distribution as a point disturbance leads to Kelvin’s famous result that, in a fluid
of infinite depth, tan2 θk = 1/8 yielding θk ≈ 19.47◦, which is independent of the speed
of the moving-pressure distribution (see, for example, Whitham 1974). Rabaud & Moisy
(2013) worked with a Froude number based on the hull length L , and excluded waves
with wavenumbers smaller than a threshold value, reflecting the fact that a ship of length
L cannot excite waves of wavelength much larger than L . Later, Noblesse et al. (2014)
allowed for interference between the bow and stern of a ship and demonstrated that the
apparent wake angle can be smaller than 19.47◦. In shallow water θk also depends on
the flow speed and water depth (Havelock 1908b) and is characterised by a depth-based
Froude number, Fr , to be defined in (2.4). Herein, unless otherwise explicitly stated, when
we refer to the Froude number we mean the depth-based Froude number defined in (2.4).

Despite the ubiquity of the Kelvin wake phenomenon and the large number of research
articles that have been devoted to it, it remains a topic of considerable scientific interest.
Concentrating initially on linear theory, the so-called ‘wave-drag coefficient’ (Havelock
1908a,b; Pedersen 1988; Li & Ellingsen 2016) can be used to quantify the resistance
induced by the wake of a moving-pressure distribution in finite depth. In finite depth, the
wave pattern induced by mono-hulls and catamarans has been characterised by models us-
ing point sources as surface pressure distributions (Zhu et al. 2015, 2016) and Hogner ship
theory (Zhu et al. 2018). There has also been work done to quantify the ‘apparent’ wake
angle for an arbitrary pressure distribution in infinite depth (Miao & Liu 2015). In none of
these studies did the wave pattern completely disappear for any choice of external forcing.

Theoretical progress has also been made for slow-moving boats in infinite depth
assuming the Froude number is small. Somewhat surprisingly, an asymptotic solution of
the two-dimensional Euler system, which utilises expansions in powers of the hull-based
Froude number, produces no waves at each order of approximation. This apparent paradox
can be resolved by resorting to ‘beyond-all-orders’ asymptotics, and in this context, it
can be shown that there are waves present downstream that are exponentially small in the
Froude number (Trinh, Chapman & Vanden-Broeck 2011; Trinh & Chapman 2014). For
the two-dimensional problem, Trinh et al. (2011) showed that downstream waves cannot
be eliminated for a single-cornered ship. However, Trinh & Chapman (2014) were not able
to make such a conclusive statement for more general piecewise-linear hulls and they
did not discount the possibility of wave-free solutions. Lustri & Chapman (2013) and
Pethiyagoda et al. (2021) considered the linear three-dimensional problem for infinite-
depth flow over submerged sources and moving-pressure distributions and characterised
the ‘apparent’ angle in terms of the system parameters.

In contrast, the fully nonlinear problem has received far less attention in the literature.
From a computational perspective, recently, Pethyagoda et al. (2014, 2015) and Buttle
et al. (2018) used a numerical boundary-integral approach coupled with Newton–Krylov
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and pre-conditioning techniques to solve the fully nonlinear Euler system for inviscid,
irrotational flow (hereinafter referred to as the Euler system) in order to capture efficiently
the steady wave patterns behind a moving object, and provided important insight into
the nonlinear wave drag. Significantly, in infinite depth, Pethiyagoda et al. (2014, 2015)
showed that as the flow speed and forcing pressure amplitude are increased, nonlinearity,
via the amplitude of the external forcing, alters the ‘apparent’ wake angle and therefore
the physical extent of the wavy region. More recently, nonlinear wake patterns have been
computed in finite depth by Buttle et al. (2018), where it was demonstrated that, whilst the
linear downstream wave patterns are identical for the moving-pressure problem and the
topographic-obstacle problem, the nonlinear wave patterns are different.

The theoretical literature on the fully nonlinear problem is sparse. However, recently,
as a first step towards examining the Euler system, Kataoka & Akylas (2023) showed
how an exponential asymptotics approach may be used for smooth boat hulls in the
context of a model equation. Examining smooth hulls is important as they can be used
to model the bulbous hull shapes that are known to minimise wave drag (see, for example,
Grosenbaugh & Yeung 1989). However, modelling smooth bodies moving at arbitrary
speeds using the Euler system remains an open challenge.

In this paper, we work towards the goal of eliminating the Kelvin wake behind a moving
body in a real flow by studying (i) the simplified model Kadomtsev–Petviashvili equation
with a localised forcing term, originally derived by Katsis & Akylas (1987), and it is
hereinafter referred to as fKP and (ii) the fully nonlinear Euler system with either a
moving-pressure distribution on the surface or a topographic obstacle on the bottom. In the
fKP model, we demonstrate that a generic forcing produces a trailing wave pattern similar
to that found for the Euler system with a v-shaped wake whose angle we characterise as a
function of the Froude number. This includes the critical case Fr = 1 covered by Katsis &
Akylas (1987), which showed that the wake fills the entire region behind the disturbance
for this flow speed.

Furthermore, we use a simple mathematical argument to show that, for the fKP system, it
is possible to eliminate the wake. By a judicious choice of forcing function, we construct
exact solutions for the fKP model and numerical solutions for the fully nonlinear Euler
system for which the disturbance to the water surface is localised around the forcing so
that the surface is undisturbed in all directions into the far field. We refer to such solutions
as wave-free solutions. Strikingly, we provide evidence that the wave-free solutions are
stable, meaning that they are reached in the long-time limit of an initial-value problem
(IVP), leading to the possibility of observing them in a physical experiment.

We proceed as follows. In § 2 we describe the problem statement including the fully
nonlinear Euler system and the fKP equation and boundary conditions. Then in § 3, we
characterise the v-shaped Kelvin wake pattern that emerges for a generic choice of forcing
function in the fKP model. In § 4 we discuss how to construct a wave-free steady state for
the fKP model and the fully nonlinear Euler system in the presence of a suitably chosen
localised forcing. In § 5 we formulate and solve numerically an IVP for the fKP model and
fully nonlinear Euler system, to show that the wave-free states are stable. Finally, in § 6 we
present our findings and highlight future directions for study.

2. Problem formulation
Before discussing our results we first describe the governing equations; first, the fully
nonlinear Euler system and then the fKP model equation. We also illustrate how the
dispersion relation for the model fKP agrees with the fully nonlinear Euler system.
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2.1. The fully nonlinear Euler system
The fully nonlinear free-surface Euler equations in finite depth are derived from the
Navier–Stokes equations under the assumptions of incompressibility, irrotationality and
zero viscosity. In figure 1 we show the physical (dimensional) domain and the labelling of
the domain and boundaries. To arrive at our non-dimensional system we scale all lengths
by the depth of the fluid, H , all velocities by the speed of the incoming uniform flow,
U , and time is scaled by H/U . If we define x = [x, y]T, then the fully nonlinear set
of equations for the non-dimensionalised velocity potential φ(x, y, z) and free-surface
r = [x, y, z f (x)]T are therefore

∇2φ = 0, x ∈R
2, 0< z < z f (x), (2.1)

r t · n1 = ∇φ · n1, on z = z f (x), (2.2)

φt + 1
2
|∇φ|2 + 1

Fr2 z f + σpress(x)= 1
2

+ 1
Fr2 , on z = z f (x), (2.3)

where σpress(x) is an imposed pressure distribution on z = z f (x) and n1 is the outwards-
pointing unit normal at the free surface and the depth-based Froude number is defined as

Fr = U√
gH

, (2.4)

with U and H are the undisturbed physical flow speed and channel height far upstream
and g is the gravitational constant (see, for example, Lannes 2013). To close the system we
impose

φ→ x, z f → 1, as x → −∞, and y → ±∞, (2.5)

and on the bottom we impose a no-penetration condition

∇φ · n0 = 0, on z = σtopog(x), (2.6)

where σtopog(x) is the shape of the topographic distribution and n0 is the outwards-
pointing unit normal on the bottom. Furthermore, we define the perturbation to the free
surface from its undisturbed upstream height as

η f (x)= z f (x)− 1. (2.7)

The nonlinear system described by (2.1)–(2.6) is what shall be referred to as the fully
nonlinear Euler system. In what follows we shall refer to (i) the ‘moving-pressure problem’
which only considers the surface pressure and so σtopog = 0 or (ii) the ‘topographic-
obstacle problem’ which only considers an obstacle over an underlying uniform stream
and so σpress = 0. In both scenarios, we work in a fixed reference frame in which the
forcing is stationary and the Bernoulli constant in (2.3) is 1/2 + 1/Fr2.

2.2. The weakly nonlinear model
As derived in the context of water waves the fKP is a partial differential equation (PDE)
for the height of the free surface, denoted η(x, t), in terms of an external forcing profile,
σ(x) that either represents a surface pressure distribution, σp (Katsis & Akylas 1987), or
the shape of a topographic obstacle, σt (Keeler 2014). It is derived from (2.1)–(2.6) under
the assumptions of (i) shallow water, (ii) small forcing amplitude, (iii) weak y-dependence
and (iv) Fr ≈ 1 (see, for example, Lannes 2013, for mathematically rigorous statements
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Figure 1. A sketch of the physical (dimensional) domain and labelling of the domain and boundaries.
The (a) panel shows the topographic-obstacle problem, the (b) panel shows the moving-pressure problem and
the (c) panel shows a plan view of the free surface to demonstrate the boundary labelling. Here, Ω is the fluid
domain, Γ0 is the bottom topography, Γ2 is the free surface, Γ1/Γ3 are the downstream/upstream faces of the
boundary respectively and Γ4 and Γ5 are the two lateral faces of the boundary.

on the validity of this model). Therefore, in contrast to the small-Fr literature stated in the
introduction, our focus is on moderate and fast flow speeds. The equation is

(
ηt + (Fr − 1)ηx − 3

2
ηηx − 1

6
ηxxx − 1

2
σx

)
x
− 1

2
ηyy = 0, x, y ∈R, (2.8)
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where the subscripts indicate partial derivatives. Far upstream of the forcing, we impose
the boundary conditions

η, ηx , ηxx , ηxxx → 0, as x → −∞, (2.9)

ηy → 0, as y → ±∞, (2.10)

in accordance with (2.5). We note that (2.8) is valid in the context of no/weak surface
tension, and is a modification of the Kadomtsev–Petviashvili II equation (the KPI equation
has the opposite sign on the fourth derivative and is for strong surface tension).

It is worth making the link between the fKP model and the fully nonlinear Euler
system explicit by examining the linear far-field wave behaviour in the absence of forcing.
Substituting φ = x + ε exp(i(ωt − k · x) and z f = 1 + ε exp(i(ωt − k · x)), with ε	 1
and k = [kx , ky]T in (2.1)–(2.6) and truncating the system at O(ε) gives the linear
dispersion relation of the Euler system in finite depth with an underlying uniform flow.
We can also derive a linear dispersion relation for the fKP model (2.8) by assuming σ = 0
and neglecting nonlinear terms. Written together, these are

ωEuler (k)= kx − 1
Fr

(|k| tanh |k|)1/2 , (2.11)

ωfKP(k)= (Fr − 1)kx − 1
2

k2
y

kx
+ 1

6
k3

x . (2.12)

By insisting that (i) Fr is close to unity and the waves are (ii) long wavelength, (iii) act on
a long time scale and (iv) extend weakly in the transverse direction, it can be deduced that
on writing, for constant μ,

kx 
→μkx , ky 
→μ2ky, ω 
→μ3ω, Fr 
→ 1 +μ2λ, (2.13)

and assuming that μ	 1, then ωEuler becomes

ωEuler (k)= λkx − 1
2

k2
y

kx
+ 1

6
k3

x + O(μ2). (2.14)

Evidently, at leading order, (2.14) precisely coincides with the dispersion relation of the
fKP in (2.12) once the scalings in (2.13) have been reversed.

In the analysis that follows, we will construct a mixture of exact nonlinear steady
solutions to (2.8) and numerical steady/unsteady solutions to (2.8) and (2.1)–(2.6). The
numerical solutions in both the fKP system and Euler system are found using a finite-
element discretisation of the weak form of these systems, as described in Appendix A1).
The discretisation of the weak form of the Euler system is discussed in considerable detail
in Keeler & Blyth (2024) for the two-dimensional problem; indeed, an attractive feature
of this novel numerical framework is that the extension of the problem from two to three
spatial dimensions is as trivial as changing a ‘2’ to a ‘3’ in a significant majority of the
code.

Finally, it is worth re-emphasising that, in the calculations that follow, we label nonlinear
solutions to the fKP equation by η(x, t) and the perturbed free surface in the fully
nonlinear system by η f (x, t), see (2.7). We will also use a subscript 
 to denote a linear
steady solution in either system.

3. Preliminary analysis: weakly nonlinear steady Kelvin wake patterns
Before we demonstrate how we construct wave-free solutions, it is instructive to
characterise the v-shaped Kelvin wake pattern using the weakly nonlinear fKP model, and
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in particular the wedge angle, for a generically chosen external forcing in terms of the flow
speed, characterised by the depth-based Froude number, Fr . The procedure we follow is
well known for the linearised Euler system (see, for example, Havelock 1908a,b; Miao &
Liu 2015) and has recently been reconstructed for a different model PDE by Kataoka &
Akylas (2023) that models pressure distributions in infinite depth.

We emphasise that we were unable to find any explicit analysis for the Kelvin wedge
angle in (2.8) in the literature, but note the linear analysis of Katsis & Akylas (1987);
restricted to critical flow, Fr = 1, and a time-dependent response with no explicit
determination of the Kelvin wedge angle as a function of Fr . Furthermore, this analysis
will reveal simple closed-form expressions for the wedge angle θk as a function of Fr and
motivate how to eliminate the waves in subsequent sections.

To determine the Kelvin wedge angle, we examine linear steady solutions to (2.8) by
assuming η is small

L(η
)= 3σ
,xx , L≡ 6(Fr − 1)∂xx − ∂xxxx − 3∂yy = 0. (3.1)

For convenience, in what follows, η
, σ
 correspond to a linear solution and forcing term
of (3.1), while η, σ correspond to a nonlinear solution and forcing term of (2.8). A primary
advantage of using the fKP model as opposed to the fully nonlinear Euler system is that,
given a linear solution η
 corresponding to a forcing σ
, then a nonlinear steady solution
can be written down exactly as

η(x)= η
(x), σ (x)= σ
(x)− 3
2
η2

(x). (3.2)

We emphasise that, in the fully nonlinear Euler system, we are unable to write down a
simple closed-form expression for the nonlinear solution in this fashion.

Returning to the linear problem, we solve (3.1) using the two-dimensional Fourier
transform, defined as

η̂
(k)=F(η
)≡ 1
2π

∫ ∞

−∞

∫ ∞

−∞
η
(x)exp(−ik · x) dx dy. (3.3)

Introducing a polar coordinate system

x = r [cos θ, sin θ ]T, k = κ[cos ϕ, sin ϕ]T, (3.4)

and letting σ̂
(k)=F(σ ), the steady linear solution to (3.1) can be written in terms of the
inverse Fourier transform as

η
(x)= 1
2π

∫ 2π

0

∫ ∞

0

3σ̂
(k) κ exp(iκr cos(ϕ − θ))

(κ2 − κ2
0 ) cos2 ϕ

dκ dϕ, κ2
0 = 3 tan2 ϕ − 6(Fr − 1)

cos2 ϕ
.

(3.5)
The Kelvin wedge angle can be determined by examining the leading-order asymptotic
behaviour of (3.5) far downstream, as r → ∞, |θ |<π/2. To proceed, the inner
κ-integration can be achieved by extending the domain of integration into the complex
plane, i.e. κ ∈C, and then using Cauchy’s residue theorem. For subcritical and critical
flow, Fr < 1 and Fr = 1, respectively, κ2

0 > 0, and hence there are simple poles at
κ = ±κ0; we only consider the pole at κ = +κ0 as the integration limit in (3.5) is the
positive real line. If Fr > 1, it is possible that κ2

0 < 0 and this will be discussed below.
Great care has to be taken when choosing the path of integration and choice of contour

indentation around the pole κ = +κ0 which lies directly on the path of integration. Indeed,
as remarked in Whitham (1974) for the fully nonlinear Euler system, there is an ambiguity
that stems from the fact that the radiation condition states there cannot be waves upstream.
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A similar problem arises in (3.5), so to remedy this, we follow Whitham (1974) and allow
η
 and σ
 to be weakly time dependent by mapping

η
(x, t) 
→ η
(x)exp(δt), σ
(x, t) 
→ σ
(x)exp(δt), (3.6)

with δ > 0 in (2.8), ignoring the nonlinear term. This mimics the forcing being effectively
zero as t → −∞, and has the effect of altering L(η
) in (3.1) to

L(η
) 
→L(η
)+ 6δη
,x , (3.7)

and it can be shown that, now, the pole gets translated into the upper complex plane to

κ0 
→ κ0 + 3iδ
κ2

0 cos3 ϕ
+ O(δ2). (3.8)

The ambiguity in choosing the orientation of the indentation over the pole is now
redundant. Finally, by taking the limit δ→ 0+, we recover the steady solution to (3.1).

Due to this construction, for cos(ϕ − θ) > 0, we close our path of integration in the
upper half complex κ-plane by adding a quarter-circle arc from the positive real κ axis
to the positive imaginary κ axis and then returning to the origin and the pole will
contribute as r → ∞ (we note that the contribution of the integrand on the imaginary
axis is exponentially small in r ). For cos(ϕ − θ) < 0 the contour gets deformed onto the
negative imaginary axis and the pole does not contribute.

Taking the limit δ→ 0+, the leading-order asymptotic behaviour of the inner integral,
when cos(ϕ − θ) > 0 in (3.5), is simply the residue of the integrand at κ0 and therefore

η
(x)∼ 3
2

i
∫ π/2

−π/2+θ
σ̂
(k0)

cos2 ϕ
exp(i|κ0|r cos(ϕ − θ)) dϕ, as r → ∞, (3.9)

where k0 = |κ0|[cos ϕ, sin ϕ]T is dependent on ϕ only. The limits of integration on the
outer-ϕ integral have changed from (3.5) as the solution is symmetric about θ = 0 so we
only need to consider 0< θ < π , which means that, as cos(ϕ − θ) > 0, −π/2 + θ < ϕ <

π/2. The dominant behaviour of the integral as r → ∞ occurs when the exponent in (3.9)
is stationary, i.e.

∂g

∂ϕ
= 0, where g(ϕ, θ)= κ0 cos(ϕ − θ)≡

√
3(tan2 ϕ − 2(Fr − 1))1/2 cos(ϕ − θ)

cos ϕ
.

(3.10)
The leading-order asymptotic behaviour of (3.9) as r → ∞ is readily obtained using the
stationary-phase formula

η
(x)∼ 3
√
π(i − λ)

4

∑
n

r−1/2 σ̂
(κ0, ϕn)

|g′′(ϕn)|1/2 cos2 ϕn
exp [i|κ0|r cos(ϕn − θ)] + c.c.,

(3.11)
where the sum is over the n permissible solutions, ϕ = ϕn , of (3.10), λ= sgn(g′′(ϕn)) is the
signum function, g′′(ϕn) is the second derivative of g(ϕ) with respect to ϕ, σ̂
(κ0, ϕn)=
σ̂
(k0)|ϕ=ϕn and c.c. stands for complex conjugate. Physically, as can be seen from (3.11),
κ0 characterises the wavenumber of the oscillations.

When Fr �= 1 the solutions satisfy the quadratic equation for tan ϕ,

2 sin θ tan2 ϕ + cos θ tan ϕ − 2(Fr − 1) sin θ = 0. (3.12)

Hence, when Fr < 1, there are two real solutions for ϕ provided that

0< |θ |< θk(Fr), where 16(1 − Fr) tan2 θk = 1. (3.13)
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Figure 2. The left, middle and right columns show results for Fr = 0.5, 1.0 and 2.0, respectively. (a)–(c)
Nonlinear steady solutions of (2.8) for σ(x)= a exp(−x · x) with a = 0.1. The linear Kelvin wedge angle, θk
is indicated as dotted lines. (d)–(f ) The roots of (3.10) in the range −π/2 + θ < ϕ < π/2 as a function of θ for
a general forcing function σ
. (g)–(i) The pole on the real axis, κ0, evaluated at ϕ1,2.

The value of θk(Fr) is interpreted as the Kelvin wedge angle. It is indicated by the dashed
vertical line in figure 2(d) for the case Fr = 0.5. Comparing the value of κ0 at each root,
see figure 2(g), we see that one of the solutions, ϕ1, is short wavelength and corresponds to
a so-called divergent wave (that shall be discussed below) whilst the other solution, ϕ2, is
long wavelength and corresponds to a so-called transverse wave that oscillates on the line
θ = 0, as can be seen in (3.11). For historical context, the divergent/transverse terminology
was first coined in Havelock (1908b). We note the special case of Fr = 1/2, as shown in
figure 2(d),(g), which results in θk = arctan(1/2

√
2)≈ 19.47◦, the classical Kelvin wedge

angle for the linearised Euler system.
When Fr > 1 equation (3.12) has two solutions for any 0< |θ |<π/2. However, for one

of these solutions, ϕ2, we find that κ2
0 < 0 for all 0< |θ |<π/2 and so the pole in (3.5) is

not on the real axis (as δ→ 0) and does not contribute to the far-field wave pattern. For
the other (divergent) solution, ϕ1, the transition from κ2

0 > 0 (pole tending to the real axis)
to κ2

0 < 0 (pole tending to the imaginary axis) occurs when tan2 ϕ = 2(Fr − 1). Inserting
the latter into (3.12) we find that the permissible θ are bounded by the Kelvin wedge angle,
θk and satisfy

0< |θ |< θk(Fr), where 2(Fr − 1) tan2 θk = 1. (3.14)
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Figure 3. Kelvin wedge angle dependence on Fr using (3.13) and (3.14).

Focusing on Fr > 1, a key feature of the divergent wave solution is the presence of a
‘shadow region’ downstream of the forcing where there is minimal surface disturbance,
see figure 2(c), and no surface disturbance at θ = 0. To see this, ϕ1 → −π/2 and κ0 → ∞
as θ → 0, see figure 2(f ,i). Therefore, examining (3.11), for a fixed value of r ; η
 decays to
zero as θ → 0, provided σ̂
(κ0, ϕ1) decays sufficiently quickly as κ0 → ∞. The Gaussian
forcing we choose in the calculations in figure 2(a–c), and discussed below, fulfils this
criterion.

Finally, when Fr = 1 (3.10) has a unique solution, ϕ1, corresponding to a divergent
wave, for any 0< |θ |� π/2 which satisfies

tan ϕ = −1
2 cot θ. (3.15)

Hence, the Kelvin wedge angle is θk = π/2, as was first noted in Katsis & Akylas (1987).
In summary, we have determined the far-field Kelvin wedge angle as a function of Fr for

subcritical and supercritical flows, as stated in (3.13) and (3.14), respectively. The wedge
angle is plotted against Fr in figure 3. We note that θk → π/2 as Fr → 1± and that for
large Fr we have the asymptotic behaviour

θk ∼ (
√

2/2) Fr−1/2 as Fr → ∞. (3.16)

This asymptotic behaviour differs from the linearised Euler system where the dependence
of the θk on the flow speed is well known, most notably reported by Havelock (1908b),
where it was found that the leading-order asymptotic behaviour for Fr � 1 is θk =
asin(Fr−1)∼ Fr−1 (more recently noted by Pethiyagoda et al. (2018)). This discrepancy
can be explained by the fact that the fKP is only valid around Fr ≈ 1.

We can compare the values for θk , obtained from the solution to (3.13) and (3.14), with
the numerically computed nonlinear steady wave patterns, found by solving the steady
form of the fKP (2.8), as shown in figure 2(a–c) for Fr = 0.5, 1.0, 2.0, respectively.
For concreteness, we choose a Gaussian forcing σ(x)= a exp(−x · x) and a = 0.1. The
dashed lines in each panel indicate the Kelvin wedge angle, θk . This theoretically derived
angle shows excellent agreement with the numerically produced nonlinear wave patterns,
giving us confidence in our numerical scheme (see Appendix A1). Furthermore, the wave
patterns are qualitatively the same as the fully nonlinear solutions reported in Buttle et al.
(2018), where transverse waves are present for Fr < 1 but absent when Fr � 1, where
instead a ‘shadow region’ appears.

Although the linear theory for the fully nonlinear Euler system is well established (see,
for example, Havelock 1908b), to our knowledge this is the first time the Kelvin wedge
angle and wave pattern have been calculated explicitly for a range of Fr , in the context of
the fKP equation and is the first main result of this paper. Due to the simplicity of (3.1),
and the fact that we have obtained simple closed-form exact equations for θk as a function
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Figure 4. Comparison between nonlinear steady surface wave patterns of the fully nonlinear Euler system,
η f (x) for a moving-pressure problem, (labelled MP in the top row of each box), topographic-obstacle problem
(labelled TO in the middle row of each box) and the fKP model, η(x) (bottom row in each box) for a range of Fr
and σ = a exp(−x · x). Note that the colour map is different for each panel but the reference values min(η), 0
and max(η) (where applicable) have been labelled on the colour bar for ease of reference. The top box is for
a = 0.001 and the bottom box is for a = 0.1. All figures are plotted in the range x ∈ [−20, 20], y ∈ [−20, 20].

of Fr for subcritical flow, this demonstrates the promising potential of the fKP equation
as a ‘sand-pit’ model to understand nonlinear Kelvin wave patterns.

In figure 4 we show a comparison between the fKP model and the fully nonlinear Euler
system when σ(x)= a exp(−x · x) for small amplitude forcings (a = 0.001, top box) and
large amplitude forcings (a = 0.1, bottom box). The steady wave patterns, η f (x), for the
fully nonlinear Euler system (top row in each box for the moving-pressure problem, middle
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row in each box for the topographic-obstacle problem) show good agreement with the fKP
steady wave patterns, η(x), around Fr = 1. For smaller values of Fr , the fully nonlinear
Euler system appears to exhibit no waves in both the moving-pressure and topographic-
obstacle problems but we would expect these waves to be exponentially small in Fr and
so hard to detect numerically (Pethiyagoda et al. 2021). We remark that the agreement
between the different systems is also good for large amplitude forcings, at least around
Fr = 1.

An important part of the analysis that we emphasise is the importance of the pole, κ0, in
producing waves downstream; if we can eliminate this pole, then there is a possibility that
a wave-free steady state could exist. Since κ0 does not depend on the explicit form of the
forcing term, σ(x), then the forcing does not play a leading role in determining the wave
pattern far downstream. It is often convenient to model σ(x), taking the role as a ‘boat’, as
a Dirac-delta function or Gaussian for a one-point wavemaker (see, for example, Whitham
1974; Katsis & Akylas 1987) or as a dipole modelling a two-point wavemaker (Noblesse
et al. 2014; Miao & Liu 2015). We will now show that, through a judicious choice of σ(x),
corresponding to a localised forcing term, a nonlinear steady wave-free η(x) exists.

4. Wave-free steady solutions

4.1. Weakly nonlinear model
Initially, we concentrate on the linear solution (3.5) to the weakly nonlinear fKP model,
which in Cartesian coordinates (k = [kx , ky]T) can be written as

η
(x)= 1
2π

∫ ∞

−∞

∫ ∞

−∞
3k2

x σ̂
(k)
6(Fr − 1)k2

x + k4
x − 3k2

y
exp(ik · x) dkx dky . (4.1)

As previously stated, the pole in the integrand is responsible for the far-field wave pattern
as x → ∞. Therefore, an obvious choice for σ̂
(k) that eliminates this pole is

σ̂
(k)= 1
3

[
6(Fr − 1)k2

x + k4
x − 3k2

y

]
f̂ (k), (4.2)

where f̂ is the Fourier transform of an arbitrary function, f (x), that is localised in physical
space. In physical space, the linear solution is

η
(x)= 1
2π

∫ ∞

−∞

∫ ∞

−∞
k2

x f̂ (k) exp(ik · x) dkx dky = −( f (x))xx . (4.3)

A simple illustrative example is the choice f̂ (k)= −a π exp(−(1/4)k · k), a ∈R. In this
case, it is straightforward to see from (4.3) that

η
(x)= a (exp(−x · x))xx , (4.4)

which is, crucially, wave free in the far field; thus achieving our goal. Recall that η
 and
σ
 satisfy (3.1) so, in order to satisfy the nonlinear problem (2.8), we simply insert (4.4)
into the relation in (3.2).

As an example, when a = 0.1, Fr = 1.0, the nonlinear solutions η and σ in (3.2) are
shown in figure 5 panels (a), (b) and (c), (d), respectively. This is our second main result of
the paper; we can choose a localised forcing function that results in a nonlinear wave-free,
localised free surface.

The forcing distribution in (3.2) is multi-signed, which is similar to the dipole model
of a monohull used by Noblesse et al. (2014) and for the more arbitrary pressure shapes
chosen in Miao & Liu (2015). Although it is not difficult to determine the solution in (3.2)
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Figure 5. Steady weakly nonlinear wave-free solutions defined in (3.2). Panels (a–b) the nonlinear free
surface, η(x) for a = 0.1, Fr = 1.0. Panels (c–d) the forcing, σ(x).

without resorting to a Fourier analysis, the strategy of eliminating the pole in the linear
system does hint at a possible approach for minimising the waves in the Euler system,
where the nonlinearity is not as straightforward as the quadratic term in (2.8), which is
what we shall discuss in the next section.

4.2. Fully nonlinear system
We now extend the strategy of eliminating the pole of the linear system, as discussed in the
previous section for the fKP equation, to the steady fully nonlinear Euler system described
in (2.1)–(2.6). We perform a ‘Stokes-like’ perturbation expansion and write

φ(x, z)= x + αφ
(x, z)+ · · · , z f (x)= 1 + αη f,
(x)+ · · · , σ (x)= ασ
(x)+ · · · ,
(4.5)

where α	 1 and σ(x) could represent σpress(x) or σtopog(x). We remind the reader
that z f (x)= 1 + αη f,
(x) and z f (x)= 1 + η f (x) now correspond to linear and nonlinear
steady solutions of (2.1)–(2.6), respectively.

4.3. Moving-pressure problem
For the moving-pressure problem the linear solution for η
(x) in (4.5) can formally be
written down using two-dimensional Fourier transforms

η f,
(x)= Fr2

2π

∫ ∞

−∞

∫ ∞

−∞
σ̂
(k)|k| tanh |k|

Fr2k2
x − |k| tanh |k| exp(ik · x) dk. (4.6)

The denominator in (4.6) has poles that are responsible for the Kelvin wake pattern far
downstream of the obstacle. Unlike the linear fKP analysis in § 3, the poles cannot be
written down in a simple-closed form. However, following the same strategy as the fKP
analysis in § 4, an obvious choice of σ̂
(k) that eliminates the pole in (4.6) is

σ̂
(k)= (ikx )
n(iky)

m (Fr2k2
x − |k| tanh |k|)

Fr2|k| tanh |k| a exp(−k · k), (4.7)
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where n,m ∈N and a ∈R. Imposing (4.7) results in a family of linear wave-free
profiles

η f,
(x)= a (exp(−x · x))x (n)y(m) , (4.8)

where x (n) and y(m) represent the n th-x and m th-y derivatives, respectively. Here, we can
choose n = m = 0 and in this sense the wave-free η f,
(x) in the fully nonlinear moving-
pressure problem is less restricted than in the fKP system, where η f,
(x) has to be a second
x-derivative of a localised two-dimensional function, see (4.3).

In contrast to the fKP model, where a nonlinear solution can be written down exactly
(see (3.2)), we are unable to write down a simple exact nonlinear solution to the moving-
pressure problem based on η f,
(x) and σ̂
(k) in (4.8) and (4.7), respectively. We could
go to higher-order α in (4.5) and choose σ̂ (k) at each order judiciously to eliminate the
higher-order poles, but the resulting expressions will become increasingly complicated,
require inversion of a two-dimensional Fourier integral and it is not at all obvious that the
corresponding series solution would be convergent. To avoid this, and inspired by the fact
that the nonlinear free surface is identical to the linear free surface in the fKP analysis (see
(3.2)), we directly determine σpress(x) by solving the nonlinear moving-pressure problem
numerically as a nonlinear inverse problem for σpress(x) given a prescribed wave-free
η f (x), as opposed to the so-called nonlinear forward problem of finding η f (x) given
σpress(x).

We benchmark our results by choosing two different types of η(x) from (4.8)

η f (x)= ηg(x)= a exp(−x · x), η f (x)= ηs(x)= a (exp(−x · x))xx . (4.9)

The corresponding inversely found σpress(x) are shown in figure 6 for η= ηg (top two
rows) and η= ηs (bottom two rows). We make the important observation that these are
all localised in space, hence mimicking a finite ‘boat’. As can be seen from the top two
rows, corresponding to σpress(x) when ηg(x), for small Fr the forcing term has a single
minimum which occurs at the origin, then as Fr increases to unity, two distinct minima
emerge aligned to the x axis. Increasing Fr further results in the two minima being
separated by a maximum. In the bottom row, corresponding to σpress(x) when ηs(x),
the previous description is reversed where instead of maxima there are minima and vice
versa. Notice that for large Fr the shape of σpress(x) for ηg(x) (top two rows) and ηs(x)
(bottom two rows) are similar, except for the opposite sign.

4.4. Topographic-obstacle problem
We now concentrate on the topographic-obstacle problem. Formally, the linear solution to
(2.1)–(2.6) in this case is

η f,
(x)= Fr2

2π

∫ ∞

−∞

∫ ∞

−∞
σ̂topog(k)k2

x sech |k|
Fr2k2

x − |k| tanh |k| exp(ik · x) dkx dky . (4.10)

An important remark is that the denominator of the integrand in (4.10) is identical to that
for the moving-pressure distribution problem in (4.6) and hence the location and strength
of the poles in the complex plane are also identical. However, unlike the moving-pressure
problem, we would not expect to be able to solve the resulting numerical inverse problem
of prescribing the shape of the z f (x) and then solving (2.1)–(2.6) to find σtopog(x), as it
is likely to be ill posed as it is in the two-dimensional problem (Robbins et al. 2023) and
sophisticated optimisation techniques, beyond the present scope of this paper, would be
expected to be required. We emphasise that, for the moving-pressure problem, there is no
numerical evidence that the inverse problem is ill posed.
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Figure 6. Fully nonlinear moving-pressure problem as Fr is varied. Each panel is plotted in the range
x ∈ [−10, 10], y ∈ [−10, 10]. First and second rows: wave-free profile ηg(x) and corresponding σpress(x),
respectively. Third and fourth rows: wave-free profile ηs(x) and corresponding σpress(x), respectively. In both
cases a = 0.01 (see (4.9)).

However, due to the identical denominator, we can still make progress as the same σ
(k)
that eliminates the linear wave pattern in the moving-pressure problem will also eliminate
the linear wave pattern in the topographic-obstacle problem. It is not unreasonable to
expect, therefore, that choosing σtopog(x)= σpress(x) will result in a significant reduction
in the nonlinear wave signature in the forward topographic-obstacle problem. The strategy
is as follows. First, we prescribe η f (x) for the moving-pressure problem and solve the
nonlinear inverse problem for σpress(x). Next, we set σtopog(x)= σpress(x) and solve the
nonlinear forward topographic-obstacle problem for η f (x).

This process is shown in figure 7 for the specific case of η f (x)= ηg(x) in (4.9). As
can be seen in this middle left panel, the wave signature of the nonlinear η f (x) for the
topographic-obstacle problem is present but barely visible. As a trial case to highlight this
minimisation, on the bottom row, we also show η f (x) (bottom-left panel) as a solution to
a forwards problem with σtopog(x)= â exp(−x · x) where â is chosen so that the integral
of σtopog(x) over the domain is identical to the integral of the topography in the middle-
right panel (value in caption). The comparison between the two resulting η f (x) in the
middle- and bottom-left panels is striking. These results are for Fr = 1.2 but similar
results exist for Fr ∈ [0.2, 1.8] that we sampled. We leave the highly non-trivial problem
of inversely finding a localised topographic obstacle given a prescribed free surface as an
open challenge.

4.5. Wave resistance
It is illuminating to briefly discuss the physical implications of wave-free solutions. To
this end, and referring to figure 1, we apply the momentum integral equation for inviscid
flow (e.g. Batchelor 1967) over a control volume confined between the free surface Γ2 the
bottom Γ0 and the four vertical sides Γ1, Γ3, Γ4 and Γ5 that are parallel to the x and y

1013 A10-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
22

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10225


J.S. Keeler, B.J. Binder and M.G. Blyth

10
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Figure 7. Fully nonlinear Euler system when Fr = 1.2. Blue box: top left: η f (x) for the moving-pressure
distribution given by (4.9). Top right: the pressure-distribution, σpress(x) that results in (4.9) when
a = 0.01. Middle right: the prescribed topographic-obstacle σtopog(x)= σpress(x). Middle- = left: the resulting
free surface for σtopog(x). Red box: bottom right: Gaussian topographic obstacle with â = 0.001653 chosen so
it has identical mass to σtopog(x). Bottom left: free-surface response for the Gaussian topography.

axes. Taking the component in the horizontal direction, we obtain

F =
∫∫

Γ1

(p + ρu2) dS −
∫∫

Γ3

(p + ρu2) dS +
∫∫

Γ4

v(ρu) dS +
∫∫

Γ5

(−v)(ρu) dS,

(4.11)
where (u, v)= (φx , φy). The first two terms on the right-hand side represent the flux of
total horizontal momentum (e.g. Lighthill 1978) through the downstream and upstream
faces, Γ1 and Γ3, respectively, and the second two terms on the right-hand side represent
the flux of horizontal momentum out of the lateral faces Γ4 and Γ5. On the left-hand side

F = i ·
∫∫

Γ2

p ∇η d S or − i ·
∫∫

Γ0

p ∇σ d S, (4.12)

represents either the external pressure force acting on the free surface or the force imposed
by the topography on the fluid (or a combination of both). In the former case F coincides
with the wave resistance defined by Havelock (1917). We interpret (4.11) as meaning
that the total external force exerted on the fluid, either by the surface pressure or by the
topography, is equal to the net transport of horizontal momentum out through the side
faces. In the case of our special topography which localises the surface disturbance, if
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Figure 8. Nonlinear KP time-dependent solution, η(x, t), of (2.8), x ∈ [−10, 30], y ∈ [−20, 20], starting from
(5.1) with forcing in (4.4), Fr = 1.0, a = 0.1.The corresponding animation is shown in movie_3.mp4 in the
supplementary material.

the control volume is sufficiently large the right-hand side of (4.11) vanishes so that no
net momentum is imparted to the surrounding fluid. Then F = 0 and the wave resistance
is zero, meaning that a ‘boat’ represented by the moving pressure experiences zero wave
drag, or the topography exerts a vanishing net force upon the fluid.

5. Stability of nonlinear wave-free steady solutions
We now examine the stability of the wave-free steady solutions in the previous section by
solving a suite of IVPs. First, we investigate the time-dependent fKP in (2.8) and then the
time-dependent fully nonlinear Euler system in (2.1)–(2.6).

5.1. The fKP model equation
We choose the initial condition

η(x, t = 0)= 0, (5.1)

which represents a flat free surface. To benchmark our results, initially, we solve the
IVP with a Gaussian forcing function, σ(x)= a exp(−x · x) and a dipole forcing σ(x)=
a [exp(−x · x)]xx (a = 0.001) and confirm that the weakly nonlinear system evolves
towards a steady weakly nonlinear Kelvin wake, see movie_1.mp4 and movie_2.mp4
in the supplementary material.

Now, we concentrate on our special form of forcing in (4.4) for the weakly nonlinear fKP
model and, to be consistent with the steady results in figure 5, choose Fr = 1.0, a = 0.1.
Figure 8 (corresponding to the animation movie_3.mp4 in the supplementary material)
shows the resulting time-dependent behaviour starting from (5.1). As can be seen from the
time snapshots, for approximately 0< t < 7.7 (top row) a curved wave pattern emerges
directly downstream of the forcing. Then, for approximately t � 7.7 (bottom row) this
wake pattern propagates downstream in the form of curved ‘ripples’ before eventually
separating and leaving the steady state, η(x, t), which we have confirmed is the steady state
in (3.2). This behaviour is generic for a wide range of parameter space (Fr ∈ [0.2, 1.8] and
a ∈ [−0.1, 0.1]) and has been thoroughly checked for numerical convergence. Finally, as
well as the initial condition in (5.1), numerical simulations provide evidence that the steady
state is also stable to two- and three-dimensional perturbations, as shown in movie_4.mp4
and movie_5.mp4. This is strong numerical evidence that the wave-free steady state is
not only stable but is also the asymptotic state of the system as t → ∞. Furthermore, the
waves emitted downstream in the initial stage of evolution appear different to the classical
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Figure 9. Fully nonlinear moving-pressure time-dependent solution for η f (x, t), x ∈ [−10, 30],
y ∈ [−10, 10], with σpress(x) given in (4.7) for ηg(x) in (4.9), Fr = 1.0, a = 0.01.

Kelvin wake pattern and are similar in nature to the capillary-gravity waves, as shown in
Chepelianskii, Chevy & Raphael (2008), Closa, Chepelianskii & Raphael (2010), except
these ripple waves only occur downstream. These ripples may be related to the parabolic
‘ripplon’ solutions of the unforced KP equation, as reported in Johnson & Thompson
(1978), Nakamura (1981), Zhang et al. (2023, 2024) and initial investigations indicate
that the ripples we report are indeed parabolic; a detailed analysis of these forced ripple
solutions is beyond the scope of this paper and is currently being written up in a separate
research paper.

5.2. Fully nonlinear Euler system
We now investigate the stability of the fully nonlinear Euler steady states for the moving-
pressure and topographic-obstacle problems. Concentrating initially on the moving-
pressure problem, first, we impose a free surface in (4.9) to obtain the pressure distribution,
σpress(x) before setting a flat free surface with a uniform flow as an initial condition

η f (x, t = 0)= 0, φ(x, z, t = 0)= x . (5.2)

We emphasise that σpress is present at t = 0. In figure 9 we show that η f (x, t) evolves
towards the steady wave-free free surface in the moving-pressure problem with forcing in
(4.7) for the steady free-surface ηg(x) in (4.9). The ripples that get emitted downstream
are similar in form to that in the fKP equation but we would expect them to be circular,
instead of parabolic, as there is no weak y dependence in the fully nonlinear Euler system.

For the topographic-obstacle problem we first perform the process described in figure 7
to find σtopog(x)= σpress(x) using a free surface in (4.9). We then deform the fluid domain
using this topographic forcing, set η f (x)= 0 and solve Laplace’s equation in the fluid
domain together with (2.2)–(2.6) to obtain an initial condition for φ(x, z). Once time is
advanced, the subsequent simulations show that the system tends towards the ‘almost’
wave-free steady state, as shown in figure 10.

Viewed altogether, these calculations show the remarkable stability of the wave-free
steady state in both the weakly nonlinear fKP model and fully nonlinear Euler system;
our third, and perhaps most significant result of the paper. A carefully constructed forcing
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Figure 10. Fully nonlinear topographic-obstacle time-dependent solution for η f (x, t), x ∈ [−10, 30],
y ∈ [−10, 10], with σtopog(x) given in (4.7) for ηs(x) in (4.9), Fr = 1.0, a = 0.01.

term, as described in the previous section, will result in a wave-free profile that can be
observed in a physical experiment.

6. Conclusions and perspective
We have demonstrated that the fKP equation is capable of producing the v-shaped Kelvin
wave pattern that is observed in practice when an object moves along the surface of water,
and we have characterised the associated wedge angle as a function of the Froude number.
More importantly, we have shown that, for the fKP and the fully nonlinear Euler system,
a judiciously chosen pressure forcing can produce a steady wave-free surface, meaning
that the disturbance caused by the forcing is confined to its neighbourhood so that the
surface is flat in the far field. In addition, if we use this pressure forcing as a proxy for
a topographic obstacle, then the resulting far-field waves in the free-surface profile are
significantly diminished. Crucially, using numerical simulations we have demonstrated
that the wave-free states are stable in the sense that they are reached as t → ∞ for a
suitably posed IVP.

Despite the simplicity of our mathematical argument, this appears to be the first time
that wave-free steady solutions have been constructed for the fKP system and their
stability properties calculated. Our results provide some evidence that it may be possible
to eliminate the Kelvin wake in a real-world setting. However, further work is needed to
establish whether wave-free solutions can be observed in a laboratory experiment. On this
point, we highlight the work of Chen & Sharma (1995) and Chen, Sharma & Stuntz (2003)
where, using a weakly nonlinear model, similar to the fKP they were able to design a zero
wave resistance moving body in a narrow confined channel and these were compared with
experiments. Another interesting recent work to highlight is by Euve et al. (2024) in which
asymmetric wake patterns have been observed experimentally and whose experimental
approach may be relevant for the wave-free solutions in this paper. In addition, it would
also be interesting to examine the transverse stability of the two-dimensional solutions
discovered in Keeler et al. (2017, 2021) at Fr = 1, using the computational framework
developed here.
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We emphasise that we have identified wave-free steady states over a large range of
the Froude number and forcing amplitude. Regarding wake elimination in real-world
applications, our results are at this point only suggestive. Nevertheless, this may ultimately
pave the way to improving marine vessel design, including for example the development
of ‘stealth’ boats, by reducing the wave drag and minimising the wake signature. It would
be interesting to try to perform an experiment using one of our pressure forcings in a flow
tuned to the correct Froude number to try to realise our prediction in the laboratory. Our
results for topographic obstacles suggest the possibility of designing underwater structures
that minimise or eliminate any disruption to the water surface.

For both the fKP model equation and fully nonlinear Euler system studied here, the
free-surface profile is extremely sensitive to small changes in the forcing function, as is
demonstrated when we use the pressure distribution as a proxy for a topographic obstacle
and a downstream Kelvin wake is observed, albeit small of amplitude. Whether a special
topographic forcing exists that results in a wave-free surface disturbance in the fully
nonlinear Euler system is an open question. The determination of this special topographic
forcing will likely require bespoke computational methods to solve the nonlinear inverse
problem that arises and we leave this for future work. Finally, it would also be interesting
to compare our results with other works that have attempted to minimise the wave drag,
including using a ‘pressure-patch model (Tuck & Lazauskas 2001) and optimisation
methods on an actual boat hull (Dambrine & Pierre 2020).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10225.
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Appendix A. Numerical method
The fKP model and the fully nonlinear Euler system are solved in the weak form
(as discussed below for each individual system). The common features of the discretisation
that apply to both systems are that (i) the equations are discretised using finite elements
and the open-source oomph-lib package (Heil & Hazel 2006), (ii) the test functions, ψ ,
are piecewise cubic functions and the spatial coordinates and unknown field variables are
interpolated using ψ , (iii) steady states are found using Newton iterations and (iv) time
stepping is performed using a backwards Euler order-two method.

A.1 Weak form of the fKP model
To proceed, (2.8) can be written in conservative form

∇ · U = 0, U = [
ηt + (Fr − 1)ηx − 3

2ηηx − 1
6ηxxx − 1

2σx ,−1
2ηy

]T
. (A1)

We multiply (A1) by a test function, ψ , multiply over the domain and then use the
divergence theorem to obtain the weak residual equation

R f K P(η)≡
∫∫

Ω

ψ (∇ · U) dV ≡
∫
∂Ω

ψ (U · n) dS −
∫∫

Ω

∇ψ · U dV = 0. (A2)

To discretise and then solve (A2), we truncate the infinite mathematical domain in the
range x ∈ [−Lx , Lx ], y ∈ [−L y, L y] and typically we choose Lx = L y = 30, choose 110
horizontal and vertical elements and choose a time step of �t = 0.1. On y = ±L y , we set
U · n = ηy = 0 and on x = −Lx we impose η= ηx = 0. On x = Lx we have to satisfy an
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unknown radiation condition. For simplicity, and to be consistent with Katsis & Akylas
(1987) we set η= 0 and U · n = 0 on this boundary.

A.2 Weak form of the fully nonlinear Euler system
A full description of this numerical formulation can be found in Keeler & Blyth (2024),
where a lot of the details can be carried over to the three-dimensional case we consider
here. Briefly summarising, we truncate the infinite mathematical domain in the range
x ∈ [−Lx , Lx ], y ∈ [−L y, L y] and typically we choose Lx = L y = 20. Far upstream and
downstream we introduce ‘sponge layers’ so that waves are forced to become locally flat.
To obtain the weak formulation, we multiply (2.1) by a test function, ψ(x), integrate
over the computational domain, Ω(t), and use the divergence theorem to get our bulk
residual

RBulk(x, φ(x))≡
∫∫

∂Ω(t)
(n · ∇φ) ψ dS −

∫∫∫
Ω(t)

∇φ · ∇ψ dV = 0, (A3)

where ∂Ω(t) represents the boundary of Ω(t), n is the outwards-pointing unit normal
vector on each part of the boundary and dV , dS are differential volume and area elements,
respectively. We decompose the boundary into 6 parts; ∂Ω(t)= Γ0 + Γ1 + Γ2(t)+ Γ3 +
Γ4 + Γ5, see figure 1. The kinematic boundary condition on Γ2 (2.2), uniform-flow
condition on Γ1 (2.5) and no-penetration condition (2.6), can be incorporated directly into
(A3). As there is a ‘sponge layer’ near the boundaries at Γ4 and Γ5 we impose n · ∇φ = 0
on these lateral boundaries which can also be incorporated as a natural boundary condition
in (A3). Finally, we impose the uniform-flow condition on Γ3 as an essential boundary
condition by setting φ = −L on Γ3.

To satisfy (2.3) we multiply by a test function and integrate over the free surface to
obtain

RDyn(x, φ(x))≡
∫∫

z=z f (x,t)

(
φt + 1

2
|∇φ|2 + 1

Fr2 z f + σpress − 1
2

− 1
Fr2

)
ψ dS = 0.

(A4)
For the forward problem, the steady forms of (A3) and (A4) are solved to determine
the free-surface location, z f (x, t), and the velocity potential in the fluid, φ(x, t) with a
prescribed forcing whilst for the inverse problem we solve for σpress(x) given a prescribed
z f (x).

We typically chose 70 × 40 × 2 elements in the x × y × z directions and chose a time
step �t = 1.0. To account for the unknown free surface, η(x, t), we use a structured brick
mesh with a spine-node update strategy. An important remark is that despite calculating
quantities in the bulk fluid as well as the free surface, the corresponding Jacobian matrix
is sparse, in contrast to the Green’s function approaches. We have not used any Newton–
Krylov methods, nor applied pre-conditioning, the use of which would result in significant
computational speed-up and we leave this as an open challenge.
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