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Resonant standing internal waves in a basin
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Combined theoretical and quantitative experimental study of resonant internal standing
waves in a pycnocline between two miscible liquids in a narrow rectangular basin
is presented. The waves are excited by a cylinder that harmonically oscillates in the
vertical direction. A linear theoretical model describing the internal wave structure that
accounts for pycnocline thickness, the finite wavemaker size and dissipation is developed.
Separate series of measurements were performed using shadowgraphy and time-resolved
particle image velocimetry. Accurate density profile measurements were carried out to
monitor the variation of the pycnocline parameters in the course of the experiments; these
measurements were used as the input parameters for the model simulations. The detected
broadening of the pycnocline is attributed mainly to the presence of the waves and leads to
the variation of the wave structure. The complex spatio-temporal structure of the observed
internal wavefield was elucidated by carrying band-pass filtering in the temporal domain.
The experiments demonstrate the coexistence of multiple spatial modes at the forcing
frequency as well as the presence of the internal wave system at the second harmonic
of the forcing frequency. The results of the theoretical model are in good agreement with
the experiments.
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1. Introduction
Internal gravity waves observed in stably stratified fluids play an essential role in the
transport of momentum, energy and mass in oceans, lakes and atmosphere. Therefore,
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different aspects related to the internal wave dynamics continue to be a subject of active
research (e.g. Mathur & Peacock 2010; Husseini et al. 2020; Rodda et al. 2022; Lanchon &
Cortet 2023; Yalim et al. 2023). The structure of internal waves depends significantly on
the stratification profile; waves at the interface separating two sufficiently thick layers of
immiscible homogeneous liquids with different densities represent an important limiting
case (Lamb 1932). The waves at a free water surface can be seen as a particular case of
such a two-layer system when the density of the lighter fluid can be neglected.

The dispersion relation between the angular frequency ω and the horizontal wavevector
k for waves at a horizontally unlimited interface between two liquids with densities
ρ1 < ρ2 is

ω2 = g′|k|, g′ = g
ρ2 − ρ1

ρ2 + ρ1
, (1.1)

where g is the acceleration due to gravity. In the case of miscible liquids, a pycnocline sep-
arating the layers of constant density is formed where the density varies with the vertical
coordinate z, defining the local non-zero buoyancy frequency N (Lighthill 1978):

N 2(z) = − g

ρ(z)

dρ(z)

dz
. (1.2)

In this configuration more complex wave systems are possible. Time-dependent
disturbances introduced in the bulk of one of the liquids may produce a superposition
of symmetric and antisymmetric wavemodes propagating along the pycnocline (Davis &
Acrivos 1967b). Antisymmetric solitary waves (sometimes referred to as mode-2 internal
solitary waves) are observed in laboratory experiments (Davis & Acrivos 1967a; Cheng &
Hsu 2014; Deepwell & Stastna 2016), as well as in nature (Farmer & Smith 1980; Yang
et al. 2009; Shanmugam 2013). The dispersion relation between the set of possible ω for
any given k is defined by a solution of the Sturm–Liouville problem (Benjamin 1967;
Miles 1971) and was approximated by Barber (1993).

In experiments on both surface and internal waves carried out in a closed laboratory
facility, spatial confinement by vertical walls imposes limitations on possible wavevectors
due to non-penetration boundary conditions (Thorpe 1968; Faltinsen 1974; Geva et al.
2021); in a deep narrow basin of length L and width B � L , these wavevectors are
k = (kn, 0), kn = πn/L . The frequency of waves excited by externally controlled periodic
motion of a rigid body is set by the forcing. In such experiments, a mismatch can
exist between the forcing frequency ω and eigenfrequencies prescribed by the reservoir
geometry wavenumbers kn via the dispersion relation (1.1). Additional adjustment of
the eigenfrequencies is caused by the presence of the rigid wavemaker body within the
liquid. The corresponding problem for a wavemaker-excited resonant standing surface
gravity wave system in a narrow reservoir that accounts for the contribution of both the
sidewalls and the wavemaker was solved by Mogilevskiy et al. (2024). They demonstrated
theoretically the existence of multiple spatial modes in the resonant wave spectrum, and
validated those results in experiments.

The internal wavefield excited by a wavemaker in a deep narrow cavity filled by
two liquids separated by a finite-thickness pycnocline is even more complicated. In
this case, not only do multiple modes with different wavevectors coexist, but also
for any given resonant wavenumber kn , modes with different vertical structures are
possible. The internal structure within the pycnocline could not be captured in the
study of wavemaker-excited resonant standing waves by Thorpe (1968) that was based
on shadowgraph imaging. Since then, various optical methods have been applied to
the study of internal waves, such as time-resolved particle image velocimetry (PIV)
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(Mathur & Peacock 2010; Dossmann et al. 2011; Carr et al. 2015; Boury et al. 2019), planar
laser-induced fluorescence (Troy & Koseff 2005; Dossmann et al. 2016) and synthetic
schlieren (Sutherland et al. 1999; Dalziel et al. 2000).

Modern video-based optical methods are applied here to study wavemaker-excited
resonant standing waves in a narrow long basin within a pycnocline between two layers of
liquids that slightly differ in density. This allows one to expand significantly the analysis of
the system studied by Thorpe (1968) to reveal the effect of the pycnocline thickness on the
complicated spatio-temporal structure of the internal wavefield within it. The experimental
facility is described in § 2; in § 3, the analysis of the shadowgraph video recording is
coupled with density profile measurements. These preliminary experiments prompted the
development of a theoretical model based on the approach by Mogilevskiy et al. (2024) in
§ 4. The theoretical prediction of the coexistence of symmetric and antisymmetric modes
in the internal resonant standing wave within the pycnocline is verified quantitatively by
PIV-derived data in § 5. Section 6 summarises the study.

2. Experimental set-up and shadowgraph procedure
Experiments were carried out in an L = 772 mm long and B = 160 mm wide basin filled
by layers of salted and pure water separated by a thin pycnocline. Stable stratification is
attained by filling the basin first to a depth of 400 mm with MgCl2 solution. Pure water is
then gently added through a sponge that floats on the surface, until the total depth of the
liquid in the basin reaches 700 mm. The densities of pure water (ρ1 = 998.5 kg m−3) and
of the salt solution (ρ2 = 1020 kg m−3) are measured using a Mettler Toledo densitometer.
Inevitable mixing results in the formation of a finite-thickness pycnocline in which the
density varies between its extreme values; the initial characteristic pycnocline thickness is
about 14 mm. The density profile was determined with a high-precision conductivity probe
(PCP) connected to a computer-controlled stage with a vertical resolution of 1 mm. The
gradual increase of the actual thickness of the pycnocline in the course of experiments
was monitored between the experimental runs by the PCP. A schematic sketch of the
experimental set-up is presented in figure 1.

Waves were excited by a cylinder 2R = 42 mm in diameter; its axis is horizontal and
spans the whole width of the basin. The wavemaker is supported by a thin rod connected to
a linear computer-controlled motor that generates vertical harmonic oscillations. The mean
position of the wavemaker centre is 350 mm above the bottom of the basin in the heavier
layer. The instantaneous vertical position was recorded using a laser position sensor and
served as a phase reference.

The two-layer model predicts the standing-wave frequency for the nth spatial mode as

ω2
n =
(

2π

Tn

)2

= g(ρ2 − ρ1)

ρ2 + ρ1
kn, kn = nπ

L
. (2.1)

Mostly, the experiments were performed for n = 3 and some of them for n = 4
corresponding to oscillation periods of T3 = 5.56 s and T4 = 4.85 s, and wavelengths
λ3 = 514 mm and λ4 = 386 mm. For both modes, the effects of the bottom and of the free
surface of the lighter liquid are negligible as the thicknesses of both layers are sufficiently
large (D1,2 > 300 mm); the resulting correction to the dispersion relation (2.1) does
not exceed 0.2 %. The centre of the wavemaker was positioned at the antinode of the
corresponding resonant mode, at a distance L/3 from the sidewall for the experiments at
n = 3 and L/2 for those at n = 4.

Preliminary experiments were carried out to determine the frequency range of maximum
response. After that, a detailed frequency scan was performed. Those preliminary
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Figure 1. Sketch of the experimental system (front view); the basin is 160 mm wide. The origin of axes: x = 0
at the wavemaker location; z = 0 at the maximum of the density gradient at rest.

experiments clearly indicated that significant amplitudes of the internal waves are observed
for frequencies below ωn in the typical range of the normalised frequency:

0.88 < α = ω

ωn
< 0.97. (2.2)

Each experimental run for prescribed wavemaker amplitude F and normalised
frequency α starts with the liquid at rest. The wavemaker operation lasts for about 30
min (300 periods). The wavemaker then stops and the recording continues until the waves
practically vanish due to dissipation. The run finished with the measurement of the density
profile by the PCP. The whole experiment is fully automated with LabView software that
controls and synchronises the operation of all elements and data recording.

Figure 2 describes the evolution of the density distribution during a series of 12
experimental runs for n = 3 with 12 equally spaced frequencies ranging from αmin = 0.89
to αmax = 0.94; F = 7.5 mm. Density profiles measured prior to the first run and following
the last run are plotted in figure 2(a). During the course of the experiment, the thickness
of the pycnocline grows; it is defined as

d = (ρ2 − ρ1)

|dρ/dz|max
, (2.3)

where |dρ/dz|max is the density gradient maximum (figure 2b). Note that the
measurements of the density profile performed repeatedly each 30 min in a constantly
stagnant liquid with the wavemaker at rest during 12 hours demonstrated negligible change
in d due to molecular diffusion. Indeed, for a diffusion coefficient κ ∼ 10−3 mm2 s−1, the
estimate of the widening of the pycnocline with time t as d2(t) − d2(t0) ∼ κ(t − t0) yields
the growth of the pycnocline thickness d that is below 10 %.

The density gradient distribution characterised by the buoyancy frequency (1.2)
becomes wider with a corresponding decrease of the maximum N 2

max (figure 2c). However,
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Figure 2. Density profile evolution during experiments at F = 7.5 mm, and 0.89 � α � 0.94. (a) The measured
extreme density profiles. The dashed horizontal lines mark the effective pycnocline boundaries ±d/(2λ3).
(b) The variation of the dimensionless pycnocline thickness δ as a function of run number. (c) Corresponding
distributions of buoyancy frequency. (d) Collapse of the normalised distributions. This and subsequent figures
correspond to n = 3, unless specified explicitly otherwise.

the shape of the normalised profiles N 2(z/d)/N 2
max does not change notably and is well

approximated by a Gaussian (figure 2d):

N 2 = 2g(ρ2 − ρ1)

d(ρ2 + ρ1)
exp
(

−π
z2

d2

)
= 2

(ωn)
2

knd
exp
(

−π
z2

d2

)
. (2.4)

The non-dimensional buoyancy frequency is defined as

Ñ 2 = 2
δ

exp
(

−π
z2

d2

)
, δ = knd. (2.5)

Experiments were first performed using the shadowgraph technique that gives wide
spatial coverage; after that, the internal structure of the waves was extracted using PIV
data.

3. Shadowgraph experiments
For shadowgraph experiments, a fluorescent dye added to the heavier fluid forms a distinct
boundary in the images (figure 3). Two back-light square LED panels adjacent to the back
wall of the basin provide uniform illumination over the total area of 350 mm × 700 mm
which is captured by a camera (3.2 MPixel USB 3.1 Flir Blackfly) at 10 frames per second.
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Figure 3. Two shadowgraph images shifted in time by half a wavemaker period. Supplementary movie 1
available at https://doi.org/10.1017/jfm.2025.384 shows the movement of the detected interface.
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Figure 4. Dimensionless interface elevation η/F at antinode (x/λ3 = 0.5) of the third mode as a function of
time, for wavemaker amplitude F = 5.6 mm and (a,b) different forcing frequencies.

The location of the sharp interface clearly visible in figure 1 was extracted using an edge-
detection procedure. The LED panel joint and the rod supporting the wavemaker cause
two small gaps where the interface location cannot be determined.

The comparison of the processed images with the PCP data demonstrated that the
interface location z = ζ(t, x) in the images corresponds to the upper edge of the
pycnocline. Figure 4 shows the normalised interface elevation

η(t, x) = ζ(t, x) − ζ(0, x) (3.1)

at the antinode of the third mode (x/λ3 = 0.5) for the wavemaker amplitude F = 5.6 mm
as a function of time for two forcing frequencies; α = 0.93 (figure 4b) corresponds to the
effective resonance. The initial transient stage lasts about 25–50 periods of wavemaker
oscillations and is followed by a quasi-steady stage. The slow variation of the wave
amplitude at this stage can be attributed to the growth of the mixing layer in the course of
the run. The termination of the wavemaker operation results in a decay of waves at a time
scale comparable with that of the initial transient stage.

3.1. Results of the measurements
The apparently sinusoidal temporal variation of the interface elevation above the
wavemaker is plotted in figure 5 together with the records of the wavemaker motion at
different forcing frequencies. An effective resonance is observed at α about 0.93; at lower
frequencies, the interface oscillations at this lateral location are approximately in antiphase
relative to the wavemaker motion. The phase difference seems to decrease notably as the
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Figure 5. Short simultaneous records of interface elevation at the third-mode antinode x/λ3 = 0.5 and
wavemaker movement for(a–d) different forcing frequencies; experimental conditions as in figure 4.

forcing frequency exceeds the effective resonance; in figure 5(d), the oscillations are nearly
in phase.

Several instantaneous interface shapes are plotted in figure 6(a). While those shapes
indeed seem to be dominated by the resonant standing wave with m = 3, they clearly
contain contributions from additional shorter waves. The appearance of shorter waves
is more pronounced for frequencies below the resonant frequency (dashed curves in
figure 6a). The root-mean-square 〈η2〉1/2 values of the interface elevation were calculated
separately for each horizontal location x (figure 6b) and averaged over 220 periods
corresponding to the quasi-steady state. For a monochromatic standing wave, the expected
values of 〈η2〉1/2 are zero at nodes spaced by half a wavelength, and reach their maximum
at antinodes. Figure 6(b) demonstrates that this pattern describes the actual behaviour only
approximately; the values of 〈η2〉1/2 do not vanish at nodes, and the shapes around the
antinodes are quite flat. At frequencies well below the effective resonance, the measured
distributions of 〈η2〉1/2 are nearly flat everywhere. The complexity of the interface wavy
shape manifests itself in the wavenumber spectra of the complex amplitude of the interface
shape band-pass-filtered at the forcing frequency (figure 7). Along with the global maxima
at m = 3, the additional weaker local maxima at m ≈ 9 and m ≈ 15 are seen. The former
can be attributed to the cubic nonlinearity and the interaction of the dominant wavemode
with itself, while the latter has no analogy in the surface waves.
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values of interface elevation at different forcing frequencies.
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at the forcing frequency, for (a,b) the cases shown in figure 4(a) and 4(b), respectively.

The frequency spectrum of the interface elevation at the antinode is dominated by a
harmonic at the wavemaker driving frequency (figure 8a); this harmonic, while much
weaker, is also notable at the node of the standing wave (figure 8b). At both the node
and the antinode, there is a significant peak at double the wavemaker frequency, which is
more pronounced when the forcing frequency is below the effective resonance (figure 8a).

The variation of the amplitude of the interface elevation with forcing frequency is
plotted in figure 9(a) for three values of the wavemaker amplitude obtained in a single
series of experimental runs with increasing forcing frequency. The effective resonance
downshifts as the forcing amplitude increases. The pycnocline thickness d grows so that δ

changes from about 0.17 to about 0.25 as shown in figure 9 by colours of the markers. The
decrease of the phase shift between the interface elevation above the wavemaker and the
wavemaker from π towards zero is plotted for those runs in figure 9(b).

The effect of the pycnocline thickness widening in the course of the experiment
is studied in an additional series of experiments carried out for n = 4. Those runs
started from the lowest frequency with α = 0.92, attained the value of forcing frequency
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coloured symbols represent the pycnocline thickness δ. (b) Phase difference between the surface elevation and
the wavemaker displacement for the cases as in (a).

α = 0.978, after which the values of α were gradually decreased. Figure 10 shows the
downshift of the resonant frequency with an increase of δ.

3.2. Interim conclusions
Shadowgraph experiments reveal the basic features of internal waves in a closed basin
containing two liquids with different densities separated by a relatively thin pycnocline.
The complex structure of the wave, excited by a wavemaker operating in the vicinity of
the resonant frequency corresponding to the selected two-layer mode, is exposed in the
temporal records of the visible interface elevation. The temporal spectra at any longitudinal
location are dominated by discrete harmonics corresponding to the wavemaker forcing
frequency ω and its second harmonic 2ω. The resonant wave in the vicinity of the third-
mode resonant frequency clearly deviates from the sinusoidal shape: the wavenumber
spectra of records band-pass-filtered at the forcing frequency (figure 7) contain multiple
components with m in the vicinity of the resonant mode n = 3, components with m ≈ 3n
that may be attributed to cubic nonlinearity and m ≈ 15 that, as will be shown in the
following, are related to the finite pycnocline thickness. The effective resonance frequency
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Figure 10. Interface elevation amplitude at the antinode (n = 4, x/λ4 = 0.25, F = 10 mm). The coloured
symbols represent the pycnocline thickness δ.

in the experiments is apparently downshifted from the two-layer model prediction ωn; this
downshift increases with an increase of the wavemaker amplitude F .

The thickness of the pycnocline d increases in the course experimental sessions. The
increase in d affects notably the effective resonance of the system; it also contributes to
the downshift of the effective resonant frequency. It should be emphasised that while the
density distribution can be monitored between the runs using the PCP, there is no way to
control it.

The shadowgraph experiments have the advantage of wide spatial coverage, but the
sequence of recorded images only provides information on the movement of one surface
representing the effective interface. This technique is thus incapable of revealing the full
internal wave structure inside a pycnocline of finite thickness, suggesting that a different
experimental approach is needed. The PIV technique can provide the necessary two-
dimensional information; however, carrying out these experiments for a wide range of
parameters requires extensive resources. An efficient experimental programme can benefit
from guidelines supplied by a theoretical model that gives prior estimates of the wavefield
behaviour.

4. Theoretical model
Modelling of surface water waves is routinely based on the assumption of irrotational flow
within the liquid governed by the Laplace equation; due to the Green theorem once the
free-surface boundary conditions are satisfied, the flow in the bulk can be computed (see
e.g. Newman 2018). For stratified media, neglecting the thickness of the pycnocline results
in the two-layer model with the dispersion relation (1.1) for linear waves (Lamb 1932).
Methods developed for accounting for nonlinear effects associated with the finite wave
amplitude (e.g. Penny 1952) applied to a two-layer model by Thorpe (1968) showed the
appearance of a bound wave with double wavenumber and frequency and a decrease of the
wave celerity associated with the wave steepness. The generalisation of this approach to
account for continuous stratification by Miles (1986) resulted in a variational formulation
capable of describing weakly nonlinear propagating waves in arbitrary stably stratified
pycnoclines. The similarity between the surface and the internal waves within the two-
layer model enables estimates of the effect of the internal wave amplitude using the results
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obtained for resonantly forced surface waves (Moiseev 1958; Faltinsen 1974; Mogilevskiy
et al. 2024).

The internal wavefield structure is affected by the finite pycnocline thickness at any
wave amplitude. As shown by Miles (1971), the flow within the pycnocline is not
potential; thus, the dispersion relation cannot be obtained explicitly. It can be obtained by
solving the Sturm–Liouville problem for a given density distribution. Besides, continuous
stratification does not allow introduction of a distinct horizontal boundary where boundary
conditions can be stated as in the two-layer model.

In this section, the resonant surface wave model (Mogilevskiy et al. 2024) is first
adjusted to a two-layer system. Then, an analytical solution is presented for continuous
stratification approximated by a piecewise-constant profile of the buoyancy frequency
N 2(z), while neglecting the wavemaker size. Finally, a numerical method that accounts
for viscous dissipation, arbitrary stratification and the wavemaker geometry is introduced.

4.1. Two-layer model
Consider two-dimensional flow in the (x, z) plane of two effectively infinite deep layers
of homogeneous liquids separated by interface z = η(x, t). The variables are rendered
dimensionless as

(x̃, z̃) = kn(x, z), t̃ = ωt. (4.1)

The velocity is scaled by ωF ; the interface location by F :

η̃ = η

F
. (4.2)

The dimensionless wall locations are x̃ = −π and x̃ = (n − 1)π . The mean position of the
interface is η̃ = 0. The dimensionless parameters r and h,

r = kn R, h = kn H, (4.3)

define the geometry of the wavemaker; −H is the mean vertical coordinate of its centre.
For n = 3, the experiments correspond to r = 0.26, h = 0.71. The instantaneous location
of the wavemaker centreis

z̃c(t̃) = −h + ε sin t̃, ε = kn F. (4.4)

The flow is assumed irrotational in both layers; the dimensionless velocity potentials ϕ1
and ϕ2 in the upper and lower liquids satisfy the Laplace equation:

∇2ϕ1 = 0, −π < x̃ < (n − 1)π, z̃ > η̃(x̃, t̃), (4.5a)

∇2ϕ2 = 0, −π < x̃ < (n − 1)π, z̃ < η̃(x̃, t̃), x̃2 + (z̃ − z̃c(t̃))
2 > r2. (4.5b)

The non-penetration conditions at the rigid boundaries (walls and the wavemaker) are

∂ϕ1

∂ x̃
= 0, x̃ = −π, (n − 1)π, (4.6a)

|∇ϕ1| → 0, z̃ → ∞, (4.6b)
∂ϕ2

∂ x̃
= 0, x̃ = −π, (n − 1)π, (4.6c)

∂ϕ2

∂n
= 1

ε

dz̃c

dt̃

z̃ − z̃c

r2 , x̃2 + (z̃ − z̃c(t̃))
2 = r2, (4.6d)

|∇ϕ2| → 0, z̃ → −∞. (4.6e)
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The continuity of the vertical velocity and of the pressure at the interface connects the
interface location η̃ with the potentials:

∂ϕ1

∂ z̃
= ∂ϕ2

∂ z̃

z̃ = η̃(x̃, t̃) : ∂ϕ1

∂ t̃
+ ε

2
(∇ϕ1)

2 = ρ2

ρ1

[
∂ϕ2

∂ t̃
+ ε

2
(∇ϕ2)

2
]

+ (ρ2 − ρ1)gkn

ρ1ω2 η̃

∂η̃

∂ t̃
+ ∂ϕ1

∂ x̃

∂η̃

∂ x̃
= ∂ϕ1

∂ z̃
. (4.7)

Neglecting terms of the order of (ρ2 − ρ1)/ρ1 and ε and eliminating η yields a simplified
linear problem for potentials:

∇2ϕ1 = 0, −π < x̃ < (n − 1)π, z̃ > 0, (4.8a)

∇2ϕ2 = 0, −π < x̃ < (n − 1)π, z̃ < 0, x̃2 + (z̃ + h)2 > r2, (4.8b)
∂ϕ1

∂ x̃
= 0, x̃ = −π, (n − 1)π, (4.8c)

|∇ϕ1| → 0, z̃ → ∞, (4.8d)
∂ϕ2

∂ x̃
= 0, x̃ = −π, (m − 1)π, (4.8e)

∂ϕ2

∂n
= z̃ + h

r2 cos t, x̃2 + (z̃ + h)2 = r2, (4.8f )

|∇ϕ2| → 0, z̃ → −∞, (4.8g)
∂ϕ1

∂ z̃
= ∂ϕ2

∂ z̃
, z̃ = 0, (4.8h)

∂2ϕ1

∂ t̃2 = ∂2ϕ2

∂ t̃2 + 2
α2

∂ϕ2

∂ z̃
, z̃ = 0. (4.8i)

The violation of the symmetry between the upper and the lower liquids is due to the
presence of the wavemaker under the interface. It leads to the failure of the solution of
Lamb (1932) as it does not satisfy the boundary condition at the wavemaker (4.8f ). The
Lamb solution in the upper liquid is retained:

ϕ1 =
∞∑

m=1

amϕ1,m, ϕ1,m = 1
2

[
cos
(m

n
(x̃ + π)

)
exp
(
−m

n
z̃
)

exp(−i t̃) + c.c.
]
. (4.9)

In the lower liquid, the solution is represented as a superposition of the forcing potential
ϕ0 and wavemodes ϕ2,m :

ϕ2 = ϕ0 +
∞∑

m=1

bmϕ2,m . (4.10)

The potential ϕ0 satisfies equation (4.8b) with boundary conditions (4.8e–g), including the
inhomogeneous boundary condition (4.8f ). The potentials ϕ2,m satisfy the homogeneous
boundary condition at the wavemaker:

∂ϕ2,m

∂n
= 0, x̃2 + (z̃ + h)2 = r2

ϕ2,m = 1
2

{[
cos
(m

n
(x̃ + π)

)
exp
(m

n
z̃
)

+ ϕ′
2,m

]
exp(−i t̃) + c.c.

}
. (4.11)
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Figure 11. (a) Normalised forcing potential at z̃ = 0 and (b) its wavenumber amplitude spectrum.

The symmetry of the functions ϕ0 and ϕ′
2,m with respect to z̃ = −h is also required for

uniqueness; they are represented by series of multipoles placed at the wavemaker centre
and their successive mirror reflections with respect to the basin walls (Mogilevskiy et al.
2024). The leading terms are

ϕ0 = 1
2

[
− r2(z + h)

x2 + (z + h)2 exp(−i t̃) + c.c.
]

;

ϕ′
2,m = 1

2

[
−m

n
exp
(
−m

n
h
) r2(z + h)

x2 + (z + h)2

]
. (4.12)

The forcing potential ϕ0 introduces disturbances of the order of r2/h to all spatial modes
(figure 11); the wavenumber spectrum has peaks at m = n, 2n, . . ., since the wavemaker
is located at the antinode of those modes. The response of the system is defined by the
boundary conditions (4.8h) and (4.8i) representing the continuity of the vertical velocity
and the pressure at the interface. The substitution of (4.9), (4.10) yields the system of linear
algebraic equations for am and bm :

(n−1)π∫
−π

[ ∞∑
m=1

am
∂ϕ1,m(x̃, 0)

∂ z̃
−

∞∑
m=1

bm
∂ϕ2,m(x̃, 0)

∂ z̃

−∂ϕ0(x̃, 0)

∂ z̃

]
cos
(

l

n
(x̃ + π)

)
dx̃ = 0,

(n−1)π∫
−π

{ ∞∑
m=1

amϕ1,m(x̃, 0) −
∞∑

m=1

bm

[
ϕ2,m(x̃, 0) − 2

α2
∂ϕ2,m(x̃, 0)

∂ z̃

]

−
[
ϕ0(x̃, 0) − 2

α2
∂ϕ0(x̃, 0)

∂ z̃

]}
cos
(

l

n
(x̃ + π)

)
dx̃ = 0,

l = 1 . . . ∞.

(4.13)

The free terms associated with ϕ0 are of the order of r2/h (see (4.12)). It can be shown
that the eigenvalue of the system (4.13) is α = m/n − αm , where 0 < αm ∼ r2/(πnh)

corresponds to the downshift of the resonant frequency due to the finite wavemaker size.
For other values of α, (4.13) has a unique solution.

This simplified two-layer model demonstrates the general approach; however, the
predicted downshift of the resonant frequency from α = 1 is about 1 %, an order of
magnitude smaller than that measured in experiments (§ 3). The experimental results
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plotted in figure 10 indicate the significant effect of the thickness of the pycnocline, which
is neglected in the two-layer model.

4.2. Eigenfunctions for continuous stratification
In the linear approximation, the complex amplitude function for the vertical velocity
Wm(z̃) for a wave with the wavemode number m satisfies the Taylor–Goldstein
equation (Goldstein 1931; Taylor 1931) for a given dimensionless buoyancy frequency
distribution Ñ (z̃):

W ′′
m +

(
2
α2 Ñ 2 − 1

)
m2

n2 Wm = 0 (4.14)

and the boundary conditions

Wm → 0, z̃ → ±∞, (4.15)

where primes denote derivatives with respect to z̃. The analysis of this Sturm–Liouville
problem shows that for any given m, there is an infinite number of solutions W j

m and
corresponding αm, j that are orthogonal with the weight function Ñ 2 (Morse & Feshbach
1946):

∞∫
−∞

W j1
m W j2

m Ñ 2dz̃ = 0, j1 �= j2. (4.16)

For the piecewise-constant distribution Ñ 2(z̃):

Ñ 2 =
⎧⎨
⎩

0, z̃ < −δ/2
1
δ

|z̃| < δ/2
0, z̃ > δ/2

(4.17)

the analytical solution for W j
m is

W j
m =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
(m

n
z̃
)

, z̃ < −δ

2

cos(γ j
m z̃) exp

(
−m

n

δ

2

)
/ cos

(
γ

j
m

δ

2

)
, |z̃| < δ

2

exp
(
−m

n
z̃
)

, z̃ >
δ

2

j odd,

W j
m =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− exp
(m

n
z̃
)

, z̃ < −δ

2

sin(γ
j

m z̃) exp
(

−m

n

δ

2

)
/ sin

(
γ

j
m

δ

2

)
, |z̃| < δ

2

exp
(
−m

n
z̃
)

, z̃ >
δ

2

j even,

(4.18)

where

(
γ

j
m

)2 =
⎛
⎜⎝ 2(

α
j
m

)2
δ

− 1

⎞
⎟⎠ m2

n2 (4.19)

1011 A16-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

38
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.384


Journal of Fluid Mechanics

5 10 15 20 3025

m z̃

2.5

2.0

3.0

1.5

1.0

1.0

0.5

0.8

0.6

1.0

0

0

0.5

0.5

–0.5

–0.5–0.50 0.50–0.25 0.25
–1.0

0 0

αm
j Wn

1 Wn
2

(a) (b) (c)

z̃

Figure 12. (a) Eigenfrequencies of the first symmetric ( j = 1, red) and antisymmetric ( j = 2, blue) modes
for δ = 0.2 (open symbols) and δ = 0.3 (filled symbols); asterisks represent the two-layer model. The
corresponding eigenfunctions W 1

n (b) and W 2
n (c) for δ = 0.2 (solid lines) and δ = 0.3 (dashed lines). The

experimental ranges of the forcing frequency and its second harmonic are shaded in (a), the dotted line in
(b) represents the eigenfunction for the two-layer model and the vertical lines in (b,c) show the boundaries of
the pycnocline.

are roots of one of the equations:

γ tan
γ δ

2
= m

n
, (4.20a)

γ cot
γ δ

2
= −m

n
(4.20b)

(Miropol’sky & Shishkina 2001). Equations (4.20a) and (4.20b) correspond to the
eigenvalues with odd and even superscript indices. The function W j

m has j − 1 zeros
within the pycnocline; it is symmetric for odd j and antisymmetric for even j with respect
to z̃ = 0. The resonant mode in the two-layer model corresponds to α∗ = α1

n , in the limit
δ � 1,

α∗ = 1 − δ

6
+ O(δ2) (4.21)

(Thorpe 1968). Figure 12 presents the eigenfrequencies α
j
m as well as the eigenfunctions

W j
m for j = 1, 2. Note that W 1

m tends to the Lamb solution as δ → 0. For finite δ, the
eigenfrequency is downshifted from that of the Lamb solution by 6–10 % in the present
experiments.

4.3. Linear model for finite pycnocline thickness
The solution procedure follows the two-layer model approach. In this subsection, the
simplified form of the potential solution (4.10) in the lower liquid (z̃ < −δ/2) is used,
neglecting terms ϕ′

2,m in (4.11) associated with the finite wavemaker size:

ϕ2 = ϕ0 + 1
2

[ ∞∑
m=1

bm cos
(m

n
(x̃ + π)

)
exp
(m

n
z̃
)

exp(−i t̃) + c.c.

]
. (4.22)

The vertical velocity in the upper liquid, including the pycnocline, is the solution of the
Taylor–Goldstein equation (4.14):

w = 1
2

[ ∞∑
m=1

am Wm(z̃) cos
(m

n
(x̃ + π)

)
exp(−i t̃) + c.c.

]
; Wm → 0, z̃ → ∞.

(4.23)
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Figure 13. (a) The vertical velocity profiles Wn in the upper liquid extended to z̃ < −δ/2. (b) The sum of
dΦn/dz̃ (in black) and bn exp(z̃) (in blue) matches an Wn (in red); the coefficients are defined by (4.26). Thin
vertical lines denote the boundaries of the pycnocline; δ = 0.2, α = α∗ + 0.1.

Equation (4.14) is also valid in the lower liquid, so the solution can be smoothly extended
to z̃ < −δ/2:

Wm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cm
1 exp

(m

n
z̃
)

+ Cm
2 exp

(
−m

n
z̃
)

z̃ < −δ/2

Cm
3 cos(γ z̃) + Cm

4 sin(γ z̃) |z̃| < δ/2

exp
(
−m

n
z̃
)

z̃ > δ/2

γ 2 =
(

2
α2δ

− 1
)

m2

n2 .

(4.24)

The constants Cm
1 , . . . , Cm

4 are found from the continuity conditions of Wm and W ′
m at

z̃ = ±δ/2; the coefficient at the exponent for z̃ > δ > /2 is chosen as unity for
normalisation. For frequencies different from the eigenvalues α �= α

j
m , the solution is

unbounded as z → −∞ (Cm
2 �= 0). Examples of functions Wn are shown in figure 13(a).

Following Morse & Feshbach (1946), the contributions of the forcing potential ϕ0 to the
mth spatial mode in the region between the wavemaker top and the lower boundary of the
pycnocline −h + r < z̃ < −δ/2 can be represented as

Φm =
(n−1)π∫
−π

ϕ0(x̃, z̃) cos
(m

n
(x̃ + π)

)
dx̃ = Qm

1 exp
(m

n
z̃
)

+ Qm
2 exp

(
−m

n
z̃
)

. (4.25)

The conditions

m

n
Qm

2 = 1
2

nπCm
2 am,

− m

n
Qm

1 + 1
2

nπ
m

n
bm = 1

2
nπCm

1 am (4.26)

ensure matching of both vertical and horizontal velocities defined by (4.22) and (4.23) at
the vertical locations −h + r < z̃ < −δ/2 (figure 13b). The amplitudes Am

w and Am
u of the

vertical and horizontal velocity components for the mth mode are
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Am
w = ∣∣Cm

3 am
∣∣=
∣∣∣∣∣ 4m2 (nγ cos(γ d/2) + m sin(γ d/2))

πn4
[
(m2/n2 − γ 2) sin(γ δ) + 2γ m/n cos(γ δ)

]Qm
2 exp

(
m

n

δ

2

)∣∣∣∣∣ ,
Am

u = ∣∣Cm
4 am

∣∣=
∣∣∣∣∣ 4m2 (m cos(γ d/2) − γ sin(γ d/2))

πn4
[
(m2/n2 − γ 2) sin(γ δ) + 2γ m/n cos(γ δ)

]Qm
2 exp

(
m

n

δ

2

)∣∣∣∣∣ .
(4.27)

The singularity leading to infinite velocity amplitude appears if (4.20a) or (4.20b) is
satisfied. The amplitude of the vertical velocity at the antinode (x̃, z̃) = (π, 0) is dominated
by the contribution of the nth mode, provided α is close to α∗:

Aw = An
w =

∣∣∣∣∣ 4 (γ cos(γ δ/2) + sin(γ δ/2))

πn
[
(1 − γ 2) sin(γ δ) + 2γ cos(γ δ)

]Qn
2 exp

δ

2

∣∣∣∣∣ . (4.28)

The amplitude is inversely proportional to the detuning β:

β = α − α∗, (4.29)

since (Aw)−1 = 0 for β = 0. The Taylor expansion in the vicinity of β = 0 yields

(Aw)−1 =
∣∣∣∣d(An

w)−1(γ∗)
dγ

dγ

dβ

∣∣∣∣ |β|, γ∗ = γ 1
n =

√
2

α2∗δ
− 1. (4.30)

The slope of the linear dependence of the inverse amplitude on the detuning depends only
on δ, since γ∗ and the corresponding eigenfrequency α∗ are given by (4.20a) and (4.19),
respectively. Calculations show that this slope varies within 5 % for 0 < δ < 1. The limit
for δ → 0 is

(Aw)−1 = nπ

Qn
2
|β|. (4.31)

4.4. Effect of dissipation
Accounting for the dissipation due to the friction at the front and back walls of the
basin within the Stokes layer model can be performed similarly, since the corresponding
generalisation of the Taylor–Goldstein equation (4.14) retains a similar form (see
Appendix A for details):

W ′′
m +

(
2

α2(1 + s)
Ñ 2 − 1

)
m2

n2 Wm = 0,

s = √
2(1 + i)

√
μ

ρ0 B2 ∼ 10−2, (4.32)

where μ is the dynamic viscosity. The form (4.14) is obtained from (4.32) defining the
effective detuning as

β ′ = β + sα∗
2

. (4.33)

Equation (4.31) shows that the maximum amplitude is inversely proportional to |s| and
corresponds to β = −α∗Re(s)/2 < 0. The Stokes layer dissipation model does not account
for viscous interaction between the wavemaker and the liquid; thus, for comparison with
the experiments, s can be treated as a free parameter of the order of 10−2.
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The dissipation in bulk is more significant for the shorter waves. The solution in the
upper liquid is governed by the fourth-order equation (see Appendix A for details)

W I V
m − 2

m2

n2 W ′′
m + m4

n4 Wm = −i Re

[
(1 + s)W ′′

m +
(

2
α2 Ñ 2 − 1 − s

)
m2

n2 Wm

]
,

Re = −ρ0ω

k2
nμ

∼ 104, (4.34)

with boundary conditions

Wm → 0, z̃ → ∞,

W ′′
m(−δ/2) − m2

n2 Wm(−δ/2) = 0,

W ′′′
m (−δ/2) − m2

n2 W ′
m(−δ/2) = 0, (4.35)

that ensure vanishing of the velocity amplitude at infinity and matching to the potential
solution in the lower liquid. The solution for Wm is found numerically, then smoothly
extended to the region z̃ < −δ/2. The above-described matching procedure is then applied.

Correction to the eigenfunctions ϕ2,m to account for the finite wavemaker size by
imposing boundary conditions (4.11) does not change the procedure significantly. The
contribution of the eigenfunctions to the mth spatial mode is a sum of exp(mz̃/n)

and exp(−mz̃/n). Matching of the vertical velocity and its z̃ derivative at any point
z̃c ∈ (−h + r, −δ/2) ensures the matching of the solutions in the entire region −h + r <

z̃ < −δ/2. The coefficients am and bm in the decompositions (4.23) and (4.10) are found
from the system of equations

1
2

nπal Wl(z̃c) −
(n−1)π∫
−π

[ ∞∑
m=1

bm
∂ϕ2,m(x̃, z̃c)

∂ z̃
+ ∂ϕ0(x̃, z̃c)

∂ z̃

]
cos
(

l

n
(x̃ + π)

)
dx̃ = 0,

1
2

nπal W
′
l (z̃c) −

(n−1)π∫
−π

[ ∞∑
m=1

bm
∂2ϕ2,m(x̃, z̃c)

∂ z̃2 + ∂2ϕ0(x̃, z̃c)

∂ z̃2

]
cos
(

l

n
(x̃ + π)

)
dx̃ = 0,

l = 1 . . . ∞. (4.36)

For arbitrary density gradient distribution Ñ (z̃), a boundary z̃∗ is selected so that
Ñ (z̃) � 1 for z̃ < z̃∗. The boundary conditions (4.35) are set at z̃∗, and the matching
conditions (4.36) are also applied there. The analytical inviscid results for the piecewise-
constant Ñ (z̃) as well as the numerical computations based on the present model confirm
that the results practically do not depend on the particular choice of z̃∗.

4.5. Numerical results
The numerical calculations are performed for the measured Gaussian buoyancy
frequency distribution (2.5); the vertical velocity distribution is given by (4.23) and the
corresponding horizontal velocity is

u = 1
2

[ ∞∑
m=1

n

m
am Wm(z̃)′ sin

(m

n
(x̃ + π)

)
+ c.c.

]
. (4.37)
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Figure 14. Wavenumber spectra of vertical (red) and horizontal (blue) velocity components at z = 0 at an
effective resonance α = 0.94 for δ = 0.24; open symbols account for dissipation in Stokes layers only, filled
symbols for bulk dissipation as well.
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Figure 15. Inverse amplitude of the vertical velocity as a function of the detuning.

Figure 14 shows an example of wavenumber amplitude spectra of vertical and horizontal
velocities at z̃ = 0 accounting for the Stokes layer and both dissipation mechanisms dis-
cussed above. The wavenumber domains with dominant contributions to the vertical and
the horizontal velocity components are clearly separated, m = 3 and m ≈ 17, respectively,
close to the wavenumbers that satisfy the dispersion relation for the symmetric and anti-
symmetric eigenfunctions. The effect of the bulk dissipation on the longer-mode amplitude
is largely insignificant but is observed for the shorter modes. The dependence of the
resonant amplitude modes on the detuning β agrees with the simplified model predictions
(4.31) as confirmed by the comparison of the inverse amplitude values in figure 15.

The amplitudes of the antisymmetric short modes with relatively large values of m
depend on the detuning β in a complex way. Three modes with largest amplitudes are
shown in figure 16 for two different pycnocline dimensionless thicknesses δ; the range of
the corresponding values of m shifts to the left as δ increases, in agreement with figure 12.
For all modes in figure 16, a local amplitude maximum is located at β ≈ −Re(s)/2. The
appearance of this maximum can be attributed to the fact that due to the presence of the
finite-size wavemaker eigenfunctions ϕ2,m have complicated wavenumber spectra at any
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Figure 16. Amplitudes of horizontal velocity of dominant antisymmetric modes for (a) δ = 0.2 and (b) δ = 0.3.

fixed vertical location z̃. The response curve for the mode with the eigenfrequency closest
to the resonance eigenfrequency has a single maximum. The neighbouring modes exhibit
additional resonances; the corresponding frequencies increase monotonically with m. The
amplitudes of these resonances are proportional to the forcing at the corresponding modes
(figure 11b), and thus the maximum amplitudes of the modes with m = n, 2n, . . . are
larger than those of the neighbouring ones.

Experimental validation of the predicted properties of the wavefield structure within a
finite-thickness pycnocline cannot be obtained using the shadowgraph technique described
in § 3. Therefore, additional series of measurements in which the PIV technique was
applied have been performed.

5. Particle image velocimetry experiments

5.1. Procedure
The PIV set-up consists of a continuous 532 nm laser (1.5 W) with light sheet generation
optics (see figure 1). To minimise the optical distortions caused by density gradient in
the imaged area (Dalziel et al. 2000), the laser sheet is placed at a distance of 10 mm,
sufficiently close to the front wall out of the Stokes layer. A 3.2 MPixel USB 3.1 camera
(FLIR Blackfly) operating at 5 Hz recorded the flow field. Silver-coated hollow 10 µm
glass spheres served as the tracers. LaVision Davis software was used to compute the two-
dimensional instantaneous velocity field; the interrogation cell size was 48 × 48 pixels
with 50 % overlap, corresponding to a spatial resolution of 0.13 mm px−1. The temporal
resolution defined by the camera frame rate corresponds to approximately 30 frames per
wave period. The imaged area spans almost half a wavelength of the third standing-wave
mode and is centred at its antinode. Supplementary movie 2 shows the maps of the vertical
and horizontal velocity components normalised by the wavemaker velocity amplitude.

The experiments were carried out for amplitude of the wavemaker displacement
F = 7.5 mm, n = 3, forcing frequency corresponding to 0.905� α � 0.946 and 0.18 <

δ <0.43. As in the shadowgraph experiments, the mean position of the wavemaker centre
was 350 mm above the bottom of the tank. Before each series of experiments, the basin
was refilled as described in § 2. To decouple the effect of frequency detuning and the
pycnocline thickness d, in each series of PIV experiments, the forcing frequency was
kept constant while in the course of the successive runs d gradually increased. At every
α, the experimental series consisted of 12–20 runs. The first run started from rest, then
the wavemaker motion was initiated and lasted for 300 cycles; after that, the wavemaker
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Figure 17. Vertical velocity amplitude along the upper pycnocline boundary z̃ = δ, normalised by the
corresponding value at x/λ3 = 0.5 for PIVmeasurement, shadowgraph measurement and theory at the
corresponding effective resonant conditions (α = 0.917, δ = 0.32; α = 0.931, δ = 0.22; α = 0.925, δ = 0.306,
respectively).

stopped and paused for 10 min during which the waves fully decayed allowing the initiation
of the next run. The density profile was measured by a PCP before the initiation of the
series and between the runs at the end of the wavemaker pause.

The consistency between PIV and shadowgraph measurements and the theoretical model
is examined by the comparison of normalised vertical velocity amplitude distribution
along the horizontal line z̃ = δ in figure 17. The velocity amplitudes are normalised by the
corresponding values at the third-mode antinode x/λ3 = 0.5; the curves are plotted at
the corresponding effective resonant conditions. A good agreement is observed, although
the coverage of two experimental datasets is different.

Figure 18 presents a summary of the experimental conditions in the present experiments,
along with the theoretically obtained dispersion relation α(k3d) and the theoretical
estimates of the effect of the finite wavemaker size and the dissipation. Each set of
horizontal circles at a constant forcing frequency represents a single series of experimental
runs as specified above. It demonstrates the natural widening of the pycnocline during
each series. The colour of the circles corresponds to the amplitude of the vertical velocity
oscillations at the antinode (x/λ3 = 0.5) after a quasi-steady state is attained for the given
operational parameters.

5.2. Particle image velocimetry data analysis

5.2.1. Response curves
Numerous experiments carried out under diverse experimental conditions allow
decoupling of the effect on the wavefield of the pycnocline thickness and of the
forcing frequency. The horizontal and vertical sections of the diagram in figure 18
yield the experimentally measured variation of the system response to the forcing as
a function of the dimensionless pycnocline thickness δ at fixed frequency, and of the
dimensionless forcing frequency α at fixed pycnocline thickness. Typical examples of
the resulting curves are plotted in figure 19. The system response is represented by the
amplitude of the vertical velocity component at the third-mode antinode normalised by
the amplitude of the wavemaker velocity Aw(x/λ3 = 0.5, z = 0). The amplitude variation
with the pycnocline thickness for a fixed frequency does not change notably with α.
The effective resonance frequency decreases with an increase in δ, while the maximum
amplitude exhibits only a weak change. The normalised amplitude at the effective
resonance is significantly smaller than those measured for the similarly excited surface
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Figure 18. Diagram of the experimental conditions. The symbols represent the experimental results, with the
colour showing the vertical velocity amplitude at the antinode (x/λ3 = 0.5) normalised by the wavemaker
velocity amplitude. The lines correspond to the eigenfrequency of the rectangular basin (red), the resonant
frequency for the basin with the immersed wavemaker (blue) and the effective resonant frequency accounting
for dissipation (black).
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Figure 19. The amplitude of the vertical velocity oscillations at the antinode (x/λ3 = 0.5) of the third-mode
standing wave from PIV measurements: (a) as function of the pycnocline thickness for different forcing
frequencies; (b) as function of frequency for constant pycnocline thickness δ = 0.305.

waves (Mogilevskiy et al. 2024) that represent a limit case δ → 0 with negligible
dissipation in the pycnocline.

The viscous model yields similar results (figure 20). The downshift of the effective
resonance frequency is somewhat underestimated, while the normalised amplitude at the
effective resonance is nearly twice larger than in the experiments. As in the experiments
(figure 19a), the maximum of the normalised amplitude practically does not vary with α.

Measurements of the vertical velocity amplitude at the antinode are summarised in
figure 21 as a function of the detuning β = α − α∗(δ). Note that the figure contains about
160 data points, each representing a separate experimental run more than 10 minutes
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Figure 20. The results of the theoretical model accounting for the full dissipation for parameters as in figure 19.
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Figure 21. Normalised amplitude of the vertical velocity at the antinode as a function of the detuning. The
colour of the experimental points corresponds to the pycnocline thickness δ; the value of dissipation coefficient
s0 corresponds to experiments.

long. Both shadowgraph- and PIV-derived results collapse onto close vicinity of a single
curve. The measured data agree well with the linear theory (4.31) far below the resonance.
The discrepancy of the measured maximum amplitude and of the corresponding detuning
cannot be attributed solely to the effect of dissipation; thus, the effect of nonlinearity may
also be significant. Indeed, selection of the value of the dissipation coefficient s to fit the
maximum amplitude within the linear computational model does not cause a notable shift
in the detuning at the effective resonance. To resolve this discrepancy by accounting for
nonlinearity, advantage can be taken of close similarity between nonlinear resonant free-
surface waves (Mogilevskiy et al. 2024) and those at the interface between the two liquids.
Adjustments of their model to the present problem result in the estimation of the downshift
of the effective resonance frequency (kn Fr2/(h − δ))2/3 ≈ 0.02, in good agreement with
experiments.

5.2.2. Symmetric and antisymmetric modes in the velocity field at the forcing frequency
The series of experimental runs carried out at a constant forcing frequency α = 0.917
(marked by a rectangular box in figure 18) is now considered. To analyse the wavefield at
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Figure 22. Spatial distributions of the velocity components for δ = 0.282 band-pass-filtered at the forcing
frequency α = 0.917. (a,b) Amplitudes Aw,u ; (c,d) phase shift θw,u in time (in π units) relative to the
wavemaker displacement; (a,c) vertical velocity component w; (b,d) horizontal velocity component u.
Supplementary movie 3 shows the variation of maps of both band-pass-filtered velocity components.

the forcing frequency, the PIV signal was band-pass-filtered at each spatial location (x, z)
independently, resulting in periodic in time functions:

u1(t, x, z) = Au(x, z) cos(ωt + θu), w1(t, x, z) = Aw(x, z) cos(ωt + θw). (5.1)

The contour maps of the spatial distribution of the dimensionless amplitudes and phases
of the vertical w and the horizontal u velocity components are presented in figure 22. The
distributions are dominated by the mode with m = 3, although the short-scale features are
also present.

The dispersion relation (figure 12) indeed allows coexistence at the forcing frequency
of the dominant symmetric mode with m = 3 and of the higher antisymmetric modes
with m ranging from 15to 17 (depending on the dimensionless pycnocline thickness δ). To
examine this conjecture, the third spatial mode is first identified in the recorded velocity
distributions, and the assumption of the dominance of this standing-wave mode in the
wavefield is verified. To this end, for each frame corresponding to instant t and each z
independently, the distributions of both velocity components normalised by the wavemaker
velocity amplitude ωF were fitted to

u f it (t, x, z) = u3(t, z) cos(k3x + γu(t, z)), w f i t (t, x, z) = w3(t, z) cos(k3x + γw(t, z)),
(5.2)

defining functions u f it (t, x, z) and w f i t (t, x, z) that are periodic in time with period
T3 and in the horizontal direction with the period λ3; u3(t, z), w3(t, z), γu(t, z) and
γw(t, z) are the fitting parameters. For each location (x, z), the time-dependent periodic
functions u f it and w f i t have amplitudes A f it

u,w(x, z) and phase shift θ
f i t

u,w(x, z) relative
to the wavemaker displacement plotted in figure 23. The patterns of the phase maps
correspond to the third-mode standing wave with a practically constant θ

f i t
w (x, z). The

values of θ
f i t

u (x, z) change sharply by π in the vicinity of the corresponding nodes.
The profiles of the normalised vertical velocity component amplitude Aw(x, z) at the

antinode x/λ3 = 0.5 of the band-pass-filtered record (figure 24a) are compared with
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Figure 23. As in figure 22 for the fitted velocity amplitudes A f it
u,w and phases θ

f i t
u,w . Supplementary movie 4

shows the temporal variation of maps of both fitted velocity components.
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Figure 24. (a) Profiles of the vertical velocity component amplitude. (b) The fitted amplitude of the third-mode
wave for different pycnocline thickness δ. (c) The fitted distributions normalised by their maxima are compared
with theoretical eigenfunction for m = 3, δ = 0.305 and α = 0.917 (the black bold dashed line).

the corresponding distributions of the normalised fitted amplitudes A f it
w (figure 24b)

at multiple experimental runs with different values of the pycnocline thickness δ. The
shapes of the velocity amplitude profiles Aw(z) differ notably from those of the fitted
distributions. The profiles obtained for different experimental conditions A f it

w appear to
be symmetric around z = 0; when normalised by their maxima, they nearly collapse, with
shapes that agree well with the theoretical eigenfunction of the third mode (figure 24c).

The contribution to the wavefield of the antisymmetric modes at the wavemaker forcing
frequency is evaluated by computing at each instant the residual defined as

ures(t, x, z) = u1 − u f it , wres(t, x, z) = w1 − w f i t . (5.3)

The maps of amplitudes Ares
w,u of the vertical and horizontal velocity components wres

and ures presented in figure 25(a,b) exhibit a spatially quasi-periodic horizontal structure,
with mean wavelength corresponding to m about 16, in agreement with the dispersion
relation (figure 12). Note that the amplitudes Ares

w of the residual of the vertical velocity
component wres practically vanish along the centreline of the pycnocline z = 0, where the
maxima of the horizontal velocity amplitudes Ares

u are located. The corresponding phase
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Figure 25. As in figure 22 for the residual velocity amplitudes Ares
u,w and phases θres

u,w . Supplementary movie 5
shows the temporal variation of maps of both residual velocity components.
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Figure 26. Profiles of normalised amplitudes of (a) residual vertical velocity component at x/λ3 = 0.5
and (b) residual horizontal velocity component at x/λ3 = 0.537 for different pycnocline thickness. In (a,b),
theoretical curves correspond to m = 16 and δ = 0.306; colours as in figure 24.

maps are presented in figure 25(c) and 25(d), respectively. The phase shift of π between
the two maxima of the residual of the vertical velocity amplitude confirms that the wave
is antisymmetric around z = 0.

The estimated vertical profiles of the normalised amplitudes of the residuals of the
vertical and horizontal velocity components are now compared with the theoretical
eigenmodes for m = 16 for different values of the pycnocline thickness δ. The profiles are
plotted for the antinode locations of the corresponding velocity components: x/λ3 = 0.5
and x/λ3 = 0.537, respectively (figure 26a,b). The theoretical curve computed for m = 16
and k3d = 0.306 is compared with the experimental profiles normalised by their maxima
and agree reasonably well.

The adopted data processing procedure allows decomposition of the complex wavefield
into coexisting different symmetric and antisymmetric spatial modes at the single forcing
frequency. The wave is dominated by a single symmetric eigenmode, over which a weaker
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Figure 27. (a) Normalised frequency α as a function of δ for antisymmetric modes with 15 � m � 17. The
markers correspond to the experimentally observed modes. (b) The response curves of the antisymmetric mode
as a function of the pycnocline thickness δ for different values of α.

and shorter antisymmetric wave is superposed. The effective wavemode number m of
the antisymmetric mode was obtained from the mean distance between the consecutive
maxima of the residual vertical velocity amplitude (figure 25a). The measured values agree
with the theoretically predicted values based on the dispersion relation for the range of α

and δ adopted in the experiments (figures 12a and 27a). The variation of the measured
normalised amplitudes of the antisymmetric mode with the pycnocline thickness δ for
different constant forcing frequencies is presented in figure 27(b).

5.2.3. Second frequency harmonic
The shadowgraph experiments presented in § 3 indicate that the interface has a complex
structure not just in space but also in time, with the second harmonic in the frequency
that cannot be neglected (figure 8). Its excitation can be attributed to nonlinear interaction
of the primary wave with itself, as well as to the temporal variation of the wavemaker
immersion depth relative to the pycnocline; see (4.5b) and boundary condition (4.6d) that
account for the variable wavemaker position.

The PIV-derived temporal variation of the vertical velocity component measured at
the third-mode antinode x/λ3 = 0.5 is dominated by the contributions of the two lowest-
frequency harmonics α and 2α. Figure 28 supports this statement for the forcing frequency
α = 0.917 and different values of δ.

The main features of the second harmonic can be predicted based on the linear
dispersion relation (figure 12a). A contour map of the vertical velocity component
amplitude band-pass-filtered at double the wavemaker frequency presented in figure 29(a)
is characterised by a quasi-periodic wave pattern. The vertical amplitude profile has a
single maximum within the pycnocline at z ≈ 0 which is a fingerprint of a symmetric
eigenmode. The estimated mode number m ≈ 20 is in agreement the linear theory. The
two-layer model predicts a second-harmonic wave with mode number m = 12; accounting
for the finite thickness of the pycnocline upshifts the resonant mode number considerably.
For the range of δ and α in the present experiments, the slope of the dispersion curve
in figure 12(a) at the vicinity of m corresponding to the second frequency harmonic is
quite small. This enables coexistence in the wavefield of multiple neighbouring resonant
standing modes, resulting in complex measured spatial distributions of the vertical velocity
component amplitudes (figure 29b).
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Figure 28. Decomposition of the temporal record of vertical velocity into that at forcing frequency α and at
double that frequency 2α for (a–d) different values of δ.
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Figure 29. (a) Contour map of vertical velocity amplitude of the second harmonic A(2)
w (normalised by the

wavemaker velocity amplitude) for δ = 0.342 and α = 0.903. (b) The spatial distribution of the normalised
amplitude profiles of the second harmonic of the vertical velocity component at z = 0, for different δ.
Supplementary movie 6 shows the temporal variation of the map of the band-pass-filtered vertical component.

6. Conclusions
This study is focused on two-dimensional internal resonant standing waves excited by
a cylinder vertically oscillating in a narrow deep basin with length L in the vicinity
of the basin’s eigenfrequencies. The basin is filled by stable layers of salted and
pure water separated by a thin pycnocline of finite thickness d. The waves in such a
system differ qualitatively from those observed at the interface of two immiscible fluids
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(Mogilevskiy et al. 2024), as well as from internal waves within a fluid with a constant
density gradient (Thorpe 1968). For the pycnocline-type density distribution employed
in the present study, multiple wavenumbers satisfy the dispersion relation for any given
frequency (see § 4.2). Thus, a temporally monochromatic forcing excites a wavefield with
a complex spatial structure that, in the steady regime, comprises multiple possible standing
waves at the forcing frequency. Fourier analyses in frequency or wavenumber domains
are applied to reveal the spatial and temporal structures of the waves. Wave amplitudes
in frequency and in wavenumber domains, the effective resonance frequencies and the
maximum possible system responses for a given wavemaker displacement amplitude are
defined by dimensionless pycnocline thickness δ and affected by dissipation. An increase
in δ downshifts the effective resonance frequency from that given by the two-layer model
(equation (2.1)). Additional non-negligible spatial modes at the second temporal harmonic
are excited as well.

The developed linear model yields estimates of the effect of the pycnocline thickness
and of the finite size of the vertically oscillating cylindrical wavemaker on the structure
of the internal wavefield resonantly excited in a narrow rectangular basin. The model
accounts for the dissipation in the Stokes layers at the solid surfaces and in the bulk
within the pycnocline (§ 4.4). The resulting wavefield involves superposition of two types
of internal waves that correspond to symmetric and antisymmetric distributions of the
vertical velocity, as followed by the analysis based on the Taylor–Goldstein equation (4.14).
The model predicts how the amplitudes of both symmetric and antisymmetric modes
depend on the forcing frequency. The symmetric mode amplitudes effectively depend only
on the dimensionless detuning β (4.29), that is, the normalised deviation of the forcing
frequency from the pycnocline thickness-dependent eigenfrequency (figure 15). Similarly
to the case of resonant free-surface gravity waves, the finite size of the wavemaker leads
to a certain downshift of eigenfrequencies. Antisymmetric modes are characterised by
a different behaviour (figure 16); the wavenumber of the antisymmetric mode with the
highest amplitudes changes with the detuning. The theoretical findings are compared with
the results of experiments. Each experimental session consisted of a sequence of runs
spanning frequencies in the vicinity of the effective resonance. Between the consecutive
runs, the wavemaker was stopped for a duration sufficient for the liquid to come to rest.
The measurements of the detailed vertical density profile carried out during these pauses
detected broadening of the pycnocline in the course of each session.

Two independent series of experiments were carried out. First, video shadowgraphy was
used in which dye was added to the salted water resulting in a clearly visible sharp interface
that was captured by a video camera over nearly the whole span of the basin. The density
profile measurements relate this interface to the upper boundary of the pycnocline. The
temporal and the spatial variation of the recorded shape of the interface is dominated by
the resonant third mode; the interface, however, also exhibits features with shorter length
scales. The frequency spectra of the interface movement at any fixed lateral location x
contain a major contribution at the forcing frequency, with a notable peak at its second
harmonic. When all frequencies but the forcing frequency are removed by applying band-
pass filtering at each lateral location separately, the wavenumber spectra of the resulting
interfaces exhibit three peaks. The main peak is centred at the resonant mode; two
other relatively broad peaks may be attributed to the cubic nonlinearity (mode numbers
around 9) and to the presence of the antisymmetric modes with numbers around 15.

To study the internal structure of the waves within the pycnocline that cannot be revealed
by shadowgraphy, the instantaneous spatial distributions of both velocity components were
measured using the time-resolved PIV technique in a separate series of experiments. To
resolve the wavefield within the relatively thin pycnocline, the spatial coverage of the
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PIV images was reduced as compared with that in shadowgraph experiments; it was
centred horizontally at the antinode of the dominant wave. In each experimental session,
the forcing frequency was retained constant. Consecutive runs thus allowed the study of
the variation of the system response with growing-in-time thickness of the pycnocline
d. Multiple series carried out at different frequencies allowed extraction of the response
curves as a function of frequency for different values of d. The measured values of the
effective resonant frequencies and of the maximum wave amplitudes are somewhat lower
than the predictions of the linear model even though it accounts for dissipation. The
estimates based on the analogy between the internal and the free-surface two-dimensional
resonant standing waves allowed attribution of the observed downshift to nonlinear effects.

A special data processing procedure has been developed to analyse the considerable
body of data accumulated in the present experiments. The PIV-measured data were used
to reveal the temporal and the spatial wave structure within the pycnocline. At the forcing
frequency, the contributions of the long symmetric and the short antisymmetric modes are
identified. The maps of the obtained amplitude distributions (figure 22) agree well with the
theoretical prediction based on the Taylor–Goldstein equation. The difference between the
full band-pass-filtered maps and those corresponding to the third mode only (figure 25)
shows remarkable similarity to the antisymmetric eigenmodes at the corresponding
eigenfrequency, with mode number m ranging from 15to 17, depending on d. The maps
of the amplitudes of the velocity component distributions obtained by band-pass filtering
around double the forcing frequency (figure 29) are dominated by the symmetric mode
with mode number m ≈ 20, in agreement with the Taylor–Goldstein equation.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.384
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Appendix A. Viscous dissipation
The non-slip conditions at the front and back walls y = 0 and y = B = 160 mm render the
flow of viscous liquid in the system three-dimensional. Nevertheless, since the pressure
remains constant across the Stokes boundary layers at the walls, the solution with two
non-zero velocity components is feasible. The governing equations get additional terms
due to the viscous stresses proportional to the dynamic viscosity μ:

ρ0
∂u

∂t
= −∂p

∂x
+ μ

[
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

]
,

ρ0
∂w

∂t
= −∂p

∂z
− ρg + μ

[
∂2w

∂x2 + ∂2w

∂y2 + ∂2wd

∂z2

]
,

∂ρ

∂τ
+ w

dρs(z)

dz
= 0,

∂u

∂x
+ ∂w

∂z
= 0,

(A1)
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where ρs(z) is the mean density distribution and ρ0 = (ρ1 + ρ2)/2. The viscosity μ is
assumed constant. Averaging the equations over y ∈ (0, B) results in

ρ0
∂u

∂t
= −∂p

∂x
+ μ

[
∂2u

∂x2 + ∂2u

∂z2

]
+ 2

B
σxy,

ρ0
∂w

∂t
= −∂p

∂z
− ρg + μ

[
∂2w

∂x2 + ∂2w

∂z2

]
+ 2

B
σzy,

∂ρ

∂t
+ w

dρs(z)

dz
= 0,

∂u

∂x
+ ∂w

∂z
= 0,

(A2)

where σxy = μ∂u/∂y and σzy = μ∂w/∂y are viscous stresses at each wall. It is assumed
that the Stokes layer thickness

√
μ/ρ0ω ∼ 1 mm is much smaller than the basin width B,

and the averaged values differ insignificantly from those in the middle of the basin; the
overbars are omitted in the following. The viscous stresses are calculated for time-periodic
flow from the consideration of the Stokes layer in time-periodic flow (Mei 1989). The
complex amplitudes of the stresses σ̂xy and σ̂zy are related to the velocity amplitudes Û
and Ŵ as

σ̂xy = 1 + i√
2

√
ρ0ωμU, σ̂zy = 1 + i√

2

√
ρ0ωμW. (A3)

Introducing the Reynolds number

Re = ρ0ω

k2
3μ

∼ 104 (A4)

and considering a single spatial mode in the representation (4.23) leads to the equation for
the amplitude function of the vertical velocity at the mth mode in dimensionless form:

W I V
m − 2

m2

n2 W ′′
m + m4

n4 Wm = − i Re

[
(1 + s)W ′′

m +
(

2
α2 Ñ 2 − 1 − s

)
m2

n2 Wm

]
.

(A5)
The system contains two dimensionless dissipation coefficients, the normalised Stokes

layer thickness s and inverse Reynolds number Re−1, that represent the dissipation due to
the wall friction and shear inside the pycnocline, respectively.

Equation (A5) with boundary conditions (4.35) is solved using the finite-difference
method. The block-tridiagonal system of linear algebraic equations is obtained by the
transformation of the fourth-order equation (A5) to a system of two second-order equations
for Wm and Ωm = W ′′

m .
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