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Abstract

Integral equations on the half line are commonly approximated by the finite-section
approximation, in which the infinite upper limit is replaced by a positive number /?. A
novel technique is used here to rederive a number of classical results on the existence and
uniqueness of the solution of the Wiener-Hopf and related equations, and is then
extended to obtain existence, uniqueness and convergence results for the corresponding
finite-section equations. Unlike the methods used in the recent work of Anselone and
Sloan, the present methods are constructive, and result in explicit asymptotic bounds for
the error introduced by the finite-section approximation.

1. Introduction.

In this paper, we consider integral equations of the form

y{t)~r [w(t-s) + h(t,s)]y(s)ds=f(t), t>0, (1.1)
A)

where w e L 1 ( R ) , h satisfies the conditions indicated below, and f , y ^
L * := LOO(U+). Our main concern is the approximation of this equation by the
corresponding 'finite-section' equation

[»>('-s)+h(t,s)]yf)(s) ds=f(t), Otit^P, (1.2)

in which the upper limit of integration is replaced by a positive number /?.
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416 Frank de Hoog and Ian H. Sloan [ 21

The conditions to be satisfied by h are

snV r \h(t,s)\ds< 00, (1.3)
J0t>0'O

Urn r \h(t',s)- h(t, s)\ds = O, 0 < t < oo, (1.4)

lim r \h(t,s)\ds = O. (1.5)
t->ao •'0

An important special case is h(t,s) = 0, in which case (1.1) is a Wiener-Hopf
equation.

We may conveniently write (1.1) as
(/+_ w+- H+)y=f,

where I+ is the identity operator for functions defined on U +, and W+ and H+

are integral operators on R+ with kernels w(t — s) and h(t,s) respectively. The
Wiener-Hopf operator W+ is a bounded operator on L*, and the operator H+ is
a compact operator on L* (see for example Atkinson [2]).

In a recent paper by Anselone and Sloan [1], the convergence of y^(t) to y(t),
uniformly for f on an arbitrary finite interval, was established under suitable
conditions. The proofs used in that work were non-constructive, being based on a
repeated use of the Arzela-Ascoli theorem, and so provide no foundation for the
estimation of errors. In this paper we rederive many of the results of Anselone
and Sloan [1] by constructive arguments, and then go on to study the nature of
the approximation of y(t) by yp(t) (see Theorem 5.2).

A key result obtained in [1] is that the solution operator for (1.2) (or more
precisely, for that equation amended by allowing / to run over U+, and then
viewed in the space X+ of bounded, continuous functions on U+) exists and is
uniformly bounded for all /? sufficiently large. Results of this kind are useful not
only for establishing the convergence of y^(t) to y{t), but also, as in a recent
paper by Sloan and Spence [6], for establishing convergence and error bounds for
numerical methods. In the present work the existence and uniform boundedness
of the solution operator for the equation (1.2) is established in an appropriate
space (namely LX(Q, /})), with the important difference that an explicit bound on
the norm of the solution operator is now obtained (see (4.8) and (4.9)).

2. The Wiener-Hopf equation

Before we can attempt to answer questions about the existence and uniqueness
of solutions of the finite-section equation (1.2), we require similar results for the
Wiener-Hopf equation. In this section we derive these and other related results in
a somewhat novel way. It should be said, however, that none of the results in this
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13 ] Integral equations on the half-line 417

section are new. Moreover, not all of the known results for the Wiener-Hopf
equation can be obtained in this manner (see Krein [5] for a full treatment of the
Wiener-Hopf equation). Nevertheless, the techniques used are of interest in their
own right and, more importantly, can be extended to analyse the finite-section
equation.

The Wiener-Hopf equation, that is (1.1) with h(t, s) set equal to zero, is written
here as

(), t>0, (2.1)
•'o

or
(I+- W+)y+=f+. (2.1')

It turns out to be convenient to study also the corresponding equation on the
negative real axis,

y-(t)-f° w(t-s)y-(s)ds=f-(t), t<0, (2.2)
- 00

or

(I--W-)y-=r- (2-2')
These equations may be considered in any of the spaces L* := Lp(U

±),
1 < p < oo. Also, it is sometimes convenient to work in the Banach space
Z ± := Lf U L *, equipped with the norm

IHIz±HHkr-+Hks. (2.3)
It may be easily shown that Z±c Lp, 1 < p < oo.

Now let E ±, respectively, denote any of the spaces Z±, Lp,\ «s p < oo. Then
it is known that W ± is a bounded operator on E ±, with norm satisfying

Uz,. (2.4)

(For the case E±= Lp see, for example, [5, Lemma 6.1]. The result for the case
E ± = Z ± then follows trivially.)

It may be remarked that in equations (2.1) and (2.2), and similar equations
throughout the paper, the solutions are not defined at / = 0. This is merely a
matter of convenience, the values at the single point t = 0 being of no conse-
quence. Throughout the paper we shall use the convention that equations need
not hold at the special point / = 0.

With that understanding, we shall see that equations (2.1) and (2.2), taken
together, may be viewed as a single integral equation on the whole line (see (2.8)).
The central idea of our analysis is to view that equation as a perturbation of the
convolution equation

y(t)- r w{t-s)y(s)ds=f(t), -oo < t < oo, (2.5)
•'-oo
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418 Frank de Hoog and Ian H. Sloan 141

or

(I-W)y=f, (2.5')

for which the analysis is relatively straightforward. The latter equation can be
considered on any of the Banach spaces Lp := Lp(U), 1 < p < oo, or on Z := Lx

D Lx, equipped with the norm

Hz HI-Ik+11-Ik-
It can easily be seen that Z c Lp and | |g| |L < llgllz for 1 </> < oo, and in
analogy with (2.4) we have

II^IU<lklk, (2.6)
where E denotes any of the spaces Z, Lp, 1 < p < oo.

The invertibility properties of (2.5) are known to depend on the set of values
taken by the Fourier transform

/

oo
w(s)exp(ii>s) ds, -oo < v < oo.

-oo

Specifically, Wiener [7] has shown that:

LEMMA 2.1. The operator I — W has a bounded inverse on the space L1 if and
only if

1 - w(v) ¥= 0, - o o < i ' < o o . (2.7)

Furthermore, if (2.7) holds then the inverse on the space Lx is

{I - W)~l = I + V,

where V is an integral operator with kernel v(t — s), and o e L , is such that

(1 - w(v))~l = 1 + v{v), -oo < v < oo.

For the more general spaces described above, the following corollary of Lemma
2.1 is well known.

COROLLARY 2.2. Let the condition (2.7) hold, and let E be any of the spaces Z,
Lp, 1 < p < oo. Then (I — W) has a bounded inverse on E, and

(I - W)'1 = I+V,

where V is the integral operator described in Lemma 2.1.

We shall now use the above results for the integral equation on the whole line
to deduce the existence of solutions of the Wiener-Hopf equation on the half line,
under appropriate conditions. The first step is to recognize that the two equations
(2.1) and (2.2) may be viewed as a single integral equation on the real line, with a
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discontinuous kernel. If y and / are defined by

jy+(t), t > 0,

and

i r c o . <<o>
then (2.1) and (2.2) taken together are equivalent to

(I-W+A)y=f, (2.8)

where A is the integral operator on U with kernel a(t, s) given by

f 0, ts > 0,
J - s), ts<0.

We now show that the operator A is compact.
LEMMA 2.3. The operator A is compact on E, where E is any of the spaces Z, Lp,

1 < p < oo.

PROOF. We first show that A is a compact operator on Lx; more precisely, it is
a compact operator from Lx to the closed subspace DQ, consisting of functions
that are continuous on R+ and R~, vanish at infinity, and have a simple
discontinuity at 0.

For this purpose it is convenient to write

A = Ax+ A2

where

and

(A2g){t) = ( | ° ° w ( , _ s)g(s) ds, t<0.

It is clear that the family

is uniformly equicontinuous on (0, oo), and is equiconvergent to zero at oo. Since
each member of the family vanishes on (-oo,0), it then follows from a simple
adaptation of the Arzela-Ascoli theorem, in the manner of Atkinson [2], that Ax is
compact as an operator from L w to DQ. A similar argument shows that A2 has
the same property, and hence that A is compact from Lx to Do.
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An almost identical argument shows that the adjoint integral operator A* (i.e.
the integral operator with the conjugate transpose kernel a(s, t)) is a compact
operator from LM to Do, from which it follows, by a standard argument, that A is
a compact operator on the space Lv

Since A is compact as an operator on both Lx and Lx, it follows easily that A
is compact on Z = LXC\ Lx. More profoundly, since A is compact as an
operator from LM to DQ and is also bounded on Lx, it follows from an
interpolation result of Krasnosel'skii [4, theorem 2] that A is compact as an
operator on Lp for each p in 1 < p < oo. (A trivial modification of the argument
in [4] accommodates the discontinuity at 0.) Thus the result is proved.

We now exploit the compactness property established in Lemma 2.3. Let E
denote any of the spaces Z, Lp, 1 < p < oo, and assume that the condition (2.7)
holds. Then by Corollary (2.2) I — W has a bounded inverse on E, and so,
trivially, is a Fredholm operator of index zero. (For the definition of a Fredholm
operator see, for example, Jorgens [3, §5.3].) Since A is compact on E, it follows
that the operator / — W + A is also a Fredholm operator of index zero, because
the addition of a compact operator to a Fredholm operator yields another
Fredholm operator of the same index (see, for example, [3, theorem 5.12]). The
following result is then obtained by an application of the Fredholm alternative [3,
theorem 5.17], in a special setting.

THEOREM 2.4. Let condition (2.7) hold, and let E be any of the spaces Z, Lp,
1 < p < oo.

(i) The equation
(I - W + A)x = 0, x G E, (2.9)

has a finite number of linearly independent solutions. Each such solution x belongs to
Z, and hence also to Lp,\ < p < oo.

(ii) The equation
(I-W + A)y=f, f(=E, (2.10)

has a solution y e E if and only if f satisfies

f(s)x(-s)ds = 0

for every solution of
(I- W + A)x = 0, x e Z. (2.11)

(iii) Equation (2.10) has a solution y e E for all f' & E if and only if (2.11) has
only the trivial solution.

PROOF. The first result, that (2.9) has a finite number of linearly independent
solutions, follows from the fact that I - W + A is a Fredholm operator. We
denote the number of linearly independent solutions of (2.9) by n(E).
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[ 71 Integral equations on the half-line 421

The remaining results are obtained by applying the Fredholm theory in the
setting of the 'dual system' formed by the Banach space pair E, Z, with the
associated bounded bilinear form

(g,x) = f° g(s)x{s)ds,
- 00

(For a discussion of dual systems see, for example, [3, §3.5].) The properties
required for (£, Z) to be a dual system, namely

(g0, x) = 0 for some g0 e E and all x e Z => g0 = 0,

(g, x0) = 0 for some x0 e Z and all g e £ =» x0 = 0,

are easily established.
With respect to this dual system the operator / := / — W + A has a transpose

JT, defined by

(Jg,x) = (g,JTx), g<EE,x(EZ.

The transpose is given explicitly by

JT= (I - W + A)T' = / - WT + AT,

where WT and AT are the integral operators on R with the transposed kernels
wT(t, s) = w(s — t) and

a r ( M ) = a(s,t) = < V \ n
v ' v ' \ w ( i — / ) , ts < 0 .

Since WT and ^4r can be obtained from W and /I merely by replacing w by w,
where w(s) = w(-s), it follows by the argument used previously that JT is a
Fredholm operator of index zero, operating on the Banach space Z.

Under these circumstances, the Fredholm alternative [3, theorem 5.17] can be
applied to / — W + A and its transpose. The first consequence is that the
equation

(j — WT + AT}Y = 0 r c= 7 (0 i i ' i

has the same number of linearly independent solutions as (2.9), namely n(E). But
(2.11') is equivalent, under the transformation x(s) = x(-s), to (2.11), thus we
conclude that (2.9) and (2.11) have the same number of linearly independent
solutions, or n(E) = n(Z). It follows (since Z c E) that the solution sets of (2.9)
and (2.11) coincide, so proving part (i) of the theorem.

The Fredholm alternative [3, theorem 5.17] also requires that (2.10) has a
solution y e E if and only if

</,*> = 0 (2.12)

for every solution Jc of (2.11'). Under the transformation x{s) = x(-s), the latter
statement is equivalent to that in part (ii) of the theorem. Thus (ii) is proved. For
the solution to exist for all f e E one requires (2.12) to hold for all / e E,
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implying x = 0, and hence x = 0 for every solution of (2.11). Conversely, if (2.11)
has only the trivial solution then, by (ii), (2.10) has a solution for all / e E. Thus
(iii) holds.

We may now use the foregoing theorem to obtain analogous results for the
Wiener-Hopf equation:

THEOREM 2.5. Let condition (2.7) hold, and let E+ denote any of the spaces Z+,
L*, 1 < p < oo, and E~ the corresponding space Z~ or L~.

(i) The equation

( / ± _ w±)x±=0, x±^E±, (2.13)

has a finite number of linearly independent solutions. Each such solution x ± belongs
to Z ±, and hence also to L*, 1 < p < oo.

(ii) The equation

(I+- W+)y+=f+, f+^E+, (2.14)

has a solution y+& E+ if and only if

Jo
for every solution x~ of

(/"- W~)x-=0, x-^Z~. (2.15)

The analogous result also holds if + and — are interchanged.
(iii) Equation (2.14) has a solution >>+e E+ for allf+<= E+ if and only if (2.15)

has only the trivial solution. A similar result holds if + and — are interchanged.

PROOF. The two versions (+ and - ) of (2.13) are equivalent, taken together, to

(l-W+A)x = 0, xe£,

if E is the space corresponding to E ± for functions defined on the whole line,
and if x is related to x ± by

' + ( t ) , t>0,

Part (i) of the theorem therefore follows from Theorem 2.4 part (i).
In a similar way, the pair of equations

(l+-W+)y+=f+, y+,f+^E+,
and

(r-W-)y-=0, y-eE-,

is equivalent to

(I-W+A)y=f, y.feE, (2.16)
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provided

w \o, /<o,

and

( 0 , t>o,

It now follows from Theorem 2.4 part (ii) that equation (2.16) has a solution
y e E (and hence (2.14) has a solution y+e E+)ii and only if

x-(-s)ds = 0 (2.17)

for every solution x~ of (2.15). Thus (ii) holds. If (2.14) holds for a/ / /+e E+ then
(2.17) must hold for all / + e £+ , from which it follows that x~= 0, so that (2.15)
has only the trivial solution. Conversely, if (2.15 ) has only the trivial solution,
then, by (ii), (2.14) has a solution for each / + e E+, so proving (iii).

We can now deduce a number of equivalent conditions for ensuring that the
Wiener-Hopf equation (2.1) and the associated equation on the real line (2.8) have
unique solutions for arbitrarily chosen right-hand sides.

THEOREM 2.6. Let condition (2.7) hold. Then the following are equivalent.
(a) / - W + A has a bounded inverse on Lp for allp satisfying 1 < p < oo.
(b) I — W + A has a bounded inverse on Lp for some p satisfying 1 < p < oo.
(c) / — W + A has a bounded inverse on Z.
(d) The equation (/ - W + A)x = 0 has no nontrivial solution x e Z.
(e)/+— W+ and I~— W~ have bounded inverses on L* and L~ respectively for

allp satisfying 1 < p < oo.
( f* ) /*— W± has a bounded inverse on Lp for some p satisfying 1 «£ p < oo.
(g±) I±— W± has a bounded inverse on Z*.
(h) Neither ( / + - W+)x+= 0 nor ( / " - W~)x~= 0 has a nontrivial solution

x±^Z±.
(Note that (f+) and (f~), and similarly (g+) and (g~), are to be considered as
separate equivalent conditions in the theorem.)

PROOF. The implications (a) => (b) =» (d) and (c) =» (d) are trivial, and the
implications (d) =» (a) and (d) =» (c) follow from Theorem 2.4. Thus (a), (b), (c),
(d) are equivalent.
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The implications (e) => (f *) are trivial, and the implications (f *) => (h) and
(g*) =» (h) follow from Theorem 2.5, as also do (h) => (e) and (h) => (g*). Thus
(e), (f ± ) , (g *), (h) are equivalent.

Finally, (d) and (h) are equivalent under the correspondence x±= x\a±.

3. Modified Wiener-Hopf equation.

In this section we return to the full equation on the half-line, equation (1.1),
which we now write as

( / + - W+- H+)y+ = f+. (3.1)

Since H+ is a compact operator on the space L+ (see section 1), it will be
convenient to consider this equation in the space L+.

As in Section 2, we shall also consider an equation on the negative real axis,

(/-- W-)y'=f-. (3.2)

Equations (3.1) and (3.2) can then be viewed as a single equation on the whole
real line, namely

(l-W + A-H)y=f, (3.3)

where W and A are as in section 2, and H is an integral operator with kernel
h{t,s) for t, s > 0, and zero otherwise.

THEOREM 3.1. Let condition (2.7) hold, and suppose that

(I - W + A - H)x = 0, x^Lx, (3.4)

has no nontrivial solution x. Then I — W + A — H has a bounded inverse on Lx,
and I — W + A has a bounded inverse on Lp, 1 < /> < oo.

PROOF. Since H+ is compact on L+, it follows easily that H is compact on L^.
Thus /— W + A — # as an operator on Lx is a Fredholm operator with index
zero. Since the homogeneous equation (3.4) has only the trivial solution, it follows
from the Fredholm alternative that / — W + A — H has a bounded inverse on

It then follows from (3.3), on restricting attention to the negative real axis, that
(3.2) has a unique solution y~e L~ for each / ~ e L~, and hence that / " - W
has a bounded inverse on L~. The remaining result, that I - W + A has a
bounded inverse on Lp for 1 < p < oo, now follows from Theorem 2.6 (a) and
(f-).

We may also state an equivalent result for operators directly relevant to the
half-line. The result is similar to one obtained by Anselone and Sloan [1, Theorem
9.3].
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THEOREM 3.2. Let condition (2.7) hold, and suppose that neither

425

nor

(r-w-)x-=o, x-eL-,
has a nontrivial solution. Then I+- W+— H+ has a bounded inverse on L+, and
I±— W± have bounded inverses on L*, 1 < p < oo.

4. The finite-section equation

In this section we show that a unique solution of the finite-section equation
(1.2) exists when /? is sufficiently large.

Our approach to the finite-section equation is simliar to that in the previous
sections. We begin by incorporating (1.2) into an equation on the whole line.
Specifically, we consider the three equations

w(t-s)y(s)ds=f(t), t>/3,

y(t) - [fiw(t - s)y(s)ds- \P h(t,s)y(s) ds = /(/), 0 < t < 0, } (4.1)
•'o •'o

w(t-s)y(s)ds=f(t), t<0,

as a single integral equation over the whole line, with a discontinuous kernel. This
equation can be written as

(l-W + A-H + Ap-^)y=f, (4.2)

where W, A and H are as defined previously, and Ap, A^ are defined by

w(t-s)y(s)ds, t>0,

w(t - s)y(s)ds,

and

(Apy)(t) =

f° w(t - s)y(s) ds - r h(t,s)y(s)ds, t > p,
• ' - o o •'O

- ^ ° ° h(t,s)y(s)ds, 0<t<p, (43)

/•OO

/ w(t - s)y(s)ds, t < 0.
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Note that Ap is related to A by a translation: if yp(t) = y(t — /}), then

THEOREM 4.1. Assume that condition (2.7) holds, and that

(I - W+A - H)x = 0, x £ L B ,

has only the trivial solution. Then for p sufficiently large I — W + A — H + Ap —
Ap has a bounded inverse on L^. Moreover, there exists a constant c, independent of
P andf, such that the solution of (4.2) satisfies

for [i sufficiently large.

PROOF. We may represent the operator on the left-hand side of (4.2) as

I - W + A - H + Ap - bp= (I - W + A - H)(I - W)'\l - W + Ap)

- {A - H)(I - W)'xAp - Ap. (4.4)

In the appendix, we show that

\{A — H)(I — W)'lA II —» 0 as B —* oo (4 5)

and

HApH^O as/J->oo. (4.6)

(Here, and in the following, the norm is the operator norm in the space Lx). The
result then follows from (4.4), once we show that ( / - W + A - H) and ( / - W
+ Ap) have bounded inverses on Lx. But, from the hypotheses and Theorem 3.1,
/ — W + A — H and I - W + A have bounded inverses on Lx. Since the
operator Ap is related to A by a simple translation, it follows that / - W + Ap
also has a bounded inverse on Lx, satisfying

We can now apply the above result to obtain the required result for the
finite-section equation. It is analogous to a result obtained by Anselone and Sloan
[1, Theorem 10.1] by entirely different methods.

THEOREM 4.2. Assume that condition (2.7) holds, and that neither
i T+ ii/ + _ i / + \ v - + = n v + c 7 +

nor

(r-W-)x-=0, x-eL~,
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has a nontrivial solution. Then for ft sufficiently large the finite-section equation
(1.2) has a unique solution y^ G ^ ( O , ft) for each f G ^ ( O , ft). Moreover, there
exists a constant c > 0, independent of ft andf, such that

IM^<p./i)«cll/lk<o./>> (4-8)
for ft sufficiently large.

PROOF. The hypotheses in the theorem are equivalent to those in Theorem 4.1.
The result then follows from Theorem 4.1, on restricting attention in (4.2) to the
interval (0, ft). (To obtain the estimate (4.8), set /( /) = 0 for / < 0 or t > ft.)

It should be noted that an explicit expression can be given for the constant c in
Theorems 4.1 and 4.2—in fact from the argument used to prove Theorem 4.1, it is
clear that we may take it to be

c = (1 + e ) | ( / + ( / - W T ^ O ' l K / -W+A- HYll (4.9)

where e is any positive number. This is in marked contrast to the situation in [1],
where the existence of a corresponding bound on the inverse of the finite-section
operator is only inferred through a proof by contradiction based on the Arzela-
Ascoli theorem.

5. Error Bounds

In Section 2 we obtained results about the Wiener-Hopf equation (2.1) by
incorporating it into an equation on the whole line, namely

(I-W + A)zo=f, f^Lx, (5.1)

where the operator A is compact on LK. (In this section it is convenient to use the
new notation z0 for the solution of the extended Wiener-Hopf equation (5.1). The
subscript zero reminds us that the discontinuity in the kernel and the solution
occurs at the origin.) From an intuitive viewpoint, an essential difference between
the compact operator A and the noncompact operator W is that A is a 'localized'
operator, with a kernel a(t, s) that typically is small when either / or s departs far
from the origin, while W is an operator whose kernel depends only on the
difference t - s, and which is therefore not localized at all. We might therefore
expect that the solution of (5.1) would be similar to the solution of

(I-W)z=f, f^Lx, (5.2)

except near the origin. This is indeed the case, as is shown in the following lemma
on the error z0 - z.
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LEMMA 5.1. Let condition (2.7) hold, and let z e Lx denote the unique solution
of (5.2). Moreover, assume that (5.1) has the unique solution z0 e LK. Then

[Y(0 + y(t/2)\\v\\
where V is as in Lemma 2.1, and

( f \w(s)\ds, t > 0 ,

/ W(J) ds, / < 0,

f°° \v(s)\ds, t > 0 ,

J' \v(s)\ds, t < 0 .

PROOF. It is easy to verify that

z0 - z = - (/ - W)-lAzQ = - (I + V)Az0.

The result now follows from the definitions of A and V, after application of some
elementary inequalities.

We shall now combine the results of the previous section with Lemma 5.1, to
obtain some insight into the behavior of the finite-section approximation when /?
is large. If we denote by o(l) any terms in an expression that vanish in norm as
/? -» 00, then (4.4) may be written as

/ - W + A - H + Ap- bp

= (I- W + A- H)(I - W)'\l - W + Ap) + o(l).

From this it follows, for /} sufficiently large, that

( / - W+A-H + A/,- A )̂"1

= ( / - W + A$)~\l- W)(I - W + A - H)'1 + o(l)

= ( / - W + A - H)'1 + ( / - W + Ap)'1 - ( / - W)'1

+ (l - W + Ap)'
lAp(I - W)'\A - H){I -W + A- H)'1 + o(l).

It follows from an argument similar to that used in the appendix to prove (4.5)
that

"AJl-W)'\A-H)\\-*0 as )3-oo,
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in consequence of which the fourth term of the above may be absorbed into the
o(l) term. Thus for /? sufficiently large we have

(I-W + A-H + Ap- A^)"1

= ( / - W + A - H)'1

+ ( / - W + A ^ - i l - W)-l + o{\). (5.3)

Now, let y, y^, Zp e Lx be the (unique) solutions of

( /- W + A-H)y=f,

( /- W+A-H + Ap-^)yp=f,

and

(I-W+Ap)zfi=f

respectively, where / e Lx. Then from (5.3) we have

yn = y + *p-* + o{\), (5.4)

where z is the solution of (5.2).
Equation (5.4) has a simple interpretation, if we rewrite it as

yp-y = zp-z + o(l), (5.5)

and restrict attention to the interval (0,/?). On this interval y is the solution of
(1.1), the full equation on the half-line, while yp is the solution of the finite-sec-
tion equation (1.2). On the other hand z is the solution of the equation

z{t)-rw{t-s)z{s)ds =
- o o

whereas, because t < /$, Zp is the solution of

That is, z and ẑ  satisfy the same equations as y and y^ respectively, except that
the kernel h(t,s) is absent, and secondly, the lower limit of integration is now
-oo instead of 0.

To the extent to which the approximation y$-y~Zp-z is valid (and it is
valid uniformly for /? sufficiently large), the error yp — y is unaffected by the
kernel h(t,s), and shows no effects from the lower limit of integration. Rather,
the error can be expected to be small over the entire interval (0, /?), except in the
vicinity of the right-hand end.

To obtain a more precise result, we observe that an obvious extension of
Lemma 5.1 yields
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where, with the aid of (4.7),

Then from (5.5), together with Theorems 3.1 and 4.2, we obtain the error bound
in the following theorem.

The constant cx in the theorem may be taken to be ||(7 - W + A)'^].

THEOREM 5.2 Assume that condition (2.7) holds, and that neither

( 7 + - W+- H+)x+=0, x+eL+ (5.6)

nor

( / " - W-)x~= 0, x -e L~ (5.7)
has a nontrivial solution. Then for /? sufficiently large there exists c1 independent of
/} such that

0 < t < P,

where y and y^ are the solutions of (1.1) and (1.2), and e^ -* 0 aS /J -> oo.

6. Example

A convenient illustration of the error bound in Theorem 5.2 is furnished by the
integral equation

y(t) ~ T I e~^'~siy(s) ds = 1, t 3* 0, (6-1)

for which both the exact solution y and the finite-section approximation y^ can
be obtained analytically.

For this example h(t,s) = 0 and

W(A = -L-KI.
A

Thus the Fourier transform w is

-( \ 2 _ J _
W ( " ) = \ l + v2>

and therefore the condition (2.7) is satisfied provided X £ [0,2]. And in fact for
X £ [0,2] a solution y e L^ of (6.1) exists and is unique (see [2]), and is given
explicitly by
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where

with the positive branch of the square root to be taken for X e U \ [0,2].
It can easily be verified that for this example the integral operator V defined in

Lemma 2.1, with kernel v(t — s), has v given explicitly by

„(,) = ^-e-"l'".

Then one easily computes, using (2.6),

^ 4 ^ x ^
and in a similar way the quantities y and TJ defined in Lemma 5.1,

One also notes that for X £ [0,2] equation (5.7) has no nontrivial solution, since
otherwise (because w is even, and H+= 0) there exists a nontrivial solution of
(5.6), obtained by reflection in the origin.

Thus for this example Theorem 5.2 implies, for X £ [0,2] and /? sufficiently
large, the following bound on the error in y^.

-y(t)\< c1[ i

0<t<fi, (6.2)
where ê  -» 0 as fi -* oo.

If desired, an analytic expression for an upper bound on cx — ||(/ — W 4- A)'l\\
can also be obtained for this example. One observes that for large fi the error is
small for fi — t s> max(2,2/ju), i.e., for / well away from the cut-off fi; but that
the effect of the cut-off is felt further and further away as \i -* 0, i.e. as X -> 2
from above.

It is interesting to compare this a priori bound with the exact error. For this
example the exact solution of the finite-section approximation (1.2), obtained in
the manner indicated in [2, §3] and easily verified directly, is

Thus the exact error on the interval [0, fi] is

(6.3)
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This is consistent with the bound (6.2), since the last term of (6.3) is bounded
uniformly by

._ 2(1 - „) „
*'• (X e

which converges to zero as /? -» oo.

7. Concluding remarks

We have considered the approximation of the integral equation (1.1) by the
finite-section equation (1.2). By considering each of these equations as merely a
limited view of a corresponding equation (with a discontinuous kernel) on the
whole line, we have been able to recover known sufficient conditions for ensuring
that (1.1) and (1.2) have unique, bounded solutions. Similar arguments have also
allowed us to obtain a new asymptotic bound for the error of the finite-section
approximation (see Theorem 5.2). The bound confirms the result of Anselone and
Sloan [1], that yp(t) -* y(t) uniformly on every finite interval. It also establishes
that for large /? the error is significant only in the vicinity of the cut-off /?.

The finite-section equation (1.2) cannot in general be solved analytically, but
can be solved numerically by any of the standard methods for integral equations
of the second kind. However, a complete analysis of the numerical solution for
(1.2) that takes into account the effect of varying ft is not yet available. It is
expected that the techniques presented in the present paper will prove useful in
such an analysis.

Acknowledgment

Ian Sloan acknowledges the support of the Australian Research Grants Scheme.

Appendix

In this appendix, we show that IJÂ H and \\(A - H){I - W)'lAp\\ converge to
zero as /? -» oo, where the norms are the operator norms on Lx.

From the definition (4.3) of A ,̂ it is easy to see that

| | A o | | < m a x < / \w(s) \ds + sup / \h(t,s)\ds,
\JP t>pJo

X sup r \h(t,s)\ds, fX \w{-s)\ds).
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Because w e Lx, it follows immediately that

f \w(s) \ds -» 0 as /?-» oo

and

I | W ( - J ) | ds -» 0 as/?->oo.

Also, from assumption (1.5) we have

sup/ \h(t,s) \ds -» 0 as^8-»oo.
r>^yo

With slightly more difficulty we may prove in the following way that

supj°° \h(t,s)\ds -* 0 a s ^ ^ o o . (Al)

Letting

•08

it follows from (1.3) that for each / e [0, oo) we have

^ys(/) —* 0 as )3 —> oo.

Moreover, since

it follows from (1.4) that the family { ^ j ^ o is equicontinuous at each point
t G [0, oo). Similarly, since

it follows from (1.5) that the family {^} p ^ 0 is equiconvergent to zero as / -» oo.
Now let t = JC/(1 ~ x), ahd define fy e C[0,1] by ̂ (x) = ^ ( 0 for 0 < x < 1,
<fyg(l) = 0. Then the family {^}^ > 0 is equicontinuous on [0,1J, and converges
pointwise to zero as /J -* oo. Since pointwise convergence of an equicontinuous
family on a compact set implies uniform convergence, it follows that

sup \(j>p(x)\^ 0 as/? -» oo,
[0l ]

which is equivalent to (Al). Thus,

| A J - » O as /S^oo .

To study the convergence of \\(A - H)(I - W)'lAfi}\, note that it follows from
Lemma 2.1 that

(A - H)(I - WYlA0 ={A- H)(I + V)Afi = {A - H)Afi+(A - H)VAp.
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From the definitions of A, Ap, H and V we obtain, by a straightforward but
rather tedious calculation, the following bounds:

\w(-s)\ds,
B/2

HA0\\ < | | t f | | / f l ° V ( - * ) I ds + || W i s u p / " \h(t,s) | ds,

\w(-s)\ds+\\W\\2 I" \v(-s)\ds,
JR/T.

•>B/2

f
JB/1

and

H^^H^IlKllll^lir \w(-s)\ds +\\W\\\\H\\f \v(-s)\ds
JB/3 JB/3

+ \\V\\\\W\\suPr \h(t,s)\ds.
,>0 JB/3

Since v e Llt each of the above bounds converges to zero as /? -» 00. Thus
- H)(I - WylAp\\ -» 0 as 0 -» 00.
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