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Abstract
Constrained econometric techniques hamper investigations of disease prevalence and income risks in the
shrimp industry. We employ an econometric model and machine learning (ML) to reduce model
restrictions and improve understanding of the influence of diseases and climate on income and disease
risks. An interview of 534 farmers with the models enables the discernment of factors influencing shrimp
income and disease risks. ML complemented the Just-Pope production model, and the partial dependency
plots show nonlinear relationships between income, disease prevalence, and risk factors. Econometric and
ML models generated complementary information to understand income and disease prevalence risk
factors.
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Introduction
The rapid development and success of large-scale shrimp production in Southeast Asia during the
1970s provided a promising avenue for developing countries to bolster rural economic
development through shrimp exports (Nguyen et al., 2021). The increasing demand for shrimp
and production intensification raised concerns about disease risks, which are influenced by
environmental factors and farm management practices. Despite these concerns, the high
economic value of shrimp, the relatively short production cycle, and technological advancements
have mitigated fears of failure. These factors have also provided innovative responses to the threats
posed by disease and have facilitated market expansion.

The profitability of shrimp farming and the continued growth of shrimp markets have
supported the industry’s resilience, even after significant risk events in 1995 (Asche et al., 2021).
While shrimp risk management strategies are multifaceted and interconnected, the threat of
disease remains a concern, particularly as production intensifies, even when best practices are
employed (Duong et al., 2019). The links between emerging infectious diseases and industry
slowdowns remain underexplored, mainly due to the complexities of modeling these phenomena.
The interconnection between disease outbreaks, climate change, and econometric model
constraints has made it difficult to fully understand the biological, social, and economic factors
influencing shrimp industry risks (Breiman, 2001). When combined with econometric models,
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machine learning (ML) and artificial intelligence (AI) – defined as the scientific study of
algorithms and statistical models (Storm et al., 2020) – offer an effective means of addressing the
challenges associated with modeling aquaculture risks.

Current research on shrimp risk management has predominantly relied on statistical and
econometric models to evaluate the factors influencing financial, production, and marketing risks
(Asche and Tveteras, 1999; Nguyen and Jolly, 2020; Kim and Shin, 2021). Joffre et al. (2018)
studied shrimp farmers’ risk perceptions. They found that mediation analysis using regression
models revealed that market risk perception significantly impacts risk management strategies,
although the number of predictor variables in these models was limited. Similarly, Nguyen et al.
(2020) used a nonparametric stochastic production frontier to assess shrimp production under
disease and natural disaster risks in Vietnam. However, their regression models were constrained
by the limited number of variables they could handle. Nguyen et al. (2022b) further noted that
while econometric methods struggled with nonlinear insurance premium predictions, ML
provided more accurate forecasts based on spatial production risks. This suggests that ML has the
potential to enhance the effectiveness of econometric techniques, particularly in premium
determination (Kim and Shin, 2021).

In shrimp modeling, econometric and statistical approaches primarily focus on summarization,
estimation, and hypothesis testing, while ML emphasizes prediction (Mullainathan and Spiess,
2017; Varian, 2014). Econometric models offer valuable insights into specific factors
(Baghdasaryan et al., 2021) but often lack predictive power. In contrast, ML techniques are
considered highly promising for expanding the economist’s toolbox, as they can outperform
traditional models in predictive accuracy, especially in decision-making and policy applications
(Kleinberg et al., 2015; Mullainathan and Spiess, 2017; Athey, 2018; Storm et al., 2020). One major
challenge withML, however, is the risk of overfitting. MLmodels handle this issue more effectively
with out-of-sample forecasting, whereas traditional econometric methods are better at explaining
relationships among variables (Varian, 2014). Although ML-based models excel in predictive
power, they often struggle to explain causal relationships (Kim and Shin, 2021). Economists and
econometricians, who frequently emphasize the importance of cause-effect relationships
grounded in utility theory (Campbell and Cocco, 2015), face challenges in applying these
relationships to nonlinear agricultural systems like aquaculture. Econometric models that impose
constraints such as curvature or monotonicity may lead to bias and misinterpretation, mainly
when the process involves nonlinear interactions, heterogeneity, or distributional effects (Storm
et al., 2020). ML, however, can capture more complex relationships, as the marginal impact of
variables depends on multiple features of the model and covariate values (Cook et al., 2021).

Efforts to improve the predictability and interpretability of shrimp disease risk models have led
researchers to explore more advanced techniques. For instance, Leung et al. (2000) employed
logistic models, but while this model provided meaningful explanations for policy formulation,
their predictive power remained uncertain. To address this, recent studies have used methods such
as partial dependence plots (PDP) and individual contribution expectation to improve the
explainability of ML models (Bücker et al., 2020; Fahner, 2018; Goldstein et al., 2015; Zhao &
Hastie, 2021). By imposing structural constraints like monotonicity and linear relationships,
researchers have sought to make ML models more interpretable (Fahner, 2018). Friedman (2001)
introduced a model-agnostic partial dependency function to generalize ordinary least squares
(OLS) coefficient estimates. This function, now widely recognized as the PDP, is used to assess the
explanatory power of ML models, which can be further evaluated using Shapley additive
explanations values (Kim and Shin, 2021). This paper argues that PDP can effectively assess the
factors influencing shrimp income and disease risks.

A common perception is that ML algorithms are sometimes applied haphazardly or
misinterpreted, leading to concerns over their usefulness in economic analysis (Kim and Shin,
2021; Mullainathan and Spiess, 2017). The application of ML in economics requires careful
alignment between the models and the specific tasks at hand. This paper aims to bridge the gap
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between traditional econometric models and ML by applying PDP to map relationships between
dependent and independent variables. Combining the strengths of econometrics and ML, the
paper examines how risk factors affect shrimp farmers’ income and disease prevalence. The
analysis focuses on interactions between shrimp production, disease outbreaks, and climatic
events, all impacting income variability and risk prevalence.

The intensification of shrimp production has led to increased output and exports for countries
like Vietnam (VASEP, 2008–2017). However, reckless production intensification practices have
also contributed to higher shrimp mortality and income losses (Lightner, 2011). Disease risks arise
from various factors, including adverse weather, poor water quality, and equipment failures, such
as irrigation pump breakdowns. Disease prevalence – the proportion of shrimp affected by disease
at a given time – negatively impacts income and is measured by the percentage of farmers
suffering financial losses due to disease. Disease outbreaks, defined as sudden increases in disease
occurrence within shrimp populations, have exacerbated income risks. Given these challenges, it is
essential to identify the production and management factors that influence shrimp income and
disease prevalence. This paper aims to evaluate econometric and ML models that capture the
complexity and nonlinearity of the factors affecting these risks.

The findings of this paper will provide valuable insights for shrimp industry stakeholders and
policymakers, offering strategies to mitigate disease risks and enhance income stability.
Subsequent sections will discuss global shrimp production trends, particularly in developing
countries like Vietnam. This will be followed by a detailed methodology section that outlines the
problem-solving approach, data collection, and data analysis techniques. Finally, the paper will
present the results, discussion, and conclusions, highlighting the implications for shrimp risk
management and industry sustainability.

Background information on the shrimp industry
Global shrimp production is expected to reach 5.7 million metric tons in 2024, with a positive
outlook for 2025. The market is expected to grow at a compounded annual growth rate of 6.82%,
from $33.81 billion in 2021 to $53.63 billion by 2028 (Fortune Business Insights, 2022). The
demand for shrimp is increasing in numerous industries, such as pharmaceuticals, healthcare, and
cosmetics, mainly because of its beneficial properties, such as antioxidant and anti-aging effects
(Renub Research, 2024). The whiteleg shrimp (WLS) (Litopenaeus vannamei) has become the
dominant species in global shrimp farming, replacing the black tiger shrimp (Penaeus monodon),
which is more susceptible to diseases (FAO, 2019; Asche et al., 2021). The adoption of WLS, due to
its disease resistance, has driven much of the industry’s growth. However, despite production
gains, current yields remain insufficient to meet government-set targets, leading to
recommendations for production intensification to increase yields and revenues. While
technology adoption has made this possible (Asche and Smith, 2018; Kumar and Engle, 2016),
intensification has increased disease risks and reduced profit margins for farmers (Quach
et al., 2019).

One of the world’s leading shrimp exporters, Vietnam has leveraged shrimp production to
enhance its rural economy. It ranks third in global shrimp exports, holding 13% of the market
share and contributing 40–45% of the country’s total seafood export value, amounting to
$3.5–4 billion annually (Nguyen & Jolly, 2019; FAO, 2019). WLS accounts for about 70% of
Vietnam’s production, with black tiger shrimp making up 30%. Despite its economic significance,
black tiger shrimp farming faces declining production due to disease outbreaks (Lan, 2013).
Vietnam’s shrimp farming industry spans over 750,000 hectares, with 85% devoted to black tiger
shrimp and 15% to WLS.

Shrimp diseases pose a significant challenge to the industry, with viral pathogens like WSSV
and bacterial diseases such as acute hepatopancreatic necrosis (AHPND) causing massive losses.
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WSSV alone resulted in losses exceeding $6 billion by 2012 (Lightner et al., 2012), and AHPND
caused losses of over $1 billion in Asia by 2013 (Han et al., 2015). Diseases such as early mortality
syndrome and white feces disease remain persistent threats to Vietnam’s shrimp farmers. Huong
et al. (2016) reported economic losses from AHPND and in 2015 for WSSV in the Mekong Delta
of $97.96 m and $11.02 m, respectively. One of the recent studies reported a $6 B global loss in
2016 due to viral diseases in the global shrimp sector (Rizan et al., 2018). In another study,
economic loss due to diseases was estimated at more than $11.58 B during 2010–2016 in Thailand
alone, along with a loss of 100,000 jobs (Shinn et al., 2018; Patil et al., 2021; Asche et al., 2021).
This paper will explore factors influencing shrimp income and disease risks, focusing on how these
challenges impact shrimp growth, production, and revenue.

Method
Policymakers recognize the uncertainties surrounding climatic events, disease outbreaks, yields,
and prices, making risk management strategies essential. Managing shrimp production risks,
particularly disease, requires financial mitigation strategies (Duc et al., 2019). While complete
prevention of losses is not always possible, risks can be managed through pre-production,
production, and post-harvest strategies. Pre-production includes pond preparation, activities from
stocking to harvesting, and post-harvest focuses on selection, cleaning, marketing, and sales
(Girdžiūtė, 2012). Poor execution of these strategies can lead to complex risk management issues.

Approach

This paper combines the strengths of econometric models with the flexibility of ML techniques to
better understand the relationship between shrimp disease prevalence and income risks. The joint
application of econometric and ML methods compensates for each of their weaknesses, producing
more robust results. This allows for better modeling complex relationships, including potential
nonlinearities and interactions with other production and institutional factors (Agassisti and
Bertoletti, 2022; Kim and Shin, 2021). This study implemented an econometric model and ML
techniques to compare their ability to economically explain the relationship by calculating PDP
and measuring the marginal importance of individual risk factors (Kim and Shin, 2021). By
merging the outputs of these models, we expect to achieve a balance between explainability and
predictive accuracy, producing more precise predictions and reducing endogeneity concerns
(Zheng et al., 2017).

Theoretical approach and analytical techniques

Previous research has often used economic random effects models, such as logit (Farzaneh et al.,
2001; Jordaan & Grové, 2008; Nganje et al., 2005) and probit models (Coble et al., 1996), to study
risk perceptions and management strategies. Leung and Tran (2000) used logistic regression and
probabilistic neural networks to enhance the prediction and explanation of shrimp disease risks.
However, while effective at explaining risk perceptions and handling endogeneity, these models
are weaker in their predictive power (Guhl, 2019).

In contrast, Kumbhakar and Tsionas (2009) used a nonparametric approach to estimate
production and risk functions, which allowed for a deeper exploration of production risk and
preferences. Similarly, Li et al. (2021) developed a nonparametric procedure to assess the impact of
various factors on production risk. However, residual-based nonparametric methods need further
development to effectively handle endogenous inputs, such as instrumental variables or control
functions.

To account for risk in shrimp farming, we employed the Just-Pope (J-P) econometric function,
which assumes a standard production function specification. This method helps reduce input
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dimensionality and disentangle exogenous variation from confounding factors. Prediction is then
used as a control function. At the same time, the regression residual is treated as an instrumental
variable to estimate the causal effect (Lin et al., 2021), following an endogeneity correction process
(Papadopoulos, 2022). The J-P model relaxes the second-moment restrictions on the production
function, allowing input-dependent heteroskedasticity in an additive specification (Traxler et al.,
1995). This method decomposes the production function into deterministic and stochastic
components, facilitating consistent parameter estimation using White’s heteroskedasticity-
consistent covariance matrix (Asche and Tveterås, 1999).

The J-P function applied in this study is given by:

yi � f �xijβ� � g�xijα�εi; (1)

where yi is the yield or mean response output, xi, is a vector of explanatory variables, β and α are
parameter vectors, and εi, is the stochastic term with zero mean. It is well known that with this
setup, the mean output of production is a function of the explanatory variables and is given by the
function f(xi,β) and the variance is related to the explanatory variable by the function g(xi,α)

The J-P model assumes that the variance of the production function error may depend on
explanatory variables, representing a multiplicative, heteroskedastic model (Judge et al., 1988;
Harvey, 1976). Therefore, the three-stage estimating steps described by Judge et al., (1988) follow
the procedure, but the framework is slightly different from the current literature, and it is defined
as follows:

Step 1: We use regression analysis of yi on f(xi,β) to obtain say β̂. That is, we use the
heteroskedastic error of the general model:

yi � f xi;β� � � ei;where i � 1; 2; :::; n (2)

Step 2: From step 1, we derive the so-called deviance, also known as
squared residuals, say, di, defined as:

di � �yi � f �xi;β̂�2; for 1 ≤ i ≤ n (3)

Using some properties together with the definition of the variance, it is easy to see that

E�dijxi; � E� �� yi � f �xi; β̂�2jxi; � � Var�yijxi;�: (4)

Step 3: The econometric model results serve as the reference for comparing the analyses of the
second stage, which is instead based onML. The MLmodel is strong in predictive power but needs
improvement in explainability. The ML approach portrays the complexity (interaction and
nonlinearity) of the relationships among disease infestation, climate change, and production
practices. Shrimp income and disease risks require a methodology for completely modeling
many covariates that usually coexist in the same environment and are likely to interact. The
shrimp production process is risky, but we have little information on the structure of
production risk. Hence, the J-P function is preferable to the specifications of other empirical
work because it imposes the most miniature set of restrictions on the stochastic technology
(Tveterås, 1997).

ML can handle large datasets with numerous covariates because of its high flexibility (Bertoletti
et al., 2022). To estimate the related risk in the production function model, we use the natural
logarithm transformation of the deviance di obtained from the J-P model as response variables for
the various ML models, such as support vector machines (SVMs), random forests (rfModel), and
Cubist (cbModel) models. The next section describes or summarizes all these ML algorithms.
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Statistical and empirical models

The empirical model is expressed as:

di � β0 � β1x1 � β2x2 � . . .� βn xn � εi (5)

where di is the natural logarithm transformation of the deviance obtained from the J-P and is a
function of x1 : : : : : : xn; for 1 ≤ i≤ n. The various independent variables are seen in Appendix I,
Table 1, β is a coefficient of regression, and εi is the error term. Appendix I, Table 1 shows the
anticipated signs for the J-P, income risks, and disease prevalence.

Remark 1. We note that our deviance d has a weighted chi-square distribution of 1 degree of
freedom for a reasonably small dispersion for each response.

Summary of machine learning methods considered

Linear regression model
A linear model can directly or indirectly be written in the form

yi � β0 � β1xi1 � β2xi2 � . . .� βnxin � εi (6)

where yi represents the numeric response for the ith sample, β0 represents the estimated
intercept, βj represents the estimated coefficient for the jth predictor, xij represents the value of the
jth predictor for the jth sample, and εi is the random error that the model does not explain
(Appendix II provides a further description of the ML models).

Hence, the least squares linear regression plane that minimizes the sum-of-squared errors
between the observed and predicted values:

ArgminβSSE � Argminβ
Xn

i�1

�yi � ŷi�2; (7)

where yi is the outcome and ŷi is the model prediction.

Table 1. Descriptive statistics of selected socioeconomic and biological variables for 534 farmers

Variables Units Mean Std. dev Median Skewness CV

Age Years 48.57 9.31 49.00 0.05 0.19

Area sq Ha 0.54 0.39 0.50 3.43 0.72

Chemical/feed USD 3,578.60 4,446.74 978.26 1.11 1.24

Crop year Unit 2.26 0.46 2.00 0.87 0.21

Experience Years 9.09 4.59 8.00 1.31 0.50

FCR Ratio 1.39 1.10 1.20 12.14 0.79

Harvest Tons 7.85 8.41 4.48 2.27 1.07

Income USD 14,465.57 11,619.24 11,909.42 2.42 0.80

No. Dependents Unit 1.88 0.88 2.00 −0.03 0.47

No. Working Dependents Unit 2.59 1.09 2.00 0.68 0.42

No. Ponds Unit 1.87 1.16 1.00 2.15 0.62

Stocking density Unit/Sq Meter 77.66 41.38 80.00 2.33 0.53

Premium USD 12.25 7.73 10.52 2.42 0.63

Disease occurrences Unit 0.12 0.03 0.10 1.01 0.30

Note: FCR = feed conversion ratio.
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Partial dependence plots (PDP)
The determination of predictor importance is a crucial task in any supervised learning problem.
Once a subset of “important” features is identified, it is often necessary to assess the relationship
between them (or a subset thereof) and the response variable. This can be done in many ways, but
for ML, this is accomplished by constructing PDPs. PDPs show the impact of one or two variables
on the predictive outcome (Nguyen et al., 2022a). The PDPs are “partial” since they can only
display one or two features at any time (Bracke et al., 2019). The PDP plots enable visualization
and analysis of the interaction between the response variable and one or two selected independent
variables. From this visual image, the reader can observe the nonlinearities of the relationship
between the response and input variable. For instance, using a real-world example, like between
stocking density and risk income, the J-P model’s prediction shows that income and disease risks
increase. For linear models, the marginal effects (MEs) of the variables of interest are constant over
a given range and are described entirely by the values of the estimated parameters. ML offers
global approaches as the PDPs are plots that show importance over all the input data ranges,
which can be nonlinear, positive, and or negative over a range. In the case of stocking density and
income risk, the literature on biological response suggests nonlinearity.

Shrimp farming risks and variable selection

In shrimp farming, the risk is a combination of the likelihood of an adverse event, such as disease
outbreaks, and the severity of the associated losses (Choudhary and Madaan, 2016). Shrimp
farmers face risks from various sources, including environmental factors, production inputs, and
disease prevalence. The relationship between risk and net income is often complex, and traditional
economic theory suggests that higher risks are associated with higher potential returns. However,
these returns are less likely to be realized (Appendix I, Table 1). Therefore, managing risks in
shrimp farming is essential for maximizing profitability while minimizing potential losses.

One of the main risks in shrimp farming is disease. Disease prevalence often increases with
factors such as high stocking densities, poor water quality, and intensive farming practices. Shrimp
farmers must balance the need to increase production with the risks associated with higher disease
prevalence. This balance is further complicated by the fact that many disease risks are influenced
by climatic and environmental factors, which are often beyond the control of individual farmers.

Regarding input variables, feed is one of the most important factors influencing shrimp
production. While increasing feed levels can boost production, excessive feeding can lead to waste
accumulation, reduced oxygen levels, and increased shrimp mortality. Labor, capital, and other
production inputs also play a role in determining net income and risk levels. For example, access
to credit can help farmers invest in better equipment or sanitation measures, reducing income and
disease risks.

Demographic factors such as farmer age and experience influence shrimp farming risks. Older
farmers may be more risk-averse and less likely to adopt new technologies or farming practices,
which can limit their ability to manage risks effectively. Conversely, more experienced farmers
may have better risk mitigation strategies, such as implementing disease prevention measures or
adjusting stocking densities.

Managing risks in shrimp farming

Farmers can adopt various risk management strategies to mitigate the risks associated with shrimp
farming. These include both preventive and curative measures. Preventive strategies, such as
improving water quality, reducing stocking densities, and using disease-resistant shrimp breeds,
can help minimize the likelihood of disease outbreaks. Curative measures, such as treating infected
ponds, are often less effective, as limited treatments are available for many shrimp diseases.
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One important risk management strategy is to invest in sanitation measures, such as installing
sludge treatment areas and monitoring water quality more closely. By reducing the buildup of
waste and toxins in the shrimp ponds, farmers can lower the risk of disease and improve overall
production outcomes. Access to timely information about disease outbreaks is also crucial for
managing risks. Farmers who are well-informed about potential disease threats can take proactive
steps to protect their shrimp populations, such as reducing stocking densities or adjusting feeding
schedules.

Data collection

The data collection process began after obtaining approval from the university’s Internal Review
Board. Focus group discussions and meetings with key informants were conducted to gather
preliminary insights on farm sizes, farming practices, management strategies, production
processes, and marketing approaches in shrimp farming. These discussions helped shape the
questionnaire for the subsequent survey.

The sampling process was carried out in four distinct stages. First, two provinces in the Mekong
Delta region of Vietnam, Ben Tre and Trà Vinh, were selected for their involvement in pilot
insurance programs and their large-scale production of intensive and semi-intensive WLS.
Additionally, two other provinces, Khánh Hòa in central Vietnam and Quang Ninh in the
northeast, were chosen due to their significant shrimp production levels and vulnerability to
climate-related disease risks in shrimp farming (research area seen in Appendix I, Figure 1).

In the second stage, lists of shrimp farmers were obtained from the provincial agricultural
extension offices. These lists provided a base for proportional random sampling, which was
implemented in the third stage. The sample included farmers who produced shrimp under
intensive and semi-intensive systems, adhering to recommended practices. The sample consisted
of 160 farmers from Trà Vinh, 140 from Ben Tre, 125 from Quang Ninh, and 125 from Khánh
Hòa, totaling 550 farmers.

Before the main survey, a pre-test of five questionnaires from each province was conducted to
assess farmers’ understanding of the survey. The questionnaire covered various topics, including
the physical structure of farms, farming systems, farm ownership, management practices, risk
management, biosecurity measures, and disaster management strategies. In addition to the
socioeconomic and financial aspects of shrimp farming, it explored disease occurrence, natural
disasters, and risk management measures.

The survey also addressed farmers’ participation in Vietnam Good Agricultural Practices,
Good Agricultural Practices, or Aquaculture Stewardship Council certification programs, as well
as their self-improvement efforts. A total of 534 completed surveys were collected from farmers in
Trà Vinh (159), Ben Tre (135), Quang Ninh (120), and Khánh Hòa (120), after adjusting for
missing data.

Once a randomly selected farmer declined participation, we used a snowball sampling
technique, asking the farmer to recommend another with similar farming operations. After
inputting missing data, the final descriptive statistical dataset is presented in Table 1 for
quantitative variables and Table 2 for qualitative variables, which is further explained in
Appendix I, Table 1.

Data analysis

The data analysis process involved several pre-processing techniques, such as data imputation,
transformation, and deletion, to ensure the dataset was suitable for modeling. These methods were
crucial for handling missing values and ensuring the analysis was based on a comprehensive and
clean dataset. Given the small sample size of 550 farmers, it was important to avoid reducing the
sample size further. Missing values, which accounted for 18% of the data, were addressed using the
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K-nearest neighbor imputation method. This technique, which Troyanskaya et al. (2001)
recommended for high-dimensional data with small sample sizes, estimates missing values by
finding the closest samples in the training set and averaging their values. Only quantitative
features underwent this imputation process. An analysis with and without the missing variables
estimated for the observations was conducted for linear regression and the Rainforest Models.
There were noted improvements in the models’ R2 and mean square error (MSE), with the
estimated missing data points (Appendix I, Table 2).

The dataset was split into two subsets: 80% for the training set and 20% for the holdout test set.
This split allowed for model tuning and evaluation of each predictive model. Given the relatively
small sample size, repeated resampling during model training was essential to improve the
predictive accuracy of the models. Consequently, a 10-fold cross-validation was performed four
times to ensure robust model performance. The splitting technique and its results are depicted in
Figure 1, which shows the distribution of the training and validation sets. The selection of the
independent variables might create a problem of multicollinearity. However, a test of collinearity
using the variance inflation factor (VIF) showed that multicollinearity was not a problem since a
VIF value greater than 5 indicates potential multicollinearity issues. None of the variables showed
significant concern (VIF<5), suggesting that none could be highly correlated with other
predictors (Appendix I, Table 3).

Results
The data collected from the survey were thoroughly analyzed, and the findings are presented in
this section. Table 1 provides descriptive statistics on the variables used in the analysis. Out of the
original 550 surveys, 534 completed questionnaires from farmers in Trà Vinh, Ben Tre, Quang
Ninh, and Khánh Hòa provinces were retained after accounting for missing data. The imputation
process adjusted the final sample size for analysis. A significant portion of the farmers surveyed
(60.9%) expressed unwillingness to adopt risk management tools, such as insurance programs,
despite 86.7% of them having some knowledge of insurance options (Table 2). The hesitation may
stem from uncertainty about the net benefits of participating in such programs. However, farmers
showed risk-reducing behavior in other areas. Approximately 92.95% of respondents invested in
alternative power supplies for their farms. Additionally, around 44.3% implemented proper sludge

Figure 1. Distribution of the training and validation sets. This figure illustrates the distribution of data points in the training
and validation sets, which exhibit similar patterns. The consistent distribution suggests that the model will likely perform
well during validation, as both sets encompass the same range of features. This alignment indicates that the validation set
represents the training data, which is crucial for assessing the model’s generalization capability.
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disposal practices, and over 50% purchased post-larvae (PL) from certified distributors (64.04%),
followed by stocking periods announced by local authorities (53.0%), and invested in sanitation
measures (55.62%).

Farmers also demonstrated strong record-keeping habits, with over 60% maintaining detailed
records on stock and stocking practices, feed and feed conversion ratio, water quality parameters,
chemical usage, harvest and revenue data, and laboratory samples of diseased shrimp. However,
only 27.53% of farmers had registered their farms with government authorities, and 40.7% had
obtained some form of farm certification. Furthermore, 61.8% of respondents stated they had
access to loans, a vital resource for managing financial risks.

Income risk model results

J-P model results
Income risk is a critical aspect of farm management, and understanding the factors that influence
it is essential for developing effective risk management strategies. Table 3 shows the results of the
income risk model, based on the J-P regression model using an OLS approach with a log-
transformed dependent variable. The model exhibited a solid fit, with 70.0% of the variation in
income risk explained by the independent variables.

Several variables were found to be significant predictors of income risk. At the α= 0.01 level,
key variables included Willingness to Participate in an Insurance Program (W_Participate), Area
in Production (Area_m2), Buying PL from certified nurseries (Buy_PL), Fish Stock Period
Information (FstockPeriod), Having Sick or Diseased Shrimp Samples Checked by a Laboratory
(HDShrimpSC), and the Provincial Code (Province). Additionally, at the α= 0.05 level, variables
such as Information on insurance (Info_Insur), Providing Detailed Records on Feed Used
(PRDFeed), and Installing a Motor Pump (InsT_CCTV) were significant. Finally, the Number of
Dependents (Nbr Depend), Crop Year (Crop_Year), Investment in alternate power source

Table 2. Frequencies and percentages of answers to shrimp risk management questions

Shrimp risk management practices

No Yes

Freq % Freq %

Loss avoidance

Willingness to participate in an insurance program 325.00 60.86 209.00 39.14

Know about insurance program 174.00 32.58 360.00 67.42

Information about insurance program 463.00 86.70 71.00 13.30

Health protection practices

Invest in sanitation 237.00 44.38 297.00 55.62

Have a place of sludge 297.00 55.62 237.00 44.38

Provide stocking period 251.00 47.00 283.00 53.00

Buy PL from a reputable source 192.00 35.96 342.00 64.04

Record keeping

Do farmers keep water quality records? 225.00 42.13 309.00 57.87

Do farmers keep feeding records? 48.00 8.99 486.00 90.01

Financial risk measures

Access to loan 204.00 38.20 330.00 61.80

Note: PL= post-larvae.
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(Inv_Red_Power), and Having access to loans (Access_F_Loan) were significant at the α= 0.1
level. However, the variables Willingness to participate in an insurance had unexpected signs;
insurance information, buying certified seeds, Investment in alternate power source, installing a
motor pump, and building fence had unexpected signs that ML must be clarified further.

Table 3. Results of the ordinary linear regression model with a log transformation of the response variable income risks

Variables Estimate Std. error t-value Pr(>[t])

Intercept 18.55* 0.360 51.583 0.000

Willingness to participate in and insurance (W_Participate) 0.178* 0.072 2.48 0.013

Knowledge of insurance (Know_Insur) 0.054 0.060 0.88 0.381

Insurance information (Info_Insur) 0.215** 0.094 2.30 0.022

Experience −0.001 0.006 −0.14 0.888

Number of dependents (Nbr_Depend) 0.062** 0.029 2.12 0.034

Number of ponds (No_Of_Ponds) −0.0 0.040 −0.08 0.939

Area of ponds in square meters (Area_m2) 0.311* 0.100 3.102 0.002

Number of crop years (Crop_Year) 0 .171*** 0.091 1.89 0.060

Stocking density (Piece_m2) −000 0.001 −0.61 0.540

Having a place for sludge (HPSludge) −0.085 0.078 −1.09 0.277

Buy certified seeds (Buy_PL) 0.348* 0.119 2.92 0.003

Provide information on stocking period (FstockPeriod) −0.506* 0.095 −5.31 0.000

Provide detailed records on shrimp death/mortality shrimp
(PDRShrimpS)

0.079 0.086 0.92 0.360

Provide detailed record on feed (PRDFeed) −0.194** 0.097 −2.00 0.046

Provide detailed records on drugs and chemicals (PDRDrugCh) −0.066 0.049 −1.35 0.177

Provide detailed record on diseases (PDRDisease) −0.094 0.146 −0.65 0.518

Provide detailed record on water quality (PDRWater) −0.067 0.136 −0.50 0.620

Provide detailed record on harvest (PDRHarvest) 0.108 0.117 0.92 0.35

Have dead/sick shrimp samples checked by a laboratory
(HDShrimpSC)

−0.422* 0.132 −3.20 0.001

Investment in alternate power source (Inv_Red_Power) 0.149*** 0.090 1.67 0.096

Investment in sanitary practices (Inv_GF_San) −0.933* 0.094 −9.64 0.000

Installed a motor pump (InsT_CCTV) 0.513** 0.247 2.08 0.038

Build_Fence 0.247* 0.010 2.481 0.013

Have access to loans (Access_F_Loan) 0.196*** 0.112 1.75 0.081

Number of dependents effectively working on the farm
(Effect_N_D)

−0.041 0.033 −1.23 0.218

Training in shrimp management (H_P_Training) 0.051 0.062 0.82 0.415

Province_Code 0.316* 0.058 5.43 0.000

Prevalence of disease 0.206 0.924 0.22 0.823

R-squared = 0.700 (70.00%)

*α= 0.01 ** α= 0.05 *** α= 0.1
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Modeling disease risk prevalence

J-P model results
The factors affecting disease risk prevalence were analyzed using the J-P regression model, and the
results are presented in Table 4. The model demonstrated good explanatory power, with an R2
value of 0.49, indicating that the variation in the independent variables could explain 49 % of the
variation in disease risk prevalence.

Table 4. Ordinary linear regression model results with a log transformation of response variable disease risks

Variables Estimate Std. error t-value Pr(>[t])

(Intercept) 0.121* 0.018 6.52 0.000

Willingness to participate in and insurance (W_Participate) −0.001 0.003 −0.26 0.792

Knowledge of insurance (Know_Insur) −0.005 0.003 −1.45 0.15

Information on insurance (Info_Insur) 0.008*** 0.005 1.57 0.117

Experience −0.000*** 0.000 −1.65 0.100

Number of dependents (Nbr_Depend) 0.003*** 0.002 1.72 0.087

Number of ponds (No_Of_Ponds) −0.001 0.002 −0.54 0.591

Area in square meters (Area_m2) 0.005 0.006 0.94 0.348

Number of crop years (Crop_Year) 0.000 0.005 0.00 1.000

Stocking density (Piece_m2) −0.000** 0.000 −2.13 0.033

Having a place for sludge (HPSludge) 0.012* 0.004 2.78 0.005

Buy certified seeds (Buy_PL) −0.005 0.006 −0.722 0.471

Provide information on stocking period (FstockPeriod) −0.012** 0.005 −2.26 0.024

Provide detailed record on shrimp death/mortality shrimp (PDRShrimpS) −0.006 0.005 −1.40 0.164

Provide detailed record on feed (PRDFeed) −0.000 0.005 0.05 0.958

Provide detailed record on drug/chemical (PDRDrugCh) −0.002 0.002 −1.00 0.318

Provide detailed record on diseases (PDRDisease) 0.000 0.008 0.10 0.919

Provide detailed records on water quality (PDRWater) −0.004 0.007 −0.49 0.624

Provide detailed record on harvest (PDRHarvest) 0.017 0.007 1.38 0.168

Have dead/sick shrimp samples checked by a laboratory (HDShrimpSC) −0.017** 0.007 −2.39 0.017

Inv_Red_Power 0.007 0.004 1.46 0.146

Investment in sanitary practices (Inv_GF_San) 0.006 0.005 1.09 0.272

Installed a motor pump I_CCTV 0.001 0.013 0.18 0.936

Build fence (Build_Fence) 0.003 0.005 0.49 0.624

Have access to loans (Access_F_Loan) 0.006 0.006 1.01 0.312

Number of dependents effectively working on the farm (Effect_N_D) −0.003** 0.002 −1.62 0.104

Have training in shrimp management (H_P_Training) 0.006** 0.003 1.94 0.055

Province_Code −0.002 0.003 −0.71 0.477

Income 0.000 0.000 0.94 0.350

R-squared = 0.486 (48.6%)

* α= 0.01 ** α= 0.05 *** α= 0.1
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The only significant predictor of disease risk prevalence at the α= 0.01 level was Having a Place
for Sludge Disposal (HPSludge). Additionally, at the α= 0.05 level, Stocking Density (Piece_m2),
Providing information on stocking period (FstockPeriod), Have dead/sick shrimp samples
checked by a laboratory (HDShrimpSC), the Number of Dependents Effectively Working on the
Farm (Effect_N_D) and participation in shrimp management training programs (H.P. Training)
were significant. At the α= 0.1 level, Knowledge of Insurance (Know Insur), the Number of
Dependents (Nbr Depend), Experience, and number of dependents (Nbr_Depend) were also
significant predictors of disease risk prevalence.

The signs of the variables Having a place for sludge, Information on insurance, and Have
training in management were unexpected. Still, the results provide valuable insights into the
factors that influence income and disease risks in shrimp farming and highlight the importance of
risk management strategies tailored to farmers’ specific needs.

ML model results

One of the main advantages of using ML models is their flexibility in adapting to the structure and
complexity of the data. This flexibility allows researchers to select the best combination of models
for a specific problem (Storm et al., 2020). This study explored three ML models: SVM, Random
Forest (RF), and a custom-built cbModel model. After running statistical tests, we found that the
best-performing models were the RF and cbModel. These models demonstrated low MSE and
high coefficient of determination (R2), indicating their strong predictive capabilities.

A Bonferroni test revealed no significant difference between the RF and cbModel, making both
models suitable for examining the relationships between income risks and the covariates.
Additionally, RF and SVM emerged as the top models for evaluating relationships between disease
prevalence risks and their respective covariates. The next analysis stage aimed to explore the
nonlinear effects between income risks and disease prevalence risk variables using ML models.

Covariate analysis of income risks

In this phase, the focus is not on the causality of the effects but rather on ranking the most
important predictors for the RF and cbModel. The variables of importance within each model
were normalized to sum to one, allowing for an easier comparison of the relative importance of
each variable. While the ranking differed somewhat between the RF and cbModel, and the
cbModel had only 11 variables of importance, they shared approximately nine of the same
important variables.

In the RF model, the top-ranking predictor was Area in Production (Area_m2), followed by
Experience and stocking density (Piece_m2) (Figure 2a). Other variables like Investment in
Sanitary Practices (Inv_GF_San) and Providing Information on Stocking Period (FstockPeriod)
appeared lower in the ranking. The cbModel, on the other hand, ranked Area in Production
(Area_m2) and Investment in sanitary practices (Inv_GF_San) at the top of the list (Figure 2b).
The least of the important variables in cbModel included Have Death/Sick Shrimp Samples
Checked by a Laboratory (HDShrimpSC) and Knowledge of insurance (Know Insur).

Covariate analysis of disease risks

Figures 3a and 3b visually represent each covariate’s MEs on disease prevalence risks for the RF
and SVM models. Both models help to shed light on how each independent variable influences
disease prevalence. For instance, in the RF model, the top three contributors to disease prevalence
were Area in Production (Area_m2), Purchase of Certified Seeds (Buy_PL), and Stocking Density
(Piece_m2). Conversely, variables like Investment in Alternative Power (Inv_Red_Power),
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Figure 2. (a) Variable of importance using the Random Forest (RF) model. This figure displays the importance of each
variable in the RF model. Each bar represents the contribution of the corresponding variable to the model’s predictions.
Variables with greater importance are more influential in driving the model’s decisions, indicating which factors are most
critical for understanding the underlying patterns in the data. (b) Variable importance using Cubist (CB) model. This figure
displays the importance of each variable in the CB model.
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Information about Insurance (Info_Insur), and Willingness to Participate in Insurance
(W_Participate) ranked lowest in importance.

Certified seeds are crucial in disease prevalence since vertical transmission of pathogens like
White spot syndrome virus (WSSV) from hatcheries is standard (Hasan et al., 2020). Moreover,
higher stocking densities increase disease transmission rates, particularly in semi-intensive farms
(Hasan et al., 2020). The SVMmodel showed that Area in Production and Number of Ponds (No.
of Ponds) were the major contributors to disease risks. At the same time, the Purchase of Certified
Seeds and Information about Insurance had minimal influence.

Comparison of J-P and ML models

Income risk models
Table 5 compares the significant variables identified in the J-P models to those found using ML
models (RF, cbModel, and SVM). The J-P model had 13 significant variables, whereas the RF model
identified 20 significant variables for income risks, of which 8 of 13 (61.5%) were also flagged by the J-P
model. The cbModel had 11 important variables, of which 8 (77%) of the variables were aligned with
RF covariates, while 4 (30.7%) were like RF covariates. This comparison demonstrates that while the
J-P regression model captures the key variables, the ML models may offer a comprehensive view by
identifying nonlinear relationships that the J-P model cannot detect.

Disease risk models
Similarly, the J-P disease risk model shared seven significant variables with the RF model and eight
with the SVM model. Additionally, the RF and SVM models identified 15 variables in common
(75%) related to disease prevalence risks (Table 5). This suggests that while the J-P model provides
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Build_Fence
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Figure 3. Importance of variable using Random Forest (RF) model on the left (a) and support vector machine (SVM) model
on the right (b). Here, the risk-related disease prevalence significant variables are the RF and SVM models.
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Table 5. Significant variables from the J-P models in which the + and - sign indicate that the variables are positively and
negatively related, respectively, while for RF, CB, and SVM models, the check mark indicates that the variable tends to be
important in the model. The empty cells in the table indicate that the variables are not significant (for J-P) and are not
important for other models

Significant variables

J-P
income
risks*

Covariate
income risks
RF model**

Covariate
income risk
CB model**

J-P disease
risk preva-
lence*

Covariate
prevalence
risk RF
model**

Covariate prev-
alence risk

SVM model**

Willingness to participate in
and insurance
(W_Participate)

+ ✓

Have you received
information on
insurance?
(Info_Insur)

+ ✓ ✓ ✓ ✓

Do you know about
insurance?
(Know Insur)

✓ ✓ ✓

Area of ponds
(Area_m2)

+ ✓ ✓ ✓ ✓

Number of crop years
(Crop_Year)

+ ✓ ✓

Number of shrimps stocked
per square meter
(Piece_m2)

– ✓ – ✓ ✓

Having a place for sludge
(HPSludge)

✓ + ✓ ✓

Do you buy certified seeds?
(Buy_PL)

+ ✓ ✓ – ✓ ✓

Provide information on
stocking period.
(FstockPeriod)

– – ✓

Provide detailed records on
feed used.
(PRDFeed)

– ✓

Have death/sick shrimp
samples checked by a
laboratory.
(HDShrimpSC)

– ✓ – ✓ ✓

Have you installed a motor
pump?
(InsT_CCTV)

+ ✓

Provincial code
(Province)

+ ✓ ✓ ✓

Number of dependents
(Nbr Depend)

✓ + ✓

Do you invest in sanitary
practices?
(Inv_GF_San)

✓ ✓ + ✓ ✓

Number of dependents
effectively working on

✓ ✓ – ✓ ✓

(Continued)
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some insight, ML models capture relationships between covariates and disease risks. However, a
key advantage of the J-P model is its ability to assign directional signs to variables (indicating
whether the effect is positive or negative), a feature that ML models cannot replicate due to their
nonlinear nature.

Partial dependency plot visualization and interpretation

Determining the importance of predictors is a critical task in supervised learning. Once a subset of
“important” features is identified, assessing their relationships with the response variable becomes

Table 5. (Continued )

Significant variables

J-P
income
risks*

Covariate
income risks
RF model**

Covariate
income risk
CB model**

J-P disease
risk preva-
lence*

Covariate
prevalence
risk RF
model**

Covariate prev-
alence risk

SVM model**

the farm
(Effect_N_D)

Number of years producing
shrimp
(Experience)

✓ ✓ – ✓ ✓

Disease Prevalence
(Prevalence)

✓

Provide detailed records on
water quality.
(PRDwater)

✓ ✓ ✓ ✓

Provide detailed records on
diseases. (PDRDisease)

✓

Do you have access to
loans? (Access_F_Loan)

✓ ✓ ✓

Have you had training in
shrimp management
practices? (H_P_Training)

✓ ✓ + ✓

Provide detailed records on
drugs and chemicals.
(PDRDrugCh)

✓ ✓ ✓

Number of ponds in
production
(No_Of_Ponds)

✓ ✓ ✓

Income from shrimp
production (Income)

✓ ✓

Have you invested in an
alternative power
source?
(Inv_Red_Power)

+ ✓

Did you build a fence to
protect your farm?
(Build_Fence)

+ ✓

Provide detailed records on
harvest (PDRHarvest)

✓ ✓ ✓ ✓

Note: J-P = Just-Pope; RF = Random Forest; CB = Cubist; SVM = support vector machine.
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necessary. One common technique for achieving this is using partial dependence plots (PDPs).
PDPs allow for the visualization of the MEs of each input variable on the model’s predictions
(Cook et al., 2021).

Partial dependency plot of income and selected independent variables
PDPs were used to visualize the effects of independent variables on income risks. For instance,
Figure 4a shows that income risks increase rapidly with farmers’ experience before dropping off
and then increasing again, albeit at a slower rate. Experienced farmers tend to adopt risk-reducing
practices, which could explain this trend (Piamsomboon et al., 2015; Tendencia et al., 2010).

Similarly, insurance knowledge positively influences income risks (Figure 4b). This may be due
to higher levels of risk aversion among educated farmers (Outreville, 2015). In another example,
Figure 4c shows that income risks decrease when farmers have a designated place for sludge. This
practice is encouraged as part of risk management to minimize disease transfer, which can
significantly impact farm income through increased costs and yield loss (Nguyen et al., 2021).

The relationship between income risks and crop years shows an initial increase followed by a
leveling off (Figure 4d). Over-intensive shrimp production, which can lead to land degradation
and increased risks, plays a role in this trend (Bhattacharya, 2009). Similarly, Figure 4e reveals a
decline in income risks related to disease prevalence, followed by a slow increase, emphasizing the
financial impact of disease outbreaks on shrimp farming (Asche et al., 2021).

Finally, Figure 4f illustrates a sharp increase in income risks with pond size, which eventually
flattens out. Larger ponds are often associated with more significant income risks due to the
increased difficulty of managing larger production areas (Szuster et al., 2003).

Partial dependency plot of disease risk prevalence and selected independent variables
The PDPs in Figure 5 demonstrate the nonlinear relationships between risk variables and disease
prevalence. For example, Figure 5a shows a negative relationship between the number of
dependents and the disease prevalence of up to two dependents, after which the risk increases.
Family composition often plays a significant role in farm management practices (Ahmed
et al., 2008).

Figure 5b depicts the relationship between years of experience and disease prevalence. It shows
that disease risks decline up to 20 years of experience but begin to rise afterward. Younger farmers
may adopt more effective risk management strategies than older farmers, making experience a
double-edged sword (Phana et al., 2022).

Figure 5c shows a declining relationship between crop year and disease prevalence up to year
three, when a sudden increase in disease prevalence is noted. The risk of disease increases with
farming intensity (Kautsky et al.,2000). Figure 5d shows a positive relationship between stocking
density and disease prevalence. Higher stocking densities are associated with increased disease
transmission, particularly in intensive farming systems (Duc et al., 2015; Tendencia et al., 2011).
Similarly, a designated place for sludge removal is negatively related to disease risks (Figure 5e), as
effective waste management helps mitigate the spread of infections (Nguyen et al., 2019).

In summary, the PDPs confirm the presence of complex, nonlinear relationships between
variables like farm size, stocking density, and experience and the risks associated with income and
disease prevalence. These findings highlight the importance of careful farmmanagement to reduce
these risks.

Mitigation of independent variables on the dependent variable

Understanding the interaction effects of multiple independent variables on disease risk prevalence
is key to comprehensively mitigating these risks. Using PDPs, we can illustrate how changes in
combinations of variables influence risk. For example, the interaction between stocking density
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Figure 4. Partial dependency plot of predicted related income risk versus the top variables using random forest. This
figure presents the partial dependency plot illustrating the relationship between predicted income risk and the top
influencing variables identified by the Random Forest model. Each curve shows how changes in the top variables affect
the predicted income risk while holding other variables constant. This visualization helps to understand the impact of
each key variable on the expected outcomes, providing insights into the factors that drive income risk in the dataset.
(a) shows the relationship between income risks and experience. (b) shows the relationship between knowledge and
income risks. (c) shows the relationship between income risks and a place for sludge. (d) relates income risk and the
number of crop years. (e) relates income risk to disease prevalence, and (f) shows the relationship between income
risks and pond size.
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and pond size highlights how both variables contribute to the increase in prevalence risk
(Figure 6a). The prevalence risk remains relatively low when the pond size is smaller than 1.0 ha,
and the stocking density is below 100. However, when pond size grows beyond 1.0 ha but remains
under 2.75 ha, and stocking density increases between 100 and 300, the prevalence risk accelerates
significantly with increasing stocking density. The most concerning scenario occurs when pond
size exceeds 2.75 ha and stocking density surpasses 300, rapidly increasing disease prevalence risk.
Despite this finding, it is essential to recognize that correlation does not equate to causation.
Additional analyses may be needed to confirm whether these variables are causally related to
disease risk.

Another critical interaction is between income and pond size (Figure 6b). As both variables
increase, prevalence risk similarly rises, with a rapid escalation observed when the pond size
exceeds 3.0 ha. For larger pond sizes combined with increased income, disease prevalence risk
increases steadily before spiking significantly.

The relationship between farmer experience and pond size reveals important insights
(Figure 6c). As pond size increases, so does the prevalence risk, regardless of the farmer’s
experience level. Notably, the prevalence risks remain elevated at the highest levels of experience
and pond size. However, when experience surpasses 10 years and pond size remains low, the
prevalence risk is minimized, highlighting the importance of experience in mitigating risk,
especially for smaller operations.
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Figure 4. (Continued).
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Figure 5. Partial dependency plot of predicted related disease risk versus the top variables using random forest. This figure
presents the partial dependency plot illustrating the relationship between predicted disease risk and the top influencing
variables identified by the Random Forest model. Each curve shows how changes in the top variables affect the predicted
disease risk while holding other variables constant. This visualization helps to understand the impact of each key variable
on the expected disease, providing insights into the factors that drive disease risk in the dataset. (a) shows the relationship
between disease risk and the number of dependents living in the family home. (b) shows the relationship between disease
risk and the number of years of experience. (c) shows the relationship between disease risk and crop years. (d) relates
disease risk and stocking density. (e) relates disease risk to having a place for sludge.
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Income and stocking density also strongly correlate with risk prevalence (Figure 6d). When
stocking density is between 150 and 275, prevalence risk increases proportionally. However, once
stocking density exceeds 275, prevalence risks rise more dramatically. Intriguingly, the prevalence
risk decreases somewhat at high stocking densities (above 400). This reduction may be explained
by the fact that intensive farming systems with higher inputs often result in higher income but are
also associated with more significant risks, particularly shrimp mortality (Bé et al., 2003; Hoa et al.,
2011). As suggested by past research, these intensive systems are vulnerable to fluctuations in
harvests, prices, and market conditions, increasing overall risk (Nguyen and Jolly, 2019; Hai
et al., 2011).

Discussion and conclusion
Shrimp farming is a highly profitable agricultural enterprise that contributes significantly to rural
economic development. On average, shrimp farmers in Vietnam earn an estimated net income of
USD 18,317.78 per hectare, far surpassing the income generated by other crops. By comparison,
Vietnam’s average rural household income between 2012 and 2017 was USD 5,652.17 (Le, 2020).
A farmer with 0.54 hectares dedicated solely to shrimp production equates to an annual household
income of around USD 9,991.60, substantially higher than the national average. However, these
impressive economic returns come with considerable environmental risks, including the potential
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Figure 6. (a) Interaction plot of prevalence-related risk between pond size and stocking density. This figure illustrates the
interaction between pond size and stocking density on prevalence-related risk. The plot reveals how varying stocking
densities influence risk levels across pond sizes. Understanding this interaction is crucial for effective management
practices, as it highlights the conditions under which prevalence risk may increase, enabling stakeholders to make informed
decisions regarding optimal stocking strategies. (b) Interaction plot of prevalence-related risk between pond size and
income. This figure illustrates the interaction between pond size and income on prevalence-related risk. The plot reveals
how variations in income levels influence risk across different pond sizes. This interaction is crucial for understanding the
economic factors contributing to prevalence risk, enabling stakeholders to make informed decisions that balance financial
outcomes with risk management strategies in aquaculture. (c) Interaction plot of prevalence-related risk between pond size
(Area_m2) and experience. This figure illustrates the interaction between pond size (measured in square meters) and the
experience level of prevalence-related risk. The plot demonstrates how varying experience levels influence risk across
different pond sizes. Understanding this interaction is essential for stakeholders, as it highlights how increased experience
can mitigate risks associated with more extensive pond operations, providing insights for better management practices in
aquaculture. (d) Interaction plot of prevalence-related risk between stocking density and income. This figure illustrates the
interaction between stocking density and income on prevalence-related risk. The plot reveals how changes in stocking
density affect risk levels at different income brackets. Understanding this interaction is crucial for aquaculture
management, as it highlights how financial factors can influence risk associated with varying stocking practices, enabling
stakeholders to optimize their strategies for sustainable and profitable operations.

362 Brice M. Nguelifack et al.

https://doi.org/10.1017/aae.2025.8 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2025.8


for disease outbreaks, which can severely impact income and push farmers toward bankruptcy (Da
et al., 2015; White, 2017). Over 12% of shrimp farmers have experienced disease-related risks in
the past year.

The relationship between shrimp disease prevalence and farm income is complex and
challenging to decipher due to the variety of farming practices and the limitations of using a single
approach to model income and disease prevalence risks. By combining econometric techniques
with MLmodels, this study provides more holistic insights into shrimp disease risk prevalence and
mitigation strategies. While the J-P model is traditionally used to evaluate the risk effects of input
use in production (Just and Pope, 1979), its linear structure limits its ability to capture complex,
nonlinear relationships between risks and inputs. In contrast, ML techniques such as RF, cbModel,
and SVM excel in detecting these nonlinear interactions and ranking covariates by their
importance, offering a more nuanced understanding of how input variables contribute to risk
(Kim and Shin, 2021).

In this study, the J-P model identified 13 significant variables influencing income risks, with all
but a few having unanticipated signs. The model found 11 significant variables for disease
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prevalence risks, with four not behaving as anticipated. The J-P income risk model identified more
significant variables than the disease prevalence model. However, its limitations in handling
complex relationships are apparent compared to the ML models’ results. By incorporating
stochastic risk factors, the RF and cbModel showed greater efficiency in selecting important
variables for income risks, while RF and SVM performed better in analyzing disease
prevalence risks.

While identifying the factors influencing income and disease prevalence risks is critical, it is
insufficient to understand how input variables affect these risks fully. The J-P model generates
directional signs that show whether a variable positively or negatively impacts the risk response
variable. However, ML techniques provide additional insights by mapping complex interactions
between variables. This study used PDPs to visualize these nonlinear effects, allowing for a more
comprehensive interpretation of the results. For example, the relationship between pond area and
income risks shows that risks decline at low pond areas but increase dramatically beyond certain
thresholds (Figure 4f). Similarly, the relationship between disease risks and experience illustrates
that risks decrease up to 20 years of experience before increasing again (Figure 5b). Stocking
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density and disease risks also exhibit complex, nonlinear relationships, with disease risks reaching
a minimum of around 75 pieces/m2 and rising at an accelerating rate (Figure 5d).

The joint use of the J-P and ML models provides complementary insights. While the J-P model
offers clear directional signs, the ML techniques reveal the underlying complexities of variable
interactions. For instance, the PDPs reveal nonlinear relationships that are not captured by the J-P
model, such as the interaction between stocking density and pond size in determining disease
prevalence risks (Figure 6a). By combining these two modeling approaches, researchers can better
understand the factors influencing income and disease risks and tailor risk mitigation strategies
accordingly.

In conclusion, combining econometric and ML models offers a powerful approach for
analyzing complex data in shrimp farming. The J-P model is valuable for generating risk factors,
while ML models rank covariates and reveal nonlinear relationships. The two methods are
complementary, and their joint usage enables a more robust interpretation of the results. This
study highlights the importance of employing multiple analytical techniques to understand better
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the risks associated with shrimp farming and develop effective strategies for risk mitigation.
Additionally, the use of PDPs enhances the visualization of variable interactions, providing
actionable insights for both economists and shrimp farmers. Despite some limitations, such as the
need for further justification in selecting algorithms, the combined use of J-P and ML models
represents a promising direction for future research in the field. In conclusion, ML models like RF
and cbModel and tools such as PDPs offer powerful methods for predicting and managing risks in
shrimp farming. Farmers can make more informed decisions and adopt strategies that help
mitigate risks while maximizing production and profitability by understanding the relationships
between input variables and outcomes. As shrimp farming continues to grow in importance
globally, these tools will become increasingly valuable for ensuring the long-term sustainability
and success of the industry.
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