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Abstract: The crystal structure of givinostat hydrochloride monohydrate Form I has been solved and
refined using synchrotron X-ray powder diffraction data and optimized using density functional
theory techniques. Givinostat hydrochloride monohydrate Form I crystallizes in the space group P21
(#4) with a = 7.98657(17), b = 8.20633(10), c = 18.2406(6) Å, β = 98.1069(13)°, V = 1,183.55(4) Å3,
and Z = 2 at 298 K. The crystal structure consists of layers of cations and anions/water molecules
parallel to the ab-plane. The cations stack along the a-axis, with the phenyl and naphthalene rings
alternating in the stacks. Hydrogen bonds link the cations, anions, and water molecules in two-
dimensional networks parallel to the ab-plane. The powder pattern has been submitted to the
International Centre for Diffraction Data for inclusion in the Powder Diffraction File™ (PDF®).
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for Diffraction Data. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrest-
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I. INTRODUCTION

Givinostat (as the hydrochloride, sold under the brand
name Duvyzat) is used for the treatment of Duchenne mus-
cular dystrophy. Givinostat functions by inhibiting histone
deacetylases that can reduce muscle regeneration. Treatment
using Duvyzat can help promote muscle repair and muscle
fiber generation, and reduce inflammation and fibrosis. The
systematic name (CAS Registry No. 199657-29-9) is
[6-(diethylaminomethyl)naphthalen-2-yl]methyl
N-[4-(hydroxycarbamoyl)phenyl]carbamatehydrochloride
hydrate. A two-dimensional molecular diagram of givinostat
hydrochloride monohydrate is shown in Figure 1.

Synthesis of givinostat is described in U.S. Patent
6034096 (Bertolini et al., 2000; Italfarmaco). A novel crys-
talline givinostat hydrochloride monohydrate is claimed in
U.S. Patent 7329689 (Pinori and Mascagni, 2008; Italfar-
maco). It is described as advantageous for industrial use as
it is more stable and easier to handle than anhydrous givino-
stat. A novel crystalline Form II of givinostat hydrochloride
monohydrate is claimed in International Patent Application
WO 2011/092556 (Turchetta and Zenoni, 2011; Chemi SPA).

This work was carried out as part of a project (Kaduk
et al., 2014) to determine the crystal structures of large-
volume commercial pharmaceuticals and include high-quality
powder diffraction data for them in the Powder Diffraction
File™ (Kabekkodu et al., 2024).

II. EXPERIMENTAL

Givinostat hydrochloridemonohydrate was a commercial
reagent, purchased from TargetMol (Batch #T6279), and was
used as received. The orange/tan powder was packed into a
0.5-mm-diameter Kapton capillary and rotated during the
measurement at ~2 Hz. The powder pattern was measured at
298(1) K at the Wiggler Low Energy Beamline (Leontowich
et al., 2021) of the Brockhouse X-ray Diffraction and Scat-
tering Sector of the Canadian Light Source using a wave-
length of 0.819826(2) Å (15.1 keV) from 1.6 to 75.0° 2θ with
a step size of 0.0025° and a collection time of 3 minutes. The
high-resolution powder diffraction data were collected using
eight DectrisMythen2X series 1K linear strip detectors. NIST
SRM 660b LaB6 was used to calibrate the instrument and
refine the monochromatic wavelength used in the experiment.

The pattern was indexed using N-TREOR as incorporated
into EXPO2014 (Altomare et al., 2013) on a primitive mono-
clinic unit cell with a = 7.99633, b = 8.20718, c = 18.22845 Å,
β = 98.138°, V = 1,184.2 Å3, and Z = 2. The suggested space
group was P21, which was confirmed by the successful solu-
tion and refinement of the structure. A reduced cell search of
the Cambridge Structural Database (Groom et al., 2016)
yielded 15 hits, but no structures of givinostat or its deriva-
tives.

A neutral givinostat molecule was downloaded from
PubChem (Kim et al., 2023) as Conformer3D_COMP
OUND_CID_9804992.sdf. It was converted to a *.mol2 file
using Mercury (Macrae et al., 2020). The crystal structure was
solved using Monte Carlo-simulated annealing techniques as
implemented in EXPO2014 (Altomare et al., 2013), using aCorresponding author: JamesA.Kaduk; Email: kaduk@polycrystallography.com
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givinostat molecule, a Cl atom, and anO atom as fragments, with
(001) preferred orientation and a bump penalty. In the best
solution, the tertiary nitrogen atom N5 was 3.100 Å from the
Cl atom (as expected from the patents); therefore, a hydrogen
atom was added to it. The O atom was in a position to be the
acceptor in a N–H���O hydrogen bond and a donor in two O–
H���Cl hydrogen bonds; therefore, two approximate water hydro-
gen positions were generated along the O���Cl vectors using
Materials Studio (Dassault Systèmes, 2023). The position of
the hydroxyl proton H58 was recalculated to lie along an O���Cl
vector.

Rietveld refinement was carried out with GSAS-II (Toby
and Von Dreele, 2013). Only the 2.0–50.0° portion of the
pattern was included in the refinements (dmin = 0.970 Å). The
initial fit and the appearance of the high-angle portion of the
pattern made it clear that an impurity phase was present. It was
identified as NaCl, which was added to the refinement as
a second phase. Its concentration refined to 1.0 wt%. The
y-coordinate of O1 was fixed to define the origin. All non-H-
bond distances and angles were subjected to restraints, based
on a Mercury/Mogul Geometry Check (Bruno et al., 2004;
Sykes et al., 2011). TheMogul average and standard deviation
for each quantity were used as the restraint parameters. The
benzene and naphthalene ring systems were restrained to be
planar. The restraints contributed 2.5% to the overall χ2. The

hydrogen atoms were included in calculated positions, which
were recalculated during the refinement using Materials Stu-
dio (Dassault Systèmes, 2023). The Uiso values of the heavy
atomswere grouped by chemical similarity. TheUiso values of
the H atoms were fixed at 1.3× those of the heavy atoms to
which they are attached. The thermal motion of the Cl atom
was described by an anisotropic model. The peak profiles
were described using the generalized (Stephens, 1999) micro-
strain model. The background was modeled using a six-term
shifted Chebyshev polynomial, with peaks at 2.89 and 10.86°
to model the narrow and broad scattering from the Kapton
capillary and any amorphous component.

The final refinement of 141 variables using 19,201 obser-
vations and 79 restraints yielded the residual Rwp = 0.04917.
The largest peak (1.04Å fromC12) and hole (1.42Å fromO3)
in the difference Fourier map were 0.37(10) and � 0.44
(10) eÅ�3, respectively. The final Rietveld plot is shown in
Figure 2. The largest features in the normalized error plot are
in the asymmetry and shape of the lowest-angle peak and the
shapes of some of the strong low-angle peaks. These misfits
probably indicate subtle changes in the specimen during the
measurement.

The crystal structure of givinostat hydrochloride mono-
hydrate was optimized (fixed experimental unit cell) with
density functional techniques using VASP (Kresse and

Figure 1. The two-dimensional structure of givinostat hydrochloride monohydrate.

Figure 2. The Rietveld plot for givinostat hydrochloridemonohydrate Form I. The blue crosses represent the observed data points, and the green line represents
the calculated pattern. The cyan curve indicates the normalized error plot, and the red line indicates the background curve. The blue tick marks indicate the
givinostat hydrochloride monohydrate peak positions, and the red tick marks indicate those of NaCl. The vertical scale has been multiplied by a factor of 5× for
2θ > 20.0 ̊ and by a factor of 10× for 2θ > 33.0 ̊.
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Furthmüller, 1996) through the MedeA graphical interface
(Materials Design, 2024). The calculation was carried out
on 32 cores of a 144-core (768-GB memory) HPE Superdome
Flex 280 Linux server at North Central College. The calcula-
tion used the GGA-PBE functional, a plane wave cutoff
energy of 400.0 eV, and a k-point spacing of 0.5 Å�1, leading
to a 2 × 2 × 1 mesh and took approximately 2.0 hours. Single-
point density functional calculations (fixed experimental cell)
and population analysis were carried out using CRYSTAL23
(Erba et al., 2023). The basis sets for the H, C, and O atoms in
the calculation were those of Gatti et al. (1994), whereas for
Cl, the basis set was that of Peintinger et al. (2013). The
calculations were run on a 3.5-GHz PC using eight k-points
and the B3LYP functional and took approximately 3.2 hours.

III. RESULTS AND DISCUSSION

This synchrotron powder pattern of givinostat hydrochlo-
ride monohydrate (Figure 3) matches the one reported for
Form I by Pinori and Mascagni (2008) well enough to con-
clude that they represent the same material, and thus that our
sample is Form I.

The root-mean-square (rms) difference of the non-H
atoms in the Rietveld-refined and VASP-optimized struc-
tures, calculated using the Mercury CSD-Materials/Search/
Crystal Packing Similarity tool, is 0.097 Å. The rms Cartesian
displacement of the non-H atoms in the Rietveld-refined and
VASP-optimized structures of the cation, calculated using the
Mercury Calculate/Molecule Overlay tool, is 0.085 Å
(Figure 4). The agreements are within the normal range for
correct structures (van de Streek and Neumann, 2014). The
asymmetric unit is illustrated in Figure 5. The remaining
discussion will emphasize the VASP-optimized structure.

All of the bond distances, bond angles, and torsion angles
fall within the normal ranges indicated by a Mercury Mogul
Geometry check (Macrae et al., 2020). Quantum chemical

geometry optimizations of isolated givinostat cations (DFT/
B3LYP/6-31G*/water) using Spartan ‘24 (Wavefunction,
Inc., 2023) indicated that the observed conformation is
5.7 kcal/mol higher in energy than a local minimum, but very
similar in geometry. The global minimum-energy conforma-
tion (MMFF force field) is only 3.2 kcal/mol lower in energy
but is very different than the observed conformation (rms
displacement = 1.916 Å). Intermolecular interactions are thus
important in determining the solid-state conformation.

The crystal structure (Figure 6) consists of layers of
cations and anions/water molecules parallel to the ab-plane.
The cations stack along the a-axis, with the phenyl and
naphthalene rings alternating in the stacks. Hydrogen bonds
(discussed below) link the cations, anions, and water mole-
cules. The mean planes of the phenyl and naphthalene ring
systems are approximately (1, �13, 17) and (2, 7, 13). The
Mercury Aromatics Analyser indicates one strong interaction
between the phenyl and naphthalene rings, with a distance of
4.02 Å, as well as several moderate interactions with distances
ranging from 5.36 to 6.11 Å.

Analysis of the contributions to the total crystal energy of
the structure using the Forcite module of Materials Studio
(Dassault Systèmes, 2023) indicates that the intramolecular

Figure 3. Comparison of the synchrotron pattern of givinostat hydrochloride monohydrate Form I (black) to that reported by Pinori and Mascagni (2008)
(green). The literature pattern (measured using Cu Kα radiation) was digitized using UN-SCAN-IT (Silk Scientific, 2013) and converted to the synchrotron
wavelength of 0.819826(2) Å using JADE Pro (MDI, 2024). Image generated using JADE Pro (MDI, 2024).

Figure 4. Comparison of the Rietveld-refined (red) and VASP-optimized
(blue) structures of the cation in givinostat hydrochloride monohydrate Form
I. The root-mean-square Cartesian displacement is 0.085 Å. Image generated
using Mercury (Macrae et al., 2020).
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energy is fairly small, and that bond, angle, and torsion
distortion terms contribute significantly. The intermolecular
energy is dominated by electrostatic attractions, which, in this
force field-based analysis, also include hydrogen bonds. The
hydrogen bonds are better discussed using the results of the
density functional theory (DFT) calculation.

The water molecule, the hydroxylamino group, and the
protonated N atom all form strong hydrogen bonds to the
chloride anion (Table I). Both amino groups N7 and N6
act as donors in N–H���O hydrogen bonds, to the water mol-
ecule and carbonyl groups, respectively. The energies of the
N–H���O hydrogen bonds were calculated using the correla-
tion ofWheatley andKaduk (2019). The N6–H52���O3 hydro-
gen bonds link the cations into a chainwith a graph setC1,1(8)

(Etter, 1990; Bernstein et al., 1995; Motherwell et al., 2000).
The other hydrogen bonds are discrete but result in two-
dimensional networks of hydrogen bonds linking the cations,
anions, and water molecules parallel to the ab-plane. There
are several C–H���O hydrogen bonds from the cations to the
water molecules, as well as between cations. C–H���Cl and one
C–H���C interactions also contribute to the lattice energy.

The Hirshfeld surface for givinostat hydrochloride mono-
hydrate (Hirshfeld, 1977; Spackman et al., 2021) is shown in
Figure 7. The volume is 581.56 Å3, 98.27% of half the unit
cell volume. The packing density is thus typical. The only
significant close contacts (red in Figure 7) involve the hydro-
gen bonds. The volume/non-hydrogen atom is typical at
17.9 Å3.

Figure 5. The asymmetric unit of givinostat hydrochloride monohydrate Form I, with the atom numbering. The atoms are represented by 50% probability
spheroids/ellipsoids. Image generated using Mercury (Macrae et al., 2020).

Figure 6. The crystal structure of givinostat hydrochloride monohydrate Form I, viewed down the a-axis. Image generated using Diamond (Crystal Impact,
2023).
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The Bravais–Friedel–Donnay–Harker (Bravais, 1866;
Friedel, 1907; Donnay and Harker, 1937) algorithm suggests
that we might expect platy morphology for givinostat hydro-
chloride monohydrate, with {001} as the major faces. A
second-order spherical harmonic model was included in the
refinement. The texture index (calculated from the refined
harmonic coefficients) was 1.007(0), indicating that the pre-
ferred orientation was insignificant in this rotated capillary
specimen.
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