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When they occur, azimuthal thermoacoustic oscillations can detrimentally affect the safe
operation of gas turbines and aeroengines. We develop a real-time digital twin of azimuthal
thermoacoustics of a hydrogen-based annular combustor. The digital twin seamlessly
combines two sources of information about the system: (i) a physics-based low-order
model; and (ii) raw and sparse experimental data from microphones, which contain both
aleatoric noise and turbulent fluctuations. First, we derive a low-order thermoacoustic
model for azimuthal instabilities, which is deterministic. Second, we propose a real-time
data assimilation framework to infer the acoustic pressure, the physical parameters, and the
model bias and measurement shift simultaneously. This is the bias-regularized ensemble
Kalman filter, for which we find an analytical solution that solves the optimization
problem. Third, we propose a reservoir computer, which infers both the model bias and
measurement shift to close the assimilation equations. Fourth, we propose a real-time
digital twin of the azimuthal thermoacoustic dynamics of a laboratory hydrogen-based
annular combustor for a variety of equivalence ratios. We find that the real-time digital
twin (i) autonomously predicts azimuthal dynamics, in contrast to bias-unregularized
methods; (ii) uncovers the physical acoustic pressure from the raw data, i.e. it acts as
a physics-based filter; (iii) is a time-varying parameter system, which generalizes existing
models that have constant parameters, and capture only slow-varying variables. The digital
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twin generalizes to all equivalence ratios, which bridges the gap of existing models. This
work opens new opportunities for real-time digital twinning of multi-physics problems.

Key words: nonlinear instability, computational methods, machine learning

1. Introduction

Thermoacoustic instabilities are a multi-physics phenomenon, which is caused by the
constructive coupling between hydrodynamics, unsteady heat released by flames and
acoustics (e.g. Culick 1988; Paschereit, Gutmark & Weisenstein 1998; Lieuwen et al.
2001; Candel et al. 2009; Poinsot 2017; Juniper & Sujith 2018; Magri, Schmid & Moeck
2023; Silva 2023). A thermoacoustic instability can arise when the heat released by the
flames is sufficiently in phase with the acoustic pressure (Rayleigh 1878; Magri, Juniper
& Moeck 2020). If uncontrolled or not prevented, instabilities grow into large-amplitude
pressure oscillations, which can detrimentally affect gas turbine operating regimes, cause
structural damage and fatigue and, in the worst-case scenario, shake the engine and its
components apart (e.g. Candel 2002; Dowling & Morgans 2005; Culick 2006; Lieuwen
2012). In aeroengines the flame holders are arranged in annular configurations to increase
the power density (e.g. Krebs et al. 2002). Despite these annular configurations being
nominally rotationally symmetric, large-amplitude azimuthal thermoacoustic oscillations
can spontaneously occur and break dynamical symmetry (e.g. Morgans & Stow 2007;
Noiray, Bothien & Schuermans 2011; Noiray & Schuermans 2013b; Bauerheim, Nicoud
& Poinsot 2016; Humbert et al. 2023a; Magri et al. 2023). Thermoacoustic instabilities in
annular combustors have intricate dynamics, which can be grouped into (e.g. Magri et al.
2023) (a) spinning, if the nodal lines rotate azimuthally (typical of rotationally symmetric
configurations); (b) standing, if the nodal lines have, on average, a fixed orientation
(typical of rotationally asymmetric configurations); and (c) mixed, if the nodal lines
switch between the two former states (typical of weakly asymmetric configurations) (e.g.
Schuermans, Paschereit & Monkewitz 2006; Noiray et al. 2011; Worth & Dawson 2013a).
Azimuthal instabilities have been investigated by high-fidelity simulations (e.g. Wolf et al.
2012), by experimental campaigns in atmospheric and pressurized rigs (e.g. Bourgouin
et al. 2013; Worth & Dawson 2013b; Mazur et al. 2019, 2021; Ahn et al. 2022; Indlekofer
et al. 2022) and heavy-duty gas turbines (Noiray & Schuermans 2013b), and by theoretical
studies (e.g. Moeck, Paul & Paschereit 2010; Noiray et al. 2011; Ghirardo & Juniper 2013;
Duran & Morgans 2015; Bauerheim et al. 2016; Laera et al. 2017; Mensah et al. 2019;
Murthy et al. 2019; Faure-Beaulieu & Noiray 2020). Because the dynamics of azimuthal
thermoacoustics are not yet fully understood (Aguilar Pérez et al. 2021; Faure-Beaulieu
et al. 2021b), the understanding, modelling and control of azimuthal oscillations is an
active area of research.

Experimental campaigns were performed to gain insight into the physical mechanisms
and behaviour of azimuthal instabilities in a prototypical annular combustor with
electrically heated gauzes (Moeck et al. 2010). In a model annular gas turbine combustor
with ethylene–air flames, Worth & Dawson (2013b) investigated the flame dynamics and
heat release, and how it coupled with the acoustics (O’Connor, Worth & Dawson 2013;
Worth & Dawson 2013a). They found that varying the burner spacing, to promote or
suppress flame–flame interactions, resulted in changes to the amplitude and frequency
of the azimuthal modes. They also varied the burner swirl directions, which impacted
the preferred mode selection. The spontaneous symmetry breaking of thermoacoustic
eigenmodes was experimentally analysed in Indlekofer et al. (2022), who found that
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small imperfections in the rotational symmetry of the annular combustor were magnified
at the supercritical Hopf bifurcation point that separated resonant from limit cycle
oscillations in the form of a standing mode oriented at an azimuthal angle defined by
the rotational asymmetry. The nonlinear dynamics of beating modes was experimentally
discovered and modelled by Faure-Beaulieu et al. (2021b). The authors found that for
some combinations of small asymmetries of the resistive and reactive components of the
thermoacoustic system, purely spinning limit cycles became unstable, and heteroclinic
orbits between the corresponding saddle points led to beating oscillations with periodic
changes in the spin direction. The previous works focused on statistically stationary
regimes. The analysis of slowly varying operating conditions were investigated in
Indlekofer et al. (2021), who unravelled dynamic hystereses of the thermoacoustic state
of the system. Other experimental and theoretical investigations focused on analysing
the intermittent behaviour (Faure-Beaulieu et al. 2021a; Roy et al. 2021). In the latter
work, the solutions of the Fokker–Plank equation, which governs the probability of
observing an instantaneous limit cycle state dominated by a standing or spinning mode,
enabled the prediction of the first passage time statistics between erratic changes in spin
direction.

The intricate linear and nonlinear dynamics of azimuthal thermoacoustic oscillations
spurred interest in physics-based low-order modelling and control (e.g. Morgans & Stow
2007; Illingworth & Morgans 2010; Humbert et al. 2023b). The azimuthal dynamics
can be qualitatively described by a one-dimensional wave-like equation (Noiray et al.
2011; Ghirardo & Juniper 2013; Bauerheim et al. 2014; Bothien, Noiray & Schuermans
2015; Yang, Laera & Morgans 2019), which can also include a stochastic forcing term
to model the effect of the turbulent fluctuations and noise (Noiray & Schuermans 2013a;
Orchini et al. 2020). In the frequency domain, azimuthal oscillations were investigated
with eigenvalue sensitivity (Magri, Bauerheim & Juniper 2016a; Magri et al. 2016b;
Mensah et al. 2019; Orchini et al. 2020). These works concluded that traditional eigenvalue
sensitivity analysis needed to be extended to tackle degenerate pairs of azimuthal modes,
as reviewed in Magri et al. (2023). A review of azimuthal thermoacoustic modelling
can be found in Bauerheim et al. (2016). In the time domain, the typical approach
is to develop models that describe the acoustic state, which is also referred to as the
slow-varying variable approach based on quaternions (e.g. Ghirardo & Bothien 2018) or
as the generalized Bloch sphere representation (Magri et al. 2023). In this approach, all
fast-varying dynamics, such as aleatoric noise and turbulent fluctuations, are filtered out of
the data and modelled as a stochastic forcing term. The equations model the amplitude of
the acoustic pressure envelope, the temporal phase drift and the angles defining rotational
and reflectional symmetry breaking (Ghirardo & Bothien 2018). Faure-Beaulieu & Noiray
(2020) introduced the slow-varying variables into an stochastic wave equation, which was
averaged in space and time to obtain coupled Langevin equations. The low-order model
parameters were estimated via Langevin regression, which is a regression method used in
turbulent environments (e.g. Siegert, Friedrich & Peinke 1998; Noiray 2017; Boujo et al.
2020; Callaham et al. 2021). Slow-varying variable models provide qualitatively accurate
representations of azimuthal oscillations. However, they are not suitable for real-time
applications, in which we need models that can receive data from sensors as raw inputs.
Therefore, this work focuses on models describing the fast-varying quantities, which
model the evolution of the modal amplitudes through coupled Van der Pol oscillators (e.g.
Noiray et al. 2011). Nonetheless, the discussed low-order modelling methods are offline,
i.e. they infer the model parameters from the data in a post-processing stage and they
identify one parameter at a time (i.e. they do not estimate all the parameters in one
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computation). This means that the physical parameters of the literature are not necessarily
optimal.

On the one hand, physics-based low-order models are qualitatively accurate, but they
are quantitatively inaccurate due to modelling assumptions and approximations (Magri
& Doan 2020). The low-order models’ state and parameters are affected by both aleatoric
uncertainties and epistemic errors, i.e. model biases (Nóvoa, Racca & Magri 2024). On the
other hand, experimental data can provide reliable information about the system, but they
are typically noisy and sparse (e.g. Magri & Doan 2020). Experimental measurements can
be affected by aleatoric uncertainties due to environmental and instrumental noise, and
systematic errors in the sensors. To rigorously combine the two sources of information
(low-order modelling and experimental data) to improve the knowledge on the system, data
assimilation (DA) comes into play (e.g. Tarantola 2005; Evensen 2009). Data assimilation
for thermoacoustics was introduced with a variational approach (offline) by Traverso
& Magri (2019) with a real-time (or sequential) approach by Nóvoa & Magri (2022),
who deployed an ensemble square-root Kalman filter to infer the pressure and physical
parameters. Sequential DA has also been successfully applied to reacting flows (e.g.
Labahn et al. 2019; Yu et al. 2019a; Donato, Galletti & Parente 2024), turbulence
modelling (e.g. Colburn, Cessna & Bewley 2011; Majda & Harlim 2012; Gao et al.
2017; Magri & Doan 2020; Hansen, Brouzet & Ihme 2024) and acoustics (e.g. Kolouri,
Azimi-Sadjadi & Ziemann 2013; Wang et al. 2021), among others. Apart from Nóvoa
& Magri (2022), these works implemented classical DA formulations, which assume
that the uncertainties are aleatoric and unbiased (e.g. Dee 2005; Laloyaux et al. 2020).
However, as shown in Nóvoa et al. (2024), a DA framework provides an optimal state
and set of parameters when the model biases are modelled. Model bias estimation in
real-time DA is traditionally based on the separate-bias Kalman filter scheme (Friedland
1969). This bias-aware filter augments the dynamical system with a parameterized model
for the bias, and then solves two state and parameter estimation problems: one for the
physical model and another for the bias model (e.g. Ignagni 1990; Dee & da Silva
1998; da Silva & Colonius 2020). However, the separate-bias Kalman filter relies on
the knowledge of the bias functional form a priori. Also, as explained in Nóvoa et al.
(2024), the filter is unregularized, which can lead to unrealistically large estimates of the
model bias and does not ensure that the bias is unique. In other words, the separate-bias
Kalman filter may be ill-posed. To overcome these limitations, Nóvoa et al. (2024)
proposed a regularized bias-aware ensemble data assimilation framework, for which they
derived an analytical solution: the bias-regularized ensemble Kalman filter (r-EnKF).
The r-EnKF is a real-time DA method that not only accounts for the model bias, but
also regularizes the norm of the bias. The regularization makes the algorithm stable
and the solution of the problem unique. In the limit of a perfect model (i.e. zero model
bias), the r-EnKF recovers the classical bias-unaware ensemble Kalman filter (EnKF)
introduced by Evensen (2003). The model bias was inferred by an echo state network
(ESN), which is a universal approximator of time-varying functions (e.g. Grigoryeva
& Ortega 2018) that can adaptively estimate the model bias with no major assumption
regarding the functional form (Nóvoa et al. 2024). Echo state networks are suitable for
real-time digital twins because their training consists of solving a linear system, which
is computationally inexpensive in contrast to the back-propagation methods required in
other machine learning methods (e.g. Bonavita & Laloyaux 2020; Brajard et al. 2020).
The r-EnKF of Nóvoa et al. (2024) assumed that the measurements were unbiased,
which is an assumption that we relax in this paper to assimilate real experimental
data.
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Figure 1. Side and top views of the experimental set-up of the annular combustor. Adapted from
Faure-Beaulieu et al. (2021b).

1.1. Objectives and structure
The objective of this work is to develop a real-time digital twin of azimuthal
thermoacoustic instabilities. Figure 3 pictorially describes the proposed digital twin
framework. Real-time digital twins are adaptive models, which are designed to predict
the behaviour of their physical counterpart by assimilating data from sensors when they
become available. We need four ingredients to design a real-time digital twin (i) data
from sensors (from noisy and sparse microphones), (ii) a qualitative low-order model,
which should capture the fast-varying acoustic dynamics rather than the slow-varying
states, (iii) an estimator of both the model bias and measurement shift, (iv) a statistical
DA method that optimally combines the data and the model on the fly (in real time) to
infer the physical states and parameters. Section 2 describes the available experimental
data, as well as the physics-based low-order model used to describe the thermoacoustic
problem. The real-time assimilation framework is detailed in § 3. The proposed ESN is
described in § 4. Section 6 shows the results of the real-time digital twin, and compares
the performance of the bias-unregularized EnKF with the r-EnKF. § 7 ends the paper.

2. Azimuthal thermoacoustic instabilities

We model in real time azimuthal thermoacoustic instabilities in hydrogen-based annular
combustors. In this section we describe both the experimental data (§ 2.1) and the
physics-based low-order model (§ 2.2).

2.1. Experimental set-up and data
We use the experimental data of Faure-Beaulieu et al. (2021a) and Indlekofer et al. (2022).
The experimental set-up (figure 1) consists of an annular combustor with 12 equally spaced
burners with premixed flames, which are fuelled with a mixture of 70/30 % H2/CH4
by power. The operating conditions are atmospheric and the thermal power is fixed
at 72 kW. The equivalence ratios considered are Φ = {0.4875, 0.5125, 0.5375, 0.5625}.
When Φ > 0.5, the system is thermoacoustically unstable with self-sustained oscillations
that peak at approximately 1090 Hz (Indlekofer et al. 2022). The acoustic pressure data was
recorded at a sampling rate of 51.2 kHz by Kulite pressure transducers (XCS-093-05D) at
four azimuthal locations θ = {0◦, 60◦, 120◦, 240◦}.
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Figure 2. Pressure at the four measurement locations with equivalence ratio Φ = 0.5125 (thermoacoustically
unstable configuration). (a) Raw experimental data, i.e. the observables, and (b) post-processed data, which
are briefly referred to as the presumed truth. (I) Time series of the fast-varying oscillations, (II) histogram of
the acoustic pressure in the time window for DA, t ∈ [0.5, 0.85], and (III) comparison of the power spectral
density of the raw data (light colour) and the presumed truth (dark colour). The horizontal lines in (II) indicate
the mean of the histograms. The thermoacoustic limit cycle is a standing acoustic mode with a nodal line near
θ = 120◦ (mono-modal histogram).

Figure 2 shows the time series, histograms and power spectral density (PSD) of the
raw and post-processed experimental data at Φ = 0.5125. The PSD of the post-processed
data is obtained after applying a Butterworth band-pass filter to the raw data around
the frequency of instability, which approximately isolates the frequencies between 1050
and 1150 Hz (figure 2 III). The pressure measurements have a mean value that is
different from zero because of large-scale flow structures, which are not correlated to the
thermoacoustic dynamics. The non-zero mean pressure is referred to as ‘measurement
shift’, as further explained in § 3.1. In a digital twin that is coupled with sensors’
measurements in real time, the data are the raw pressure signals that are assimilated
into the low-order model (figure 2a). Because the raw pressure contains aleatoric noise,
measurement shift and turbulent flow fluctuations, we refer to the post-processed data
(figure 2b) as the ‘presumed ground truth’ or ‘presumed acoustic state’, that is, the physical
acoustic state that is the presumed target prediction.

2.2. A qualitative and physics-based low-order model
The dynamics of the azimuthal acoustics can be qualitatively modelled by a
one-dimensional wave-like equation (e.g. Faure-Beaulieu & Noiray 2020; Indlekofer et al.
2022)

∂2p
∂t2
+ ζ ∂p

∂t
− [1+ ε cos (2(θ −Θε))] c2

r2
∂2p
∂θ2 = (γ − 1)

∂ q̇
∂t
, (2.1)

with (γ − 1)
∂ q̇
∂t
= β [1+ c2 cos (2(θ −Θβ))

]
p− κp3, (2.2)
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Figure 3. Schematic of the proposed digital twin framework. (a) The physical and digital systems evolve in
time (left to right) independently. The digital system is composed of a physical model with uncertain state
and parameters, and an estimator of the model bias and innovations (from which the measurement shift is
estimated). When sensor data (crosses) become available, they are combined with the estimates from the digital
twin using the r-EnKF to update the digital system. (b) Diagram of the r-EnKF update performed sequentially
every time that data become available.

where p is the acoustic pressure; ζ is the acoustic damping; c is the speed of sound; r is
the mean radius of the annulus; γ is the heat capacity ratio; ε and Θε are the amplitude
and phase of the reactive symmetry, respectively (Indlekofer et al. 2022); q̇ is the coherent
component of the fluctuations of the heat release rate (Noiray 2017), which is divided into
a nonlinear cubic term, which models the saturation of the flame response weighted by the
parameter κ; and a linear response to the acoustic perturbations, which is weighted by the
heat release strength β, the resistive asymmetry intensity, c2, and direction of maximum
root-mean-square (r.m.s.) acoustic pressure, Θβ . The flame response model (2.2) is an
accurate approximation in the vicinity of a Hopf bifurcation (e.g. Lieuwen 2003; Noiray
2017). To further reduce the complexity of (2.2), we project the acoustic pressure on the
degenerate pair of eigenmodes of the homogeneous wave equation (Noiray et al. 2011;
Noiray & Schuermans 2013b; Magri et al. 2023)

p(t, θ) = ηa(t) cos θ + ηb(t) sin θ, (2.3)

where ηa and ηb are the acoustic velocity amplitudes. Substituting (2.3) into (2.1) and
averaging yield the governing equations, which consist of a set of nonlinearly coupled
oscillators

η̈a = −ω2
[
ηa

(
1+ ε

2
cos (2Θε)

)
+ ηb

ε

2
sin (2Θε)

]
+ η̇a

[
2ν + c2β

2
cos (2Θβ)− 3κ

4
(3η2

a + η2
b)

]
+ η̇b

[
c2β

2
sin (2Θβ)− 3

2
κηbηa

]
,

(2.4a)

η̈b = −ω2
[
ηb

(
1− ε

2
cos (2Θε)

)
+ ηa

ε

2
sin (2Θε)

]
+ η̇b

[
2ν − c2β

2
cos (2Θβ)− 3κ

4
(3η2

b + η2
a)

]
+ η̇a

[
c2β

2
sin (2Θβ)− 3

2
κηbηa

]
,

(2.4b)

where ν = (β − ζ )/2 is the linear growth rate of the pressure amplitude in absence of
asymmetries, i.e. when c2 = 0 (Indlekofer et al. 2022). Equation (2.4) can be written in a
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Symbol Description

dt Ground truth (unknown).
d† Presumed truth, obtained by applying a Butterworth filter to the raw data.
d Raw experimental data from microphones (3.6).

bt, bt
d True model bias and measurement shift (unknown). Equations (3.3) and (3.5).

b†, b†
d Presumed true model bias and measurement shift.

b , bd Estimates of the model bias and measurement shift (§ 4).

Table 1. Summary of the terminology.

compact notation with a nonlinear state-space formulation

dφ = F (φ,α) dt,
q =M(θ ,φ),

}
(2.5)

where φ = [ηa; η̇a; ηb; η̇b] ∈ R
Nφ is the state vector; F : R

Nφ → R
Nφ is the nonlinear

operator that represents (2.4) and α = [ν; c2β;ω; κ; ε;Θβ;Θε] ∈ R
Nα are the system’s

parameters (the operator [ ; ] indicates vertical concatenation and we use column
vectors throughout the paper). The vector q describes the model observables, which are
the acoustic pressures at the azimuthal locations θ = {0◦, 60◦, 120◦, 240◦}. The model
observables are computed through the measurement operator M : R

Nφ → R
Nq , which

maps the state variables into the observable space through (2.3).

3. Real-time DA

Real-time DA makes qualitative models quantitatively accurate every time that sensors’
measurements (data) become available (Magri & Doan 2020). At a measurement time
tk, the model’s state, φk, and parameters, αk, are inferred by combining two sources of
information, that is, the measurement, dk, and the model forecast, qk. A robust inference
process must also filter out both epistemic and aleatoric uncertainties (§§ 3.1, 3.2). The
result of the assimilation is the analysis state (§§ 3.4, 3.3), which provides a statistically
optimal estimate of the physical quantity that we wish to predict, which is the truth dt

k.
As explained in § 2.1, the truth is unknown thus we define the post-processed acoustic
pressure as the presumed ground truth (figure 2). We drop the time subscript k unless it is
necessary for clarity.

3.1. Aleatoric and epistemic uncertainties
First, we discuss the statistical hypotheses on the aleatoric uncertainties. The aleatoric
uncertainties contaminate the state and parameters as

φ + εφ = φt, α + εα = αt, (3.1a,b)

where t indicates the true quantity (which is unknown). The aleatoric uncertainties are
modelled as Gaussian distributions

εφ ∼ N (0,Cφφ), εα ∼ N (0,Cαα), (3.2a,b)

where N (0,C) is a normal distribution with zero mean and covariance C. Second, we
discuss model biases, which are epistemic uncertainties (Nóvoa et al. 2024). The model
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A real-time digital twin of azimuthal thermoacoustics

bias may arise from modelling assumptions and approximations in the operators F and
M. The true bias of a model is defined as

bt = dt − E(q), (3.3)

which is the expected difference between the true observable and the model observable. (If
the model is unbiased, dt = E(q).) The true bias is unknown (colloquially, an ‘unknown
unknown’ (Nóvoa et al. 2024)) because we do not have access to the ground truth.
Therefore, we need to estimate it from the information available from the data. We refer
to b† = d† − E(q) as the presumed true bias, and to the bias estimated from a model as b.
With this, the model equations, which define the first source of information on the system,
are

dφ = F(φ + εφ,α + εα)dt,
y =M(θ ,φ)+ b+ εq,

}
(3.4)

where y is the bias-corrected model observable and εq ∼ N (0,Cqq). The set of equations
(3.4) is not closed until we define an estimator for the model bias (§ 4).

The second source of information on the system is the data measured by the sensors.
Experimental data are affected by both aleatoric noise and measurement shifts (§ 2.1). The
true measurement shift is

bt
d = E(d)− dt. (3.5)

Because the ground truth is not known, the best estimate on the model bias is the
presumed true measurement shift b†

d = d† − E(d) and the estimated measurement shift
is bd. With this, we define the measurements at a time instant as

d + bd + εd = dt. (3.6)

For clarity, we include a summary of the terminology in table 1. In the problem under
investigation, d is the raw acoustic data, d† is the post-processed data and bd is the
non-zero mean of the raw data (see § 2.1). The aleatoric noise affects the measurement as
εd ∼ N (0,Cdd). For simplicity, we assume that the measurement errors are statistically
independent, i.e. Cdd is a diagonal matrix with identical diagonal entries σd.

Both the model bias and measurement shift are unknown a priori. To infer them, we
analyse the residuals between the forecast and the observations, which are also known as
innovations (Dee & Todling 2000; Haimberger 2007), which are defined as

i = d − q ⇒ E(i) = bd + b. (3.7)

Therefore, the expected innovation is the sum of the measurement and model biases as
defined in (3.3) and (3.5). The relation between the innovations i and the biases b and bd
will be essential for the design of the bias estimator in § 4.

3.2. Augmented state-space formulation
We define the augmented state vector ψ = [φ;α; q], which comprises the state variables,
the thermoacoustic parameters and the model observables to formally have a linear
measurement operator M , which simplifies the derivation of DA methods (e.g. Nóvoa &
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Magri 2022). The augmented form of the model (3.4) yields⎧⎪⎪⎨
⎪⎪⎩

d

⎡
⎣φα

q

⎤
⎦ =

⎡
⎣F(φ + εφ,α + εα)0Nα

0Nq

⎤
⎦ dt

y = q+ b+ εq

↔
{

dψ = F
(
ψ + εψ

)
dt

y = Mψ + b+ εq
, ∀ t /= td, (3.8)

where td are the times when the assimilation is performed, F (ψ) and εψ are the augmented
nonlinear operator and aleatoric uncertainties, respectively; M = [0 | INq] is the linear
measurement operator, which consists of the vertical concatenation of a matrix of zeros,
0 ∈ R

Nq×(Nφ+Nα), and the identity matrix, INq ∈ R
Nq×Nq ; and 0Nα and 0Nq are vectors of

zeros (because the parameters are constant in time, and q is not integrated in time but it is
only computed at the analysis step).

3.3. Stochastic ensemble framework
Under the Gaussian assumption, the inverse problem of finding the states, φ, and
parameters, α, given some observations, d, would be solved by the Kalman filter equations
if the operator F were linear (Kalman 1960). Thermoacoustic oscillations, however, have
nonlinear dynamics (see (2.1)). Stochastic ensemble methods are suitable for nonlinear
systems because they do not require to propagate the covariance, in contrast to other
sequential methods, e.g. the extended Kalman filter (Evensen 2009; Nóvoa & Magri
2022). Stochastic ensemble filters track in time m realizations of the augmented state ψ j
to estimate the mean and covariance, respectively

E(ψ) ≈ ψ̄ = 1
m

m∑
j=1

ψ j (3.9a)

Cψψ =
⎡
⎣Cφφ Cφα Cφq

Cαφ Cαα Cαq
Cqφ Cqα Cqq

⎤
⎦ ≈ 1

m− 1

m∑
j=1

(ψ j − ψ̄)⊗ (ψ j − ψ̄), (3.9b)

where⊗ is the dyadic product. Because the forecast operator F is nonlinear, the Gaussian
prior may not remain Gaussian after the model forecast, and E(F(ψ)) /=F(ψ̄). However,
the time between analyses�td is assumed small enough such that the Gaussian distribution
is not significantly distorted (Evensen 2009; Yu, Juniper & Magri 2019b).

Finally, we approximate the model bias as b ≈ dt − Mψ̄ ; thus, the sum of the biases is
approximately equal to the mean of the innovations, i.e.

ī = d − Mψ̄ ≈ bd + b. (3.10)

3.4. The r-EnKF
The objective function in a bias-regularized ensemble DA framework contains three norms
(Nóvoa et al. 2024)

J (ψ j) =
∥∥∥ψ j − ψ f

j

∥∥∥2

Cf−1
ψψ

+ ∥∥yj − dj
∥∥2

C−1
dd
+ γ ∥∥bj

∥∥2
C−1

bb
for j = 0, . . . ,m− 1, (3.11)

where the superscript ‘f ’ indicates ‘forecast’, the operator ‖·‖2
C−1 is the L2-norm weighted

by the semi-positive definite matrix C−1, γ ≥ 0 is a user-defined bias regularization factor

1001 A49-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1052


A real-time digital twin of azimuthal thermoacoustics

and bj is the model bias of each ensemble member. For simplicity, we define the bias in the
ensemble mean, i.e. bj = b for all j (which we estimate with an ESN in § 4) (Nóvoa et al.
2024). From left to right, the norms on the right-hand side of (3.11) measure (1) the spread
of the ensemble prediction, (2) the distance between the bias-corrected estimate and the
observables and (3) the model bias. The analytical solution of the r-EnKF in (3.12), which
globally minimizes the cost function (3.11) with respect to ψ j, is

ψa
j = ψ f

j + K r[(I+ J)T(dj + bd − y f
j )− γCddC−1

bb JTb], j = 0, . . . ,m− 1, (3.12a)

with

K r = C f
ψψMT[Cdd + (I+ J)T(I+ J)MC f

ψψMT + γCddC−1
bb JTJMC f

ψψMT]−1, (3.12b)

where ‘a’ stands for ‘analysis’, i.e. the optimal state of the assimilation; we assimilate each
ensemble member with a different dj ∼ N (d,Cdd) to avoid covariance underestimation
in ensemble filters (Burgers, Jan van Leeuwen & Evensen 1998); K r is the regularized
Kalman gain matrix and J = db/dMψ is the Jacobian of the bias estimator. Formulae
(3.12) generalize the analytical solutions of Nóvoa et al. (2024) to the case of a biased
measurement. We prescribe Cdd = Cbb because the model bias is defined in the observable
space. We use γ to tune the norm of the bias in (3.11) (Nóvoa et al. 2024). The optimal
state and parameters are

[
φa

j

αa
j

]
=
[
φ

f
j

α
f
j

]
+

Regularized Kalman gain, K r︷ ︸︸ ︷[
C f
φq

C f
αq

]
{Cdd + (I+ J)T(I+ J)C f

qq + γ JTJC f
qq}−1 . . .

. . .

⎡
⎢⎣(I+ J)T

Corrected innovation︷ ︸︸ ︷
(dj + bd − y f

j ) −γ JTb

⎤
⎥⎦ . (3.13)

The r-EnKF defines a ‘good’ analysis from a biased model if the unbiased state y
matches the truth, and the model bias b is small relative to the truth. The underlying
assumptions of this work are that (i) our low-order model is qualitatively accurate such
that the model bias b has a small norm, and (ii) the sensors are properly calibrated. In the
limiting case when the assimilation framework is unbiased (i.e. b = 0 and bd = 0), the
r-EnKF (3.13) becomes the bias-unregularized EnKF (Appendix A).

4. Reservoir computing for inferring model bias and measurement shift

To apply the r-EnKF (3.13), we must provide an estimate of the model bias and the
measurement shift. We employ an ESN for this task. Echo state networks are suitable
for real-time DA because (i) they are recurrent neural networks, i.e. they are designed to
learn temporal dynamics in data; (ii) they are based on reservoir computing, hence, they
are universal approximators (Grigoryeva & Ortega 2018); (iii) they are general nonlinear
auto-regressive models (Aggarwal 2018); and (iv) training an ESN consists of solving a
linear regression problem, which provides a global minimum without back propagation.
In this work, we generalize the implementation of Nóvoa et al. (2024) to account for both
model bias and measurement shift (§ 4.1). We propose a training dataset generation based
on time-series correlation (§ 4.2).
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4.1. Echo state network architecture and state-space formulation
We propose an ESN that simultaneously estimates b and bd. Importantly, b and bd are not
directly measurable in real time, but we have access to the innovation, which is linked to
the biases through (3.10). Once we have information on the innovation and the model bias
(the measurement shift), we can estimate the measurement shift (the model bias) through
(3.10).

Figure 4(a) represents pictorially the proposed ESN at time tk, with its three main
components: (i) the input data, which are the mean analysis innovations, i.e. īk; (ii) the
reservoir, which is a high-dimensional state characterized by the sparse reservoir matrix
W ∈ R

Nr×Nr and vector rk ∈ R
Nr (Nr 
 Nq is the number of neurons in the reservoir

states); and (iii) the outputs, which are the mean innovation and the model bias at the
next time step, i.e. īk+1 and bk+1. The inputs to the network are a subset of the output
(i.e. the innovation only). The sparse input matrix W in ∈ R

Nr×(Nq+1) maps the physical
state into the reservoir, and the output matrix W out ∈ R

Nq×(Nr+1) maps the reservoir state
back to the physical state. Furthermore, figure 4(a) shows the two forecast settings of
the ESN: open loop, which is performed when data on the innovations are available, and
the closed loop, in which the ESN runs autonomously using the output as the input in
the next time step. Figure 4(b) shows the unfolded architecture starting at time tk when
observations of the innovations are available (i.e. at the analysis step). At this time, the
reservoir is re-initialized with the analysis innovations such that the input to the ESN is
īa
k = dk − Mψ̄a

k . From this, the ESN estimates at the next time step tk+1 the model bias
and the innovation īk+1, which is used as an initial condition in the subsequent forecast
step. Mathematically, the equations that forecast the model bias and mean innovation in
time are

[bk+1; īk+1] = W out
[
rk+1; 1

]
,

rk+1 = tanh
(
σinW in

[
ī�k � g; δr

]+ ρW rk
)
,

}
(4.1)

where ī� = īa in open loop and ī� = ī in closed loop; the tanh(·) operation is
performed element-wise; the operator � is the Hadamard product, i.e. component-wise
multiplication; and g = [g1; . . . ; g2Nq] is the input normalizing term with g−1

q =
max (uq)−min (uq), i.e. g−1

q is the range of the qth component of the training data U;
δr is a constant used for breaking the symmetry of the ESN (we set δr = 0.1) (Huhn &
Magri 2020). We define W in and W as sparse and randomly generated, with a connectivity
of 3 neurons (see Jaeger & Haas (2004) for details). We compute the matrix W out during
the training.

Lastly, the r-EnKF equations (3.12) require the definition of the Jacobian of the
bias estimator at the analysis step. Because at the analysis step the ESN inputs the
analysis innovations with an open-loop step (see figure 4b), the Jacobian of the bias
estimator is equivalent to the negative Jacobian of the ESN in open-loop configuration
(see Appendix B).

4.2. Training the network
During training, the ESN is in an open-loop configuration (figure 4a). The inputs to the
reservoir are the training dataset U = [u0 | . . . |uNtr−1], in which each time component
uk = [bu(tk); iu(tk)], the subscript ‘u’ indicates training data, and the operator [ | ]
indicates horizontal concatenation. Although we have information from the experimental
data to train the network, the optimal parameters of the thermoacoustic system are
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īk
a

īk
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īk+1 bk+2 īk+2

rk+1 rk+2

Predicted bias

and innovations

Input observed

innovation data

(open loop)

Input predicted innovations 

(closed loop)

(a) (b)

Figure 4. Schematic representation of the proposed ESN architecture for model bias and innovation prediction.
(a) Compact architecture showing the open-loop and closed-loop configurations; and (b) unfolded architecture
starting at an analysis step is at tk, in which there is one open-loop step followed by a closed-loop forecast. In
open loop the input to the ESN is the analysis mean innovation īa

k = dk − Mψ̄a
k , i.e. the difference between the

raw acoustic pressure data and the analysis model estimate. The outputs from the ESN are (i) the innovation at
the next time step īk+1 (which becomes the input to the next time step in the closed-loop configuration); and
(ii) the model bias bk+1, i.e. an estimate of the difference between the presumed acoustic state d†

k+1 and the
model estimate Mψ̄k+1.

unknown. Thus, we do not know a priori the model bias and measurement shift. Selecting
an appropriate training dataset is key to obtaining a robust ESN, which can estimate the
model bias and innovations. We create a set of L guesses on the bias and innovations from
a single realization of the experimental data, which means that the ESN is not trained with
the ‘true’ bias (which is an unknown quantity in real time). The training data are generated
from the experimental data as detailed in Appendix C. In summary, the procedure is as
follows.

(i) Take measurements for a training time window ttr of acoustic pressure data Du and
estimate D†

u by applying a Butterworth filter to the raw data Du (see § 2).
(ii) Generate L model estimates Qu,l of the acoustic pressure from (2.4). Each Qu,l has a

different set of parameters, which are uniformly randomly generated (the parameters’
ranges are reported in Appendix D).

(iii) Correlate in time each Qu,l with Du.
(iv) Compute the model bias and innovations as Bu,l = D†

u − Qu,l and Iu,l = Du − Qu,l.

Finally, we apply data augmentation to improve the network’s adaptivity in a real-time
assimilation framework. The total number of training time series in the proposed training
method is 2L. Training the ESN consists of finding the elements in W out, which minimize
the distance between the outputs obtained from an open-loop forecast step of the training
data (the features) to the training data at the following time step (the labels). This
minimization is solved by ridge regression of the linear system (Lukoševičius 2012)(2L−1∑

l=0

RlR
T
l + λ INr+1

)
W T

out =
2L−1∑
l=0

RlU
T
l , (4.2)

where λ is the Tikhonov regularization parameter and R = [[r0; 1] | . . . | [rNtr−1; 1]], with
r0 = 0 and rk are obtained with (4.1) using the innovations of the training set as inputs.
The summations over 2L can be performed in parallel to minimize computational costs.
Finally, we tune the hyperparameters of the ESN, i.e. the spectral radius ρ, the input scaling
σin and the Tikhonov regularization parameter λ. We use a recycle validation strategy with
Bayesian optimization for the hyperparameter selection (see Racca & Magri 2021).
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5. Implementation

To summarize, the following four stages are necessary to design the real-time digital twin.
(1) Initialization: the ensembleψ j for j = 1, . . . ,m and the ESN are initialized using the

parameters reported in Appendix D. (2) Forecast: time march in parallel each ensemble
member (3.8), i.e. the system of thermoacoustic equations and parameters, and the
ESN according to (4.1) until observation data become available. (3) Analysis: apply
the r-EnKF (3.12), which obtains the optimal combination between the unbiased model
estimate and the observation data. (4) Re-initialization: update the state and parameters of
the ensemble with the analyses (i.e. φa and αa), and the ESN with the analysis innovation
(i.e. īa = d − Mψ̄a).

Steps (2)–(4) are repeated sequentially as data become available. Once the assimilation
process has ended, we forecast further the ensemble and the ESN to analyse the
extrapolation and generalization capability of the estimated state, parameters and biases.

6. Performance of the real-time digital twin

The real-time digital twin has four components: (i) data from sensors (§ 2.1),
(ii) the physics-based low-order model (§ 2.2), (iii) the ESN to infer the model bias and
measurement shift (§ 4), and (iv) the real-time and bias-regularized DA method (§ 3.4) to
twin sensors’ data with the low-order model to infer the state and model parameters. We
investigate the capability of the proposed real-time digital twin to predict autonomously
the dynamics of azimuthal thermoacoustic oscillations. We analyse the digital twin’s
performance with respect to established methods: the bias-unregularized EnKF (Nóvoa &
Magri 2022), which is suitable for real-time assimilation, and Langevin-based regression
(Indlekofer et al. 2022), which is suitable for offline assimilation. The hyperparameters
used to train the ESN and the assimilation parameters are reported in Appendix D.

6.1. Time-accurate prediction
We focus our analysis on the equivalence ratio Φ = 0.5125, which is a thermoacoustically
unstable system. Figure 5 shows the time evolution of the acoustic pressure at θ = 60◦.
Prior to the assimilation, we train the ESN with training data over ttr = 0.167 s. We start
the assimilation at 0.5 s to avoid using training data during the assimilation and to have the
ensemble in the statistically stationary regime. In parallel, we initialize the ESN before the
assimilation begins with 10 data points (i.e. the washout). After this, observations from
the raw experimental data (red dots) are assimilated every �td = 5.86× 10−4 s, which
corresponds to approximately 0.64 data points per acoustic period. (The assimilation
frequency was selected by down-sampling the raw data, which is recorded at 51.2 kHz,
such that�td fulfils to the Shannon–Nyquist criterion.) At a time instant, the measurement
(the data point, red dot) is assimilated into the model, which adaptively updates itself
through the r-EnKF and bias estimators (§§ 3.4, 4). After that, the state and model
parameters have been updated, the low-order model (2.5) evolves autonomously until the
next data point becomes available. This process mimics a stream of data coming from
sensors on the fly. We assimilate 600 measurements during the assimilation window of
0.35 s, the model runs autonomously without seeing more data (t > 0.85 s).

First, we analyse the performance of the bias-unregularized filter (EnKF) on state
estimation (figure 5a) with the corresponding parameter inference shown in figure 6
(dashed lines). Although the system has a self-sustained oscillation, the bias-unregularized
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Figure 5. Real-time digital twin at Φ = 0.5125. Time evolution of the thermoacoustic pressure (in Pa) at θ =
60◦ using (a) the bias-unregularized EnKF and (b) the proposed r-EnKF. Comparison between the presumed
ground truth (thick grey line), the raw data (thick red line), the prediction from the ensemble filter (cyan lines)
and in (b) the bias-corrected mean estimate (navy dashed line). The close ups show the start and end of the
assimilation window, which is indicated by the vertical dashed lines. The observations are show in red circles.

filter converges towards an incorrect solution, that is, a fixed point. On the other hand, the
bias-regularized filter (r-EnKF) successfully learns the thermoacoustic model. Second,
the r-EnKF filters out aleatoric noise and turbulent fluctuations. These fluctuations are the
difference between the amplitudes of the raw data, which are the input to the digital twin,
and the post-processed data, which are the hidden state that we wish to uncover and predict
(the presumed acoustic state), of up to approximately 200 Pa (close-ups at the end of
assimilation in figure 5). Third, after assimilation, the r-EnKF predicts the thermoacoustic
limit cycle beyond the assimilation window. This means that the digital twin has learnt an
accurate model of the system, which generalizes beyond the assimilation. The ensemble
model observables qj and bias-corrected ensemble mean ȳ = q̄+ b are almost identical
at convergence in figure 5(b), which means that the magnitude of the model bias is
small (approximately 20 Pa in amplitude; see figure 8). Fourth, the r-EnKF infers the
optimal system’s thermoacoustic parameters, which are seven in this model (figure 6).
The ensemble parameters at t = 0 in figure 6 are initialized on physical ranges from the
physical parameters used in the literature, which are computed by Langevin regression
in Indlekofer et al. (2022). From inspection of the optimal parameters, we can draw
physical conclusions: (i) the parameters of the literature are not the optimal parameters
of the model; (ii) the linear growth rate, ν, angular frequency, ω, the heat release strength
weighted by the symmetry intensity, c2β, and the phase of the reactive symmetry, Θε , do
not significantly vary at regime, which means that these parameters are constants and
do not depend on the state; and (iii) the nonlinear parameter, κ , the amplitude of the
reactive symmetry, ε, and the direction of asymmetry, Θβ have temporal variations that
follow the modulation of the pressure signal envelope (figure 6). Physically, this means that
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Figure 6. Thermoacoustic parameters with the bias-unregularized EnKF (dashed) and the r-EnKF (solid).
The lines and shaded areas indicate the ensemble mean and standard deviation, respectively. Here
Φ = 0.5125.

the optimal deterministic system that represents azimuthal instabilities is a time-varying
parameter system (Durbin & Koopman 2012). By inferring time-varying parameters,
we derive a deterministic system that does not require stochastic modelling. We further
analyse the thermoacoustic parameters for all the equivalence ratios in figures 10 and 11.

To summarize, the presence of model bias and measurement shift makes the established
bias-unregularized EnKF fail to uncover and predict the physical state from noisy data.
In contrast, the bias-regularized filter (r-EnKF) infers the state, parameters, model bias
and measurement shift, which enable a time accurate and physical prediction beyond the
assimilation window.

6.2. Statistics and biases
We analyse the uncertainty and the statistics of the time series (§ 6.1) generated by the
real-time digital twin. To do so, we define the normalized r.m.s. error of two time series
w, z with Nq dimensions and Nt time steps as

R.m.s.(w, z) =
√√√√∑

q
∑

k
(
wq(tk)− zq(tk)

)2
∑

q
∑

k
(
wq(tk)

)2 , for q = 0, . . . ,Nq − 1,
k = 0, . . . ,Nt − 1. (6.1)

Figure 7 shows the r.m.s. errors at four critical time instants in the assimilation process:
before the data are assimilated (first column), which corresponds to the initialization of
the digital twin; at the start and end of the DA window (second and third columns,
respectively); and after the DA (fourth column), i.e. when the digital twin evolves
autonomously to predict unseen dynamics (generalization). The inference of the model
bias and measurement shift is key to obtaining a small generalization error. Although
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Figure 7. Normalized r.m.s. errors between the presumed ground truth and the model prediction (cyan) and
between the presumed ground truth and the bias-corrected prediction (navy) with (a) the bias-unregularized
EnKF and (b) the r-EnKF. The filled histograms show the r.m.s. of each ensemble member, the thick lines show
the r.m.s. of the ensemble mean and the vertical dashed line indicates the mean of the r.m.s. error. The errors
are computed at four stages of the assimilation: t ∈ [0.49, 0.50] (before DA), t ∈ [0.50, 0.51] (start of DA),
t ∈ [0.84, 0.85] (end of DA) and t ∈ [0.85, 0.86] (after DA). Here Φ = 0.5125.

the bias-unregularized EnKF converges to an unphysical solution with a large r.m.s.,
the bias-regularized filter converges to a physical solution with a small r.m.s. As the
assimilation progresses, the ESN improves the prediction of the model bias because the
r.m.s. of the bias-corrected prediction (figure 7b, cyan) is smaller than the model estimate
(figure 7b, navy). This is further evidenced by analysing the histograms of the time series
for the four azimuthal locations (figure 8). The digital twin (bias-corrected solution, navy
histograms) converges to the expected distribution of the acoustic pressure (presumed
truth) (black histograms) despite the fact that the assimilated data are substantially
contaminated by noise and turbulent fluctuations (red histograms). The bias-corrected
histograms have a zero mean, which means that the ESN in the digital twin has correctly
inferred both the model bias and the measurement shift. Both biases are shown in figure 9.
The measurement shift, whose presumed true value is known a priori b†

d = 〈d − d†〉
(where the brackets 〈 〉 indicate time average), is exactly inferred by the ESN. On the
other hand, the presumed true value of the model bias is not known a priori, but it is
presumed as b† = d† − q†, where q† is the presumed true model estimate, which is not
known a priori. The digital twin improves the knowledge that we have on the model bias
by correcting the presumed model bias.

To summarize, the r-EnKF generalizes to unseen scenarios and extrapolates correctly
in time. Key to the robust performance is the inference of the biases in the model and
measurements.

6.3. Physical parameters and comparison with the literature
We analyse the system’s physical parameters (§ 2.2 and (2.4)) for all the available
equivalence ratios. We train an ESN for each equivalence ratio. The DA parameters
(assimilation window, frequency, ensemble size, etc.) are the same in all tests
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Figure 8. Histograms of the acoustic pressure after assimilation with (a) the bias-unregularized EnKF and
(b) the r-EnKF, at the four observed azimuthal locations. Comparison between the presumed ground truth
(black), the observations from raw data (red), the ensemble prediction (filled cyan) and its mean (dashed
teal), and bias-corrected ensemble predictions (filled navy) and its mean (dashed light blue). The vertical lines
indicate the mean of each of the distributions. Here Φ = 0.5125.
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Figure 9. Model bias and measurement shift estimates after assimilation with the r-EnKF. Comparison
between the ESN inference of (a) the model bias (dashed black) and the presumed model bias (thick grey);
and (b) the measurement shift estimate (dashed black), difference between the raw and post-processed data
(thin grey), and its time average, 〈·〉 (thick grey). Here Φ = 0.5125.
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Figure 10. Comparison of the estimated values of the two stability parameters c2β (circles) and ν (triangles)
after DA, obtained with the bias-unregularized EnKF (black) and the r-EnKF with different bias regularization
parameters (colour maps). Lighter colours indicate stronger regularization; larger marker sizes indicate more
accurate solutions, i.e. smaller r.m.s. errors; and the error bars represent the ensemble standard deviation. The
dashed lines corresponds to the parameters identified by offline Langevin regression (Indlekofer et al. 2022).

(Appendix D). We compare the low-order model parameters (i) inferred by the
bias-unregularized EnKF, (ii) inferred by the r-EnKF, and (iii) obtained with the
state-of-the-art Langevin regression by Indlekofer et al. (2022). The linear growth rate,
ν, and the heat source strength weighted by the symmetry intensity, c2β are shown
in figure 10; and the remaining parameters are shown in figure 11. The specific value
parameters are listed in Appendix E.

First, the r-EnKF infers physical parameters with a small generalization error (the r.m.s.
errors are small, depicted with large markers). Large values of the bias regularization,
i.e. γ � 1, provide the most accurate set of parameters. This physically means that the
low-order model is a qualitatively accurate model because the bias has a small norm
(which corresponds to a large γ ). The bias-unregularized EnKF is outperformed in all
cases. (The case with Φ = 0.4875 is a stable configuration with a trivial fixed point,
which is why the parameters have a larger r.m.s.) Second, we analyse the uncertainty
of the parameters, which is shown by an error bar. The height of the error bar is the
ensemble standard deviation. The linear growth rate, ν, and the angular frequency, ω, are
inferred with small uncertainties. Physically, this means that the model predictions are
markedly sensitive to small changes in the linear growth rate and angular frequency. The
prediction’s sensitivity to the parameters change with the equivalence ratio. Physically, the
large sensitivity of the linear growth rate (i.e. the system’s linear stability) to the operating
condition is a characteristic feature of thermoacoustic instabilities, in particular, in annular
combustors, in which eigenvalues are degenerate (e.g. Magri et al. 2023). Third, there
exists multiple combinations of parameters that provide a similar accuracy. For example,
in the case Φ = 0.5125, there are different combinations of Θβ, ε, c2β, which yield a
small r.m.s. Fourth, we compare the digital twin with the offline Langevin regression
of Indlekofer et al. (2022) (horizontal dashed lines in figures 10 and 11). The inferred
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Figure 11. Same as figure 10 for the remaining physical parameters.

parameters are physically meaningful because they lie within value ranges that are similar
to the parameters of the literature. The digital twin simultaneously infers all the parameters
in real time, which overcomes the limitations of Langevin regression, which needs to be
performed on one parameter at a time and offline. The parameters presented in figures 10
and 11 depend linearly on Φ. These linear dependencies are approximations of the ground
truth and were inferred from the identified set of parameters at each Φ (see figure 9 in
Indlekofer et al. 2022). When tuned for a specific Φ, the offline parameters lead to state
statistics that more closely match the observables. The digital twin parameters are optimal
because they are the minimizers of (3.11). The long-term statistics of the caseΦ = 0.5625,
which lives on a generalized Bloch sphere (Magri et al. 2023), is further analysed with the
quaternion ansätz of Ghirardo & Bothien (2018). Figure 12 shows the acoustic state for
Φ = 0.5625 from the raw data (panel b), and the proposed digital twin (panel c). The
long-term statistics are obtained by forecasting the model (without assimilation) using the
identified parameters (reported in Appendix E). The real-time digital twin infers a set of
physical parameters, which correctly capture the physical state of the azimuthal acoustic
mode. The nature angle has a bimodal distribution with |χ | < π/4, which means that the
thermoacoustic instability is a mixed mode.

6.4. Generalizability
In this section we propose a method for generalizing the digital twin to unseen
experimental data, e.g. a different equivalence ratio. In §§ 6.1–6.3 we train a different
ESN for each equivalence ratio. Here, we test the real-time digital twin framework using
an unified ESN, i.e. we train the ESN with data for Φ = 0.4875, 0.5125, 0.5375 but not
for the Φtest = 0.5625 case. The training data generation is identical to that detailed in
Appendix C, but we combine the training data for Φ = 0.4875, 0.5125, 0.5375 to train
one ESN, which has the same characteristics as those used in the previous analyses
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Figure 12. Acoustic state for Φ = 0.5625. (a) Bloch sphere for quaternion representation of the
acoustic pressure p(θ, t) = A cos (ϑ − θ) cosχ cos (ωt + ϕ)+ A sin (ϑ − θ) sinχ sin (ωt + ϕ), where A is the
slow-varying amplitude, i.e. the envelope of the acoustic pressure, ϕ is the slow temporal phase drift, ϑ is the
position of the anti-nodal line and χ is the nature angle (Ghirardo & Bothien 2018; Magri et al. 2023). (b) State
from the raw data. (c) State predicted by the proposed real-time digital twin.

(Appendix D). We increased the ensemble size to m = 40 to account for the larger
uncertainty and variability in the dynamics. Figure 13 shows the inferred linear growth rate
ν and the heat source strength c2β for all Φ. Notably, the digital twin for the equivalence
ratio Φtest = 0.5625, which was unseen by the ESN, converges to similar parameters to
those in figure 10. We further analyse the test case Φtest = 0.5625 in figure 14, which
shows the histograms of the acoustic pressure after assimilation. The ESN infers the
correct measurement shift to give a zero mean prediction of the pressure, and a model
bias that reduces the distance between the ensemble state estimate and the presumed truth.
Overall, we conclude that the unified ESN successfully generalizes to data with unseen
dynamics.

7. Conclusions

We develop a real-time digital twin of azimuthal thermoacoustic oscillations of a
hydrogen-based combustor for uncovering the physical state from raw data, and predicting
the nonlinear dynamics in time. We identify the four ingredients required to design a robust
real-time digital twin as follows.

(i) In a real-time context, we need to work with raw data as they come from sensors,
therefore, we do not pre-process the data. The data we utilize is raw (the data contain
both environmental and instrumental noise, and turbulent fluctuations) and sparse
(the data are collected by four microphones).

(ii) A low-order model, which is deterministic, qualitatively accurate, computationally
cheap and physical.

(iii) An estimator of both the model bias, which originates from the modelling
assumptions and approximation of a low-order model, and measurement shift, which
originates from microphones recording the total pressure (which has a non-zero
mean) instead of the acoustic pressure (which has zero mean).

(iv) A statistical DA method that optimally combines the two sources of information on
the system (i)–(ii) to improve the prediction on the physical states by updating the
physical parameters every time that sensors’ data become available (on the fly or in
real time).
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Figure 13. Generalizability study. Estimated values of the two stability parameters c2β (circles) and ν

(triangles) after DA with the r-EnKF using the same ESN, which is not trained with data for Φ = 0.5625.
Lighter colours indicate a stronger bias regularization parameter; larger marker sizes indicate more accurate
solutions, i.e. smaller r.m.s. errors; and the error bars represent the ensemble standard deviation. The dashed
lines correspond to the parameters identified by offline Langevin regression (Indlekofer et al. 2022).
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Figure 14. Generalizability study. Histograms of the acoustic pressure at Φ = 0.5625 after assimilation with
the r-EnKF, at the four observed azimuthal locations. The ESN used in the digital twin is not trained with
data for Φ = 0.5625. Comparison between the presumed ground truth (black), the observations from raw data
(red), the ensemble prediction (filled cyan) and its mean (dashed teal), and bias-corrected ensemble predictions
(filled navy) and its mean (dashed light blue). The vertical lines indicate the mean of each of the distributions.

We propose a real-time DA framework to infer the acoustic pressure, physical
parameters, model bias and measurements shift simultaneously, which is the r-EnKF. We
find an analytical solution that minimizes the bias-regularized DA cost function (3.11). We
propose a reservoir computer (an ESN) and a training strategy to infer both the model bias
and measurement shift, without making assumptions on their functional forms a priori.
The real-time digital twin is applied to a laboratory hydrogen-based annular combustor for
a variety of equivalence ratios. The data are treated as if they came from sensors on the
fly, i.e. the pressure measurements are assimilated at a time step and then disregarded until
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the next pressure measurement becomes available. First, after assimilation of raw data
(at 1707 Hz, i.e. approximately 0.6 data points per acoustic period), the model learns the
correct physical state and optimal parameters. The real-time digital twin autonomously
predicts azimuthal dynamics beyond the assimilation window, i.e. without seeing more
data. This is in stark contrast with state-of-the-art methods based on the bias-unregularized
methods, which do not perform well in the presence of model bias and/or measurement
shift. Second, the digital twin uncovers the physical acoustic pressure from the raw
data. Because the physical mechanisms are constrained in the low-order model, which
originates from conservation laws, the digital twin acts as a physics-based filter, which
removes aleatoric noise and turbulent fluctuations. Third, physically we find that azimuthal
oscillations are governed by a time-varying parameter system, which generalizes existing
models that have constant parameters and capture only slow-varying variables. Fourth,
we find that the key parameters that influence the dynamics are the linear growth rate
and the angular frequency. Furthermore, the digital twin generalizes to equivalence
ratios at which current modelling approaches are not accurate. Fifth, to generalize the
digital twin framework, we train an ESN with data from three of the four available
equivalence ratios and test the real-time digital twin performance in the unseen scenario.
This unified ESN successfully estimates the model bias and measurement shift in unseen
thermoacoustic dynamics with the regularized bias-aware DA framework. This work opens
new opportunities for real-time digital twinning of multi-physics problems.

Supplementary material. The codes used for this paper are publicly available in https://github.com/
MagriLab/real-time-bias-aware-DA.
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Appendix A. The EnKF

The classical (i.e. bias-unregularized) EnKF updates each ensemble member as (Evensen
2003)

ψa
j = ψ f

j + K [dj − Mψ f
j ], j = 0, . . . ,m− 1,

with K = C f
ψψMT(Cdd + MC f

ψψMT)−1, (A1)

where K is the Kalman gain matrix, and the superscripts ‘f ’ and ‘a’ indicate ‘forecast’ and
‘analysis’, respectively. By evaluating the measurement operator products, we can write
the EnKF update for the states and parameters of each ensemble member as

[
φa

j
αa

j

]
=
[
φ

f
j

α
f
j

]
+
[
C f
φq C f

αq

]
(Cdd + C f

qq)
−1︸ ︷︷ ︸

Kalmangain, K

Innovation︷ ︸︸ ︷
(dj − q f

j ) . (A2)
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As mentioned in § 1, the EnKF is a bias-unregularized method. The estate and parameter
update does not consider either the model bias or the measurement shift.

Appendix B. Jacobian of the bias estimator

The Jacobian of the bias estimator is equivalent to the negative Jacobian of the ESN in the
open-loop configuration, such that

J = dbk+1

dMψ̄k
= dbk+1

dīa
k

dīa
k

dMψ̄k
= −dbk+1

dīk
= −W (1)

out[T � (σinW (1)
in � G)], (B1)

where W (1)
in and W (1)

out are the first Nq and Nr columns of the input and output matrices,
respectively, such that W = [W (1)|w(2)]; G = [g | . . . | g]T ∈ R

Nq×Nr , 1 ∈ R
Nr is a vector

of ones and T = [t | . . . | t] ∈ R
Nr×Nq with

t = 1− tanh2(σinW (1)
in (bk � g)+ σinδrw

(2)
in + ρW rk). (B2)

For details on the derivation, the reader is referred to Nóvoa et al. (2024).

Appendix C. Training the network

During training, the ESN is in an open-loop configuration (figure 4a). The inputs to
the reservoir are the training dataset U = [u0 | . . . |uNtr−1], where each time component
uk = [bu(tk); īu(tk)] (the subscript ‘u’ indicates training data). Although we have
information from the experimental data to train the network, the optimal parameters of
the thermoacoustic system are unknown. Thus, we do not know a priori the model bias
and measurement shift. Selecting an appropriate training dataset is essential to obtain a
robust ESN that can estimate the model bias and innovations. We create a set of L guesses
on the bias and innovations from a single realization of the experimental data. This means
that the ESN is not trained with the ‘true’ bias.

The training data generation is summarized in algorithm 1 and the procedure is as
follows. First, we take measurements for a training time window ttr of acoustic pressure
data Du, and we estimate D†

u by applying a band-pass filter to the raw data Du (see § 2).
Second, we draw L sets of thermoacoustic parameters from uniform random distribution
with lower and upper bounds α0(1− σL) and α0(1+ σL), which are selected from an
educated physical initial guess on the thermoacoustic model parameters based on previous
works (Faure-Beaulieu et al. 2021b; Indlekofer et al. 2021). The ranges of the uniform
distributions are reported in Appendix D. Then, we forecast the model (2.5) to statistically
stationary conditions using the L sets of parameters, and we take from each time series
a sample of length ttr, with this, we have the model estimates Qu ∈ R

L×Nq×Ntr . Third,
we correlate each Qu,l with the data by selecting the time lag κ ≥ 0 that minimizes their
normalized r.m.s. error within the first 0.01 s (approximately 10 periods of the acoustic
signal), i.e. for each Ql, the time lag is κl = {κ s.t. min r.m.s.(Qu,l(t − κ),Du(t))} with
t ∈ [0, 0.01] s. Once the L model estimates are aligned to the observations such that the
r.m.s. is minimized in the initial 10 periods of oscillation, we obtain the training model
bias and innovations as

U l = [Bu,l; Iu,l] = [D†
u − Qu,l;Du − Qu,l] for l = 0, . . . , L− 1. (C1)

If our initial guess in the parameters is well defined, the training bias dataset Bu have a
small norm. However, during assimilation the system can go through different states and
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Assimilation �td 35�t s Nq 4 εd 0.1
�t 51 200−1 s m 20 Inflation 1.001

Model νa [−10, 30] Hz c2β
a [10, 50] Hz ω/(2π)a [1090, 1095] Hz

Θa
ε [0.4, 0.6] rad κ · 104a [1, 2] Hz — —

Θa
β [0.5, 0.7] rad ε · 103a [5, 8] — —

ESN training �tESN 5�t s L 50 λb {10−12, 10−9}
Nr 50 Connectivity 3 σ b

in [10−5, 1]
Nwash 10 ttr 0.167 s ρb [0.5, 1.0]
Nfolds 4 tvalidate 0.020 s — —

Table 2. Parameters used in the simulations.
aIndicates that the parameters are initialized within the given range.

bIndicates that the parameters are optimized in the given range.

parameter combinations, which may have a large norm model bias. Because the ESN is
only trained on the correlated signals, it may not be flexible to estimate the bias throughout
the DA process Liang, Terasaki & Miyoshi (2023). Therefore, fourth, we apply data
augmentation (Goodfellow, Bengio & Courville 2016) to increase the robustness of the
ESN and improve the network adaptive in a real-time assimilation framework. We increase
the training set by adding the bias and innovations resulting from mid-correlated signals
to the training set. We select the mid-correlation time lag as the average between the best
lag κ and the worst time lag. The total number of training time series in the proposed
training method is 2L. The training parameters used in this work are summarized in
Appendix D.

Algorithm 1 Training dataset generation

1: Du ← GET OBSERVATIONS(observation time = ttr)
2: D†

u ← ESTIMATE TRUTH(Du)
3: U ← [ ]
4: for l = 0 to L− 1 do
5: αl ← U(α0(1− σL),α

0(1+ σL))
6: Q← FORECAST MODEL(αl, ttr)
7: Qu,l ← CORRELATE(Du,Q ) �Minimize r.m.s.
8: U ← APPEND([Du − Qu,l;D†

u − Qu,l] )
9: Qaug

u,l ← MID-CORRELATE(Du,Q ) � Data augmentation
10: U ← APPEND([Du − Qaug

u,l ;D†
u − Qaug

u,l ] )

Appendix D. Simulations’ parameters

This appendix summarizes the parameters used for the DA and for training the ESN. The
model parameters’ ranges listed in table 2 are used to initialize the ensemble in the DA
algorithm and to create the L-initial guesses for training the ESN (see Appendix C).
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Equivalence ratio

Param. Units Method Φ = 0.4875 Φ = 0.5125 Φ = 0.5375 Φ = 0.5625

ref. −22.43 −6.58 9.26 25.11
ν (Hz) DT −18.48± 3.76 −4.84± 2.09 12.03± 3.21 25.13± 3.15

EnKF −1.31± 2.86 −32.09± 3.40 4.58± 2.57 24.42± 2.02

ref. 17.65 24.11 30.57 37.02
c2β (Hz) DT 30.64± 8.51 42.99± 6.86 46.84± 7.18 14.97± 3.97

EnKF 27.77± 5.14 42.56± 9.64 49.55± 5.38 21.07± 1.76

ref. 1.20 1.20 1.20 1.20
κ · 104 (Pa−2 s−1) DT 1.55± 0.20 1.79± 0.19 1.62± 0.16 1.10± 0.12

EnKF 1.59± 0.17 1.30± 0.21 1.23± 0.13 1.19± 0.09

ref. 1090.00 1090.00 1090.00 1090.00
ω/(2π) (rad s−1) DT 1092.36± 0.56 1085.29± 0.20 1089.05± 0.15 1092.32± 0.14

EnKF 1091.78± 0.38 1087.92± 0.28 1088.98± 0.11 1092.19± 0.04

ref. 2.30 2.30 2.30 2.30
ε · 103 (–) DT 5.86± 0.57 2.71± 0.71 5.48± 0.55 7.74± 0.52

EnKF 6.34± 0.38 8.13± 0.56 5.66± 0.41 8.63± 0.17

ref. 36.10 36.10 36.10 36.10
Θβ (deg.) DT 32.87± 1.83 31.93± 1.84 29.99± 0.65 35.50± 1.99

EnKF 30.63± 1.35 34.07± 1.60 32.56± 0.89 31.64± 1.04

ref. 37.82 37.82 37.82 37.82
Θε (deg.) DT 28.30± 2.13 21.72± 1.49 30.05± 0.62 28.87± 1.18

EnKF 28.57± 1.44 26.03± 1.87 26.72± 0.67 37.84± 0.42

Table 3. Thermoacoustic parameters inferred by the minimum-r.m.s. solution (see figure 10) of the digital
twin (DT) and the bias-unregularized filter (EnKF) compared with the parameters identified by Indlekofer
et al. (2022) (ref.).

Appendix E. Inferred thermoacoustic parameters

Table 3 details the parameters shown in figures 10–11. The reported parameters from the
real-time digital twin (DT) are those with minimum r.m.s.
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