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Newforms of Half-integral Weight:
The Minus Space Counterpart

Ehud Moshe Baruch and Soma Purkait

Abstract. We study genuine local Hecke algebras of the Iwahori type of the double cover of
SL»(Qp) and translate the generators and relations to classical operators on the space Sy 1.1/, (To (4M)),
M odd and square-free. In [9] Manickam, Ramakrishnan, and Vasudevan defined the new space of
Sk+1/2(To(4M)) that maps Hecke isomorphically onto the space of newforms of 85;(To(2M)). We
characterize this newspace as a common —1-eigenspace of a certain pair of conjugate operators that
come from local Hecke algebras. We use the classical Hecke operators and relations that we obtain to
give a new proof of the results in [9] and to prove our characterization result.

1 Introduction

Let M be odd and square-free and let k be a positive integer. In a remarkable work,
Niwa [10], comparing the traces of Hecke operators, proved the existence of Hecke
isomorphism between Si.1/,(To(4M)), the space of holomorphic cusp forms of
weight k + 1/2 on the congruence subgroup T(4M) and Sy, (Ty(2M)), the space
of weight 2k cusp forms on I,,(2M). In [5, 6] Kohnen considers a certain Hecke
operator on Sy.1/,(To(4M)), which is an analogue of Niwa’s operator at level 4. This
operator has two eigenvalues, one positive and one negative, and the Kohnen plus
space is the eigenspace of the positive eigenvalue. Kohnen considers a new space,
SZ’:;‘;‘Z”(FO (4M)), inside his plus space and proves that this new subspace is Hecke
isomorphic to Sj¢"(Io(M)), the space of newforms of weight 2k and level M.
From Kohnen’s results, it is clear that the Niwa map sends the Kohnen plus space
to a subspace of old forms inside S,x(Tp(2M)). In a subsequent work, Manickam,
Ramakrishnan, and Vasudevan [9] define the newspace of Sy.,1/,(To(4M)) that maps
Hecke isomorphically onto S3;*(To(2M)), the space of newforms of weight 2k and
level 2M. Our main objective in this paper is to give a common eigenspace character-
ization for this newspace of Sy,1/,(To(4M)) in terms of certain finitely many pairs of
cojugate operators.

This is a continuation of our earlier work in [2], where we use local Hecke algebras
to give an eigenspace characterization of the space of integral weight newforms. The
local Hecke algebra method allows us to obtain the newspace of Manickam et al. in a
different way, and we show that it is the common —1-eigenspace of Kohnen’s operator,
a conjugate of Kohnen’s operator, and pairs of p-adic analogues of Kohnen’s operator
and their conjugates for each prime dividing M. We call this newspace the minus
space at level 4M.
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Our results are motivated by the results of Loke and Savin [8], who interpreted
the Kohnen plus space in representation theory language. For the case M = 1, Loke
and Savin defined another space of half-integer weight forms that they showed is
“conjugate” to the Kohnen plus space. This means that it is an image of the Kohnen
plus space by an invertible Hecke operator and is isomorphic to the Kohnen plus space
as a Hecke module. We show that the Kohnen plus space and the space considered
by Loke and Savin do not intersect and that their sum maps isomorphically to the
space of old forms $3;%(T5(2)) under the Niwa map. We define the minus space
at level 4 to be the orthogonal complement of the direct sum under the Petersson
inner product and show that it is mapped isomorphically under the Niwa map to
S3eY(To(2)), the space of newforms on I'(2). We characterize this space as a com-
mon eigenspace of two Hecke operators: the Niwa operator used by Kohnen to define
the Kohnen plus space and a conjugate of the Niwa operator that was considered by
Loke and Savin. The minus space is the intersection of the negative eigenspaces of
both operators. We normalize the negative eigenvalue to be -1 as in [2]. Our de-
scription of the minus space at level 4 is completely analogous to our description of
the new space 3" (T (2)) in [2], where we showed that S3*(T(2)) is the common
—1-eigenspace of two Hecke operators. To summarize the case of M = 1, we show that
the space Sy,1/,(To(4)) decomposes into a direct sum of three spaces: the Kohnen
plus space, a “conjugate” of the Kohnen plus space given by Loke and Savin, and the
minus space. The Kohnen plus space and its conjugate are indistinguishable as Hecke
modules, which is the same as saying that they are mapped under the Niwa map to
“conjugate” spaces of old forms. The minus space is different as a Hecke module from
both spaces.

In order to generalize this result for M odd and square-free, we consider certain
p-adic Hecke algebras for every prime p dividing M. Our work follows that of Loke
and Savin, who studied a certain 2-adic Hecke algebra that allowed them to give a
representation theoretic interpretation of the Kohnen plus space and to introduce the
operator that is a conjugate of Niwa’s operator and the space that is a “conjugate” to
Kohnen’s plus space.

We compute genuine local Hecke algebras, of the Iwahori type with genuine qua-
dratic central character, for SL,(Q, ), the double cover of SL,(Q, ), and prove that this
is isomorphic to the Iwahori Hecke algebra of PGL,(Q), ). In [13], Savin obtained de-
scription of Iwahori-type Hecke algebras for coverings of simply connected Chevally
group G # SL,. We are not aware of any such results for SL,, apart from the work of
Loke and Savin [8] for the 2-adic case that we generalize for any odd prime p.

In our p-adic Hecke algebra, we consider two p-adic operators that give rise to
conjugate classical Hecke operators which, when used along with Niwa’s operator and
its conjugate, allow us to define our minus space at level 4M. We note that these two
p-adic operators are p-adic analogues of Niwa’s operator and its conjugate. We give
two descriptions of the minus space: one description as an orthogonal complement of
a certain sum of subspaces and another description as a common —1-eigenspace of the
Niwa operator, its conjugate, and a pair of conjugate operators for each prime dividing
M. This again is completely analogous to our description of the space of newforms
of weight 2k for To(2M) given in [2, Theorem 1]. We show that the minus space of
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weight k +1/2 at level 4M is isomorphic as a Hecke module to the space of newforms
of weight 2k at level 2M.

Due to the Hecke isomorphism and multiplicity, it is clear that the minus space
we define is identical to the newspace of [9]. In particular, we obtain a new proof of
the Hecke isomorphism in [9]. We note that our description of the minus space as
an orthogonal complement differs from the description of the newspace in [9]. We
elaborate this point in Remark 6.27.

Our paper is divided up as follows. In Section 2, we set up notation following
Shimura’s work on half-integral weight forms and recall Gelbart’s theory of the dou-
ble cover of SL,(Q)). In Section 3, we define a genuine Hecke algebra of the double
cover of SL,(Q,) modulo certain subgroups and a genuine central character and give
its presentation using generators and relations. In particular, we recall the work of
Loke and Savin when p = 2. In Section 4, we translate certain elements in our p-adic
Hecke algebra to classical Hecke operators on Sy.;/,(To(4M)). We obtain two clas-
sical operators: (jp with eigenvalues p and -1 and an involution sz. We further
consider 61',, which is a conjugate of 51, by sz. We check that these operators are
self-adjoint with respect to the Petersson inner product. We recall Kohnen'’s classical
operator Q on Si,1/,(To(4M)), which he uses to describe his plus space. We show
that his operator Q comes from the 2-adic Hecke algebra considered by Loke and
Savin. Let Q2 = ( S ) Q/ V2 and let Q, be conjugate of Q2 by an involution Wi.

The operators Qp and Qp are p-adic analogues of Kohnen’s operator Q and its con-
jugate. In Section 5, we define our minus space S, ,(Io(4M)) and prove our main
result.

Theorem  Let S,:+1/2(F0(4M)) € Sks1/2(To(4M)) be the common —1-eigenspace of
operators Q, and 6;, for all primes p dividing 2M. Then S, ,(To(4M)) has a basis
of eigenforms for all the operators T2 where q is a prime coprime to 2M and all the

operators U,> where p is a prime dividing 2M, and maps isomorphically under the Niwa
map onto the space S5 (To(2M)).

We are certain that the Hecke algebra approach can be employed to give a newform
theory for the space of half-integral weight forms of a general level. Indeed, in [3] we
use the methods developed in this paper to define the minus space at level 8M, M odd
and square-free, and show that the minus space at level 8 M is Hecke isomorphic to
S3i¥(To(4M)). This generalizes Ueda and Yamana’s work in [17]. Please refer to Re-
mark 6.34 for more details. We plan to use the results in this paper to study Whittaker
functions associated with automorphic forms coming from Hecke eigenforms in the
minus space. As an application, we plan to generalize the Kohnen-Zagier formula for
the twisted central L-values of an integer weight modular form of level 2M.

2 Preliminaries and Notation
Let k, N denote positive integers. Let Ty (N) be the subgroup of SL,(Z) consisting of

matrices of the form (g ;) (mod N). We denote by Sx(Ty(N)) the space of holomor-
phic cusp forms of weight k on the group I, (N). For each prime p not dividing N,
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we have the Hecke operator T, on Si(Iy(N)) whose action on g-expansion can be

givenas follows: if f = 352, a,q" € Sk(To(N)) then T, (f) = Xo2y (apn+p*an/p)q"
For m € N, let U,,, V(m) be given by the following action on any formal g-series:

Um(zanqn) = iamnq", V(m)(i::lanqn) = i::lanqm",

It is well known that V(m) maps Sx(To(N)) to Sx(To(mN)) and if m| N, then U,,
is an operator on S (Iy(N)).

We briefly recall the theory of half-integral weight modular forms [14]. Let G be
the set of all ordered pairs (a, ¢(z)) where a = (¢ %) € GL] (R) and ¢(z) is a holo-
morphic function on the upper half plane H such that ¢(z)? = tdet(a)™/?(cz + d)
with t in the unit circle S' := {z € C : |z| = 1}. Then § is a group under the following
operation:

(. ¢(2)) (B y(2)) = (aB, $(B2)y(2)).

Let P: § — GL;(R) be the homomorphism given by the projection map onto the
first coordinate.
Let { = (a, ¢(z)) € G. Define the slash operator ’ [{]k+1/2 on functions f on H by

f| [(]k+1/2(Z) = f((xz)((p(z))—Zk—l.
Let N be divisible by 4 and let a = (? 2) € [y (N). Define the automorphy factor

jla,z) = 8;1(2) (cz+d)"?,

where ¢4 = 1 or i according to whether d =1 or 3 (mod 4) and (3) is as in Shimura’s
notation. Let

Ag(N) :={a* = (a, j(a,2)) € G| ae[,(N)} <§.

The map L: Tp(N) — G given by « — a* defines an isomorphism onto Ag(N). Thus,
P|a,(ny and L are inverse of each other. Denote by A;(N') the image of I} (N).

Let x be an even Dirichlet character modulo N. Let Sx1/>(To(N), x) be the space
of cusp forms of weight k+1/2, level N, and character y consisting of f € Sx.,1/,(A1(N))
such that f| [a” Jk1/2(2) = x(d)f(2) for all @ € To(N). In particular, when y is triv-
ial, Si11/2(To(N), x) = Sk41/2(Ao(N)). In this case we will simply denote the space
by Ski1/2(To(N)).

Let & be an element of G such that Ag(N) and £'A((N)& are commensurable.
Then we have an operator | [Ao(N)EAG(N)]ks1/2 0N Sgi1/2(To(N)) defined by

FI[A0(N)EAG(N) i1z = det(§) PN FI1E, T/

where Ag(N)EAo(N) = U, Ag(N)E,.

Let &= ((, ;z ), p'/?). If p is a prime dividing N, then by [14, Proposition 1.5,

2

p-1
S8 ER0 M2 = PP 3 AI((o )27 1o (2D,
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thusif f = Y7, a,q”, then f| [Ao(N)EAG(N) Jks1/2 = Epe1 8p2nq” = Upa (f). If piis
a prime such that (p, N) = 1, then the Hecke operator T} is defined by
Tp2 (f) = fI[A0(N)EAG(N) i1z

We will be studying local Hecke algebra of the double cover of SL,. We next recall
Gelbart’s [4] description of the double cover. Let p be any prime (including the infinite
prime). The group SL,(Q, ) has a non-trivial central extension by y, = {£1}:

1 —>[42 — ST_Q(QP) —> SLz(Qp) —1
(LD} (&) — ¢

We use the 2-cocycle defined below to determine the double cover SAiz(Qp). Let
(), be the Hilbert symbol over Q. For g = (9%)eSLy(Qp), define

r(g) = ¢ ifc#0,
£714 ifc=o.

If p = oo, set 5,(g) = 1, while for a finite prime p

(¢,d), ifcd+0andord,(c)isodd,
sp(g) = { P ?

1 otherwise.
Define the 2-cocycle 0, on SL,(Q),) as follows:
ap(g h) = (1(gh)7(g), 7(gh)7(h)), s, ()sp(R)sy(gh).
Then the double cover SL,(Q,) is the set SL,(Q,) x 4 with the group law:

(& e)(h, 2) = (gh, e1€205(g, h)).

For any subgroup H of SL,(Q,), we will denote by H the complete inverse image of
HinSL,(Q,).
We consider the following subgroups of SL,(Z, ):

Kg(p”) = { (? Z) €SLy(Zy):ce p"ZP},

b
K{(p") = { (j d) €SLy(Zy) : cep"Zp,a=1 (mod p”ZP)}.

By [4, Proposition 2.8] for odd primes p, SL,(Q,) splits over SL,(Z,). Thus,
SL,(Z,) is isomorphic to the direct product SL,(Z,) x , and K} (p) is isomorphic
to KE(p) x uz. It follows from [4, Corollary 2.13] that the center M,, of SL,(Q,) is
simply the direct product {+I} x p. Thus, any genuine central character is given by
a non-trivial character of y; x ys.

However SL,(Q,) does not split over SL, (7, ) but instead splits over the subgroup
K?(4). In this case, the center M, of SL,(Q,) is a cyclic group of order 4 generated
by (~I,1) and so a genuine central character is given by sending (-1, 1) to a primitive
fourth root of unity.
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We set up more notation. For s € Q,, t € Q;, let us define the following elements
of SL,(Q,):

O A BB (1 R (RO AP (O

Let N = {(x(s),€) : s € Qp, € = 21}, N = {(y(s),€) : s € Qp, € = 1} and
T ={(h(t),e) : t € Q}, € = =1} be the subgroups of SL,(Q,). Then the normalizer
NS~LZ(QP)(T) of T'in SL,(Q,) consists of elements (/(t),€), (w(t),e) fort € Qj. We
note the following useful relations: for s, t € Q; and u, v € Q,, we have
(2.1) (h(s),1)(h(2),1) = (h(st), (s, 1) ,)s

(w(s), ) (w(t),1) = (h(=st™), (s,1),,)

(h() )W (£),1) = (w(s0), (5,-1), ),

(w(s), 1) (h(1),1) = (w(st™), (=s,1),),

(h(s), 1) (x(u),1) =

(¢
c@aen-((5 4)1).

(

(¢

~— — — —

(DW= ([, ) e00.50),

(y(u), 1) (h(s),1) = Ol)ﬂp(y(u),h(S))),

where

1 ifu=0,
0p(h(s), y(u)) = op(y(u), h(s)) = [(s, u), ifu#0, ord,(su)even,
(s,s)p ifu#0, ord,(su)odd,

eODG@D (b, ) am.sw).
weon-((M5)),
(w0, D (W), = (t_l )

(
SONICIONE ( . ;),op(y(v),wm)),

where

(~t,-u), ifu#0, ord,(t) odd,
otherwise,

ap(w(t), x(u)) = {
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and
ot =[O
G@om- (1 1)),
D =((} ) 0a00)).
Gwnem-((5 1))
o0 -((,, 1)
where

(vouv +1), ifv(uv+1) #0, ord,(v)odd,
1 otherwise.

ap(y(v), x(u)) :{

For any subgroup S of SL,(Q,), we further let NS = NnS, TS = Tn S, and
N =Nns.

3 A Local Hecke Algebra of SL,(Q,)

Loke and Savin [8] studied a genuine local Hecke algebra of SL,(Q,) corresponding

to K2(4) and a genuine central character, and gave an interpretation of Kohnen’s plus
space atlevel 4 in terms of certain elements in this 2-adic Hecke algebra. In this section
we recall their work on the 2-adic Hecke algebra. We then study genuine Iwahori

Hecke algebra for SL,(Q,) corresponding to K} (p) and a genuine character of M,
for a general odd prime p.

Let p be any finite prime and let C2°(SL,(Q,)) be the space of locally constant,
compactly supported complex-valued functions on ﬁz((@p). For an open compact
subgroup S of SNLZ(QP) and a genuine character y of S (that is, a character of S that

acts nontrivially on yy), let H(S, y) be the subalgebra of C=°(SL,(Q,)) defined as
follows:

{f € C2(S1a(Qy)) : F(RgR") = (R)P(R) (@) for F e SLa(Qy), K, K € 5.

Then H(S, y) is a C-algebra under the convolution, which, for any f;, f, € H(S,y), is
defined by

+ fo(h) = g 'h)dg = [ ") f(27)dg,
fre b= Jo o, M®LEMAE= [ hDLE)dR
where dg is the Haar measure on ﬁz(Qp) such that the measure of S is one. We

call H(S, y) the genuine Hecke algebra of SL,(Q,) with respect to S and y. We can
sometimes denote f; * f, simply by f; f>.
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For certain S and y, we would like to describe the algebra H(S, y) using generators
and relations. In order to do so, we need to first compute the support of H(S, y). We
say that H(S, y) is supported on § € SL,(Q,) if there exists f € H(S,y) such that
f(2) # 0. We use the following lemmas to compute the support.

Lemma 3.1 Let Sz = SN gSg~". Then H(S,y) is supported on g if and only if for

=-1

every k ¢ Sz we have y([k™,g7"]) = 1, where [ -, -] is the usual commutator bracket.

Lemma 3.2 The function ag: Sz — C defined by ag(k) = y([k™', ")) is a character
0fS§.

In order to compute the support using above lemmas, we need certain results on
cocycle multiplication. We note them in the appendix.

We also note that the following well-known lemmas will be useful in computing
convolutions.

Lemma 3.3 Let fi, f, € H(S,y) such that fi is supported on SXS = UL, &@;S and f,

is supported on SyS = U7, B;S. Then

fix fuli) = iﬁ(a}m('&;%,

where the nonzero summands are precisely for those i for which there exist a j such that
he &1/3]5

Forge SIZ(QP) let u(¢) denote the number of disjoint left (right) S cosets in the
decomposition of the double coset SgS.

Lemma 3.4 Letd, h e SL,(Q,) be such that w(@uh) = u(gh). Let fi, fr €
H(S, )i) be supported on S¢S and SY@LS, respectively. Then fi % f, is precisely supported
on SghS and fi » f,(gh) = f1(g) f2(h).

3.1 Local Hecke Algebra of SL,(Q,) Modulo K2(4)

Let S = KZ(4) and let y be a genuine character of M, determined by its value on

(~1,1). Since K2(4) is the direct product K{(4) x M, we can extend y to a genuine
character of K2(4) by setting it trivial on K7 (4). Loke and Savin described H(S, y)
for the above choice of S and y as follows.

Using relations in (2.1), extend y to the normalizer Ng q,)(T) by defining
y((h(2"),1)) = 1forall integers nand y((w(1),1)) = (1+y((~1,1)))/v/2, a primitive
8th root of unity. For n € Z, define the elements T, and U,, of H(K3(4), y) supported
respectively on the m double cosets of (h(2"),1) and (w(27"),1) such that

T, (k(h(2"), )K" = (k)7 ((h(2"),1))7(K"),

W, (k(w(27"), DK) = 7(k)7((w(2™"), ))§(K)  fork, k' € K3(4).
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Theorem 3.5 (Loke-Savin [8]) Form,n€Z,
(i) ifmn >0, then Ty * Ty = Tppins
(i) Uy Ty =WUpprand Ty Uy = Up_p;
(i) U U, =Ty and Uy, * Uy = Ti-y.
The Hecke algebra H(K3(4),y) is generated by Uy, and U, modulo relations
(Up —2v/2)(Ug +v/2) = 0 and U2 = 1.

3.2 Iwahori Hecke Algebra of SL,(Q,) Modulo K% (p), p Odd

Fix an odd prime p. Let S = K} (p). Let y be a character of K (p) such that it is trivial

on K?(p). Since ﬁg; 2 (Zy/pZy)*, we can define y by a character of (Z/pZ)*. We
use the same symblol y to denote a genuine character of S by defining y(A, €) = ey(A)
for A € KJ(p). We call H(S, y) with the above choice of S and y to be the genuine
Iwahori Hecke algebra of SNLZ(QP) with central character y. Our main result in this
subsection is to describe this Iwahori Hecke algebra using generators and relations
when y is quadratic.

In the rest of this subsection, we denote K% (p) simply by K,. We first note the
following lemma.

Lemma 3.6 A complete set of representatives for the double cosets of Sﬂiz((@p) mod
Ky is given by (h(p"),1), (w(p™™),1), where n varies over integers.

We need to compute the support of H(Kj, y). Fix an integer n. Let A = h(p") and
A = (A, ;). We shall show that H(Ky, ) is supported on A. We have

Si= {((? Z) ,:l:l) € SLy(Zp) : ord,(c) > max{-2n +1,1},
ord,(b) > max{Zn,O}}.

We check that S has a triangular decomposition S = NSTT5% N7, where T7 = TX,

N%% = {(x(s),+1) : ord,(s) > max{2n,0}}, and NT - {(p(),£1) : ord,(t) >
max{-2n+1,1}}.
By Lemma 3.1 and 3.2, it is enough to check that the value of y on the commutator

[(B, €))7}, (A, e)']is1forany (B, €,) in N5z, T5% and N, respectively.
By Lemma A.3, for B = (x(s), ;) € N5, we get

[(B, 62)_1, (A, 61)_1] _ (((1) SP‘ZI” _S),l);

for B= (h(u),e;) € T5%, we get [(B, €2)7", (A, &)™'] = (I,1); and for B = (y(¢),€2)
€ N7, we get that

[(Be2)™ (Aver) '] = (((pz”l— t (1)) ’1)'

Since each of them belongs to K (p) x {1}, we are done.
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Nextlet A = w(p~"). We show that H(Kj, y) is supported on A = (A, ¢;) provided
y(u?) = 1for all units u in Z,. In this case, we have

Si= {((? Z),j:l) € SLy(Z,) :ord,(c) > max{2n,1},

ord,(b) > max{-2n + 1,0}},

and Sy has a triangular decomposition S7 = N7 TSZNS’T, where T5% = TKo, NS7 =
{(x(s), £1):ord,(s) > max{-2n+1,0}}, N - {(y(1), £1):0rd, (t) > max{2n,1}}.
By Lemma A.3, for B = (x(s),€;) € N°%, we get

(2 )

s0 y takes value 1 on this commutator. In the case B = (y(t),€;) € N°%, we have

1 -p "t

-1 4-1 _

) , where ord, (t) > max{2n,1},
s0 s,(B'AT'BA) = 1if either —£(1+ p™>"*) = 0 or ord,(t) is even. Assume that
—t(1+ p~*"t*) # 0 and ord,(¢) is odd. Then s,(B'A™'BA) = (—t,1+p’2”t2)p =
(—p,1+p_2"t2)p. Let u = 1+ p~2"#>. Since ord,(t) > max{2n,1}, we have u = 1
(mod pZ,).
Hence, s,(B"'A™'BA) = (-p, u), = (%) = 1. So in this case also y takes value 1.
For B = (h(u),€;) € TS%,

[(B, &) (Ae) '] = ((1/52 L?)l)

so y([(B, &)™, (A, e)']) = y(u?).

Thus, if y(u*) = 1for all units u in Z,, then H(K, y) is supported on (w(p™"),€).
In particular, this holds if our choice of y is quadratic. Thus, we have the following
proposition.

Proposition 3.7  Ify is a quadratic character then H(Ky, y) is supported on the double
cosets of Ko represented by (h(p™),1) and (w(p™"),1), as n varies over integers.

We now obtain the generators and relations in H(Ky, y) when y is quadratic.
We consider the character y of K to be the genuine character of the center M,
and extend it to the normalizer group N §L,(Q,) (T) as follows.

Let ¢, = 1 or i depending on whether p = 1 or 3 (mod 4), thus 812, = (_?1) Let
t=p"ueQy, where n € Z and u is a unit in Zy. Define
y((h(u),1)) if n is even,
ep(g)y((h(u),l)) if 1 is odd.
It is easy to see that y thus defined is a character of T.

y((h(2),1)) ={
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We now extend y to the normalizer Ngj ¢ (T) by defining y((w(1),1)) := 1and
using the relation

(w(),1) = (h(1),1) (w(®),1) (1, (-1.£7), ).
Thus, for ¢t = p"u as above,
y((h(u),1)) if n is even,
sp(%)y((h(u),l)) if 1 is odd.

We define the elements T, and U,, of H(Ky, y) supported respectively on the dou-
ble cosets of (h(p"),1) and (w(p™"),1) such that

Tu(k(r(p"), DK =¥ (R)¥((h(p™), )y (K'),
W, (k(w(p™), DK = 5O F((w(p™), 1))F(K")

for k, k' € Ky. Thus, Proposition 3.7 implies that T, U,, as n varies over integers
form a C-basis for H(Ky, y) when y is quadratic.

In order to obtain relations amongst J,, and U,, we note the following lemma,
which can be obtained by using the triangular decomposition of K.

y((w(1),1)) ={

Lemma 3.8 (i) Forn >0,
Koh(p")Ko= U  x(9h(p")Ko= U  Koh(p")y(ps).
S€Lp[p*"Zp S€Lp[p*"Zy

(ii) Formn>1,
Koh(p™)Ko= U y(ps)h(p™)Ko= U  Koh(p™")x(s).
s€Zy [ p* Ly s€Zy [ p* Ly

(iii) Forn >1,

Kow(p™Ko= U yps)w(p™Ko= U  Kow(p™")y(ps).

s€Zy [ p?" 12,y s€ly [ p* 17y

(iv) Forn >0,

Kow(p")Ko= U  x()w(pKo= U  Kow(p")x(s).

seZp/pz"“Zp SEZP/pZ"“ZP

Proposition 3.9  We have the following relations:
(1) Ifmn>0,then Ty * Ty = Tiin.
(ii) Forn>0,U; * Ty, =Upyy and T_,, + Uy = Uygr.
(iii) Forn>0,Ug*T_, =U_, and T, *» Ug = U_,.
(iv) Forn>1Uy*U, =y((-,1))T, and U,, * Uy = y((-1,1))T_,.

Proof We prove (i) and the second part of (iv). The rest are similar.

For (i), let mn > 0. We can assume both m, n > 0. It follows from Lemma 3.8 and
3.4 that T, » T, is precisely supported on the double coset Ko(h(p"*™),1)K, and
that

T * Tu((h(p™):1) (h(p"):1)) = T ((H(p™), 1)) Tu((h(p"),1)).
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Let m and n both be even. Then (h(p™),1)(h(p"),1) = (h(p"*™),1) and so
T+ Tu((R(p™"™),1)) = T ((R(p™), 1)) Tu((h(p"), 1))
=7((h(p™), 1)) 7((h(p"),1))
=1=Tpen((h(p™™),1)),

hence T, * T, = T 1. Next suppose both m and n are odd, so m + n is even. Then

(h(p™) D) (h(p").1) = (h(p"™™ ). (L (p. p),) and 5o
T x Tu((R(p"™), 1)) = 7((L (0, £),)) T ((h(p™), 1)) Tu (((p™), 1))
- ()77 D) = (4) 8

1= T (™))

Now suppose m is odd and 7 is even (or vice versa), so m + n is odd. In this case,
(h(p™),1)(h(p"),1) = (h(p™*™),1) and so

T Tu((B(P" ), 1)) = & = Tyen(((p"™),1)).

and we are done.
For (iv), let n > 1. As before, using Lemma 3.8 and 3.4, we know that U, * U, is
supported on the double coset Ko (h(p™"),1)K, and that

Uy # Ua((w(p™).1) (w(1). 1)) = U (), ) Uo((w(1),1).
We have (w(p™"),1)(w(1),1) = (h(p™"),1)(-L (p™",-1),), and so
Y((=11)) Uy * Uo((h(p™"),1))
= (271, Un((w(p™), 1)) Uo((w(1), 1))
(F)@(5) =5 ifnisodd
1 if n is even
=T ((h(p™),1)),
and thus U, * Up = y((-1,1))T_,. ]

We consider two choices for y as a character of (Z/pZ)*: either y is trivial or y is

given by the Kronecker symbol y = ( ’ ) . Then we have the following proposition.
(p-DUo+p ifyistrivial,

-1 . _ ;
(i) 16 = {p ify is trivial,

e(p-DW+(3)p ifr=(5)-
(i) Ify is trivial, then T; = Uy = p Ug and T_; = (1/p) Uy + Ty » U,

Proposition 3.10 (i) UZ= {

Proof For (i), we use Lemma 3.3 to check that U2 is at most supported on the double
cosets Ky and Ko (w(1),1)Ky. Thus, we need to only compute the values of U3 at (1,1)
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and (w(1),1). Using Lemma 3.8 and 3.3, we have

p-1
(1)) = X Uo((x(5): DOv(D: D) Uo((w (D) (x(9).1)7)
p-1
- ;) uo((W(l), 1)) uo((w(—l)’ 1)(36(—5), 1))

p-1
= ;)Uo((h(—l),l)(W(l),1)(X(—S),1))

1 p if y is trivial,
= -1) = ]
gﬂ){ﬁﬁﬁwu%

P

where the third equality follows from the relation (h(-1), 1)(w(1), 1) = (w(-1),
(-1,1),) by equation (2.1).
Similarly, we get that

Us((w(1),1)) = Pij Uo ((x(5), D (w(1),1)) Uo((w(1),1) 7 (x(s), 1) (w(1), 1))

SR(EnE
_Zm(gn)zm(ﬂD)

since Uo((1,1)) = 0 (as (I,1) is not in the support of Uy). It is easy to check that for

1 S N S p - 1>
1 1/s - -1 - -
(y(s),l):((o { ),1) (w(l),l)((0 —l/s)’l) € Ko(w(1),1) Ko,
and hence
p-1 p-1 1 if y is trivial,
U ((w(1),1)) = 2 7(=1/s) = Y y(s) = {Z (5) _0 ifve (7)
s=1 s=1 p) V= )
Thus, if we write U = ¢;Up + c;, we get that
{ p—1 ifyistrivial, { p if y is trivial,
= e - > C2=3Y(4 e -
0 ify=(5) (F)e itr=(5).

Now we prove (ii). Again using Lemma 3.3, we see that U is at most supported
on the double cosets Ky and Ko(w(p™'),1)Ky. So we need to find the values of U}
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at (I,1) and (w(p™"),1). Using Lemma 3.8 and 3.3,
p-1
Ui ((LD)) = ;}ul((,v(PS))1)(W(P71)>1))U1((W(P71)’1)71(J’(PS),1)71)

p-1
- Zoul((w(p’l),1))ul((w(—p’l),1)(y(—ps),1))

Finally, we have
U ((w(p™),1))
p-1
= Zul((y(PS),1)(W(P_1)>1))111((W(—P_1),1) (y(=ps): D(w(p™), 1))

Sl ) o)

;:‘1 X
= 3 & () W (Cx(s/2) (0 0),)) = T ) Wl(x(s/).1).

Now we check thatfor1<s<p -1,

w0 () (3 ) o ( (. 2)-1)

and so
W0 = Sa(2) (2)70s9( )
::(;f)ya/s)
~ {Zf__ll (f) =0 if y is trivial,
G EG) =G ey ity=(5)-

Thus, if we write U = ¢,U; + ¢, we get that

0 if y is trivial, p if y is trivial,
= . C = .
-1 ify=(5), T UR)e ify=(3).
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For (iii) let y be a trivial character. From Proposition 3.9(iv), we have Ug * U; = T3
Right multiplication by U, on both sides and using (ii) above give T7 * U; = p Uy.
Further, using the same proposition, we get that 7_; = U; * Uy = (1/p) Uy * T * U;. m

Remark 3.11 We compare the p-adic operator U, with Uedas classical operator Y,
[16, Proposition 1.27], which satisfies a similar relation. In particular, if we consider
operator Uj = &, U, then in the case y is trivial, we have

(W) = U= o= ()

while in the case y = (E) , we have

_ — -1
(UD? = (5W)* = & (SP(P DU + P(p)) =(p-DUj+p.
Thus, Uj satisfies exactly the same relations as the operator Y.

Theorem 3.12  The ‘genuine” Iwahori Hecke algebra H(KE (p), y) for y trivial or (;)

is generated as a C-algebra by Uy and U, with the defining relations given by the above
proposition.

Proof We let A be an abstract algebra generated by U, and U, with defining rela-
tions as (i) and (ii) of Proposition 3.10. We have a homomorphism from Ato H(y)
mapping UO to Uy and Ul to U;. It follows from Proposition 3.9 that this homomor-
phism is onto. We let M be the kernel of this homomorphism. Using relations (i) and
(i), it follows that M is a linear combination of words of the form UyU; Uy - - and
U, Uyl - - -. There are four possibilities for the beginning and ending of such a word
and each one is mapped by the homomorphism to a different basis element (again
using Proposition 3.9). It follows that M = 0. ]

Remark 3.13 We note that the Hecke algebras H(KJ(p),y) for y trivial or (;)

are isomorphic (with roles of ”LNLO, U, switched after suitable normalization). Further,
these are isomorphic to the Iwahori Hecke algebra of PGL,(Q,) giving what Loke
and Savin called, local Shimura correspondence at odd primes.

The Hecke algebra generators and relations described above allow a study of the

representation theory of the maximal compact with (K} (p), ) equivariant vectors
and also the infinite dimensional genuine representations of SL(2) with such vectors.
We will pursue this study in a subsequent work.

4 Translation of Adelic to Classical

In this section, following Gelbart [4] and Waldspurger [18], we review the connection
between automorphic forms on SL;(A) and classical modular forms of half-integral
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weight. We use this connection to translate certain elements in the p-adic Hecke alge-
bra described in the previous section into classical operators and thus obtain relations
satisfied by these classical operators.

Let A = Ag be the adele ring of Q and SL,(A) = SLy(A) x {1} with the group
law: for g = (g,), h = (hy) € SLy(A) and ¢, €3 € {1},

(g.€1)(h,e2) = (gh,ere20(g, h)), where a(g, h) = [10,(gv. hy).

The group SL, (A) splits over SL,(Q), and the splitting is given by
S0 SLa(Q) — SLa(A), g — (,54()), where s4(g) = [Tsv(g)-

By [4, Proposition 2.16], for a = (%) € [;(N), sa(a) = (5) . unless ¢ = 0, in which
case s (a) = L. Here, (5)5 = (5) (¢,d)co-

Lemma 4.1 Let4|N.Fora=(%%)eT,(N), we have

(§)s(c,d)2 if ¢ # 0 and ord,(c) is even,
sa(a) = (5) if ¢ # 0 and ordy(c) is odd,
1 ifc=0.

Proof Ifc=0,thens,(a) =1forall places v, and soss(a) =1.

Suppose ¢ # 0. Since a € Tp(N) and 4 | N, d is odd and coprime to c. By definition,
for any finite prime g, we have sy (a) = (c,d), if ordy(c) is odd and is 1 otherwise.
Hence

sa(a) = [] sq(a)= ]I (c.d),-

q finite ordg(c) odd
It follows from the proof of [4, Proposition 2.16] (the proof only uses that d is odd and
coprime to c), that (5) =[1gc (¢, d),. Now

[T (ed,=Ilcd, T (d,=(3). T (i),

ordg(c) odd qlc ordg(c) even>0 ordg(c) even>0

So we just need to show that [Torq, (c) even 0 (¢:d),, is (¢, d), if ordy(c) is even and is
1if ord,(c) is odd (note that ord,(c) > 2). Let p be any odd prime such that ord, (c)
is even and > 0. Let ¢ = p*"u, where u is unit in Z,. Then (c.d), = (u,d), =1as
both d, u are units in Z,. Hence we are done. ]

For g = ((g Z),e) € ﬁZ(R) and z € Hj, define

az+b and J(§,2) = e(cz +d)/?

8(z) =
By [4, Lemma 3.3], J(§, z) satisfies the automorphy condition i.e.,

J(8h,2) = (3, hz) ] (h, 2).

cz+d
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Let f € Sg1172(To(N)), where 4 | N and « € Ty (N). Then considering & = (e, sa (a))
e SL, (R), using the above lemma, we have

f(@2) = (5) () ez + )£ (2)
(5) ™ sa i@ 2 £(2)

(e2'T(@.2))** f(2) ifc=0,
(¢, d)oo(e5'T(®@ 2)) 1 f(2) if ¢ # 0 and ord,(¢) is odd,
(c.d)oo (c,d), (e'(@,2))*** f(2) if c # 0 and ord,(c) is even.

k(6) = (cos@ sinﬂ).

—sinf cos @

For 6 € R, let

Define Ko, := {k(0) : 6 € (-2, 27]}, where

%(0) = (k(0),1) if-n<B<m,
| (k(6),-1) if-2mr<@<-morm<0<2m.

Then K., is a maximal compact subgroup of SL,(R) and k() e isa genuine

character of K... Let

Ki(N):=]] {(i Z) €SLy(Zg):c=0,anda,d=1 (mod NZq)}.

q<oo

Recall the strong approximation theorem for SL,(A): every element g € SL,(A) can
be written as

g = (a5(0))goo (k1o 1),

where (a, s (a)) € sg(SL2(Q)), k; € Ki(N) and g € SL,(R) determined up to left
multiplication by elements in sg (I (N)).
We follow the notation of Waldspurger [18]. Let y be an even Dirichlet character

modulo N. Write xo = X(_—l) “ Define y2 on 75 as

- 1 ift=1 (mod 4Z,),
Fa(ry | el (moddZy)
ift=3 (mod 4%Z,),

b

and for kg = ((Z d

) € K2(4), define
y2(d) (c,d), s2(ko) ifc#0,

&lko) = {)72(01) ifc=0.

Let o also denote the idelic character (of Q*\Ag) corresponding to the Dirichlet
character y, (it will be clear from the context when we consider , to be idelic or
Dirichlet character) and o, be the p-component of xo. Let Ai.1/2(N, yo) denote
the set of functions ®: SL,(A) — C satisfying the following properties:
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() O(sg(@)g(ki,1)) = ©(F) forall ky € [T ;5 SLa(Zy), a € SLy(Q), § € SLy(A).
(ii) @ is genuine, that is, ®((1,{)g) = {(DO(Z) for { € y,.
(iii) For odd primes p such that p"|N, ®(g(ko,1)) = xo,p(d)P(Z) for all ko =
(%) € K§(p™)-
(iv) If2"[N (n22), ©(g(ko, 1)) =& (ko) xo,2(d)P(¥) forall ko € KZ(2M).
(v) O(3k(0)) =2 D(F) for all k(6) € Ko
(vi) @ is smooth as a function of SNLZ(R) and satisfies the differential equation
A® = —[(2k +1)(2k — 3)/16] D, where A is the Casimir operator.
(vii) @ is square integrable, that is, L@(SLZ(@))\SIZ(A)/M |@(3)|*dg < oo.

(viii) @ is cuspidal, that is, fN@\NA O((44)g)da=0forallge SL,(A).

By [18, Proposition 3], there exists an isomorphism between

Ag2(Ns xo) — Sk+1/2(1"0(N), X)

given by ® — fq, where for z € H,

fo(2) = ©(eo)] (Foor 1),

where Foo € SL,(R) is such that o, (i) = z. The inverse map is given by f — Oy,
where, for g € SLy(A), if § = (&, 54 (a))Zoo (k1,1),

O (2) = f(Foo ()] (Foer 1) 7.

This isomorphism induces a ring isomorphism of spaces of linear operators,
q: Endc (Agi1/2(N, x0)) — Endg (Ska12(To(N), x))
given by q(7)(f) = fa(o))-
4.1 N=4M, M Odd and p|M

Let p be an odd prime and let N = 4M with M odd such that p strictly divides M.
In this subsection, we translate the elements T3, U, Uy, and T_; in the p-adic Hecke
algebra to certain classical operators on S.;/,(To(4M), x). We restrict ourselves to x

k
being the trivial character modulo 4M. In this case, yo = (_—1) has conductor either

1or 4, and so yo,p is trivial on Z%, while x5 acts by xp' = xo on Z3.

Let y be the character on (Z,/pZ,)* induced by yo,p|Z, (so in the current

case, y is trivial). Then Iwahori Hecke algebra H(KZ(p), y) is a subalgebra of
Endc(Ags1/2(N, xo)) via the following action: for T € H(K}(p),y) and @ ¢
Ag2(N, o)

T@)® = [ T@OERF.

SL2(Qp)

Proposition 4.2  Let M be positive integer such that p strictly divides M. Let x be
the trivial character modulo 4M and let y be induced by x,,. Let T1, Uy, Uo, T_; €

H(KE(p),y) and f € Sk+1/2(To(4M), x). Then
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<n()<mqw>f“ﬁ;ijﬂ:W“quy
'
@ a)(NE =5() (1) 1l b ea(e),where

_[(p’n-4Mms m
“s_(4pM(1—s) p)EMZ(Z)

has determinant p* and m, n € Z are such that pn— (4M/p)m =1and ¢, (z) =
(4M(1-s)z +1)"2,

(i) q(Uo)(f)(2)= Zp f| [(Bs> Dp.) Jk+1/2(2), where B = (41{/11 inzfi/lls)ero(‘lMl)
with M, = M/p and m, n € Z are such that pn — 4Mym = 1 and ¢pg =
(4Myz + (np —4M15))1/2

) 4@ =(3) L0 100 by () Verra(e) where o= (2, ©) and
¢y.(2) = (-4(M/p)sz +P Y.

Proof For (i), let §oo = (goo»1) € SLy(R) such that §osi = z. Then using decompo-
sition in Lemma 3.8, we have

-1

m@»@a—zﬂmmn@waawmmmn)
:5§®@mwmwmm
p*-1
=5 3 (504 (x(), ) (h(p). 1),

where for each 0 < s < p* — 1, we take A; = h(p™)x(-s) = (P(;l _p;s) € SL,(Q)

(note that @ (s (a)g) = ®4(g) for any a € SL,(Q), § € SL,(A)). Clearly s, (A;) =1
for all primes v, so sg(A;) = (A;,1). The co-component of

(A1) Zoo (x(s),1)(h(p),1)
—— e ————
diagonal oo place p place

is (As, 1) oo, for a prime g such that (g, 2M) = 1the g-component s (A, 1) € SL,(Zg)
x {1}, for a prime r such that (r,2p) = 1and r’| M, the r-component is (A,1) €
K5 (r?) x {1}, the 2-component is (A,,1) € K2(4) x {1}, and the p-component is
(A D) (x(s), D) (h(p).1) = (L (pp),) = (1. (5))-

k
Since y is trivial, yo,» = (_—1) » while yo,, and yj,, are trivial. So the 2-component

~ ~ —(-1\k -
actsby & (As) x0,2(p) = 72(p) x0,2(p) = Sp(jl) ,and the p-component actsby(?l).
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Thus,
Pl
@D (E) =5 2 Orlsa(A)Fe (x(5) D (h(p).D)
—\2 ;1 k ;1 pz_l
= (&) (p) (p) ; © ;(Asgeor])
1\ kP
= (?) Z(:) f(Asgm(i))]((Asgoo’l)’ i)—Zk—l‘
Consequently,

A(T)()(2) = Tu(P1) (Foe)T (8o 1), )"
(e zts
For (ii) we need the following decomposition (we use (4, M) = 1):

Kow(p DKo = U y(aMs)w(p™")Ko.
s€Zp[pZy

Taking g such that g.,i = z, we have

_ p-1
(@) (F) = 5p() 3 @F(p(4M15),1) (w(p)1).

Since p is coprime to 4M/p, we fix m,n € Z such that pn — (4M/p)m = 1. For
0<s<p-1,take

pn 2 1 0 pn—4ms™d m
A = p = p P L .
: (4M 1)(—4Ms 1) ( - 1)@
Since s,(A;) = 1 for all primes, v we have sg(A;) = (A5, 1). As before, the oo-
component of

s(As)ge (7(4Ms),1) (w(p™).1)
is (As, 1) oo, for a prime g such that (g, 2M) = 1the g-component s (A, 1) € SL,(Zg)
x {1}, for a prime r such that (r,2p) = 1 and r®||M; the r-component is (A, 1) €
K3 (r?) x {1} and the 2-component is (A, 1) € K?(4) x {1} (as (2,2)-th entry of A,
is 1). For the p-component we check that

aon=((f ")) ocamon).

and so

A o) = (0 ) (P2))

Since y is trivial, as before, the r-component acts trivially, the p-component acts
by (MT/P) (as x0,p(4M/p) = 1), and the 2-component by €;(A;) xo,2(1) = 1. Thus,
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we have

ul(q)f)(goo)

—1y 21
=5(-) T 0s(sa(A)g=(r(4M). D(w(p™).1)
_ M
() p/p)

p(;l)(]?)

®s((As, 1) (8> 1))

_OMI

p-

F((As1)2)] (A1), 2) 7 ((gor 1), 1)

g

0

“
1]

So we have

d)(NE -5() (ML) Zf((As,l)Z)I((As,l) 2L
Let ot = A () p) and ¢, (z) = (4M(1 - 5)z +1)"/2. Then
a(W)(f)(2)

b G s [

"QM
.—o

-5(5) (L) £ 1l 0o

For (iii), using Lemma 3.8, we have

p-1
Uo(Pf)(goo) = ;]@f(ioo(x(S),l) (w(1),1)).

Let m, n € Z such that pn — (4M/p)m =1and let M; = M/p. For 0 < s < p — 1, take

1 —-s+m
A= (4M1 ~4M;s + np) € [i(4M).

By Lemma 4.1, we have s, (A,) = _41(‘5111";1”1)) = 1. Thus, the co-component of
sQ(As) Too (x(5),1)(w(1),1) is (As,1)(goo,1); for a prime g such that (g, 2M) = 1the
g-component is (A, 1) € SLy(Z,) x {1}; if r is an odd prime such that r’|| M then the
r-component is (A, 1) € Ki(r?) x {1}; and the 2-component is (A, 1) € K?(4) x {1}.
For the p-component, since ord,(4M,) = 0, we have

((41{41 :;) >1) (x(=5),1) = (A5 1),

(o ) Joon=((C5 ) 5)

where f8 is either (4M,,-1), or (4M;, np), depending on whether ord (np) is odd

or even. In either case it is clear that 8 is 1. Thus, the p-component is (( Tip 4 M, ) 1) €
Ko x{1}.
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Since y is trivial, the p-component and r-component act trivially, and the
2-component acts by €2(As) xo,2(—4Mis + np) = (4M;, —4M;s + np)as2(As), which
clearly equals 1. Thus,

p-1
Uo (@) (Feo) = 3 Py((Asi)Fe0)
s=0

—2k-1 —2k-1

:zf(Asz)]((As,l),Z) ((goo’ )»i )

and consequently

z+(m-s)

—k-1/2
4Mz + (np — 4M;s) '

p-1
aU)(N(=) = 2 f(

For (iv), using Koh(p™")Ko = Usez, /p2z, ¥(4Ms)h(p™") Ko, we have

) (4Miz + (np — 4M;s))

p*-1
T1(Pf)(§e) =& ZO D (Foo (y(4Ms),1) (R(p™),1)).

For0 <s < p?—1,take A; = h(p)y(-4Ms) = ( 4(M/p)s ! ),thensQ(A ) = (A, &),
where
1 ifs=0,
1 if ord, (s) = 1and ord,(s) odd,
& = (’?1) (%,p)z if ord,(s) = 1and ord,(s) even,
(%)(%,p)f, if (s, p) = 1and ord,(s) odd,
( 5, 0)2 (Ms,p)l, if (s, p) =1and ord,(s) even.

We verify the above formula for & in the case when ord,(s) = 1 and ord,(s) is
even; the other cases follow similarly. Clearly, ord,(s) = 1and ord,(s) even imply
that ord,(—4(M/p)s) = 1 and ord,(—4(M/p)s) is even. So we have s,(A;) = 1
sp(As) = (—4MS ,p™")p> and by definition, se (A;) = 1. For any prime g, note that

(=55, p7q = (=Msp, p)q = (Ms, p),. So
‘ESZHSV(AS):(MS’p)P H (Ms’p)q'

4:(¢9> 2p)=1,
ord, (4Ms) odd

If ord, (4M:s) is even, then (Ms, p)4 = (u, p)4 for some unit u in Zg, so (Ms, p) 4 =
Thus, using the product formula [T, (Ms, p), = 1, we have

&=]]sv(A)=WMs,p), [ (Ms,p)g=(Ms,p).
v 4:(q, 2p)=1

Since (p, p)a = ( 1), we get that ( 1) (%,p) , = (Ms, p)2, and we are done.
Thus, we have

p-1
T1(Pf)(geo) = 55 ZO E @ (Ao 1)Zoo (y(4Ms), 1) (h(p7"),1)).
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Now the co-component of (A, 1) oo (y(4Ms), 1) (h(p™"),1) is (As, 1) g0, for a prime
q such that (g,2M) = 1 the g-component is (A,1) € SLy(Z,) x {1}, if 7 is an odd
prime coprime to p such that r’| M, then the r-component belongs to K4 (r*) x {1},

the 2-component is
0
((_4( M/p)s pl) ,1) € K3(4) x {1},

and the p-component is (A, 1)(y(4Ms),1)(h(p™"),1), which is precisely equal to
(I, ns), where
-1 . _
(?) ifs=0,

fs:=11 iford,(s) =1,
()60, o=
Since y is trivial, xo,p is trivial, and so the p-component acts on @ simply by

multiplication by 7. Next we look at how the 2-component acts on @ . Since xo,» =

(_—1) k, we get that

- - 72(P) x02(p™) if s = 0,
Ag N = ~ .
©(A)102(p7) {YZ(P_I)_I(—41;IS,p_1)zsz(As)Xo,z(p_l) ifs#0,
k
g2 ifs=0,
P( P )k
= v = sp(_—l) if s # 0 and ord,(s) odd,

ep(?l) (%,p)2 if s # 0 and ord, (s) even.

One can check that
195”]5 = Sp( ) Es;
and so
p-1 BN = _
“T—l(q)f)(goo = 'Sp Z Es srlsq)f((Asal)goo) = (?) Z (Df((As)l)goo)_
s=0
Thus,

—4Msz +1 ) —k-1/2

2(T-1)(f)(z) = ( ) Zf( 4Msz+1)( I3

1\ kP
= (;) s;)f|[(y3’¢}’s(z))]k+1/2(z)’
where y; = (_f;s (1)) and ¢,,(z) = (-4(M/p)sz + p)2, [
Let Q, = q(Up) and sz := g(p~?U,). Then we have the following corollary.

Corollary 4.3 On Si,1/2(To(4M)), we have the following:
i) sz is an involution;

(i) (Qp-p)(Qy+1)=0;
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(i) Q= (;l)kpl-kupz Wy
(V) if f € Skary2(To(4M/p)), then Qy(f) = pf.

Proof The proof of (i) to (iii) follows by using Propositions 3.10 and 4.2. For (iv) we
use Proposition 4.2(iii). [ |

We further define an operator 6;, on Si,1/2(To(4M)) to be the conjugate of Q » by
sz, ie., 6;, = sz 61, sz. Thus, 6;, satisfies the same quadratic relation as 61,, and

we have (j;, = (_?1) kpl‘k sz Up:.

Remark 4.4 We note that for a prime g such that (g,2M) = 1, one can similarly
obtain the usual Hecke operator Tg2 on Si.i/,(Io(4M)). In particular, if we take

— _ k _
T1:= X(n(q)1) € H(SL2(Zg), y4q), then q(T7) = (?1) p3-20)/2 Tpe.
Moreover, if p and g are distinct primes such that p", g strictly divide N, then
the operators 8 € H(K} (p"),y,) and T € H(K{(q™), yq) in Endc(Sg11/2(Lo(N)))
commute.

In particular, the operators GP, sz on Si,1/2(To(4M)) that we defined above
commute with T2 for primes g coprime to 2M.

Remark 4.5 Let f € Siy1/2(T0(2"M)), where v > 2. Then we have exactly the
same statement as Proposition 4.2 for the action on f with M replaced by 2" M. In
particular, if f € Sy, (To(2"M/p)), then 6;; (f) = pf. Theresults of the next section
on self-adjointness also hold similarly.

4.2 Self-adjointness

Let M be odd such that p| M. In this subsection, we check that the operators sz ,Q ps
and Q » are self-adjoint operators on Sy, (To(4M)). The property of self-adjointness
will be used to give a description of our minus space in terms of common eigenspaces.

Proposition 4.6  The operator sz is self-adjoint with respect to the Petersson inner
product.

Proof We write

- & -1\ (M/p _
o) = (G E0)80 8= 3 sl e @)

where
[ (p*n-4mMs m ~ 12
(a5, 9o, (2)) = (( 4pM(1-5) p),(4M(1 s)z+1) ) €g,
and n, m are integers such that pn — (4M/p)m = 1.

We will show that (8,(f),g) = (‘?1) (f>85(g)). We write §,, = Sy, + S, where
S1,p consists of the s = 0 term and S, consists of rest of the terms. Also, let M, = M/p.

https://doi.org/10.4153/50008414X19000233 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000233

350 E. M. Baruch and S. Purkait

We first consider S ,. For s # 0, as pn — 4Myms = 1+ 4M;m(1 - s) it is clear that
pn—4M;ms and 4M (1-s) are relatively coprime, hence there exists integers u, v such
that u(pn — 4Myms) + v4M(1 - s) = L. In particular, this implies that —4M;msu = 1
(mod p). Since —4M;m =1 (mod p), we get that su =1 (mod p).

We take

u v
X= (—4M(1 -s) pn- 4M1ms) € Lo (4M);

then X* = (X, j(X,z)), where
i(X,2) = ( -4M(1-5s)

pn —4Myms
as pn —4Myms =1 (mod 4). Since f has level 4M, we have
f‘ (“s> gbas(z) k+1/2 = f| k+1/2| (065> ¢as (Z))]k+1/2

We claim thatin G,
. ((p um+vp) (u
xann=((5 ) (4).

It is easy to see equality in the matrix component, also j(X, a;z)¢,, (z) simplifies

) (-aM(1-s)z + (pn - 4Myms))/2,

to just (#M). So we only need to check equality of the Kronecker symbols
(#M) = (%) While making a choice of m and n so that pn — 4Mym = 1,

we can choose m to be a negative integer so that for1 < s < p -1, pn — 4Myms =
1+4M;m(1-s) > 0. So we have

(o i) = (vt i) (o)

pn —4Myms 1+4Mim(1-s)/ \1+4Mim(1-s)/ \1+4Mym(1-s)
p
:(1+4M1m(1—s))(1+4M11:1(1—s))'
Note that
p 1+4Mim(1-s) pn—4M
(i) - (L)) ooty )

If m is odd, clearly (
then

m) =1. Also, if m = 2"m’, where v > 1 and m’ is odd,

m 2 v m
(1+4M1m(1—s)) ) (1+4M1m(1—s)) (1+4M1m(1—s)) b

since in this case we have 1+ 4M;m(1-s) =1 (mod 8). Thus our claim is proved.

Consequently, we have
p um) (u
[((0 p)’(P))]kH/Z

Sap(f)= > f
[((g u;n)’(%))]kﬂ/z is [(((1)7 “;m),(%))]kﬂ/z, the adjoint

ue(Z]p7)"
of S2,pi5 () 2,55 i (S2,5(f), 8) = () (£, S2,5(8))-

Since the adjoint of

https://doi.org/10.4153/50008414X19000233 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000233

Minus Space of Half-integral Weight 351

Next we consider the term

sn=o[[ (e 3) omen)]

For this case, we can choose m to be a positive integer. Let y, = (¢ 4) € SL,(Z)
such that y, = (') (mod p) and y, = () (mod 8M;m) (this is possible since
(p,8M;m) = 1). We may also choose ¢, d above so that ¢ < 0 and d > 0. We claim

that
o (2 4G er=- )

(a—4bM1 %jbﬂn )

k+1/2
Let

) pc—4Md -mc+dpn
Then Y € SLy(Z) and pc —4Md = 0 (mod 4M), so Y € [,(4M). We further note
that -mc+dpn =1 (mod 4), dpn—mc = d(1+4Mym) — mc > 0. To prove the claim,
we need to check that

y((;;M r;),@Mm)vz) ((ff pbd),(ﬂlfl)(;)(cpmy/z).

As before, matrix equality is easy to check and the automorphy factor of the left-hand

AN imes (pez +d) V>

Zcm+dpn . So we need to show that

side equals kronecker symbol (

(Loipe) = () (5) - Now

(pc—4Md):( p )(C—4M1d):(—cm+dpn)(c—4M1d)

—cm+dpn —cm+dpn/ \—cm +dpn p —cm+dpn
- - d - d
() - ()

3 _ _ . c—4M,d _ [ d+cm—dpn m
Since (m,—cm + dpn) = 1 we can write (_Cm+dpn) = ( —cmrdpn )\ omsapn ) - We

d+cm—dpn m _ d m —[(ec)(m m
—cm+dpn —cm+dpn ) ~ \ —cm+dpn )\ —cm+dpn ) — \d )\ d ]\ -cm+dpn )"

We finally check that (%) ( ) =1 If misodd,

have

_m
—cm+dpn

d d
(omrapn) =) =G5 1= (5):
Ifm=2"m',v>1thendpn—cm =1 (mod 8) and so

2 v ! d
(—cmn:dpn) :(—cm+dpn) (—cmridpn) :( riz):q) =1= (%)

Thus, our claim is proved.
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Next we note that

() Gressare)=((6 ) (6 3) )

- Cp)

and so S1,,(f) = (%)ﬂ [splksiy2:
We check similarly that

(6 9o ))-((6 )

where
a2 + be ab+bd
:(pc(aer) bcid2)€r0(4M)
and so
I 0) 14 o (P O\ _yya4 -1
A6 5))orr((E5) )., - G
Note that
(Cp)z
I 0} 44\ « 0) 14
(o 2o P62
(o oo Pi(( 5))
(3 6 5
(B 3o 5
Thus,

AL ez = () £ (5o = () A Lsp i

Since the adjoint of ¢, is c;l, we get (S1,,(f),g) = (_?1) (f>Sup(g))-
Thus, (8,(/). 8) = () (£:8,(9))- So

N

S8) = (1A (5)80) = 1 (o).

Hence, we are done. ]

(W (). 8) = 1) (85(£). 5)

%\""%v‘
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Next we want to show that ap = q(Uy) is self-adjoint. We use the relations
Uy T Uy = pT_y and T1U; = p Uy (Proposition 3.10(iii)). Thus, we have

(a()f ) = < {a(TaWf ).

Since by the above theorem g(U, ) is self-adjoint, we get that

(f,q(Up)g) = %(f,p 4(Uo)g) = %(f»q(‘mq(ul)g)

Loy 1 1
= (£ 4 aTa)g) = - (aWf. - aa(T)a(t)s)

- §<q<u1)f,q<ﬂ:l)g>'

Since q(U,) is surjective, it follows that q(Uy) is self-adjoint if and only if the adjoint
of g(T_1) is g(T7). We now show that the adjoint of g(J_;) is g(77).

Consider elements & = (((1) ;’2)’1)1/2) and 7 = ((%2 ?)’p—1/2) in G. We can choose
Bs such that To(4M) (g ,2)To(4M) = UTo(4M)B; = U B:To(4M). So by [14, Propo-
sitions 1.1, 1.2], we have Ag(4M)EAG(4M) = UAo(4M)E = UEA¢(4M), where
P(§) = Bs. i

Since Ag(4M)nAg(4M) = A0(4M)£‘1A0(4M)((P0 ;) 1), it follows that

Bo(4M)nae(4M) = Udo(4M)E (% 5)1).

Thus, for f, g € Sg.1/2(To(4M)), we have
@D (fl[A(4M)ER(4M)]kirsar 8) = (PP Y FI[ETko2s ©)

= (f, p?FIP2 > 8| (& Tkwrya)

=(f, g[[Ao(4M) A (4M)]ki1)2)s

as elements of the type (al,1) belong to the center of G and act trivially via the slash
operator.
Using the triangular decomposition we check that

rogan) () rocann) =Y ramn (5 9) (L 1)

and so

p’-1 1 0 1/2
Ao(AM)nAo(4M) = L=JO Ao(4M) 5 ((—4Ms 1),(—4Msz+1) )

U (( Ly, ) Caipse 7).

s=0

Thus it follows from parts (i) and (iv) of Proposition 4.2 that

8| [0 (4M) Ao (AM) 112 = (_;1) kP(Zk_3)/2‘1(7—1)(g)’
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and f| [Ag(4M)EAG(AM) ]ji1)2 = ( 1) p(zk 324(T1)(f). Thus by equation (4.1),
we obtain the following proposition.

Proposition 4.7 The operator q(T_y) is adjoint of q(T1), and consequently Q, is
self-adjoint with respect to the Petersson inner product.

4.3 Translating Elements of 2-adic Hecke Algebra and Kohnen’s Plus Space

Following Niwa and Kohnen’s work, Loke and Savin gave an interpretation of Kohnen’s
plus space at level 4 in terms of certain elements in the 2-adic Hecke algebra described
previously. In this subsection, we describe Kohnen’s plus space at level 4M for M odd
in a similar way.

Let y be the trivial character modulo 4; thus, yo = (_—1) “ Let y be a character
of M, such that y((~I,1)) = —i***! and let g := p((w(1),1)). Then, for any ko =
(? Z) € KS(4) we haVegz(ko)X(),z(d) = y((ko,l))

Proposition 4.8 (Loke-Savin [8]) For Ty, Uy € H(K§(4),y) and f € Si.1/2(To(4), x),
the following hold.

@ a(T)(f)(2) =2C07P2U(f)(2);

(i) q(U)(f)(=z) = (2k+1) Wai(f)(z), where the operator Wy is given by Wy (f)(z) =

(-2iz) V2 f(~1/42) and (52 ) is the usual Kronecker symbol.

Niwa [10] considered operator R = W,Uy on Si.1/5(To(4), x), proved that it is
self-adjoint and that (R — &1)(R — ;) = 0, where oy = (2k+1 ) 2%, a, = -4 Kohnen
[5] defined his plus space Sk+1/2(1“0(4)) at level 4 to be the a;-eigenspace of R in
Sks1/2(To(4)). It follows from the above proposition that Si,,/,(To(4)) is the

2-eigenspace of g(U;)g(71)/+/2 and hence that of g(U,)/V/2.

In the case of level 4M with M odd and y a trivial character modulo 4M, Kohnen
[6] defines a classical operator Q on Sy.1/,(To(4M)) in order to obtain his plus space.
The operator Q is defined by

Q:=[Ao(4M, x)pAo(4M, x)], where p = ((3 411) , e”i/“).
By [6, Proposition 1], Q is self-adjoint and satisfies (Q — a)(Q — ) = 0, where

a = (-1)[(kD/212/2, B = —a/2, and the plus space Si1/2(To(4M)) is precisely the
a-eigenspace of Q.

Proposition 4.9 Let f € S.1/,(To(4M)) with M odd. Then we have

QU = (57) 40 () = (50 ) 4W)a (T ).

Consequently, S, ,(To(4M)) is the 2-eigenspace of q(U))q(T1)/\/2.
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Proof Following [6, Proposition 1], we can write

10 1/2
[(4M$ 1),(4Msz+1) ]
k+1/2

4+4Ms 1 1/2
[( 16 Ms 4),(4Msz+1)
k+1/2

,e ,(4Msz +1)
[(0 4 ko1 4Ms 1

[(41_6?\/[]\55 _41) (4Msz + 1)1/2]
Since Q is self-adjoint, Q = Q.

We now compute q(Us)(f). Let goo € SLy(R) be such that §oi = z. Using
K§(4)w(27)KG(4) = Usezjaz y(4M(1- s))w(27%) K5 (4) (from [8, Proposition 3]),
we get

Q(f) = ;)f| [Plk+1/2

4
— = (2k+D)mi/4

and its adjoint

k+1/2

_ e(2k+1)m’/4

k+1/2

Uz (Pf)(8) = %Z(:)@f(?oo(y(‘lM(l =), D) (w(27),1)).

A = (1‘ (51) Ms ‘(341)/4) € SL,(Q),

4Ms
$0 sQ(As) = (A, 1). The co-component of
sq(As) Zoo (Y(4M(1-9)),1) (w(27),1)
is (As,1)geo, for a prime g such that (q, 2M) = 1the g-componentis (A, 1) € SLZ(Z )

x {1}, for an odd prime p such that p” | M, the p-component is (A,,1) € K5 (p?) x {1}
while the 2-component is

-1 1-M(3)
(A1) (y(4M(1-5)),1)(w(2 ),1)):(((&) 13/1 )1)

Take

-1
Since M is 0dd, it is clear that M( ) ¢ Z, and so the 2-component is in K7 (4) x {1}.

The p-component acts tr1v1a11y, while the 2-component acts by (y2(M))~!
(-1, M)2x0,2(M) =: wyp. Hence,

q(U2)(f)(2) =95 wum Zf (As2)](As,2)” 2k-1

=Ps @ Zi: ( (4- 4];/25\?525;2)4_ (%) ) (4Msz + 1)7k71/2.

We note that eDmi/% = (2k2+1) 1+\1/2;I = (ﬁ)% Thus, when M =1 (mod 4),

since wy = 1, comparing the expression of Q and q(U,), we see that Q(f) =
(5247)a(Uz)(f). In the case M = 3 (mod 4), we get that wy = —i(-1)%,
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) = (357) 9(U2)(f). Since
) (U1)q(T1)(f)- Hence, we

so (ﬁ)%wM = ¢~ (@k+D7i/4 and consequently Q(f
2

by Theorem 3.5, U, = U, * T7, we get that Q(f) = (
are done.
The last statement follows, since (~1)[(x*1/2] =(5%4)- [

As before, we can translate T;, Uy, Uy € H(K3(4),y) to classical operators on
Ska12(To(4M)) -

Proposition 4.10  For f € S,1/,(To(4M)),
® q(T)(f)(2) =20702UL(f)(2) = T A LG 52 Jsaa (2).
@) gU)()() = s(3) " FIW, $w () liarya(2), where W = (3,7) with
m, n € Z such that 4n — mM = 1and ¢ (z) = (2Mz +2)'/2,

k+3/2 n —ns+m
(i) q(Uo)(f)(2)= (PS( ) 3:0 f| [As, ¢As(z)]k+1/2 (z), where As = (3y “hiei4
with m, n € Z such that 4n — mM =1and ¢ (z) = (Mz + 4 — Ms)"/2.

Define Q, = q(Up)/\/2. It follows from the relation Uy = T7U; that Q, =
q(T1)q(Ur)/v2 /2. One can also observe it directly from the above proposition. Let
W4 = q(U;). Thus, W4 is an involution. Let Q) be the conjugate of Q, by Wj. Thus,
Q, = 2" U, w W4 and Q2 = 2k, U4 The Kohnen’s plus space at level 4M is the
2-eigenspace of Q}. Note that Q, and Q} are self-adjoint with respect to the Petersson
inner product. The operators (5;, and ap are p-adic analogues of Kohnen’s operator

Q, and its conjugate Q,.

Remark 4.11 'We note that g(U;) in the above proposition can also be given by the
following expression:

1)@ =F( ) () AW 9w (@ ira(2)

where W = (2% ™) with m, n € Z such that 8n — mM = 1and ¢ (z) = (2Mz +4)"2.
We shall use this expression of g(U;) in [3].

5 Eigenvalues of U,

For every positive integer #n and a modular form F, let F,(z) := V(n)F(z) = F(nz).
Let M be a positive integer such that p + M. If F € S;4(To(M)), then by well-known
action of T, and U, we have

(5.1) Up(F)(2) = Ty(F)(2) - p*'Fy(2).

Assume that F € S, (Io(M)) is a primitive Hecke eigenform and a, is the p-th
Fourier coefficient of F. Then Tj,(F) = a,F. It is known that a, is real and by the
Ramanujan conjecture proved by Deligne we have that |a,| < 2 p(kD/2,
Lemma 51 (i) If(p,n) =1, then Up(F,) = a,F, - p***'F,,

(i) Ifp|n, then Uy(Fy) = Fpyp.
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Proof It is well known that if (p, #) = 1then V(n)T,(F) = T,V (n)F. Hence, using
(5.1) and that F is a primitive Hecke eigenform, we get that

Up(Fn) = Tp(Fn) _p2k71an = V(H)TP(F) —p2k’1an
= V(n)aPF _ ka—Ian — apFn _ p2k—1an
For (i) write n = mp. Then

- z+k pol
U, (Fy)( ; o ; ) - 11>1<ZOF (z+Kk) = Fyyp(2). -

Thus, U, stabilizes the two dimensional subspace spanned by F, and F,, for
(p>n) = 1. We will compute the eigenvalues of U, on this space. If G = AF,, + F,,, is
an eigenfunction of U, then it follows from part (ii) of the above lemma that A # 0.
Hence, we can assume that A = 1. We have

Up(Fu + BEnp) = (ap + B)En — p** ' Fop.

It is clear from above that 8 cannot be zero and that G is an eigenfunction if and only
ifa, + B = —p*~1/B with eigenvalue a, + B. Hence, f* + a,f+ p**~! = 0, and we have

- /a2 — 4p2k-1
ap £4/a; —4p

B= 2

The eigenvalues of U, on the subspace (F,, F,,,) are

/a2 — 4p2k-1
ap £y/ap —4p

2

a,+B=

Proposition 5.2 Ifan eigenvalue A of (U, )* on the two dimensional subspace spanned
by F, and F,, is real, then A = +p> .

Proof Using the Ramanujan conjecture, we can see that the eigenvalues of U, are
real or purely imaginary if and only if a, = +2pk-1/2

eigenvalue of ( Up)2 are precisely + ka_l.

or a, = 0. In those cases, the
[

6 The Minus Space of Half-integral Weight Forms

Let M be odd and square-free. In this section, we use the operators and relations
that we obtained in Section 4 to define the minus space S, ,(To(4M)) of weight
k +1/2 and level 4M. We show that there is an Hecke algebra isomorphism between
Sksiy2 (To(4M)) and S5 (Ip(2M)), and we give a common eigenspace characteriza-
tion of S; /2(F0(4M )). It follows that this minus space is identical to the newspace
in [9].

For the sake of clarity, we start by defining the minus space at level 4 and at level
4p for p an odd prime. After that we treat the general case of level 4M.
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6.1 Minus Space for I)(4)

We recall the following theorem of Niwa, which was obtained by proving equality of
traces of Hecke operators.

Theorem 6.1 (Niwa [10]) Let M be odd and square-free. There exists an isomorphism
of vector spaces ¥ : S41/2(To(4M)) — Sy (To(2M)) satisfying

Tp(y(f)) =w(Ty(f)) forall primes p coprime to 2M.
Moreover, if f € Siy1/2(To(4)), then we further have U (y(f)) = w(Us(f)).

We also recall the Shimura lift [14]: For t a positive square-free integer, there is a
linear map Sh;: Sy,1/5(To(4M)) — Spx(To(2M)) given by

ht(ianqn) :2( % (_gl)k(d)dkl ( Zz))qn'
(d,2M)=1

We note the following observations [11]:

(a) Sh; need not be injective, but if Sh¢( f) = 0 for all square-free ¢, then f = 0.

(b) Sh; commutes with all Hecke operators, i.e., T,(Sh;(f)) = Sh;(T,:(f)) for all
primes p coprime to 2M and U, (Sh;(f)) = Sh;(U,:(f)) for all primes p divid-
ing 2M.

We denote Sy, ,(To(4)) simply by $*(4). We note the following theorem of Kohnen.

Theorem 6.2 (Kohnen [5]) (i) dim(S*(4)) = dim(Sx(To(1))).

(ii) S*(4) has a basis of eigenforms for all the operators Ty, p odd.

(iii) If f is such an eigenform, then y(f) is an old form and y(f) = AF + F,, where
F € S3x(To(1)) is a primitive eigenform determined by the eigenvalues of f.

DeﬁneA;+1/2(l"0(4)) = W4SZ+1/2(1"0(4)) which we shall simply denote by A* (4).
We know that $*(4) is the 2-eigenspace of Q}, hence A*(4) is the 2-eigenspace of

Q,. Since W, is invertible, we can use the above theorem of Kohnen to get that
dim(A*(4)) = dim(Sx (T (1))) and the following corollary.

Corollary 6.3

(i) A*(4) has a basis of eigenforms under T for all p odd.
(i) w maps A*(4) into the space of old forms in Sy (T (2)).

Proof Let f € S*(4) be an eigenform under T, for all p odd satisfying T, (f) =
Apf. Since W, commutes with all such T2, we get that g = Wif € A*(4) is also
an eigenform under all T, with eigenvalues A,. By Theorem 6.1, y(f) and y(g) are
eigenforms in S5, (Ty(2)) under all T, with the same set of eigenvalues A,. Since
y(f) is an old form, it follows from Atkin-Lehner [1] that y(g) is also an old form
(belonging to the same two dimensional subspace spanned by F and F). ]
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We note the following key proposition, showing that the sum S*(4) + A*(4) isa
direct sum. We see analogues of this result in Subsections 6.2 and 6.3.

Proposition 6.4 S*(4)nA*(4) ={0}.

Proof Suppose there is a nonzero f € S*(4) N A*(4). We can assume that f is
an eigenform under T): for all p odd (since T} stabilizes the intersection S (4) N
A*(4)). Since A*(4) and S*(4) are respectively the 2-eigenspaces of Q, and Q}, we
have Q, (f)=2f= Q2 (f)- Using the relations Q, = 2"*u, w,, Q2 =2"FW,U, and
W2 =1, we get that U2 = 22-2Q,Q} and thus

(Ua)*(f) = 2%f.

Applying v to the above equation, we get that (U,)?(w(f)) = 22k y(f). Now y(f)
belongs to the subspace spanned by F and F, for some primitive form F € Sy (T (1)),
and by Proposition 5.2, the eigenvalues of (U, )? on this subspace are either non-real
or +22k1 This is a contradiction. [

Define S, ,(To(4)) to be the orthogonal complement of $* (4)®A* (4). Since Q.
and Qj are Hermitian it follows that S, | /2(To(4) ) is the common eigenspace with the
eigenvalue —1 of the operators Q, and Qj. We write S,;H/Z(FO (4)) simply by S™(4).
So we have

Ska/2(To(4)) = S7(4) ® A™(4) © S™(4).

Theorem 6.5 S™(4) has a basis of eigenforms for all the operators Ty, p odd; these
eigenforms are also eigenfunctions under Uy. If two eigenforms in S~ (4) share the same
eigenvalues for all T, then they are scalar multiples of each other. y induces a Hecke
algebra isomorphism:

S$™(4) = S2V(Ty(2)).

Proof Since y maps S*(4) ® A*(4) into S31(Ty(2)) and dim(S*(4) ® A*(4)) =
2dim(Sy(To(1))) = dim(S34(To(2))), we get that y maps this direct sum onto
S5 (Lo (2)).

Now T,2 commutes with Q, and @} for every odd prime p, so we get that Ty
stabilizes S~ (4), hence it has a basis of eigenforms for all T, with p odd.

If f is such an eigenform, then F := y(f) is an eigenform in S;(Tp(2)) under
all Ty, p odd. By Atkin-Lehner [1], F is either an old form or a newform. Since v is
injective, it follows that F must be a newform. So y maps the space S™(4) into the
space SV (To(2)). By equality of dimensions, we get that y is an isomorphism of

S7(4) onto S3;¥(Iy(2)). Consequently, by [1] an eigenform in S~ (4) under all T},
for p odd is uniquely determined up to scalar multiplication.

Further for such an eigenform f, by [1, Theorem 3], U, (F) = —2K"'A(2)F, where
A(2) = <L Thus, y(Us(f)) = Uz(F) € S5V (To(2)), so Us(f) belongs to S™(4).
Since Uy commutes with T}, for all p odd, we get that Us(f) is an eigenform under
all Ty» with the same eigenvalues as f and hence is a scalar multiple of f. u
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6.2 Minus Space for Iy(4p) for p an Odd Prime

In this subsection, we need the involution sz and the operators U, Q » and 6;, =

sz ap sz on Si.1/2(To(4p)) that we defined in Section 4.
Consider the subspace V(1) of S, (Io(2p)) coming from the old forms at level 1,
that is,

V(1) = Sak(Lo(1)) @ V(2)S2k(To (1)) @ V(p)Sax (To (1)) & V(2p) S2k (To (1))
We consider the eigenvalues of (U, )?* on V(1).

Lemma 6.6 The operator U, stabilizes V(1). If an eigenvalue A of (U,)?* on this
space is real, then \ = +p**~1,

Proof For a primitive Hecke eigenform F in S, (To(1)), consider the four dimen-
sional subspace spanned by F, F,, F,, F;,. Then V(1) is a direct sum of such four
dimensional subspaces. By Lemma 5.1, U, preserves the two dimensional subspace
spanned by F and F, and the two dimensional subspace spanned by F, and F,. It
follows by Proposition 5.2 that the eigenvalues of (U,)* on these two dimensional
subspaces are either non-real or +p?*~1, [

LetR := Slt+1/2 (To(4)) @ AL—I/Z (To(4)). Then we have the following proposition.

Proposition 6.7 RN szR ={0}.

Proof Let f+0belong to the intersection. We can again assume that f is an eigenform
under T, for all primes g coprime to 2p. Sinc% by Corollary 4.3(iv) Sy.1/2(To(4))
is contained in the p-eigenspace of Q, and so W,2S1/2(To(4)) is contained in the

. ~ ~ ~ N e
p-eigenspace of Qp,, we have Q,(f) = pf = Q,(f). Using Q, = (71) PRU Wy,
we get that (U,2)? = p*2Q, (31’,, and thus

(U2)*(f) = p*f.
Since f # 0, there exists a square-free integer t such that the Shimura lift Sh,(f) # 0.
Applying this Sh; to the above equation, we get that (U,)*(Sh,(f)) = p**Sh(f).
Since Sh; commutes with all the Hecke operators we get that Sh,(f) € V(1). But by

Lemma 6.6, the eigenvalues of (U,)? on V(1) are either non-real or +p*~! leading
to a contradiction. n

Corollary 6.8 Niwa’s map y maps R & szR isomorphically onto V(1).

Proof As before (see Corollary 6.3(ii)) ¥ maps R & szR into V(1). It follows from
the equality of dimensions that the map is onto. ]

Next we consider the following subspace of Sy, (To(2p)) coming from the old
forms at level 2:

V(2) = 55" (To(2)) @ VI(p)S2™ (To(2))-
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This space is a direct sum of two dimensional subspaces spanned by F and F,, where
F is a primitive Hecke eigenform in S3;*(Ip(2)). Using Proposition 5.2, we have the
following lemma.

Lemma 6.9 If an eigenvalue A of (U,)* on V(2) is real, then A = +p* .

Since (by Theorem 6.5) y maps S, » (To(4)) isomorphically onto S3;* (T (2)), it
follows that ¥ maps sz Sk (To(4)) into the space V(2). The proof of the following
is identical to that of Proposition 6.7.

Proposition 6.10 S, ,(To(4)) N Wy S, ,(To(4)) = {0}
Corollary 6.11 ymapsS;,,(To(4))® W2 Si11/2(Lo(4)) isomorphically onto V(2).

Finally, we consider the following subspace of S, (To(2p)) coming from the old
forms at level p:
V(p) = S35 (To(p)) @ V(2) S5 (To(p))-
This space is a direct sum of two dimensional subspaces spanned by F and F,, where
F is a primitive Hecke eigenform in S35 (Io(p)). We have the following lemma.

Lemma 6.12  If an eigenvalue A of (U;)? on V(p) is real, then A = +2%71,

Let S;{’fi;‘;(roup)) be the new space inside the plus space in Sy,1/,(To(4p)).
Kohnen [6, Theorem 2] proved that y maps S L‘;i‘; (To(4p)) into V(p) and the dimen-
sion of S;jﬁ;‘z”(l" 0(4p)) equals the dimension of $3¢" (I (p)). Then as before, y maps
Wi S;;’;‘;Z"(FO (4)) into V(p), and we have the following proposition and corollary.

Proposition 6.13 SZ;‘;;;"(I‘O(ALp)) N W4S;;r’;j;"(l“0(4p)) ={0}.
Corollary 6.14 v maps SZ;‘;‘;‘Z”(FO (4p)) ® W4SZ$72”(I‘O(4p)) isomorphically onto
V(p)-

We define the following subspace of S.1/,(To(4p)),

E:=R® WyR &S;,,,(To(4)) ® Wy Si, 5 (To(4))

® S350 (To(4p)) @ WaSi 5% (To(4p)).-

By Corollary 6.8, 6.11, and 6.14, we get that y maps the space E isomorphically onto the

old space S34 (T (2p)). We define the minus space to be the orthogonal complement

of E under the Petersson inner product; that is,
Sie/2(To(4p)) = E*.

Theorem 6.15  Si,,,(To(4p)) has a basis of eigenforms for all the operators Tp,
where q is a prime coprime to 2p, uniquely determined up to scalar multiplication. y
maps the space S, ,(To(4p)) isomorphically onto the space Syi™ (To(2p)).
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Proof Since the operators T,> with (g, 2p) = 1stabilize the space E and since they are
self-adjoint with respect to the Petersson inner product, it follows that they stabilize
the space S, (To(4p)); hence, Sy, /,(To(4p)) has a basis of eigenforms for all such

operators Tg2. If f is such an eigenform, then y(f) € S;k(To(2p)) is also an eigen-

form for all the operators Ty, (g,2p) = 1, and thus (by [1]) y(f) is either an old form

or a newform. Since y is injective and maps E onto S (T (2p)), it follows that y( )

is a newform. Thus, y maps the space Sy, ,(To(4p)) into the space S5 (Io(2p)).

By equality of dimensions, we get that y maps the space S;.,, ,(Io(4p)) isomorphi-
new

cally onto S35 (To(2p)). Consequently, an eigenform in S, , (o (4p)) is uniquely
determined up to multiplication by a scalar. ]

Corollary 6.16  Let f € S;,,,(To(4p)) be a Hecke eigenform for all the operators

T2, q prime, and (q,2p) = 1. Then szf =B(p)f, Waf = B(2)f, where B(p) = =1,
B(2) = £1.

Proof Letg= sz f. Since sz commutes with all the operators T for (g,2p) =1,
we get that g is an eigenform for all the operators T2 with the same eigenvalues as f.
Since y( f) is a newform, it follows by [1] that y(g) is a scalar multiple of w( f). Since
y is an isomorphism we get that g is a scalar multiple of f. Since sz is an involution,
we get that the scalar is +1. The same proof applies to Wj. ]

Let f €S, /2(F0(4p)) be a Hecke eigenform for all the operators T2 as above. It
follows that F := y/( f) is a Hecke eigenform in S3¢" (I (2p)) for all the operators T,
(g,2p) = L. Since the Shimura lift Sh, (f) is also an eigenform for all the operators T,
with the same eigenvalues as F, it follows from [1] that Sh(f) is a scalar multiple of
F (which could be zero). Also, U,(F) = —p*~'A(p)F, where A(p) = +land U,(F) =
—2K-11(2)F, where A(2) = +1.

Proposition 6.17  Let f €S, /2( To(4p)) be a Hecke eigenform for all the operators
T2, q prime and (q,2p) = 1. Then
Up(f)=-p"Ap)f>  Us(f) = 2""2(2)f,
where A(p) = +1 and A(2) = +1 are defined as above.
Proof Letg = Upf. Then Sh(g) = UpSh,(f) = —p*'A(p)Sh;(f) for every posi-

tive square-free integer t. It follows that Sh,(g—p*~'A(p) f) = 0 for all such ¢ implying
g - p*'A(p) f = 0, which is what we need. For the prime 2, the proof is the same. m

Proposition 6.18  Let f €S, ,,(To(4p)). Then Qy(f)=-f= 6}(}‘) and Q,(f) =
-f = ().

Proof Let f € S, /2(F0(4p)) be a Hecke eigenform for all the operators Tz,
(¢,2p) = 1. Since Q, = (%)kpl’kUpz W, and Q, = 27U, W, it follows from

Corollary 6.16 and Proposition 6.17 that f is an eigenform for the operators Q I% (Aj}',,

Q,, and CNQQ with eigenvalues +1. However, the eigenvalues of 61,, 61,7 are p and -1,
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and the eigenvalues of Q, and Q} are 2 and -1, hence the eigenvalues have to be 1.
Since S; ,, /2(1"0(4 p)) has a basis of such eigenforms, we get the result. ]

Zheorem 6.19~ Let f « §k+1/2(1‘0(4p))’; Then f € S;,,/,(To(4p)) if and only if
Qp(f) = =f = Qy(f) and Qu(f) = - f = Q3 (f).

Proof If f € S, /2(F0(4p)), then by Proposition 6.18 the conditions hold. Now
assume that f € Sy,/,(To(4p)) is in the intersection of ~1-eigenspaces of (51,, 61’,, Qa»
and Q. For every g € Sk+1/2(To(4)), we have Q,(g) = pg. Since Q, is self-adjoint,

~(f,8)=(Quf-8) = (£, Qpg) = p(f>8),
implying (f,g) = 0. Thus, f is orthogonal to R & S, ,(To(4)). For every g ¢
W, Sk+172(To(4)), we have 6;, (g) = pg> and the same argument shows that (f, g) = 0
implying f is orthogonal to sz (R® S, /2(F0 (4))). Since Kohnen’s plus space is the
2-eigenspace of Q}, for g € S;{’ﬂ;‘;(l"o(élp)) we have Q}(g) = 2g; consequently, for
g€ W4SZ’+’;Z"(F0(4P)), we have Q,(g) = 2g. Hence, (f, g) = 0 for such g; that is, f is

orthogonal to S;;‘;‘/*;V(FO (4p))@W4SZ;‘;%V(F0(4p)). Itfollows that f € S/, (To (4p)).
[

6.3 Minus Space for I,(4M) for M Odd and Square-free

Let M # 1be an odd and square-free natural number. Write M = p;p, - -- px. For each
i=1,...,klet M; = M/p;. Since Sg,1/>(To(4M;)) is contained in the p;-eigenspace
of 6Pi (Corollary 4.3(4)), following the proof of Proposition 6.7 we obtain the fol-
lowing proposition.

Proposition 6.20  S.1/2(To(4M;)) 0 W,z Siay2(To (4M;)) = {0}.

Corollary 6.21  The Niwa map v : Sii172(To(4M)) — Sax(To(2M)) maps Sii1/2
(To(4aM;))) @ Wp§Sk+I/Z(F0(4Mi)) isomorphically onto Sy (To(2M;)) ® V(pi)Sak
(To(2M;)).

Let S;;‘i;‘;(l"o(4M)) be the new space inside the Kohnen plus subspace of

Sk+1/2(To(4M)). Then similarly we have the following proposition.

Proposition 6.22 SZ;?;‘;(FO(AIM)) N W4SZ’+’13‘2“'(F0(4M)) ={0}.

Corollary 6.23 v maps S;:i;‘z” (To(4M)) @ W, S;f;;‘z”(l“o (4M)) isomorphically onto

Sy (Lo (M)) @ V(2)83™ (To (M)).

We let B; = S12(To(4M;)) @ W2 Siy1/2(To(4M5)), i = 1,...., k. Define

k
E:= Z;B,- ® ;3175 (To(4M)) & WiS, 177 (To (4M)).
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Proposition 6.24  Under vy, the space E maps isomorphically onto the old space
So(To(2M)).

Proof This follows from Corollaries 6.21 and 6.23 and from the decomposition

ST (20)) = (3 S2(T(201) 8 V() Sx(Ta(234)) &
(2 (To(M)) @ V(2)$3M(To(M))).  m

We now define the minus space to be the orthogonal complement of E, under the
Petersson inner product, that is,

S,:+1/2(1"0(4M)) = E*.

Let f € S/, (To(4M)) be a Hecke eigenform for all the operators T2 where g is an

odd prime satisfying (g, M) = 1. Let y( f) = F. The proofs of the following results are
identical to the proofs in the previous subsections.

Proposition 6.25 F is up to a scalar a primitive Hecke eigenform in Sy¢" (I (2M)).

Theorem 6.26 Thespace Sy, ,,(To(4M)) has a basis of eigenforms for all the operators
Tg2 where q is an odd prime satisfying (9, M) = 1. Under y, the space Sy ,, , (To(4M))
maps isomorphically onto the space S5 (To(2M)). If two forms in S;H/Z(FO (4M))
have the same eigenvalues for all the operators Tz, (q,2M) =1, then they are same up
to a scalar factor.

In particular, the minus space Sy, ,(To(4M)) has strong multiplicity one property
in the full space; that is, if fi and f, are Hecke eigenforms in Sy,/,(To(4M)) with the
same eigenvalues for all Tp2, (q,2M) = 1 and if fi is a nonzero element of the minus
space Sy, (To(4M)), then f; is a scalar multiple of f.

Remark 6.27  Our results in Theorems 6.5, 6.15, and 6.26 give an another proof
of [9, Theorem 5]. We note that in [9] the old space is defined using the opera-
tors Uy for p | 2M, while our definition uses Atkin-Lehner type operators sz.
The operators U, sz and 61, come from the local Hecke algebra element corre-
sponding to the double cosets of (h(p),1), (w(p~'),1) and (w(1),1), respectively,
and our proofs essentially depend on relations among these operators that we de-
rive from the local Hecke algebra. Since S*(4) is the 2-eigenspace of Q}, we indeed
have S*(4) = Q}S*(4) = W,U,S*(4), which implies equality of spaces, U,S*(4) =
WiS*(4) = A*(4). Thus, Uy W,A*(4) = A*(4). However, U4A* (4) need not equal
S$*(4) as noted in Example 6.33 in the next subsection. In the case of odd primes
pi dividing M, the space Si1/2(To(4M;)) is contained in the p;-eigenspace of Q.
which in particular implies that U, Wp’;S,:H/Z(FO (4M;)) = S,;H/Z(FO(ALM,')), but as
before we do not expect the spaces Uj2S;, ,(Io(4M;)) and WP§S,:+1/2(F0(4Mi))
to be equal inside Sy,1/5(To(4M)). We illustrate this using the following reasoning,
which needs to be proved. Consider the simple case M = 4p, p an odd prime. In
this case, if Up2S7(4) = sz S7(4), then the corresponding picture in the integral
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weight should be U, S35 (To(2)) = W, S5 (T0(2)) = V855" (I (2)) (where the last
equality was shown in [2]). If S57%(T(2)) is non-zero, then the action of U, (see
Lemma 5.1) and the fact that 37" (T (2)) N VS5 (Io(2)) = {0} leads to a contra-
diction. Since representation theoretically A*(4) corresponds to S, (I (1)), using
the same reasoning, we do not expect the spaces UyA* (4) and S*(4) to be equal.

Let feSi.), (To(4M)) be a Hecke eigenform for all the operators T2, (¢,2M) = 1.
Then y( f) = F isa Hecke eigenform in S37™ (o (2M) ) for all operators Ty, (q,2M) = 1.
By [1], for all primes p such that p| M, U,(F) = —p*~'A(p)F where A(p) = 1 and
U,(F) = —2F'A(2) F where A(2) = +1.

Proposition 6.28  Let f €S, ,(To(4M)) be a Hecke eigenform for all the operators
T2, q prime, (q,2M) = 1. Then for all primes p such that p|M,

Up(f) = =p*"A(p)f and Uy(f) = -27"A(2)f,
where A(p) = 1 and A(2) = 1 are defined as above.

Following [14, Theorem 1.9] we have the following corollary.

Corollary 6.29  Let f = 3.2 anq" € Sy, /,(To(4M)) be a Hecke eigenform for all
Hecke operators, i.e, T2 (f) = wyf for all primes (q,2M) = 1and Up(f) = w,f
for all primes p|2M. Let F = Y72 Ayq" € S3¢V(To(2M)) be the unique normalized
primitive form determined by f, i.e., A, = w,, for all primes p. Then for a fundamental
discriminant D such that (-1)*D > 0,

[}

L(s— k+1, (2)) i apjw2 1° = a(|D]) ’;Ann’s.

n=1

We finally give the characterization of our minus space. The proofs of the following
proposition and theorem are as before.

Proposition 6.30  Let f € S, ,(Lo(4M)). Then for every prime p dividing M we
have Q,(f) = —f = Q,(f) and Qu(f) = —f = Q(f).

Theorem 6.31 Let f € Si.1,(To(4M)). Then f € S,;+1/2(1“0(4M)) if and only if
ép(f) =-f= (Ajl’,(f)foreveryprimep dividing M and Gz(f) =—f= aé(f)

6.4 Some Examples

We complete this section by giving two examples. For simplicity we shall denote

plus and minus spaces SZ+1/2(F0(4M)) and S;+1/2(1"0(4M)) by S;,,/,(4M) and
St 1, (AM).

k+1/2
We use Shimura decomposition [15] and recall the following notation: for a prim-

itive Hecke eigenform F of weight 2k and level dividing 2M, Sy,1/,(4M, F) denotes
the subspace of Si./>(To(4M)) consisting of forms that are Shimura-equivalent to F
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(i.e, forms f that are eigenforms under T} with the same eigenvalues as F under T,

for almost all odd primes p coprime to M).

Example 6.32 The space S;/,(I(28)) is one dimensional and is spanned by
foq-q g+ d + P+ g 245+ 7+ 39" 247 4.

Then by Shimura decomposition,

S3/2(T0(28)) = P S3/2(28,F) = S3/,(28, Fiy),
FeS3™ (To(M))
prim., M|14

as there are no primitive Hecke eigenforms of weight 2 at level 1, 2, 7, and Fy4 €
§5¢"(Ty(14)) is the only primitive Hecke eigenform at level 14. In particular, we have

;/2(28) = {0} and 55/2(28) = 83/2(T0(28)) = (f).

Example 6.33  The space Sy7/,(I(12)) is 13-dimensional. We first give the Shimura
decomposition of S;7/,(T(12) ). We note that there are seven primitive Hecke eigen-
forms of weight 16 and level dividing 6, namely, F; of level 1, G, of level 2, H3, K5 of
level 3 each and Lg, Ms, N each of level 6. Using Shimura decomposition algorithm
in [12] we have

(6.1) S17/2(T0(12)) = S17/2(12, Fy) @ S17/2(12, G2) @ S17/2(12, H3)
® S17/2(12,K3) @ S17/2(12, Lg) @ S17/2(12, M) ® S17/5(12, Ng),
where Si7/,(12, Fy) is the four-dimensional space spanned by
fi = q +88q* +513q° +3024¢" - 43684" —137609'® + 33264¢”" + ---,
fo = 11g* + 644" + 232q” —14084® + 4608q° + 190" - 65784" + ---,
f5 =9q° — 64q* +1894° — 232" —190¢" + 1152¢" - 33284" +---,
fi=¢q° —11q° +18¢° — 99" — 116" + 344¢9*° — 9996*" —189¢** +---;
the space Sy7/,(12, G,) is two-dimensional and is spanned by
&= q+21g° —128q* — 609¢° + 3192q” + 5313¢° —12810¢™ + - --,
g2 =397 +7q° —203q° - 3844"° — 416¢° + 2706g" — 8964 + ---;
the space Sy7/,(12, H3) is two-dimensional and is spanned by
h=q +7q° - 279" - 80q" +564*° +189¢* + 81¢** +231¢g*° + ---,
hy =7q% - 27q° + 81q° — 8964"° + 854¢" + 34564"* — 18764 + ---;
the space Sy7/,(12, K3 ) is two-dimensional and is spanned by
ki = g - 362q* - 2187q° — 118264" +19032¢" + 519404 + - -,
ky =1971¢° +131844* + 312664° — 20158¢” + 271340¢™ + --;

the last three summands in (6.1) are one-dimensional, each with 7/, (12, L¢ ) spanned
by

I, =13g% +129¢° + 7364° +1323¢° + 16644° + 5918¢" +16512¢" + - --;

https://doi.org/10.4153/50008414X19000233 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000233

Minus Space of Half-integral Weight 367

the space Sy7/,(12, Me) spanned by

=q° —18¢° - 42q" — 124" +1284" + 3844" - 1264" - 1074¢" + 8964* + - --;
and the space Sy7/,(12, Ng) spanned by

ny = 16g —1539¢° — 20484 — 59944° — 50178¢” — 34992¢° — 24604" + ---.

We can also check (using bound in [7]) that the Kohnen’s plus space S}, /2(12) is four-
dimensional. Indeed,

37/2(12) = <f1’ f4’ hi, kl) = 1+7/2(4) ® W9817/2(4) ® Sl+7/nzew(12))

with S1+7/2(4) = (fi —336f,) and 53772”(12) = (hy, k;). Note that from Remark 6.27,

AT, 5 (4) = Us(S[;/,(4)), s0 AL, ,(4) = (Us(fi — 336£4)) = (881 + 3361, + 672f5 -
115584 f,) and S, /2(4) = (g1 + 3g2) (again we use Shimura decomposition algo-
rithm to get the explicit forms in S}, ,(4) and S; ,(4)). One can further check that
Us(A};/,(4)) does not equal S’ ,(4); indeed, A7,
g-expansion given by

(4) is spanned by a form with

17/2 17/2

88q + 36964> + 6048q° — 137604q" —115584g° +1270084° — 77952q” +7983364" + - -,
and so
Us(Al;/5(4)) = (~13760q + 7983364 +1306368q° — 5855744q" +---),

which is clearly not equal to S}, /2 (4).
Thus, we have

817/2(12 F]) Reo WQR where R = 817/2(4) 53] A17/2(4),

S17/2(12,G2) = S, (4) @ WS 1772(4),

S17/2(12, H3) ® Si7/2(12, K3) = S1277" (12) @ W4SI+772€W(12),

817/2(12, LG) (&) Sl7/2(127 Ms) (&) 817/2(12, NG) = <l1, my, 1’11) = 81_7/2(12)

Remark 6.34 (i) In general, Si.,/,(To(4M)) = @r S+1/2(4M, F), where F
runs through all primitive Hecke eigenforms of weight 2k and level 2M.

(ii) The Kohnen plus space is given by a well-known Fourier coefficient condi-
tion. But we do not expect any such Fourier coefficient condition for forms in our
minus space, as is also evident from the above examples. We note that in [17], Ueda
and Yamana define generalized Kohnen plus space of level 8M and show that the
newspace inside this plus space is Hecke isomorphic to S3t"(Io(2M)). In [3], we
obtain a self-adjoint involution on S/, (To(8M)) coming from an element in a cer-
tain 2-adic Hecke algebra of SL, of level 8 that is not inside the corresponding 2-adic
Hecke algebra of SL, of level 4. We observe that the plus space defined by Ueda-
Yamana is precisely the +1-eigenspace of this involution and that their plus newspace
is a “conjugate” of S, /2(1"0 (4M)). We define the minus space at level 8M and show
that this space is contained inside the —1-eigenspace of the involution and hence sat-
isfy a Fourier coeflicient condition that is exactly opposite to the Kohnen’s plus space
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Fourier coefficient condition. Since this involution on Sy./,(Io(8M)) does not pre-
serve the space Sy.1/,(To(4M)), we do not expect Fourier coefficient condition for

Sksiy2 (To(4M)). For more details, please refer to [3].

A Some Observations on Cocycle Multiplication

Let p denote any prime. In this appendix we note down some useful observations on
the multiplication in SL, (Qp) by cocycle .

Recall the Hilbert symbol ( -, -) » defined on Q} x Q}. For an odd prime p it can
be given by the following formula: For a, b coprime to p,

(repe), = (5)" () (5)"

p p7p

Thus, (p, p), = (_?1) and (-p,u), = (p,u), = (%),where u is a unit in Z,. For the

prime 2, if a, b are odd, then

(2°a,2'0), = (-) 5 (%) t(ﬁ)s.

Let A= (2%) € SLy(Q,). For (A,&1) € SL2(Qp), (A, &) = (A7, e10,(A, A7),
where
(i) ifc = 0, then 0,(A,A™) = (a,a), = (d,d),.
(i) if ¢ # 0 and ord,(c) is even, then 0, (A, A™") = 1.
(iii) if ¢ # 0 and ord,(c) is odd, then

(c.d),(-c,a), ifd#0,a+0,

(4,47 (c,d)p ifd+0, a=0,

0, 5 =

r (-c,a), ifd=0, az0,
1 ifd=0,a=0.

In particular, if A € {x(p"), y(p"), w(p")}nez, then 0,(A, A™") = 1. For A = h(p")
with n € Z, if p = 2, then 6, (A, A™") = I; however, if p is an odd prime, then

1 if n even,

(_?1 ) otherwise.

op(A, A7) = {

Let (A, 1), (B, €2) € SL2(Q,). The following lemmas can be easily obtained using
the cocycle formula.

Lemma A.1  Wehave[(B, €,)7", (A, &1)7'] = (BT'A7'BA, §), where £ = 0,(A, A™")
0,(B,B")0,(B,A)o,(A™,BA)o,(B™',A"'BA).
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Lemma A.2  'The o,-factor (& factor above) of [ (B, €2) ™", (A, e1) "] equals the product
(=(B), T(B*I))P ((a), T(Afl))P (r(BA)=(B), T(BA)T(A))p
~(T(A_IBA)T(A_1), T(A_IBA)T(BA))p
(v(BA'BA)T(B™), (B A7 BA)7(4”'BA)) , -s,(B'AT'BA).

In the proofs for checking the support of our local Hecke algebra (Section 3) we
need the following lemma.

a b
Lemma A.3 LetA= (c d) € SL,(Qp).
(i) If B = x(s), wheres # 0, then o,-factor is
(-sc?, 1- cds)P if sc*(1 - cds) # 0 and ord,(s) is odd,
1 otherwise.
(ii) IfB = h(u), where u # £, then o,-factor is

(ac(1-u?), 1+ (1- uz)bc)p ifac(1-u?)(1+ (1-u®)bc) #0
and ord,(ac(1- u?)) is odd,
1 otherwise.

(iii) If B = y(t), where t # 0, then o,-factor is

((a® -1)t + abt*,1+ abt + bztz)P if ((a® 1)t + abt®)(1+ abt + b*t?) 0
and ord,((a® - 1)t + abt*) is odd,
1 otherwise.

In each of the above cases, the o,-factor is simply s,(B~' A" BA).

Proof For (i) let B = x(s), where s # 0. Then we have

_[a+sc b+sd ip,  [1+cds sd?
BA_( c d )’ A BA_(—SCZ l—cds)’

22 2 _ 2
BABA - 1+cdsJ;sc sd* —s+cds
—sc 1-cds
It is easy to see that (7(B), 7(B™")) =1and that

(7(A), 7(A™)) = (r(A"'BA)T(A™), 1(A"'BA)7(BA))
) ifc#0,
| (d,a) , otherwise.

Further, one can check that (7(BA)7(B), 7(BA)7(A)) = 1and also
(r(B"'A'BA)7(B™"), 1(B"'AT'BA)71(AT'BA)) =L
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Finally, we have
—sc¢?, 1—cds if sc2(1 - cds) # 0 and ord,(s) is odd,
sp(B'AT'BA) = ( )y e ) (s)
otherwise.

By using Lemma A.2, multiplying all the above terms, we get the required o,-factor.
For (ii) we proceed similarly. Let B = h(u), where u # +1. Then

[ ua ub iy, (uad—u'bc bd(u-u')
BA_(u‘lc u‘ld)’ A BA_(ac(u‘l—u) ulad —ubc)’

BlA-1BA = (1+ (1-u?)bc  bd(1-u?) )

ac(1-u?) 1+ (1-u?)bc
We have (7(B), T(B_l)) = (u,u™) . Also, (r(4), 7(A™)) = lif c # 0 and
p
(d,a), otherwise. We check that

(c, u‘l)p ifc #0,

(r(BA)=(B), T(BA)T(A))p - { (@)
’ p

otherwise,
(r(A71BA)T(A™), T(A'BA)7(BA))
p
(-a(u™-u), u‘l)p ifac+0
=1 (bu,-b), ifa=0andc#0
(du_l,a)P ifa#0andc=0,

(r(B1a71BA)(B™), T(B’IA’IBA)T(A’lBA))P

(ac(u‘l—u),u‘l)p ifac+0
=1(bc,u), =(-Lu), ifa=0andc#0

(-ad,u), ifa+0andc=0,

and
sp(B'AT'BA) =

(ac(1-u?), 1+ (1- uz)bc)p if ac(1-u?)(1+ (1-u*)bc) # 0
and ord, (ac(1-u?)) is odd,
1 otherwise.

Again, by multiplying all the above terms we get the required o,-factor.
For (iii), let B = y(t), where t # 0. Then

_ a b ip,  [1—abt -b*t
BA_(at+c bt+d)’ A BA_( a’t 1+abt)’

B_lA_lBA: ( 1-abt —bzt )

(a*-1)t+abt®> 1+ abt+ bt
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As before, (7(B), 7(B™")), = (t,-t), =1, and (t(A),7(A™)), =1ifc # 0 and
(d,a) » otherwise. One can compute (using ad — bc = 1 in the Hilbert symbol calcu-
lations) that

(t(at+c),—ct), ifa#-c/tandc#0,
(r(BA)1(B), T(BA)T(A))P =1(-ca), ifa=-c/tandc#0,
(a,—dt)p ifc =0,
and
(r(A7'BA)T(A™"), 7(A™'BA)1(BA))

(t(at+c),—ct), ifa#-c/tandc#0anda+0,

1 ifa+—c/tandc#0anda=0,
(-c.a), ifa=-c/tand c #0,
(a,at), ifc=0.

All the above factors clearly multiply to 1. Also it turns out that
(v(B'A'BA)T(B™), r(B‘lA-lBA)r(A‘IBA))p =1,

so we get the required o,,-factor. ]

We also note the triangular decomposition of K% (p").
Lemma A.4 We have a triangular decomposition
More precisely, for (A,e) = ((54),€) € m,
(A,€) = (x(s), ) (h(u), 1) (y(2),1)(1, €9)

where
u=d?, s=d'n, t=d'c
and
1 c=0,
§=1(d,-1), c#0,0rdy(c)is odd,

(-c,d), c#0,0rd,(c)is even.

a b (1 bd'\(d' o\[1 o0
c d) \o 1 0 d)\cat 1)
Letu=d!, s=bd™!, t=cd . Since

sy =5 ) (3 1) - (s ),

(x(5),1) (h(u),1) (y(£),1) = (x(s)h(u)y(t),8) = (A,9),

Proof Clearly,

we get that
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where
1 t=0,
6 =0(x(s), h(u))o(x(s)h(u), y(t)) = { (u,-1), t#0,0rd,(t)is odd,
(t,u),  t#0,0rdy(t)iseven.

Substituting u, s, t in terms of b, ¢, d, we get § as in the statement. ]
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