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We employ a novel computational modelling framework to perform high-fidelity direct
numerical simulations of aero-structural interactions in bat-inspired membrane wings.
The wing of a bat consists of an elastic membrane supported by a highly articulated
skeleton, enabling localised control over wing movement and deformation during flight.
By modelling these complex deformations, along with realistic wing movements and
interactions with the surrounding airflow, we expect to gain new insights into the
performance of these unique wings. Our model achieves a high degree of realism by
incorporating experimental measurements of the skeleton’s joint movements to guide
the fluid–structure interaction simulations. The simulations reveal that different segments
of the wing undergo distinct aeroelastic deformations, impacting the flow dynamics
and aerodynamic loads. Specifically, the simulations show significant variations in the
effectiveness of the wing in generating lift, drag and thrust forces across different
segments and regions of the wing. We employ a force partitioning method to analyse
the causality of pressure loads over the wing, demonstrating that vortex-induced pressure
forces are dominant while added-mass contributions to aerodynamic loads are minimal.
This approach also elucidates the role of various flow structures in shaping pressure
distributions. Finally, we compare the fully articulated, flexible bat wing with equivalent
stiff wings derived from the same kinematics, demonstrating the critical impact of wing
articulation and deformation on aerodynamic efficiency.

Key words: swimming/flying, flow-structure interactions

1. Introduction
The aerodynamics of biological and bioinspired wings has been of great interest to
the engineering community for many decades, but recent interest has been spurred by
© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
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the development of micro-aerial vehicles (MAVs). Micro-aerial vehicles can be broadly
classified into fixed-wing, rotating-wing and flapping-wing MAVs. Flying animals such
as insects, bats and birds are being studied extensively to draw inspiration to design and
develop bio-inspired MAVs (Alexander 2002; Azuma 2012; Shyy et al. 2013). Natural
fliers are capable of strokes with their wings using a complex blend of pitching, flapping,
variations in stroke plane, wing area, camber and sectional twist (Azuma 2012; Shyy et al.
2013). Furthermore, unlike aircraft wings, the wings of natural fliers undergo significant
deformations due to aerodynamic forces. Understanding this coupled fluid and structural
dynamics involved in the locomotion of various natural fliers can provide useful design
ideas to help build and efficiently operate these systems. Thus, the flapping flight of these
flying animals presents a challenge and an opportunity for aerodynamic investigations.

Bats are the only extant mammals that employ powered flight, and these animals have
undergone millions of years of evolution to develop a flight apparatus that has allowed
them to become agile fliers (Kunz & Fenton 2003). The wing of a bat is fundamentally
different from the wing of a bird or insect as it employs a highly deformable elastic
membrane stretched upon the hand skeleton with elongated bones that undergoes a high
degree of articulation and geometric deformation during flight (Norberg & Rayner 1987;
Hedenström & Johansson 2015; Swartz & Konow 2015). The skeletal muscles and bones
impart flapping movement to the wing and also provide a highly localised control over
wing pitch, twist and camber (Hedenström et al. 2009a). The soft membrane wing can
undergo aeroelastic phenomena such as area expansion and flutter when interacting with
the complex flow field around it (Lauber et al. 2023). The interaction of airflow with
the highly articulated and deformable membrane wing generates aerodynamic forces
responsible for supporting the weight of the animal in flight and to enable complex flight
manoeuvres.

The bat handwing in flapping flight offers an interesting and rich fluid–structure
interaction problem. Although the biology of bats has been studied extensively, our
knowledge about flight aerodynamics, specifically the coupled aero-structural dynamics
of the wing, is limited. The earliest studies on bat flight were mostly experimental and
initially focused on the physiological and kinematics features (Hartman 1963; Thomas &
Suthers 1972; Norberg & Rayner 1987; Bullen & McKenzie 2001; Tian et al. 2006; Riskin
et al. 2008). Later studies delved more into the fluid dynamics using newer experimental
techniques (Hedenstrom et al. 2007; Muijres et al. 2008; Hedenström et al. 2009a; Hubel
et al. 2009; Hedenström et al. 2009b; Johansson et al. 2010). In these experimental studies,
the lift and power were computed from the circulation and kinetic energy in the wake. The
measurements from these experiments were limited to the wake due to the complexity
involved in extracting flow data in the vicinity of the body and wing of the animal (Dabiri
2005; Spedding & Hedenström 2009; Gutierrez et al. 2016).

Numerical simulations provide the opportunity to explore not just the fluid dynamics
but the coupled physics of the fluid–structure interaction (FSI). Initial computational
models of bat flight aerodynamics such as those by Wang et al. (2015a,b) along with
Tafti and co-workers (Viswanath et al. 2014; Sekhar et al. 2019; Windes et al. 2019, 2020;
Rahman & Tafti 2022) employed kinematics obtained from high-speed videogrammetry.
These simulations provided interesting insights and data into the aerodynamics of bat
wings but were one-way coupled and did not model the aero-structural dynamics. Jaiman
and co-workers (Li et al. 2019; Joshi et al. 2020a,b) were, to our knowledge, the first
to employ an aeroelastic framework for simulating bat-inspired wings with bones, joints
and flexible membranes. Their simulations employed a comprehensive finite-element
model for the structural dynamics but incorporated several simplifications into the wing
kinematics such as prescribing the joint flapping motion using a sinusoidal rotation profile,
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and excluding the articulation of finger joints. The latter in particular, is a unique and
important characteristic feature of bat wings.

Finally, the most recent work on bat wing aerodynamics is by Lauber et al. (2023)
who focus on the modelling the coupled FSI of the outer section of the bat wing (i.e.
the ‘handwing’). Their model excludes the inner portion of the wing (i.e. the ‘armwing’)
which is comprises the propatagium and the plagiopatagium. They employ a FSI model
with a hyperelastic, anisotropic material model of the membrane, and match the movement
of several points on the wing to the measurements of a bat in forward flight (Wolf et al.
2010). However, similar to the previous work, they do not incorporate the articulation of
the inner finger joints. They observed that isotropic membranes are most efficient before
the onset of flutter and incorporating anisotropy into the material model delays flutter.
However, as we will show, the armwing undergoes significant deformation during the flight
and generates the vast majority of the aerodynamic load on the wing. Furthermore, the
vortex structure from the handwing and the armwing interact with each other and therefore
exclusion of the armwing has implications for the aerodynamics that are difficult to fully
understand.

We aim to perform FSI simulations of a bat wing in flapping flight with a high degree
of realism with respect to the wing anatomy and kinematics, as well as the geometric and
elastic deformation associated with active articulation and flow-induced deformation of
the entire wing. These simulations are nominally based on experimental measurements
of Riskin et al. (2008), and attempt to recapitulate the aero-structural dynamics of a
bat in forward flight. Simpler models of the wings with reduced degrees of freedom
are also simulated to extract the effect of wing deformability. The simulation results are
subjected to a detailed analysis using the force partitioning method, which has been useful
in providing insights into various vortex-dominated flows around wings like in Zhang et al.
(2015), Menon et al. (2022) and Zhu et al. (2023). These analyses provide insights into the
mechanisms/features in the flow and the membrane dynamics that have dominant effects
on the generation of lift, drag and thrust, and the role that the unique properties of the bat
membrane wing play in enabling flight.

2. Computational model

2.1. Bat wing model
A wing of a bat differs from the wings of other natural fliers such as insects and birds in
significant ways. The wetted area of the wing is formed by the soft wing membrane, which
is attached to the skeletal structure of the hand (the finger bones and joints), forming
four major segments, as shown in figure 1(b): the propatagium (indicated as ‘W1’),
the plagiopatagium (‘W2’), the dactylopatagium major (‘W3’) and the dactylopatagium
medius (‘W4’). There also exists the dactylopatagium minor, which is a fifth segment of
the wing, but it has a very small surface area relative to the other segments and is therefore
neglected in the current study.

The current model is based on the direct visualisation and videogrammetry of a flying
bat (Pteropus pumilus) by Riskin et al. (2008). Figure 1(a) shows five snapshots of the
skeletal structure of the bat and it can be seen that there is a high degree of active
articulation during the flapping stroke as the digits move relative to the joints in order
to change the shape of the wing. This results in very large geometric deformation in
the wing during the flapping stroke. The handwing of the bat may be considered to be
divided into inelastic (the finger bones and joints that comprise the handwing skeleton)
and elastic (membrane) components. The slender finger bones may undergo some bending
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Figure 1. Kinematics of the bat wing from Riskin et al. (2008) that form the basis of the current model.
(a) Three views of the wing skeleton during the flapping cycle including the trajectory of the wing tip and the
wrist joint. (b) Model of the wing planform adopted in the current study with the various segments identified
as follows: W1, propatagium; W2, plagiopatagium; W3 dactylopatagium major; and W4, dactylopatagium
medius.

deformation during flight, but the deformation is smaller compared with the elastic wing.
We therefore treat the finger bones as inelastic in our model. In order to generate wing
kinematics with a high degree of realism, we incorporate into the wing motion the finger
bone joint kinematics shown in figure 1(a). We have developed a pipeline that employs
Fourier decomposition and cubic interpolation to convert the discrete coordinates of the
joints and the relative Euler angles of the finger bones at the 192 time instances during
one flapping cycle from the videogrammetry measurements into a continuous variation.
The space–time continuous variations are then used to generate the kinematics of the
skeletal structure at the much finer time steps (4000 per cycle) used in the simulations. The
membrane is affixed to the skeleton and the skeleton provides the displacement boundary
conditions for the membrane at these points of union between the membrane and the
skeleton.

We note that, in the video sequence that forms the basis for the current simulations, the
nominal forward velocity of the bat was 3.71 m s−1, with a deceleration of approximately
–1.05 m s−2. This deceleration has implications for the aerodynamic forces on the wing,
such as the fact that drag on the wing should exceed the thrust generated by the wing, and
these will be addressed later in the paper. The root chord of the wing (C) is 17 cm and
the fully stretched wing span for one wing is 36 cm. The Strouhal number(= f H/U∞)

based on the forward velocity (U∞), flapping frequency (f ) and the peak-to-peak wing tip
stroke amplitude(H ) of 18 cm, is 0.25. The Reynolds number based on the root wing chord,
density of fluid, dynamic viscosity of fluid and the forward velocity (Re = ρU∞C/μ) is
63 070.

2.2. Flow simulation
In this work, direct numerical simulations of the flow are performed by solving the
incompressible Navier–Stokes equation

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂u j ui

∂x j
= − ∂p

∂xi
+ 1

Re
∂2ui

∂x j x j
, (2.2)
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Figure 2. Visual representation of numerical model. (a) Schematic of the computational domain for flow
simulation showing the Cartesian grid with immersed bat wing membrane. (b) Representation of bat wing
using spring network for structural simulations.

where ui is the velocity and p is the pressure. The sharp-interface immersed boundary
solver ViCar3D (Mittal et al. 2008) is used to simulate this flow. The method allows for the
simulation of fluid flow around complex moving bodies on non-conformal Cartesian grids.
The Navier–Stokes equations are discretised in space and time using the second-order
finite-difference schemes. The equations are integrated in time using the fractional step
method, where the Navier–Stokes equation is split into an advection–diffusion equation
and a pressure Poisson equation. In these simulations, the advection–diffusion equation is
solved using a line successive-over-relaxation solver, and the pressure Poisson equation is
solved using a biconjugate-gradient stabilised solver with scheduled-relaxed Jacobi solver
(Yang & Mittal 2014) as a preconditioner. The code has been validated for a variety of
computational fluid dynamics studies of flying (Zheng et al. 2013b; Zhang et al. 2015) and
swimming organisms (Dong et al. 2010; Seo & Mittal 2022), along with various internal
(Seo et al. 2014; Bailoor et al. 2021; Zhu et al. 2022) and external flows (Shoele & Mittal
2014, 2016) interacting with flexible structures.

We note at the outset that, while the actual Reynolds number for a bat in forward flight
is approximately 63,000 and it is infeasible to resolve such a high Reynolds number flow
with a complex moving/deforming surface, as is the case here, a large body of research on
flapping wings and fins (Anderson et al. 1998; Zheng et al. 2013a; Sekhar et al. 2019) has
shown that, among the various non-dimensional parameters for such flows, the Strouhal
number dominates the flow physics. Thus, as long as the Strouhal number is matched and
the Reynolds number is sufficiently high so that the boundary layers formed on the flapping
control surface are thin compared with the overall movement of the control surface, there
is an expectation that the resulting flow physics will be a reasonable approximation to the
flow at the full-scale Reynolds number. In the current study, we therefore maintain the
Reynolds number at a value of 1000 and ensure that the flow is well resolved by the grid
employed.

The computational domain and Cartesian grid used for simulation are shown in
figure 2(a). A uniform grid is employed in a cuboidal region around the body to resolve
the boundary layers and vortex structures, and the grid is stretched away outside this
region to the outer boundary. As seen in figure 2(a), we are simulating only one wing, and
this arrangement could result in the formation of an unphysical root vortex, which could
affect the flow over the wing. This issue is mitigated by applying symmetry boundary
conditions at the wing root. Thus, the flow mimics the flow over a symmetric dual
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wing configuration without the body. The nominal grid size for these simulations is
432 × 408 × 296 (approximately 52 million points), which corresponds to a resolution
of approximately 200 points along the wing root chord. We employ a time step that
corresponds to approximately 4000 time steps per flapping cycle. We have conducted grid
refinement studies to ensure that the time-varying forces generated by the simulated wing
are grid converged (see Appendix B). Each simulation is carried out for three flapping
cycles and the results for the third cycle are used for all of the analyses.

2.2.1. Membrane dynamics model and FSI coupling
The traditional methods used in simulating structural dynamics are based on finite-
element methods (Hsu et al. 2014; Li et al. 2019). These methods provide the highest
fidelity and have become a gold standard for simulating flexible structures. However,
these methods often require a complex computational infrastructure when coupled with
immersed boundary methods for FSI simulation (Nitti et al. 2020). Moreover, these
complex methods require many parameters for the material properties and might not be
essential to simulate the dominant dynamics of bat wings, where the structures are thin
and slender (Spandan et al. 2017). The spring-network model provides a good alternative
to structural dynamics models for a thin membrane. This model was initially developed
to simulate cloth deformations in computer animations and movies (Terzopoulos &
Fleischer 1988; Guendelman et al. 2005; Bridson et al. 2005). Later, this method was
reformulated to perform physics-based simulations like parachutes (Kim et al. 2013),
flexible revolving wings (Truong et al. 2020) and used very extensively by Verzicco and
co-workers (Spandan et al. 2017; Viola et al. 2020; Verzicco & Querzoli 2021; Viola
et al. 2022). The key advantage of this model is its simplicity. The model needs only a
small number of parameters to describe the materials, and the governing equation is a
very straightforward Newtonian dynamics equation for point masses. Thus, this method is
employed in the current study for its robustness and simplicity in coupling with an IBM
(immersed boundary method)-based fluid flow solver (de Tullio & Pascazio 2016).

In this approach, the wing is modelled as a zero-thickness shell, and the surface is
divided into triangular elements that are capable of supporting in-plane as well as bending
deformation. Springs attached to the edges of each triangular element control the in-
plane/elastic deformation, and bending springs attached to each pair of adjacent triangles
control the out-of-plane/bending deformation. As shown in figure 2(b), this forms a
network of springs, controlling the deformation due to the wings’ interaction with the
incoming fluid flow.

The dynamics of the nodes of the triangular elements that make up the membrane
surface mesh is governed by Newton’s second law, defined for each node in equation (2.3)

m
d2x(t)

dt2 = f(x). (2.3)

Here, m is the mass of the node, x(t) ∈R
3 is the instantaneous position of the node and

f(x) ∈R
3 is the force exerted on the node. The total force is a combination of external

aerodynamic forces (fext), internal forces (fint) induced by springs and the viscoelastic
damping (fdamp). Both (fint) and (fdamp) would induce a restrictive action on the node’s
displacement. We can then assemble the system for the surface mesh with N nodes and E
triangular elements as

M
d2X(t)

dt2 = Fext − Fint − ζ
d X(t)

dt
, (2.4)
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where M ∈R
N×N is the diagonal matrix containing the mass of all the nodes and X(t) ∈

R
N×3 are the instantaneous node positions. The external and internal forces induced on

the system are then defined as Fext, Fint ∈R
N×3. The last term in equation (2.4) is the

expression for the damping term, with ζ being the structural damping coefficient.
We now focus on calculating Fext and Fint. Since we use the same surface mesh for the

flow and membrane solver, we can utilise the available fluid stresses at the centroid of the
triangular element to compute Fext. This is described by equation (2.5), where the force
on the node i can be collected from ne elements to which that node is connected. The
parameter Ae is the triangular area of each element. Here, we consider both the pressure
(�pn ∈R

E×3) and the shear (�τ · n ∈R
E×3) contributions where the Δ operator refers

to the difference across the zero-thickness membrane

Fext,i =
ne∑

j=1

1
3

(−�pI+�τ) · nAe
j . (2.5)

The internal forces (Fint) can be computed as a combination of forces induced by elastic
springs (Felas) and bending springs (Fbend). The expression of elastic force induced by
a spring attached to an edge between a and b of element e (see figure 2b) is given by
equation (2.6) (de Tullio & Pascazio 2016) where le = xa − xb

Fa
elas = −ke(|le| − |le|t=0)

le
|le| ; Fb

elas = −ke(|le| − |le|t=0)
−le
|le| . (2.6)

Next, the internal forces exerted by the bending springs on the nodes of the triangular mesh
can be computed from the Helfrich energy approach (Fedosov et al. 2010; Jančigová et al.
2020). The expression for Fbend is given by equation (2.7) where we utilise subscripts 1,2,3
and 4 to refer to the four nodes of two adjacent elements e1 and e2 with surface normals
n1(= (x1 − x3) × (x1 − x4)) and n2(= (x2 − x3) × (x2 − x4)) respectively which can be
viewed in figure 2(b)

Fi
bend = kb

|le|2
|n1| + |n2|

[
sin

θ

2
− sin

θ0

2

]
si , (2.7)

where

s1 = |le| n1

|n1|2 ; s2 = |le| n2

|n2|2 , (2.8)

s3 = (x1 − x4) · le
|le|

n1

|n1|2
+ (x2 − x4) · le

|le|
n2

|n2|2 , (2.9)

s4 = −(x1 − x3) · le
|le|

n1

|n1|2 − (x2 − x3) · le
|n2|

n2

|n2|2 . (2.10)

The spring constants used in the formulation of elastic (ke) and bending (kb) forces can be
computed using

ke = E∗h∗ (
Σi Ae

i

)
|le|2 ; kb =

√
3E∗h∗3

12(1 − ν2)
. (2.11)

In the above equations, Σi Ae
i is the summation of areas of triangular elements with the

common edge for which the spring constant is computed, and both ke and kb are calculated

1010 A53-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

35
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.356


S. Kumar, J.-H. Seo and R. Mittal

for all the edges of the surface mesh. The non-dimensional material properties of the
membrane are approximated from Swartz et al. (1996) and are as follows: membrane
(solid) to fluid density ratio ρ∗(= ρs/ρ f ) = 1000; elastic modulus E∗(= E/ρU 2∞) = 106;
membrane thickness is chosen as h∗(= h/A) = 0.01 to represent the very thin membrane
of the bat wing; and Poisson’s ratio ν = 0.4. The damping coefficient C is not known
for bat wings, and we chose an intermediate value of ζ(= C/2

√
kbm) = 1. This value

should allow for membrane oscillations while at the same time, diminishing numerical
instabilities in the membrane. Equation (2.4) is discretised using the Newmark scheme
and an explicit (sequential) coupling between the flow and structural is employed wherein
the flow solvers passes the surface pressure and shear force from the previous time step to
the structural solver, and the structural solver passes the velocity of the surface back to the
flow solver. Explicit coupling is fast, robust, and accurate for large solid-to-fluid density
ratios (Zheng et al. 2010), and verification of this FSI solver is presented in Appendix C.

2.2.2. ‘Bat-inspired’ versus bat wing
Despite the many realistic features of the bat wing that we include in our model, we refer
to our wing as ‘bat inspired’ because there are several features that we do not match,
and which could potentially have an impact on the dynamics and performance of the
wing. As pointed out earlier, the skeletal structure of the handwing is made up of slender
bones which undergo deformation as well, but this is ignored in our model. Second, the
wing membrane is not a passive elastic structure but comprises muscle fibres (Cheney
et al. 2022; Lauber et al. 2023). It is generally understood that these muscle fibres can be
activated to change the tension and stiffness of the wing during the flapping cycle (Cheney
et al. 2022). We are unable to model this muscle activation firstly due to the complexity it
would entail and, secondly, due to the fact that modelling this would require information on
the muscle physiology and activation that is not available to us. While this might diminish
the direct applicability of the results to bat flight, this simplification is relevant to bat-
inspired flapping-wing vehicles (Ramezani et al. 2017; Zhang et al. 2022) which typically
employ passive (non-activated) membranes. The thickness of the membrane is also known
to vary across the wing (Makanya & Mortola 2007; Lauber et al. 2023), but this feature is
not included in our model in order to retain simplicity. Biological membranes are known
to have viscoelastic damping, but data for parameterising this damping are not available
to us. We also do not include a realistic attachment of the wing to the bat’s body since
this information is not available in the experimental dataset we have employed for the
simulations. Based on previous work on bird flight (Wang et al. 2019), this might be an
interesting aspect to explore in the future. Finally, as noted earlier, the Reynolds number
in our simulation is about an order of magnitude lower than for the actual bat in flight.

3. Results
We start by describing the results regarding the deformation and dynamics of the
membrane and this is followed by a detailed description of the flow features and flow
physics associated with the generation of aerodynamic forces on the wing.

3.1. Membrane structural dynamics
Figure 3 shows a series of snapshots initiating with the bat performing the downstroke,
from t/T = 0 to 0.5, followed by the upstroke or recovery stroke, from t/T = 0.5
to 1. In this and some other plots, we show the body and the two wings in order to
facilitate the discussion. The contours on the right wing (facing forward) show values
of local membrane curvature and the structures on the left wing are vortex structures
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Figure 3. Vortex structure over the (left) wing during the flapping cycle shown via isosurfaces of Q-criterion
(as defined in (3.4)) coloured by spanwise vorticity. The simulations were performed using the left wing only,
and the body and the right wing were added only to facilitate visualisation and discussion. The right wing in
these plots is used to simultaneously show contours of local wing curvature. LEV (Leading edge vortex), HS
(Horseshoe vortex) and TV (Tip Vortex).

(to be discussed in a later section). These figures clearly show the complex geometric
deformation experienced by the wing as it is articulated by the movement of the digits and
as the membrane undergoes additional flow-induced deformation. Due to highly complex
kinematics, different wing regions experience different levels of deformation. Figure 4
shows the time-varying and cycle-averaged normalised areal strain (εareal) and the bending
strain (εbending) for the wing membrane. The areal strain for the ith triangular element is
defined as

ε
(i)
areal(t) = A(i)(t) − A(i)(t = 0)

A(i)(t = 0)
, (3.1)

where A(i) is the element area. The bending strain is defined for the j th triangular element
as

ε
( j)
bending(t) = cos−1(n( j)(t) · n( j)(t = 0)), (3.2)

where n j (t) is the normal to the j th triangular element, as shown in figure 2(b).
We note that the plagiopatagium (W2) experiences the highest areal strain with

a time-averaged value of approximately 3.7 %, as shown in figure 4(a-ii). The areal
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Figure 4. Time-averaged elastic deformation in the wing. (a) Areal strain. (b) Magnitude of bending strain.
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Figure 5. Time variation of the movement of the proximal sections of the wing. (a) Relative vertical distance
between the elbow joint (Z E ) and the propatagium leading edge (ZL E ) and the plagiopatagium trailing edge
(ZT E ). (b) Contours of spanwise vorticity at a section passing through the middle of the propatagium and the
plagiopatagium. Here, the deformed wing is marked with a green curve and elbow joint is marked with yellow
circle.

strain increases as the wing performs the downstroke, with the maximum strain (up to
approximately 8.8 %) generated towards the end of the downstroke. We also show the
distribution of the time-averaged areal strain over the surface in figure 4(a-iii) and note
that the regions towards the trailing edge experience the highest strain. The areal strains
for the dactylopatagium medius and major are roughly of the same magnitude and more
evenly distributed over the entire flapping cycle.

Figure 4(b-i) shows the time variation of the bending strains for the different segments
of the wing, and figure 4(b-iii) shows the contours of the time-averaged local bending
strain for the wing and the segment average values are presented in the figure 4(b-ii). We
note that, while the propatagium (W1) experiences very little areal strain, it undergoes
significant geometric deformation during the flapping cycle. The plagiopatagium exhibits
significant bending strain, but unlike the areal strain that peaks during the downstroke,
the bending strain for this segment peaks during the mid-upstroke, when the retraction of
the digits generates slack in the membrane and allows inertia and aerodynamic forces to
generate geometric deformation.

Figure 5(a) shows the time variation of the relative vertical distance between the elbow
joint and a point at the LE (Leading edge) and the TE (Trailing edge) along the centre of the
propatagium and figure 5(b) shows snapshots of the wing chord at a spanwise location that
cuts through the centre of the propatagium. Together, these two plots show the appearance
of several interesting aeroelastic phenomena. First the time variation of (ZTE − Z E ) shows
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oscillations, which indicate the presence of a flutter instability in the plagiopatagium
(W2), during the downstroke. The implication of these on the aerodynamic forces will
be discussed later in the paper. On the upstroke, the chordwise sectional plots also show
undulations in the plagiopatagium (W2) which appear due to the slack in the membrane
as the digits are retracted during the upstroke.

The propatagium undergoes significant bending deformation as well. During the
downstroke, it has a downward inclination and this enables the shear layer to stay attached
to the propatagium during the downstroke. During the upstroke, the propatagium ‘buckles’
upwards due to the retraction of the digits, and this reduces the downward angle of the
leading edge and helps maintain the attachment of the shear layer on the dorsal surface of
the propatagium. As we will show later, despite the relatively small area of this segment,
its location at the leading edge coupled with its complex deformation gives this segment
an out-sized role in the generation of aerodynamic forces.

3.2. Vortical features of the flow
In this section, we will describe the vortex structures that are generated as the wing
interacts with the flow. As before, the flapping cycle initiates with the bat performing the
downstroke, from t/T = 0 to 0.5, followed by the upstroke or the recovery stroke, from
t/T =0.5 to 1, and figure 3 shows snapshots of the vortex structures generated at a few
key phases in the cycle. The downstroke starts with the formation of leading-edge vortices
along the leading edges of propatagium (LEV 1) and dactylopatagium medius (LEV 2)
due to the interaction of incoming airflow and the downward-moving leading edge of the
membrane wing. The LEV over the propatagium sheds periodically during the downstroke
forming a series of horseshoe (HS) shaped vortices. The tip vortex (TV) that formed
during the previous cycle is seen detaching from the wingtip. The vortices originating
from propatagium detach from the wing and merge with the trailing-edge vortices, giving
rise to complex wake vortices. While the LEV at the propatagium continuously forms and
breaks, the LEV at the dactylopatagium major and medius remains attached. This is due to
reduced local effective angle of attack due to the supination of this part of the wing. This
LEV transitions to a triangular shaped vortex and spans the dactylopatagium medius and
major. The triangular vortex remains attached over the entire downstroke and first quarter
of the upstroke. The downward wing motion also results in the formation of a strong TV
that is identifiable throughout the flapping cycle.

3.3. Aerodynamic forces
We focus here on the generation of lift and drag forces and quantify them in terms of the
lift and drag coefficients which are defined as follows:

CL = L

1/2ρU 2∞ Aw

; CD = D

1/2ρU 2∞ Aw

, (3.3)

where L and D are the lift and drag forces, respectively, and Aw is the area of the
wing in the initial undeformed state. The time traces of the aerodynamic force coefficient
over one flapping cycle are shown in figure 6 and table 1 presents the cycle-averaged
force coefficients. First, we note that, as expected, the shear stresses make a negligible
contributions to the lift and a small (24 %) contribution to the mean drag at this
relatively high Reynolds number. We will therefore focus on the pressure component
of the aerodynamic loads in the rest of the paper. We note that the majority of the lift
is generated during the downstroke. However, the wing also generates a non-negligible
positive lift during the upstroke. Indeed, the lift generated during the upstroke is ≈ 25 % of
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Figure 6. Time variation of the aerodynamic forces over one flapping cycle and decomposition into
contributions from pressure and shear effects. (a) Lift, (b) drag.

CL CD
Force Type Downstroke Upstroke Total Downstroke Upstroke Total

Total 2.04 0.55 1.30 0.22 0.27 0.25
Pressure force 2.04 0.54 1.29 0.14 0.23 0.19
Vortex-induced force 1.97 0.42 1.20 0.21 0.21 0.21
Kinematic force −0.09 0.06 −0.01 −0.04 −0.01 −0.02
Viscous diffusion force 0.17 0.06 0.10 −0.02 0.03 0.005
Shear force 0.00 0.01 0.01 0.08 0.04 0.06

Table 1. Cycle-averaged values of the coefficients of lift (C L ) and drag (C D) experienced by the wing and
their various components.

the downstroke lift. In a later section, we will explore the origin of this positive lift during
the upstroke using force partitioning. The drag reaches large positive values at the two ends
of the stoke but the wing actually generates a negative drag (i.e. thrust) during the middle
of the downstroke as the wing pitches downwards and the pressure difference across the
propatagium (see figure 7) generated a component of force in the upstream direction. Both
the lift and drag force exhibit an oscillatory behaviour which is particularly prominent in
the downstroke, and this is connected with the flutter in the plagiopatagium noted earlier.
We note that flutter oscillations were also observed in the coupled FSI simulations by Joshi
et al. (2020b). In the next section, we will examine the fluid-dynamic origin of these force
oscillations using force partitioning.

In figure 7, we plot the area variation of the area density (i.e. force coefficient per unit
area) of the pressure component of the time average of the local lift and drag coefficients
indicated with the < · > operator on the surface of the wing. We note here that this force
coefficient density is indicative of the effectiveness of a localised region to generate the
particular force in question and these plots reveal the following interesting characteristics:

i. they indicate that the effectiveness of lift, drag and thrust generation varies quite
significantly over the wing.

ii. The regions close to the leading edge are most effective at generating lift. Indeed, the
propatagium is particularly effective in generating lift and this due to the formation
of the LEV over this region of the wing as shown before. The effectiveness of lift
generation decreases as we move away from the leading edge towards the trailing edge.

iii. The plagiopatagium segment of the wing is most effective in generating drag.
This drag is mostly generated at the end of the downstroke where the wing has
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Figure 7. Surface distribution of the time-averaged area density of the force coefficients. (a) Lift, (b) drag.
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Figure 8. Contribution to pressure lift and drag forces from different segments of the wing. (a) Presents time-
averaged segmental force coefficient with left y-label indicating values for nominal coefficients corresponding
to filled bars and right y-label indicating values for area normalised coefficient corresponding to dashed bars.
(b) Presents time-varying nominal force coefficients.

a large angle of attack and the flow is separated over this portion of the wing
(see figure corresponding to t/T = 3.39 in figure 5). The trailing-edge region of the
dactylopatagium major (W3) close to the plagiopatagium is also an effective drag
generator for the same reason.

iv. The dactylopatagium medius (W4), especially its leading-edge region, is singularly
effective in generating thrust, and this is also due to the formation of the LEV during
the downstroke when the ventral surface of this segment pitches down and the suction
pressure on this segment generated a pressure force in the thrust direction.

v. The leading-edge region of the propatagium also generates a small amount of thrust,
and this is also connected with its pitch down orientation during the downstroke. Thus,
the propatagium is a small but important component of the flight apparatus.

In order to further distinguish the contributions of the different wing segments on the
aerodynamic lift we quantify the net force contributions from each of the four wing
segments. The first set of plots (in figure 8) is for the time- and space-averaged net lift
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force generated by each segment presented as a coefficient, i.e. C (s)
L = L(s)/(0.5ρU 2∞ Aw),

where s = 1, . . . , 4 corresponds to the four segments of the wing membrane. These plots
shows that the plagiopatagium (W2) is the primary generator of the lift force on the wing
(it generated 56 % of the total mean lift). This is firstly because of the large area of this
segment (it constitutes 57 % of the total area of the wing). Second, this region of the
wing undergoes relatively small movement during flapping due to its attachment to the
body. Thus, this portion of the wing acts more like a static foil during forward flight and
generates lift due to its positive angle of attack through the entire flapping stroke (see
figure 5). Next in terms of their contributions are the dactylopatagium major (W3) and the
dactylopatagium medius (W4), and the smallest contribution (approximately 9 % of the
total lift), comes from the propatagium. These relative contributions are directly consistent
with the total areas of each of these segments. The total lift generated by the armwing
(W1+W2) is approximately 31 % more than the handwing (W3+W4) and is consistent
with the observation made by Fan et al. (2022), who employed a reduced-order-model to
obtain vertical force estimates for bat of different species flying at similar flight speed.
We note that Lauber et al. (2023) excluded the proximal regions of the bat wing in their
simulations, and this could therefore miss the primary contributor to the lift and drag
force for these wings. The exclusion of the proximal region of the wing combined with the
exclusion of the drag generating plagiopatagium, would also tend to accentuate the thrust
generating characteristics of the wing.

We now consider the lift generated by each segment per unit area of the segment,
i.e. C (s)∗

L = L(s)/(0.5ρU 2∞ A(s)). This quantity, shown as hatched bars in figure 8(a), is
indicative of how effective a given segment is in generating lift, and here we find that
the propatagium has a value of Cs∗

L equal to 2.1, whereas the other three segments have
values ranging from 1.27 to 1.53. Thus, per unit area, the propatagium is far more effective
(approximately 50 % more effective) in generating lift than the other segments of the wing.
As pointed out earlier, this is due to the unique deformation profile of this segment of the
wing membrane during the flapping cycle, as well as its placement near the leading edge
of the wing.

Figure 8(b) shows the time variation of this segmental lift coefficient, and we note the
large oscillations in the lift force for the plagiopatagium during the downstroke. These are
connected with the flutter oscillations that occur for this segment of the wing. The lift from
the plagiopatagium reaches a maximum during mid-downstroke. To a large extent, this is
due to the fact that this corresponds to the largest downward velocity of this segment and
also a point in time when the areal strain is close to its maximum. The force coefficient
corresponding to the segments of the handwing also shows the oscillation connected with
some flutter in these segments. These results are consistent with the results from the
modelling of the handwing by Lauber et al. (2023).

The lower plots in figure 8 show the corresponding data for the drag force. The
key observations are that firstly, the vast majority of the drag is generated by the
plagiopatagium, and this drag peaks during the end of the downstroke. Second, the
dactylopatagium medius generates thrust per unit area far out of proportion to its net
thrust indicating the role that unsteady effects associated with the large-scale flapping
and pitching play in generating the aerodynamic loads on this segment of the wing.
These results are also consistent with the horizontal forces obtained for a bat flying at
similar flight speed by Fan et al. (2022) where the armwing is found to dominate over the
handwing in terms of drag. Fan et al. (2022) observed a very minimal drag contribution
from the handwing, whereas we find that this region of the wing generates a small but
measurable thrust.
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Figure 9. Decomposition of pressure forces on the wing into kinematic, vortex-induced and viscous diffusion
induced partitions using the FPM. (a) Pressure lift coefficient C P

L . (b) Pressure drag coefficient C P
D .

3.4. Insights from force partitioning
The wing stroke of bats gives rise to complex vortex structures as shown above, and these
have significant effects on the induced pressure forces on the wing. The acceleration,
rotation, deformation and flutter of the wing membrane during the flapping stroke
could also induce forces on the wing through added-mass effects. In order to gain
an understanding of the contributions of these different features and mechanisms, we
employ the force partitioning method (Zhang et al. 2015; Menon et al. 2022; Seo &
Mittal 2022). The force partitioning method (FPM) employs an influence field (φi ( x))
which is calculated separately for drag (φ1) and lift (φ3) at any given time instance
by solving a Laplace equation with the boundary shape at that time instance (see
Appendix A). By projecting the Navier–Stokes equations onto the gradient of the influence
field, the pressure forces are partitioned into contributions from what we term as the
‘kinematic force’ that depends on the acceleration (both linear acceleration as well as
the centripetal acceleration; see Zhang et al. (2015)) of the immersed surface (Fκ

i =
−ρ

∫
B n̂.(dUB/dt)φi dS), the ‘vortex-induced force (VIF)’ (F Q

i = −2ρ
∫

V f
Qφi dV ) and

the component due to the viscous diffusion of momentum (Fμ
i = μ

∫
V f

(∇2u).∇φi dV ). In
these expressions, UB is the velocity of the segment dS on the body B, and V f is the fluid
volume. Finally, Q is the observable used to identify vortices in a flow and is related to the
velocity field as follows:

Q = 1
2

(
‖Ω‖2 − ‖ S‖2

)
≡ −1

2
∇ · ( u · ∇u) , (3.4)

where Ω and S are the rotation and strain tensors. Some additional details of FPM are
included in the Appendix A and further details can be found in Zhang et al. (2015), Menon
et al. (2022) and Seo & Mittal (2022).

3.4.1. Kinematic versus vortex-induced forces
Figure 9 and table 1 show the decomposition of the pressure component of lift and drag
into its three partitions (kinematic, vortex induced and viscous diffusion). First, we note
that the VIF component is responsible for generating the vast majority of net pressure lift
and drag forces on the wing, and that the viscous momentum diffusion-induced pressure
force can be mostly ignored. The kinematic force, which, as shown by Zhang et al. (2015)
consists in general of the linear and centripetal acceleration reaction forces, averages to a
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very small value. Furthermore, the time variation of the various partitions of the pressure-
induced lift and drag forces shows that the primary source of oscillation in the forces is the
kinematic force. This observation is consistent in the time evolution behaviours of both lift
(Cκ

L ) and drag (Cκ
D). The oscillations in the kinematic force are associated with the linear

acceleration reaction mechanism (also known as the added-mass effect) associated with
the flutter in the plagiopatagium segment of the membrane. The oscillations in the VIFs
(C Q

L and C Q
D ) are small compared with the added-mass forces, as evident in figure 9, and

are likely caused by the temporal oscillation in the boundary layers over the wing caused
by the flutter.

Finally, the force partitioning also provides insight into the generation of positive lift
during the upstroke. The FPM shows that, as the wing begins its upstroke and accelerates
upwards, the vortex-induced lift begins to reduce in magnitude and is effectively zero in the
second half of the upstroke. On the other hand, the kinematic lift is slightly negative in the
first part of the upstroke as the wing is accelerating upwards but becomes slightly positive
in the second half of the upstroke as the wing undergoes a vertical deceleration. Thus,
with VIF providing positive lift during the first half and the kinematic force providing
positive lift in the second half of the upstroke, the entire upstroke ends up generating
positive lift. While the net lift of the upstroke is small (approximately 25 % of the lift for
the downstroke), this could contribute to reducing the vertical oscillations in the body of
the bat during flight and facilitate a more steady body posture that is useful for visual
navigation and tracking.

3.4.2. Contributions of dorsal and ventral vortex structures to the VIF
Starting with the lift, we note that since φ3 is determined by the vertical component of the
vector normal to (and pointing into) the surface of the wing, φ3 is negative above the wing
(on the dorsal surface) and positive below the wing (on the ventral surface). Thus, the lift
contributions of the flow structures on the dorsal and ventral regions of the wing can be
further partitioned by separating the VIF integral into fluid volumes with negative φ3 and
positive φ3, respectively.

Figure 10(a) shows the vortex-induced contribution to lift for both surfaces of the wing
and we note that both surfaces contribute almost equally to the net lift. The VIF density
is given by −2Qφ3 and therefore, given the sign of φ3 on the two surfaces, positive lift
generation is expected to be associated with a positive Q (i.e. rotation dominant vortex
cores) on the dorsal surface and a negative Q (i.e. strain dominant regions) on the ventral
surface of the wing. Thus, the fact that both sides of the wing generate equal magnitudes of
lift suggests that the vortices on the suction (dorsal) side of the wing and the shear layers
on the pressure (ventral) side of the wing are equally important. This is different from
static lifting wings where a significant portion of the lift is associated with the leading-
edge suction (Abbott & Von Doenhoff 2012). This is also distinct from flapping foils (Raut
et al. 2024) and fish fins (Seo & Mittal 2022) where the leading-edge vortex that develops
on the suction side of the control surface plays a dominant role in the generation of pressure
forces. Figure 10(b) shows the plot corresponding to the dorsal and ventral decomposition
of the vortex-induced drag force and while there are some differences in the temporal
variation of the drag force, both sides also contribute equally to the total vortex-induced
drag.

Finally, it is also worth noting that the ventral contributions of the vortex-induced lift and
drag forces exhibit larger flutter-induced oscillations than the dorsal contributions. This
corresponds well to the flow physics since the flutter is associated with the plagiopatagium
and the flow as well as the vortices over the dorsal surface are separated, and therefore
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Figure 10. Decomposition of VIFs into contributions from fluid volumes corresponding to +ve φ3 (ventral)
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induced lift coloured by Q at t/T = 3.32, corresponding to the instance with maximum −2Qφ3. We also
present isosurfaces of φ3 field along with two slices at armwing and handwing showing contours of Q.

distant from the surface of the plagiopatagium (see figure 5). On the other hand, the shear
layers on the ventral surface are attached to the plagiopatagium and, therefore, are more
acutely affected by the flutter in the plagiopatagium.

3.4.3. Correlation of vortex-induced forces to flow features
We now examine the VIFs in more detail and correlate them to the flow features through
the aid of FPM. The peak in the vortex-induced lift occurs close to mid-downstroke and
figure 11 shows isosurfaces of φ3 at this phase of the flapping cycle. Figure 11 shows
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isosurfaces corresponding to a positive vortex-induced lift force density −2Qφ3 = 1,
which is an intermediate value of lift density, coloured by the value of Q. The top right
of the figure shows the contours of Q at two spanwise cross-sections of the wing at this
time instance: one through the arm wing (centre of propatagium and plagiopatagium) and
one through the handwing, which goes through the dactylopatagium medius and major.
As discussed earlier, given the sign of φ3 on the dorsal and ventral surfaces, we expect that
positive lift will be associated with positive (negative) Q on the dorsal (ventral) surfaces,
and that is indeed what these figures shows. On the dorsal surface we see that the flow
is dominated with a separated shear layer that rolls up into a series of vortices that are
aligned with the wing span and all of these structures contribute positive lift. On the
ventral surface, the flow in the handwing region is dominated by an attached boundary
layer that comprises exclusively of negative values of Q and, therefore, also contributes
positive lift to the wing.

We now turn to a similar analysis of the drag force but separately examine the
phase in the flapping cycle when the wing generates thrust (t/T = 3.10) and when it
generates maximum drag (end downstroke at t/T = 3.50). We note that the particular
flight configuration chosen here corresponds to the situation when the bat is decelerating.
Thus, unlike flight at a steady speed where the wings would generate a net positive thrust
to counteract the drag on the body, the wings in our simulation are not expected to generate
significant thrust. Nevertheless, our wing does generate thrust at certain stages in the
cycle and it is of interest to understand how this is accomplished since this can provide
information about the steady flight of bats.

Figure 12(b) shows the plots for the maximum thrust (early downstroke at t/T = 3.10)
situation and the plots on the left show isosurfaces of positive thrust force density
corresponding to −2Qφ1 = −0.1 coloured by the values of Q. The view of the dorsal side
of the wing shows that thrust generation during early downstroke is the result of several
distinct features. The red isosurfaces indicate the presence of an LEV that extends over
the LE of the propatagium as well as the dactylopatagium medius, and which generates
positive thrust. As visible from the inset cross-sectional plots, the leading edge of the
wing undergoes rapid pronation at the start of the downstroke and this is responsible for
the formation of these LEVs as well as for pointing the surface of the wing associated
with these vortices into the thrust direction. Indeed, the positive isosurfaces of φ1 over this
region of the dorsal surface clearly highlights its orientation towards the thrust direction.
On the ventral surface of the wing, the downwards motion of the wing tip generates
a region of strong shear (with a negative Q) which coupled with the pronation of the
leading edge also generates positive thrust. Finally, there is also a large strain dominated
region of vorticity over the dorsal surface of the plagiopatagium that, coupled with the
supinated orientation of this wing segment, generates positive thrust. This is associated
with the downward induced flow and associated strain generated between the vortices
in the separated shear layer. Thus, the leading-edge regions of the propatagium and
the dactylopatagium medius, as well as the supination of the plagiopatagium during
downstroke could play an important role in generating thrust for supporting steady or
accelerating flight in bats.

Finally, we examine the end of the downstroke (t/T = 3.50) that corresponds to the
maximum drag and we plot the isosurfaces of −2Qφ1 = 0.6 in figure 12(b) to identify
structures that contribute substantially to the drag. At this stage in the flapping cycle
the wing has already assumed a mostly supinated position along its entire surface. On
the dorsal surface, we note several rolled up vortices that generate a suction force that
coupled with the supinated orientation of the surface, generate drag. Similarly, the ventral
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Figure 12. Analysis of vortex-induced horizontal forces (−2Qφ1) using FPM. Here, we plot the isosurfaces of
−2Qφ1 coloured by Q along with isosurfaces of φ1 and two slices at arm and handwing showing contours of
Q. (a) Presents results for thrust force at t/T = 3.1, and (b) presents results for drag force at t/T = 3.5.
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Figure 13. Development of equivalent stiff wings. Here, we show the sections along which pitch angles (θp)
were extracted. The time variation of pitch angles along with stroke angles (θs ) was used to develop ‘twisted
wing’. The dashed black line is the span-averaged twist angle, which along with the stroke angles was used to
develop ‘flat wing’.

side boundary layer is strain dominated which generates a pressure force onto the ventral
surface, thereby also generating a component in the direction of drag.

3.5. Comparison with equivalent non-articulated wings
In the previous sections, we have described the aerodynamics and aero-structural dynamics
of the fully articulated, flexible bat handwing. The extensive geometric deformation
during flapping, including local bending and stretching are features of the bat wing that
distinguish it from the wings of insects and birds. In this section we explore the role of
this unique feature, i.e. massive wing deformation associated with wing articulation, in the
generation of aerodynamic forces by using models with simplified wing kinematics that
eliminate this feature while preserving some of the other key aspects of the wing stroke
kinematics.

At a fundamental level, flapping wings are control surfaces that undergo periodic and
simultaneous stroking (about the wing root) and pitching. Figure 13 shows the pitch angles
(measured for a straight chord line joining the leading edge to the trailing edge) at six
locations along the span for the wing obtained from the FSI simulations. Figure 13 shows
the corresponding stroke angle for a plane joining the wing root to the wing tip. These
data are used to generate two simplified models of the bat wing kinematics that exclude
the large geometric deformation due to the articulation of the finger joints. The first model
is a planar ‘flat wing’ undergoing pitching and flapping oscillations. For this flat-wing
model, the time-varying pitch is the same at every spanwise location and this matches
the pitch corresponding to the average pitch at these 6 locations. The time-varying stroke
angle is matched to that shown in figure 13. In the second ‘twisted-wing’ model, the stroke
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Figure 14. Simulation results for comparative study. (a) Isosurfaces of Q coloured with spanwise vorticity
(ωx2 A/U∞). (b) Time variation of lift and drag along with a comparison with the flexible wing.

angle is the same as the flat-wing model but we allow the pitch to vary along the span as
well (thereby generating a spanwise twist) and we match (best fit) this local pitch at the six
locations on the span identified above. These wings with simplified kinematics have some
similarities to the relatively stiffer flapping wings simulated in previous studies (Song et al.
2014; Seo et al. 2019; Joshi et al. 2020a).

Figure 14(a) shows the vortex structures for these two synthesised wings at mid-upstroke
and mid-downstroke. We note that these vortex structures are quite different from those
observed for the actual bat wing. During the mid-downstroke, we observe the formation
of a leading-edge vortex for both wings. In the case of the twisted-wing, the LEV has a
nearly uniform strength across the entire LE, whereas, for the flat wing, the strength of
the vortex increases with the LE edge and is maximum at the tip. For the actual wing,
we observed a tip vortex lasting through the entire downstroke but this is absent in these
simulations. Moreover, the roll-up observed during the downstroke due to breakup of LEV
in flexible wings is also absent in these cases despite having an equivalent wing planform,
flapping angle and local twist angles, indicating the significant role of the articulation-
driven geometric deformation in the actual wing.

Figure 14(b) shows the time variation of the lift and drag coefficients for the two
wings superposed on the corresponding variation for the actual articulated wing. We note
that similar to the articulated wing, major contributions to the lift are generated during
the downstroke, although the articulated wing generates a larger lift than these derived
wings. Also, unlike the articulated wing, which could sustain positive lift during the entire
upstroke, these derived wing with reduced deformation generate negative lift post-mid-
upstroke. As we noted earlier, this positive lift during upstroke is connected with the linear
acceleration reaction (also known as the added-mass) effect, and this seems to be absent
in these derived wings. The differences in the lift profile of the flat and twisted wings are
quite small. Overall, the articulated wing generates twice the lift of these derived wings.
The time traces of the drag coefficient, indicate that all three wings experience a similar
magnitude of mean drag over the flapping cycle and the stiff wings do not generate thrust at
any time during the flapping cycle. These comparisons indicate that even with the planform
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shape and overall stroking–pitching kinematics of the bat wing matched to the bat wing,
the exclusion of the geometric deformation that is generated by active wing articulation,
greatly diminishes the wing’s overall aerodynamic performance.

4. Conclusions
A fully coupled fluid–structural computational model is employed to investigate the aero-
structural dynamics of a bat wing in a forward flight. We have attempted a high degree
of realism in the model with respect to the wing anatomy and kinematics, as well as the
geometric and elastic deformation associated with active articulation and flow-induced
deformation. The following are the key findings of the study:

(i) The areal strain can reach up approximately 9 %, and is particularly significant in
the plagiopatagium, which accounts for the largest area among all the segments of
the wing, and which constitutes an important region with respect to the aerodynamic
loads. The plagiopatagium also experiences large bending strain, which peaks in
the upstroke as the phalanges are retracted during the upstroke resulting in the
development of slack in the membranes. The plagiopatagium also experiences
aeroelastic flutter during the downstroke.

(ii) The propatagium undergoes significant localised bending deformation that results
in large supination during the downstroke and large spanwise bending during the
upstroke due to the development of slack in the wing membrane. Given that the
propatagium is located at the leading edge, these deformations have important
aerodynamic effects.

(iii) A regional analysis of the wing shows that the effectiveness of the ability of the
wing to generate lift, drag and thrust varies quite significantly over the area of
the wing. The leading edge of the wing, which is covered by the propatagium and
the dactylopatagium medius, is particularly effective in generating lift. The trailing
region of the plagiopatagium is a highly effective generator of drag. Finally, the
thrust seems to be primarily generated by the dactylopatagium medius. The latter
is because the dactylopatagium medius behaves as a pitching–heaving flapping foil,
and such a motion is known to generate thrust.

(iv) The force partitioning method shows that the vast majority of the mean aerodynamic
force comes from the vortex-induced component. The kinematic force (associated
with the added-mass effect) generated a negligible net contribution to the forces but
does generate a net positive lift over the upstroke.

(v) The force partitioning also suggests that the vortex structure on the dorsal side and
the ventral are equally important for aerodynamic force generation.

(vi) The force partitioning also enables us to understand how the movement of the wing
coupled with its local inclination couples with the vortex structures to generate lift,
drag and thrust at different phases in the flapping cycle.

(vii) Comparison of the fully articulated against with simpler wings with significantly
reduced geometric deformation derived from the available kinematics provide some
indication of the advantages of wing articulation.

In summary, the current study, despite its limitations, provides several new insights
regarding the dynamics and aerodynamics of flight with bat-inspired membrane wings.
In particular, we have highlighted the important role that the deformation of the different
segments of the elastic membrane wing plays in the generation of aerodynamic lift, thrust
and drag forces. We expect that these insights will provide a better understanding of
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the biomechanics and locomotory capabilities of these animals and will also be useful
in the development of bio-inspired flying vehicles. The study has also demonstrated the
capabilities of the new FSI model, which we expect will find use for investigating a
variety of flow problems involving complex membraneous structures. Finally, the study
also demonstrates the usefulness of the FPM for enabling insights into the causality of
pressure force in this highly complex vortex-dominated flow.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.356.
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Appendix A. The Force Partitioning Method
We provide a brief summary of the FPM here and the reader is referred to earlier papers
(Zhang et al. 2015; Menon & Mittal 2021; Menon et al. 2022; Seo & Mittal 2022) for
more details. The pressure force is the dominant component of the total aerodynamic
force experienced by immersed bodies/surfaces such as the bat wing. Pressure is an elliptic
variable simultaneously affected by various physical mechanisms/features such as vortices,
kinematics of the immersed body, acceleration of free-stream flow and viscous diffusion.
The fluid–structure interaction of bats is the result of strongly coupled and complex
physics, and dissecting the total aerodynamic force into these mechanisms is necessary
to understand the force generation mechanism. The FPM allows the decomposition of the
pressure forces by first computing an influence field, which is obtained as the solution of
the following Laplace equation

∇2φi = 0, in V f with n̂.∇φi =
{

ni , on B

0, on Σ
for i = 1, 2, 3, (A1)

where V f is the fluid volume, ni is component of the surface normal on the body B in the
direction of the force being partitioned and Σ is the outer boundary. Thus, the influence
field at any given time, depends on the shape of the immersed boundary at that time and in
the current study, the influence field is also solved for using the sharp-interface immersed
boundary solver.

Projection of the Navier–Stokes equation onto the gradient of the influence field results
in the following partitioning:

Fi =
∫

B
pni dS =

Fκ︷ ︸︸ ︷
−ρ

∫
B

n̂. (dUB/dt) φi dS

FQ︷ ︸︸ ︷
−2ρ

∫
V f

Qφi dV +
Fμ︷ ︸︸ ︷

μ

∫
V f

(∇2u).∇φi dV

FΣ︷ ︸︸ ︷
−ρ

∫
Σ

n̂.

(
du

dt
φi

)
dS for i = 1, 2, 3,

(A2)
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Figure 15. Results from grid convergence analysis. Time variation of force coefficients for two distinct grids:
(a) CL , (b) CD .

where Fκ , F Q , Fμ and FΣ are the kinematics-induced (associated with linear and
centripetal acceleration reaction mechanisms (Zhang et al. 2015)), vortex-induced, viscous
momentum diffusion-induced and the outer boundary-induced partitions of the pressure
force. For a case where the outer boundary is such that the material acceleration of the
flow is small (such as the current case), the outer boundary contribution to the pressure
force can be neglected.

Appendix B. Grid Independence
We demonstrate the grid independence of the results by simulating on two grids – the ‘fine’
mesh, which is the mesh used for the study, and a ‘medium’ mesh where the resolution in
the region around the wing is reduced by a factor of two in each of the three directions. The
fine grid has a total of 52 million grid points and the coarse mesh has 22 million points. The
resolution of the surface discretisation in the structural model is also decreased nominally
by a factor of two for the coarser mesh. Both simulations are run for three cycles and the
time-varying lift and drag coefficients compared (see figure 15) to assess grid convergence.
The mean values of the lift and drag coefficients show a difference of 0.8 % and 0.3 %
respectively, and the difference in the corresponding root-mean-square values is 0.57 %
and 0.27 %. These data indicate that the fine mesh is adequate for these simulations.

Appendix C. Benchmarking the Flow-Membrane Interaction Solver
To benchmark the FSI solver, we employ the case of the three-dimensional flag in a
flow that has been the subjects of several previous computational modelling studies with
different methods (Tian et al. 2014; de Tullio & Pascazio 2016). The flag in question here
is square in shape and undergoes flow-induced flutter as it interacts with the flow. The
simulations are performed at a Reynolds number (based on the incoming velocity and flag
dimension L) of 200 and with a non-dimensional thickness h/L = 0.01, bending rigidity
kb = 0.0001 and mass ratio ρsh/ρ f L = 1. The comparison is made against the works of
Tian et al. (2014) and de Tullio & Pascazio (2016). Tian et al. (2014) utilised a finite-
element method based membrane model whereas de Tullio & Pascazio (2016) utilised
a spring-network model similar to ours but with a different mathematical formulation.
Figure 16 shows the qualitative and quantitative results from our simulation compared to
these previous studies. Figure 16(a) shows a good match in the time variation of lateral
force and displacement of the midpoint at the trailing edge obtained from our simulation
with those reported in the literature. In the accompanying table table 2, we compare the
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Figure 16. Quantitative and qualitative results from the benchmark study for the flow-induced flapping of a
flag. (a) Comparison of (top) the displacement of mid-point y/L at the trailing edge of the membrane and
(bottom) the lateral force coefficient CL . (b) Membrane deformation and flow structures identified using the
isosurfaces of Q-criterion and coloured by spanwise vorticity ω∗

z .

Present Study Tian et al. (2014) de Tullio & Pascazio (2016)

A/L 0.819 0.812 0.795
St 0.275 0.263 0.265

Table 2. Comparison of key quantities for benchmarking the FSI solver.

trailing-edge displacement amplitude A/L and Strouhal number St with the ones reported
in the literature and find that the match is reasonably good. The results proved the ability
of our model to perform accurate fluid–structure interaction simulations of membranes
subject to extensional and bending strain.
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