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Abstract

In this paper, we introduce a method known as polynomial frame approximation for approximating
smooth, multivariate functions defined on irregular domains in d dimensions, where d can be
arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-
product domain. In particular, the domain of the function need not be known in advance. When
restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical
computations with frames present potential difficulties, due to the near-linear dependence of the
truncated approximation system. Nevertheless, well-conditioned approximations can be obtained
via regularization, for instance, truncated singular value decompositions. We comprehensively
analyze such approximations in this paper, providing error estimates for functions with both
classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-
dimensional problems. We also analyze the sample complexity of the approximation for sample
points chosen randomly according to a probability measure, providing estimates in terms of the
corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity
for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the
polynomial space, independently of d , for a large class of nontrivial domains. This extends a well-
known result for polynomial approximation in hypercubes.
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1. Introduction

Many problems in computational science call for the approximation of smooth,
multivariate functions. This problem is often challenging, due to the curse of
dimensionality. Yet significant strides have been made over the last several
decades toward its mitigation, typically by assuming some anisotropic behavior
of the function being approximated. Approaches such as sparse grids [16] have
enjoyed substantial success in the numerical solution of high-dimensional
partial differential equations (PDEs), and more recently techniques based
on computing multivariate polynomial approximations—often referred to as
generalized polynomial chaos expansions [50]—have begun to be widely used
for problems in uncertainty quantification (UQ) (see [4, 18, 19, 22, 23, 27, 39, 52]
and references therein).

The majority of algorithms for high-dimensional approximation assume the
underlying function f is defined over a tensor-product domain. The key benefit
of doing so is simplicity. Indeed, the orthogonal polynomials on a tensor-product
domain with respect to a tensor-product measure are precisely tensor products of
the corresponding one-dimensional orthogonal polynomials. Yet there are many
practical instances where the domain of interest is not of tensor-product type.
One example is surrogate model construction in UQ. In practice, it is often the
case that the random variables are correlated [49], which leads to an irregular
domain. Alternatively or in addition, the given forward model may not be well
defined over the whole of the assumed tensor-product domain, or may produce
values in certain regions that are known to be unphysical (for example, negative
pressures). This in effect leads to failed evaluations, resulting once more in an
irregular domain [45]. Similarly, in model order reduction, techniques such as
active subspaces [26] lead to approximation problems over irregular domains. For
example, when a function defined on a high-dimensional hypercube is projected to
a function of a reduced set of parameters, the resulting domain (the projection of
the hypercube) is generally polyhedral, a so-called zonotope [46]. Finally, many
applications in UQ also involve forward models which are piecewise smooth (see
[44, 45] and references therein). Unless such discontinuities happen to be aligned
along coordinate axes, this results in an approximation problem involving two or
more smooth functions defined over irregular domains.

With this issue in mind, the purpose of this paper is to present a systematic
study of a simple but effective technique for approximating high-dimensional
functions defined on irregular domains. It is based on using tensor-product
orthogonal polynomials on a bounding box, and is referred to as polynomial frame
approximation. The approach corresponds to approximation in a frame, rather
than a basis, since there are potentially many ways the unknown function on the
irregular domain can be represented in a basis on the bounding box. Our main
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results demonstrate that this procedure achieves (to a significant degree) the
four primary criteria for a numerical approximation scheme: namely, simplicity,
accuracy, stability and efficiency. We elaborate on the meaning of these terms in
the next section; however, we note in passing that simplicity means that the same
procedure can be applied to a broad class of irregular domains. In particular, no
costly parametrization of the domain or its boundary (a potentially infeasible task
in high dimensions) is required to construct the approximation. Instead, we will
make the less restrictive assumption that samples can be randomly drawn from
a certain measure on Ω , related to the orthogonality measure on the bounding
box. Typically, this is taken as the uniform measure on Ω . Note that our focus
in this paper is neither on the best choice of measure nor on the question of how
to sample from a given measure. These are challenging, and potentially highly
domain-dependent, issues, whereas in this work we strive for generality. We return
briefly to this question in Section 9.

The main contribution of this paper is the rigorous analysis of polynomial
frame approximations. Central to this is the notion of frames of Hilbert spaces,
as opposed to more conventional orthogonal bases. We stress at this point that
our technique does not attempt to orthogonalize a basis. Instead, it relies on the
particular properties of frames to achieve accurate and stable approximations.
A key facet of frame approximations (not just of polynomial type) is that they
lead to highly ill-conditioned linear systems of equations. However, by using
regularization, we are able to obtain a mapping from the sample points to the
polynomial space that is both well conditioned and accurate. We also determine
approximation rates and sample complexity estimates that scale well with the
underlying dimension, thus (on the proviso that samples can be drawn efficiently
from the desired measure—see above) mitigating the curse of dimensionality to a
significant extent.

Before we proceed further, it is worth noting that polynomial frame
approximation, and variations thereof, are in essence already used in many
of the aforementioned applications. Indeed, any approach to surrogate model
construction in UQ which computes a generalized polynomial chaos expansion
from function evaluations which are limited (due to the particular problem
at hand) to a nontensorial subdomain is equivalent to polynomial frame
approximation. See Section 2.4 for further details. However, a thorough analysis
of the accuracy, stability and efficiency of such approximations—in particular,
exploiting the connections to frame theory as we do in this paper—is, to the
best of our knowledge, lacking. Besides providing the first clear theoretical
explanation for why these algorithms work in the practical setting of irregular
domains, we also expect the results of this paper to shed light on ways in which
to improve them. For example, the problem of designing better sampling sets for
irregular domains is a topic of significant practical interest.
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2. Overview of the paper

We commence with a short overview of the paper.

2.1. Polynomial frame approximations. This paper concerns the
approximation of a smooth multivariate function f : Ω → C defined over a
nontensor product domainΩ ⊂ Rd . The approximation is based on four key steps:

(i) Choose a tensor-product domain D such that Ω ⊆ D.

(ii) Choose a tensor-product probability measure ν on D, a tensor-product
orthonormal basis {ψn}n of L2(D, ν) and a finite index set Λ with |Λ| = N .

(iii) Take M samples of f of the form f (y1), . . . , f (yM), where Υ = {y1, . . . ,

yM} ⊂ Ω .

(iv) Compute an approximation to f of the form fΥ,Λ =
∑

n∈Λ cnφn, where
φn = ψn|Ω .

This immediately raises a number of questions, which are now discussed:

1. How to compute the approximation. There are several options for doing
this, including interpolation if M = |Λ| = N , sparse regularization (that is,
compressed sensing) if M < N and least-squares fitting if M > N . We consider
the latter. Interpolation requires good choices of nodes y1, . . . , yN so as to
maintain small Lebesgue constants, and it is unclear how to design such nodes for
general irregular domains. Compressed sensing is an interesting option, however
beyond the scope of this paper (see Section 9 for some further discussion).
Least-squares fitting, on the other hand, is a popular tool for high-dimensional
approximation on tensor-product domains [18, 25, 34, 37–39, 53], and has the
twin benefits of being simple to both implement and analyze. Note that the least-
squares approximation fΥ,Λ is given by

fΥ,Λ = argmin
p∈PΛ

1
M

∑
y∈Υ

| f (y)− p(y)|2, (2.1)

where PΛ = span{φn : n ∈ Λ} is the finite-dimensional approximation space.
Equivalently, the coefficients c = (cn)n∈Λ of fΥ,Λ are the solution of the algebraic
least-squares problem

c = argmin
x∈CN

‖Ax− b‖2, (2.2)

where A =
{

1
√

M
φn(y)

}
y∈Υ,n∈Λ ∈ CM×N and b =

{
1
√

M
f (y)

}
y∈Υ ∈ CM .
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2. How to choose the orthonormal basis {ψn}n and index setΛ. Smooth functions
are typically well approximated by polynomials, so we shall generally take
{ψn}n to be an orthonormal tensor-product polynomial basis. Our main numerical
examples consider tensor-product Legendre polynomials. We also highlight the
possibility of nonpolynomial approximations, for example, using a cosine basis
when Ω is compactly contained in D = (−1, 1)d . Given the basis {ψn}n, we
consider several standard choices for Λ, including total degree and hyperbolic
cross index sets, or more generally, so-called lower sets. These sets have been
used quite extensively for multivariate polynomial approximations in tensor-
product domains (see [3, 18–20, 24, 35, 37] and references therein).

3. How to choose the sample points Υ . Our primary concern in this regard lies
with the sampling efficiency (or sample complexity) of the approximation: namely,
how large M must be in relation to N = |Λ| to ensure a good approximation. The
problem of designing optimal sampling points for high-dimensional polynomial
approximation remains open even in tensor-product domains (although we note
in passing some recent quasioptimal constructions [25]). We shall therefore not
attempt to solve it for irregular domains. Instead, we consider straightforward
random samplings. Specifically, we draw y1, . . . , yM independently according
to a suitable probability measure on Ω (for example, the uniform measure
whenever Ω is compact). We throughout assume that it is computationally
feasible to draw samples from this measure. Although simple, this approach
permits concrete sample complexity estimates for a large class of domains Ω
which are quadratic (up to a log factor) in N = |Λ| for any dimension d . Up to
a domain-dependent constant which we determine, this sample complexity is the
same as the corresponding result for compact tensor-product domains when the
sample points are drawn from the uniform measure [18] (this scaling is essentially
sharp: as discussed in [9], based on a result of [43], in one dimension if the sample
points are deterministic and equispaced, then the least-squares approximation is
ill-conditioned unless the number of sample points scales quadratically in the
polynomial degree N ).

2.2. Conditioning and stability. The approach outlined above is certainly
simple, and it is tempting to think that it can achieve high accuracy. After all,
the method computes a polynomial approximation in a domain, albeit an irregular
one. Unfortunately, there is an issue. The matrix A of system (2.2) is extremely
ill-conditioned, even when M � N (we estimate this ill-conditioning later in the
paper for relevant examples). This is due to the fact that the set {φn}n is not a
basis for the space of square-integrable functions over Ω , but rather a frame. See
Section 3.3 for the definition of a frame. Frames are typically redundant, meaning
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that any function f has infinitely many expansions of the form f =
∑

n cnφn
with coefficients {cn}n in `2. When translated to the finite setting, this redundancy
means that the truncated Gram matrix

GΛ = {〈φm, φn〉L2(Ω,µ)}m,n∈Λ, (2.3)

where µ is the measure defined in (3.2), is typically extremely poorly conditioned
for large N [7]. Note that E(A∗A) = GΛ if the sample points yi are drawn
independently according to µ. Hence the least-squares matrix A is expected to
inherit similar ill-conditioning.

In the face of such ill-conditioning, one would usually expect it to be impossible
to achieve high accuracy in floating point arithmetic. Fortunately, this expectation
turns out to be incorrect. The frame property endows the problem with sufficient
structure so that accurate, well-conditioned approximations can be computed
via a simple regularization procedure. In this paper, we show that regularized
least-squares solutions, computed via hard thresholding of the singular values
of A, yield well-conditioned approximations which converge rapidly down to
the thresholding parameter ε. This parameter is typically set according to some
desired target accuracy.

REMARK 2.1. We stress that the frame property is crucial in endowing the
approximation with these properties, hence why we refer to this approach as
polynomial frame approximations. Choosing {φn}n to be the monomial basis also
leads to an exceedingly ill-conditioned problem, but one where high accuracy
may not be possible. The underlying reason for this is that the frame property
guarantees existence of expansions f =

∑
n cnφn for which the coefficients {cn}n

decay (accuracy) and have bounded `2-norm (stability). See [6, 7] for further
discussion.

2.3. Main results. We now summarize our main results.

Accuracy and conditioning. Our first result concerns the accuracy and condition
number of the regularized least-squares approximation. As mentioned above, this
approximation is constructed using a truncated Singular Value Decomposition
(SVD) of the least-squares matrix A with a threshold parameter ε > 0. We write
fΥ,Λ,ε for this approximation and cε for its coefficients in the system {φn}n∈Λ.

THEOREM 2.2 (Accuracy and conditioning). There exists a constant CΥ,Λ,ε > 0
such that

‖ f − fΥ,Λ,ε‖L2(Ω,µ) 6 (1+ CΥ,Λ,ε)EΛ,ε( f ), (2.4)
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where
EΛ,ε( f ) = inf{‖ f − p‖L∞(Ω) + ε‖p‖L2(D,ν) : p ∈ PΛ},

and µ is the measure given by (3.2). Moreover, the coefficients cε of fΥ,Λ,ε satisfy

‖cε‖2 = ‖ fΥ,Λ,ε‖L2(D,ν) 6
EΛ,ε( f )
ε

, (2.5)

and the absolute (`2, L2)-condition number of the reconstruction operator
LΥ,Λ,ε : CM

→ PΛ, b 7→ fΥ,Λ,ε , where b is as in (2.2), is at most CΥ,Λ,ε .

See Section 4. Several remarks are in order. First, bound (2.4) separates the
accuracy of the regularized least-squares approximation into an approximation
error term EΛ,ε( f ) depending only on ε and the space PΛ and independent of
the samples Υ , and a constant CΥ,Λ,ε depending on ε, Υ and PΛ. In other words,
EΛ,ε( f ) determines the rate of approximation, whereas CΥ,Λ,ε (more specifically,
the requirement that CΥ,Λ,ε . 1) determines the sample complexity.

Second, note that EΛ,ε( f ) depends on how well f can be approximated
in Ω by polynomials p ∈ PΛ that do not grow too large on D. The latter
requirement—which stems from the regularization carried out—is an expression
of stability, since a polynomial growing large on D would necessarily have
large coefficients. Our main estimates for EΛ,ε( f ), given below, are derived by
constructing polynomials which approximate f at specified rates inΩ (depending
on the smoothness of f ), and which remain bounded on D.

Third, note that (2.5) ensures the stored values—namely, the coefficients cε—
cannot be too large in magnitude. This would otherwise result in ill-conditioning
of the evaluation map cε 7→ fΥ,Λ,ε(x). While ‖cε‖2 may be of magnitude roughly
1/ε initially, once the approximation error EΛ,ε( f ) reaches close to the target
accuracy ε, we have ‖cε‖2 . 1.

Rate of approximation. In Section 5, we analyze EΛ,ε( f ) for the main example
considered in this paper, Legendre polynomials on D = (−1, 1)d . We consider
two standard choices of index sets Λ: the total degree index set Λ = ΛTD

n defined
in (3.5) and the hyperbolic cross index set Λ = ΛHC

n defined in (3.6). The former
is suitable for low-dimensional problems, but quickly becomes too large as d
increases. The cardinality of the latter on the other hand scales much more mildly
with d.

Our main results are split into two cases:

(i) f smooth inΩ only. In the first case, f is smooth inΩ but may be nonsmooth,
or even undefined in D\Ω . If Ω is a Lipschitz domain and f ∈ H m(Ω,µ),
where H m(Ω,µ) is the classical Sobolev space of order m (see (5.1)), then we
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show that

EΛ,ε( f ) 6

{
cm,d,Ω(nd−m

+ ε)‖ f ‖Hm (Ω,µ) Λ = ΛTD
n ,

cm,d,Ω(n
d−m

d + ε)‖ f ‖Hm (Ω,µ) Λ = ΛHC
n ,

(2.6)

where cm,d,Ω > 0 is a constant depending on m, d and Ω but independent of f .
See Theorem 5.1 (we note in passing that the factor d−m can be improved slightly
to θ(d)−m, where θ(d) is a particular constant satisfying θ(d) 6 d). This result
asserts convergence at an algebraic rate depending on the smoothness of f in Ω
only. However, it also exhibits the familiar curse of dimensionality. In the case of
the total degree index set ΛTD, the cardinality N = |ΛTD

| � nd as n → ∞, and
therefore

nd−m
� N

d−m
d , n→∞,

whereas for the hyperbolic cross (wherein N = |ΛHC
n | � n(log(n))d−1), one has

n
d−m

d � N
d−m

d (log(N ))
(m−d)(d−1)

d , n→∞.

(ii) f smooth in D. In high-dimensional approximation, a standard way to
overcome the d-dependence in results such as (2.6) is to assume certain
anisotropic smoothness. As we discuss in Section 9, it is currently unknown
how to do this within the setting of case (i). However, when f has appropriate
regularity over the whole of D—or equivalently, f is the restriction toΩ of some
appropriately regular function defined on D—then we have the following result.
If f ∈ H m

mix(D, ν), where H m
mix(D, ν) is the Sobolev space of dominating mixed

smoothness on D (see (5.2)), then

EΛ,ε( f ) 6

{
cm,d‖ f ‖Hm

mix(D,ν)n
1−m
+ ε‖ f ‖L2(D,ν) Λ = ΛTD

n ,

cm,d‖ f ‖Hm
mix(D,ν)n

1−m(log(n))
d−1

2 + ε‖ f ‖L2(D,ν) Λ = ΛHC
n ,

(2.7)

where cm,d > 0 is a constant depending on m and d but independent of Ω and f .
See Theorem 5.3. Observe that

n1−m
� N

1−m
d , N = |ΛTD

n |,

whereas

n1−m(log(n))
d−1

2 � N 1−m(log(N ))(d−1)(m−1/2), N = |ΛHC
n |.

Hence, up to the log factor, the hyperbolic cross index set ΛHC
n achieves an

algebraic rate of convergence that is independent of the dimension d , and
therefore suitable for higher-dimensional problems. Our numerical results in
Section 8 show computations using this index set for dimensions up to d = 15.
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Let us make several remarks. First, we note that case (ii) requires absolutely
no conditions on the domain Ω , besides being measurable. In particular, the
domain can be extremely rough, as long as f is smooth over the whole extended
domain D. In Section 8, we show some numerical results of this type. Second,
(2.7) behaves like n1−m , not n−m as might be expected. The additional power of
n stems from the presence of the L∞(Ω)-norm in EΛ,ε( f ). This factor can be
improved whenever Ω is compactly contained in D, in which case one obtains a
factor of the form n1/2−m (see Theorems 5.1 and 5.3). Third, when the sample
points are drawn randomly and independently (as they are in this paper), it
is possible to prove an estimate in expectation for the squared L2-error of a
slightly modified least-squares estimator (see Section 7) involving the L2-norm
approximation error

ẼΛ,ε( f ) = inf{‖ f − p‖L2(Ω,µ) + ε‖p‖L2(D,ν) : p ∈ PΛ}.

See Theorem 7.1. Analogous to (2.6) and (2.7), this quantity admits the following
estimates. First, if Ω is Lipschitz and f ∈ H m(Ω,µ), then

ẼΛ,ε( f ) 6
{

cm,d,Ω(n−m
+ ε)‖ f ‖Hm (Ω,µ) Λ = ΛTD

n

cm,d,Ω(n−
m
d + ε)‖ f ‖Hm (Ω,µ) Λ = ΛHC

n .
(2.8)

Conversely, if f ∈ H m
mix(D, ν), then

ẼΛ,ε( f ) 6 cm,d‖ f ‖Hm
mix(D,ν)n

−m
+ ε‖ f ‖L2(D,ν), Λ = ΛTD

n or Λ = ΛHC
n . (2.9)

See Theorems 7.2 and 7.3. As with EΛ,ε( f ) above, this latter result for the
hyperbolic cross index set shows how polynomial frame approximation can
mitigate the curse of dimensionality.

Sample complexity. Our final result concerns efficiency, that is, sample
complexity, of the approximation. In view of Theorem 2.2, this corresponds
to determining how large M must be in order for the condition CΥ,Λ,ε . 1 to hold.
Our main contribution is for the following class of domains Ω .

DEFINITION 2.3 (λ-rectangle property). A compact domain Ω has the
λ-rectangle property for some 0 < λ < 1 if it can be written as a (possibly
overlapping and uncountable) union

Ω =
⋃
R∈R

R,

of hyperrectangles R satisfying

inf
R∈R

Vol(R) = λVol(Ω).
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Note that many domains of practical interest have this property. However, there
are notable exceptions, including simplices and balls. See Section 6.3 for further
discussion.

As we show in Section 6.2, when the samples ym are chosen randomly and
independently according to the uniform measure on Ω , the sample complexity
of the approximation can in general be related to the constant of the (L2(Ω,µ),

L∞(Ω))-Nikolskii inequality for the space PΛ. We use the λ-rectangle property
to get concrete estimates for this constant, culminating in the following result.

THEOREM 2.4 (Sample complexity). Suppose that Ω ⊆ (−1, 1)d has the
λ-rectangle property and let PΛ be constructed from the tensor Legendre
polynomial basis on (−1, 1)d , whereΛ ⊂ Nd

0 is any lower set (see Definition 3.1)
of cardinality |Λ| = N. Let 0 < δ, γ < 1 and y1, . . . , yM be independent and
randomly drawn according to the uniform probability measure on Ω . Then

CΥ,Λ,ε 6
1

√
1− δ

, ∀ε > 0,

with probability at least 1− γ , provided

M > N 2λ−1((1− δ) log(1− δ)+ δ))−1 log(N/γ ).

See Corollary 6.6. This result establishes log-quadratic scaling of the number
of samples with the dimension of the polynomial space, extending a well-known
result for tensor-product domains to a large class of irregular domains. Note that
this result holds for all lower sets, and in particular, the total degree and hyperbolic
cross index sets discussed above.

2.4. Related work. The idea of approximating a function on an irregular
domain by using an orthogonal basis on a bounding tensor-product domain is
well established within the context of embedded or fictitious domain methods
in numerical PDEs [41] (see also [12]). The so-called Fourier extensions or
Fourier continuations were studied in detail in [13, 15]. Applications to surface
parametrization and numerical PDEs in complex geometries were considered in
[15] and [11, 14, 33], respectively. Our work can be considered an extension
of [8] from the univariate to the multivariate setting, although we use algebraic
as opposed to trigonometric polynomials since these are more common in
applications such as UQ. Our work also extends recent research on computing
polynomial approximations of functions defined on high-dimensional tensor-
product domains. This approach has received substantial interest recently, due
to its applications in, notably, UQ. See [4, 18, 19, 22, 23, 27, 39, 52] and
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references therein. A consequence of this paper is that an irregular domain (either
known or unknown) often presents no barrier to polynomial approximation of
high-dimensional functions. As noted, polynomial approximations are frequently
used in practical UQ studies even when the domain is nontensorial (see [44, 45]
and references therein). Our work therefore provides a theoretical basis for these
approaches. Finally, we note that polynomial frame approximation is just one
example of so-called numerical frame approximation. For a broader perspective
on the uses of frames in numerical analysis and approximation, see [6, 7].

3. Polynomial frame approximations

3.1. Notation. We first require some further notation. Throughout this paper,
D ⊆ Rd will be a domain with a probability measure ν. Typically, D will be of
tensor-product type, that is,

D = [a1, b1] ⊗ · · · ⊗ [ad, bd] ⊆ Rd, (3.1)

where −∞ 6 ak < bk 6∞ and ν = ν(1) ⊗ · · · ⊗ ν(d) will be a tensor product of
one-dimensional probability measures. We write L2(D, ν) for the space of square-
integrable functions on D.

The d-dimensional variable is denoted by y = (y1, . . . , yd) ∈ Rd . Given D, we
let Ω ⊆ D be a domain and define the probability measure µ by

dµ(y) =
IΩ(y)
vΩ

dν(y), vΩ =

∫
Ω

dν, (3.2)

where IΩ is the indicator function of Ω . We write L2(Ω,µ) for the space of
square-integrable functions on Ω with respect to µ.

Throughout, n = (n1, . . . , nd) ∈ Nd
0 denotes a multi-index. Let I ⊆ Nd

0 be a
countable set of multi-indices and {ψn}n∈I be an orthonormal basis of L2(D, ν).
If D is of the form (3.1), then this basis will usually be of tensor-product type,
that is,

ψn(y) =
d∏

k=1

ψ (k)
nk
(yk),

where {ψ (k)
nk
} is an orthonormal basis of L2((ak, bk), ν

(k)). Given {ψn}n∈I , we let

φn = ψn|Ω , n ∈ I, (3.3)

be the corresponding functions defined on Ω .

https://doi.org/10.1017/fms.2020.23 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.23


B. Adcock and D. Huybrechs 12

3.2. Multi-index sets. Our interest lies in computing finite approximations in
system (3.3). To this end, let Λ ⊂ I be a finite multi-index set and define

PΛ = span{φn : n ∈ Λ} ⊂ L2(Ω,µ),

as the finite-dimensional space within which we seek an approximation to f .
We consider the following three standard choices of multi-index sets: the tensor-
product set

Λ = ΛTP
n = {n ∈ Nd

0 : |n|∞ 6 n}, (3.4)

where n ∈ N0 and |n|∞ = maxk=1,...,d |nk |; the total degree set

Λ = ΛTD
n = {n ∈ Nd

0 : |n|1 6 n}, (3.5)

where |n|1 = |n1| + · · · + |nd |; and the (isotropic) hyperbolic cross set

Λ = ΛHC
n = {n ∈ Nd

0 : |n|hc 6 n + 1}, |n|hc =

d∏
k=1

(nk + 1). (3.6)

Note that the cardinality N = |ΛTP
n | = (n + 1)d usually grows too quickly with n

in high dimensions to be practical. The total degree set, with cardinality

N = |ΛTD
n | =

(
n + d

d

)
,

mitigates this issue to some extent, but still typically grows too rapidly for
moderate- to high-dimensional problems. Hyperbolic cross index sets are a
practical alternative in this case. An exact formula for the cardinality of the
hyperbolic cross ΛHC

n in terms of n and d is not known, but there are a variety
of upper bounds, including

|ΛHC
n | 6 b(n + 1)(1+ log(n + 1))d−1

c.

See, for example, [34, Proposition A.1].
The above three multi-index sets are all examples of so-called lower sets (also

known as downward closed or monotone sets—see, for example, [23, 28]).

DEFINITION 3.1. A multi-index set Λ ⊆ Nd
0 is lower if whenever

n = (n1, . . . , nd) ∈ Λ and n′ = (n′1, . . . , n′d)

satisfies n′k 6 nk for all k, then n′ ∈ Λ.
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In our main results regarding efficiency, we establish sample complexity
estimates which are valid for arbitrary lower sets. While we shall not do it in
this paper, such generality allows for the possibility of considering other multi-
index sets, for example, anisotropic hyperbolic cross index sets, which may be
defined by a priori or a posteriori estimates, or computed adaptively.

3.3. Polynomial frames. We first recall the definition of a frame (see, for
example, [21]).

DEFINITION 3.2. A countable set {φn}n∈I of a Hilbert space H is a frame if there
exist constants 0 < A 6 B <∞ such that

A‖ f ‖2 6
∑
n∈I

|〈 f, φn〉|
2 6 B‖ f ‖2, ∀ f ∈ H, (3.7)

where 〈·, ·〉 and ‖ · ‖ are the inner product and norm, respectively, on H .

Let {φn}n∈I be the system constructed in (3.3). It is straightforward to see that
this is a frame for H = L2(Ω,µ). Indeed, let f ∈ L2(Ω,µ) and f̃ be its extension
by zero to D. Then by Parseval’s relation for the orthonormal basis {ψn}n∈I ,

∑
n∈I

|〈 f, φn〉L2(Ω,µ)|
2
=

∑
n∈I

|〈 f̃ , ψn〉L2(D,ν)|
2

(vΩ)2
=
‖ f̃ ‖2

L2(D,ν)

(vΩ)2
=
‖ f ‖2

L2(Ω,µ)

vΩ
,

where vΩ is given by (3.2). Hence (3.7) holds with A = B = 1/vΩ , making this
system a frame. Frames such as this for which A = B are known as tight frames.

A general property of frames is their redundancy: any f ∈ H can have infinitely
many expansions f =

∑
n∈I cnφn with coefficients {cn}n∈I ∈ `

2(I ). It is easy to see
how redundancy occurs in the polynomial frame. Indeed, let f̃ be any extension
of f to L2(D, ν) and define

cn = 〈 f̃ , ψn〉L2(D,ν),

as the coefficients of f̃ in the orthonormal basis {ψn}n∈I . Then {cn}n∈I ∈ `
2(I )

and ∑
n∈I

cnφn =
∑
n∈I

cnψn

∣∣∣∣
Ω

= f̃ |Ω = f.

Since there are infinitely many extensions of f to L2(D, ν), each with distinct
coefficients {cn}n∈I , it follows that there are infinitely many representations of f
in the frame {φn}n∈I .
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3.4. Least-squares polynomial frame approximations. Let Υ ={y1, . . . , yM}

⊂ Ω be a set of M distinct points (for the moment, we choose not to specify their
distribution) andΛ be a finite set of multi-indices of size |Λ| = N , where N 6 M .
Consider the approximation to f in the space PΛ by discrete least-squares fitting:

fΥ,Λ = argmin
p∈PΛ

1
M

∑
y∈Υ

| f (y)− p(y)|2.

If fΥ,Λ is expressed as
fΥ,Λ =

∑
n∈Λ

cnφn,

then this is equivalent to the algebraic least-squares problem

c = (cn)n∈Λ = argmin
x∈CN

‖Ax− b‖2, (3.8)

where

A = AΥ,Λ =

(
1
√

M
φn(y)

)
y∈Υ,n∈Λ

∈ CM×N, b = bΥ =
(

1
√

M
f (y)

)
y∈Υ
∈ CM.

Note that A may fail to be full rank—for example, if the points Υ are chosen
poorly or the functions φn, n ∈ Λ, are linearly dependent—in which case (3.8)
does not have a unique solution. However, even if it is full rank, as mentioned
in Section 2.2 and shown explicitly in Section 4.1, A is typically severely ill-
conditioned for large N . Hence it is necessary to regularize (3.8). We shall do this
via truncated singular value decompositions (that is, spectral filtering). (Related
strategies such as Tikhonov regularization could be used instead, with some
changes to the ensuing presentation.)

To this end, suppose that A has singular values {σn}n∈Λ and singular value
decomposition A = UΣV∗, where U ∈ CM×M ,Σ ∈ RM×N and V ∈ CN×N. Define

Aε = AΥ,Λ,ε = UΣ εV∗,

where the diagonal matrixΣ ε has nth entry σn if σn > ε and zero otherwise. Then
the truncated SVD least-squares approximation is defined as

fΥ,Λ,ε =
∑
n∈Λ

(cε)nφn, (3.9)

where its coefficients cε are given by

cε = (AΥ,Λ,ε)
†bΥ = V(Σ ε)

†U∗bΥ .

Here † denotes the pseudoinverse. We consider this approximation from now on.
Note that the regularization parameter ε is usually set in relation to some desired
target accuracy (see Section 8).
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3.5. Main example. We end this section by introducing our main example.
This is the case where Ω is bounded and, without loss of generality, contained
in D = (−1, 1)d , and where {ψn}n∈Nd

0
is the tensor Legendre polynomial basis

on D corresponding to the uniform probability measure dν(y) = 2−d dy. When
normalized with respect to the uniform probability measure on D, this basis is
defined by

ψn(y) =
d∏

k=1

√
2nk + 1Pnk (yk),

where Pn is the nth classical Legendre polynomial (see Appendix A). For the
truncated index set, we let Λ = ΛTD

n or Λ = ΛHC
n be either the total degree (3.5)

or hyperbolic cross (3.6) index set with index n. We also assume that the sampling
points y1, . . . , yM are drawn independently according to the measure µ, which in
this case is the uniform probability measure on Ω:

dµ(y) =
1

Vol(Ω)
dy. (3.10)

While this approach leads to concrete, d-independent sample complexity
estimates for many domains, we do not claim that it is an optimal sampling
procedure. See Sections 8 and 9 for further discussion.

REMARK 3.3. As mentioned, we assume that it is computationally feasible to
draw samples from µ. For the numerical examples shown later, this is achieved
by rejection sampling. Depending on the domain, however, and especially in high
dimensions, this may be a substantial challenge.

4. Accuracy and conditioning

We now investigate the accuracy and conditioning of approximation (3.9). In
Section 4.1, we show that least-squares matrix A is ill-conditioned for large N ,
thus explaining why regularization is needed. Next, in Section 4.2, we introduce
the key constant CΥ,Λ,ε , and in Section 4.3, we give the main result of this section.
Note that the approach in Sections 4.2 and 4.3 follows that of [6] (which applies
to general frames).

4.1. Ill-conditioning of the matrix A. Unless the frame happens to be a Riesz
basis (which is not the case in our setting), frame approximations always lead
to ill-conditioned least-squares matrices for sufficiently large truncation space Λ
[7, Lemma 5]. In the case of the polynomial frame, this is related to the Remez
inequality for the polynomial space PΛ over Ω and D. To see this, observe that
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the minimal and maximal singular values of A are

σmin(A) = inf
p∈PΛ
p 6=0


√

1
M

∑
y∈Υ |p(y)|2

‖p‖L2(D,ν)

, σmax(A) = sup
p∈PΛ
p 6=0


√

1
M

∑
y∈Υ |p(y)|2

‖p‖L2(D,ν)

.
For simplicity, assume that the constant function is contained in PΛ. This will
hold in all examples considered later. Letting p(y) = 1, we get σmax(A) > 1.
Conversely, note that 1

M

∑
y∈Υ |p(y)|

2 6 ‖p‖2
L∞(Ω) and let N(PΛ, D, ν) > 0 be

the optimal constant such that

‖p‖L∞(D) 6 N(PΛ, D, ν)‖p‖L2(D,ν), ∀p ∈ PΛ.

We refer to this as an (L2(D, ν), L∞(D))-Nikolskii inequality for the space PΛ.
Inequalities such as these will be discussed further in Section 6, since they are
pivotal in estimating the sample complexity of the approximation. This gives

1
σmin(A)

> (N(PΛ, D, ν))−1 sup
{
‖p‖L∞(D)

‖p‖L∞(Ω)
: p ∈ PΛ, p 6= 0

}
,

and therefore
cond(A) >

R(PΛ,Ω, D)
N(PΛ, D, ν)

, (4.1)

where R(PΛ,Ω, D) is the constant in the Remez inequality for the domains Ω
and D:

‖p‖L∞(D) 6 R(PΛ,Ω, D)‖p‖L∞(Ω), p ∈ PΛ.

Note that bound (4.1) is completely deterministic, and independent of the
samples Υ .

Typically, the right-hand side of (4.1) will grow rapidly with N . To see why,
note first that the Nikolskii constant is usually at most algebraic in N = |Λ|.
In particular, if ν is the uniform measure on D and Λ is a lower set, then
N(PΛ, D, ν) 6 N 2 [35, Theorem 6] (see also the proof of Theorem 6.5). Similar
bounds are found in [35] for other ultraspherical and Jacobi measures. Conversely,
the constant R(PΛ,Ω, D) is typically exponentially large in N . Its precise
behavior depends on the domainΩ and the index setΛ, and for the sake of brevity,
we will not consider this issue in depth. However, we note in passing that in the
one-dimensional case, for example, ifΛ = {0, . . . , N−1} and D = (−1, 1), then

R(PΛ,Ω, (−1, 1)) 6 TN−1(4/|Ω| − 1),

where TN−1 is the (N−1)th Chebyshev polynomial and |Ω| denotes the Lebesgue
measure of Ω . Moreover, equality holds if Ω = [−1,−1 + |Ω|] in which case
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one has the exponential growth

R(PΛ,Ω, (−1, 1)) >
1
2

(
4
|Ω|
− 1

)N−1

.

We refer to [29] for further information, including results in higher dimensions, as
well as to [47] for results on multivariate Remez inequalities for hyperbolic cross
index sets.

4.2. Key constants. For convenience, we now define the following operator

TΛ : CN
→ PΛ, c = {cn}n∈Λ 7→

∑
n∈Λ

cnφn.

This is commonly referred to as the synthesis operator in frame theory. We now
let

CΥ,Λ,ε = max{C ′Υ,Λ,ε,C ′′Υ,Λ,ε}, (4.2)

where
C ′Υ,Λ,ε = max

b∈CM

‖b‖2=1

‖TΛ(AΥ,Λ,ε)
†b‖L2(Ω,µ),

C ′′Υ,Λ,ε = ε
−1 max

d∈CN

‖d‖2=1

‖TΛd − TΛ(AΥ,Λ,ε)
†AΥ,Λd‖L2(Ω,µ).

(4.3)

It is useful to interpret these constants. First, define the reconstruction operator

LΥ,Λ,ε : CM
→ PΛ; b 7→ TΛ(AΥ,Λ,ε)

†b. (4.4)

This operator takes a vector of samples b ∈ CM to its truncated SVD
approximation in PΛ. In particular, if

SΥ : L∞(Ω)→ CM
; f 7→

{
1
√

M
f (y)

}
y∈Υ

(4.5)

is the operator taking a function f to its samples, then

fΥ,Λ,ε = LΥ,Λ,εSΥ f. (4.6)

The constant C ′Υ,Λ,ε is precisely the operator norm—or equivalently, since it is a
linear operator, the absolute condition number—of LΥ,Λ,ε with respect to the `2-
and L2(Ω,µ)-norms:

C ′Υ,Λ,ε = max
b∈CM

‖b‖2=1

‖LΥ,Λ,εb‖L2(Ω,µ).

In other words, boundedness of CΥ,Λ,ε implies robustness of the approximation to
perturbations in the data (for example, noise). On the other hand, C ′′Υ,Λ,ε also has
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the equivalent definition

C ′′Υ,Λ,ε = ε
−1 sup{‖p − pΥ,Λ,ε‖L2(Ω,µ) : p ∈ PΛ, ‖p‖L2(D,ν) = 1}.

In particular, C ′′Υ,Λ,0 = 0 since the unregularized mapping f 7→ fΥ,Λ,0 is a
projection onto PΛ. When ε > 0, this constant measures how close the map
f 7→ fΥ,Λ,ε is to being a projection onto PΛ.

4.3. Main result on accuracy and conditioning

THEOREM 4.1. Let f ∈ L∞(Ω,µ) and suppose that fΥ,Λ,ε is the truncated SVD
least-squares approximation. Then

‖ f − fΥ,Λ,ε‖L2(Ω,µ) 6 (1+ C ′Υ,Λ,ε)‖ f − p‖L∞(Ω) + εC ′′Υ,Λ,ε‖p‖L2(D,ν)

6 (1+ CΥ,Λ,ε)EΛ,ε( f ),

where C ′Υ,Λ,ε , C ′′Υ,Λ,ε and CΥ,Λ,ε are as in (4.3) and (4.2), respectively, and

EΛ,ε( f ) = inf{‖ f − p‖L∞(Ω) + ε‖p‖L2(D,ν) : p ∈ PΛ}. (4.7)

Moreover, the coefficients cε of fΥ,Λ,ε satisfy

‖cε‖2 = ‖ fΥ,Λ,ε‖L2(D,ν) 6
EΛ,ε( f )
ε

.

Proof. Let p = TΛc for some c ∈ CN . Then, recalling the definitions of the
constants C ′Υ,Λ,ε and C ′′Υ,Λ,ε , we have

‖ f − fΥ,Λ,ε‖L2(Ω,µ)

6 ‖ f − p‖L2(Ω,µ) + ‖pΥ,Λ,ε − fΥ,Λ,ε‖L2(Ω,µ) + ‖p − pΥ,Λ,ε‖L2(Ω,µ)

6 ‖ f − p‖L2(Ω,µ) + C ′Υ,Λ,ε‖SΥ ( f − p)‖2 + εC ′′Υ,Λ,ε‖p‖L2(D,ν)

6 (1+ C ′Υ,Λ,ε)‖ f − p‖L∞(Ω) + εC ′′Υ,Λ,ε‖p‖L2(D,ν),

which gives the first result. Note that in the third step, we use (4.5) to deduce that
‖SΥ ( f − p)‖2 6 ‖ f − p‖L∞(Ω) and the fact that µ is a probability measure, which
implies that ‖ f − p‖L2(Ω,µ) 6 ‖ f − p‖L∞(Ω). For the second result, we first use
Parseval’s identity to give ‖cε‖2 = ‖ fΥ,Λ,ε‖L2(D,ν) and then write

‖ fΥ,Λ,ε‖L2(D,ν) 6 ‖ fΥ,Λ,ε − pΥ,Λ,ε‖L2(D,ν) + ‖pΥ,Λ,ε‖L2(D,ν). (4.8)

Consider the first term. By (4.6), we have

‖ fΥ,Λ,ε − pΥ,Λ,ε‖L2(D,ν) = ‖TΛ(AΥ,Λ,ε)
†SΥ ( f − p)‖L2(D,ν)

= ‖(AΥ,Λ,ε)
†SΥ ( f − p)‖2

6
1
ε
‖SΥ ( f − p)‖2 6

1
ε
‖ f − p‖L∞(Ω). (4.9)
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Here in the second step we use Parseval’s identity, in the third step we use standard
properties of the SVD and in the fourth step we use (4.5). Now consider the second
term of (4.8). Observe that AΥ,Λ = SΥ TΛ. Hence, if p = TΛc, then using standard
properties of the SVD once more, we get

‖pΥ,Λ,ε‖L2(D,ν) = ‖TΛ(AΥ,Λ,ε)
†SΥ TΛc‖L2(D,ν)

= ‖(AΥ,Λ,ε)
†AΥ,Λc‖2

6 ‖c‖2 = ‖p‖L2(D,ν).

Combining this with (4.9) and substituting both into (4.8) now gives the second
result.

A few remarks are in order. First, to guarantee accuracy and good (absolute)
conditioning of the approximation, we need to ensure that CΥ,Λ,ε . 1. This
constant depends on the polynomial space, the data and the threshold ε, but is
independent of the function f . In Section 6, we derive bounds for this constant.
Second, once CΥ,Λ,ε is bounded, the approximation error is determined via the
term EΛ,ε( f ), which depends on f and the polynomial space but is independent
of the data. We estimate this term for functions in certain Sobolev spaces in
Section 5.

Third, we note that the coefficients of the ensuing approximation are bounded
by the approximation error divided by ε. Thus, although the coefficients may
initially be O(1/ε), they are O(1) in the limit as the dimension N of the
approximation space PΛ tends to infinity. Note that bounded coefficients are
particularly important for practical computations, since these are the values that
will be stored. Indeed, if the coefficients could grow arbitrarily large in relation to
the function f , then the pointwise evaluation operator cε 7→ fΥ,Λ,ε(x) would be
ill-conditioned.

Fourth and finally, we note that CΥ,Λ,ε 6 1/(
√
vΩε) for any Υ , Λ and ε > 0

[6, Proposition 4.6]. In other words, the ill-conditioning of the reconstruction
operator scales at worst like 1/ε.

5. Approximation error for Legendre polynomial frames

We now consider the approximation error EΛ,ε( f ), defined by equation (4.7).
In doing so, we treat the following two scenarios separately:

(i) f defined and smooth over D;

(ii) f undefined or nonsmooth over D.
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We first require several notions of smoothness. Let

H m(Ω,µ) = { f ∈ L2(Ω,µ) : Dj f ∈ L2(Ω,µ) : |j|1 6 m} (5.1)

be the classical Sobolev spaces of index m > 0 on Ω , with norm

‖ f ‖Hm (Ω,µ) =

√∑
|j|16m

‖Dj f ‖2
L2(Ω,µ).

Here Dj
=

∂ |j|1

∂
j1
y1 ···∂

jd
yd

is the partial derivative operator of order j. These spaces are

suitable for approximations using the tensor product or total degree spaces in
low dimensions. For moderate to high dimensions, we instead consider Sobolev
spaces of dominating mixed smoothness:

H m
mix(D, ν) = { f ∈ L2(D, ν) : Dj f ∈ L2(D, ν) : |j|∞ 6 m}, (5.2)

with norm

‖ f ‖Hm
mix(D,ν)

=

√ ∑
|j|∞6m

‖Dj f ‖2
L2(D,ν).

5.1. Results for the classical Sobolev spaces Hm. We first consider the tensor
product and total degree index sets.

THEOREM 5.1. Let PΛ be constructed from the tensor Legendre polynomial basis
on L2(D, ν), where D = (−1, 1)d , ν is the uniform measure on D, and Λ = Λn

is either the tensor product (3.4) or total degree (3.5) index set of degree n. If
Ω ⊆ D and f ∈ H m(D, ν) for some m > d/2, then

EΛ,ε( f ) 6 cm,d‖ f ‖Hm (D,ν)nθ(d)−m
+ ε‖ f ‖L2(D,ν),

where

θ(d) =


d(2d + 1)

2d + 2
odd d

d(2d + 3)
2d + 4

even d.
(5.3)

Conversely, if Ω ⊆ D is Lipschitz and f ∈ H m(Ω,µ), where µ is the uniform
measure on Ω and m > d/2, then

EΛ,ε( f ) 6 cm,d,Ω(nθ(d)−m
+ ε)‖ f ‖Hm (Ω,µ).
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Proof. Let Λ = ΛTP
n . In the first case, since f is defined over the whole of D, we

may let p = fΛ be its orthogonal projection onto span{ψn : n ∈ Λ} ⊂ L2(D, ν).
Then

EΛ,ε( f ) 6 ‖ f − fΛ‖L∞(D)+ε‖ fΛ‖L2(D,ν) 6 ‖ f − fΛ‖L∞(D)+ε‖ f ‖L2(D,ν). (5.4)

It remains to estimate the first term. For this, we first use the Gagliardo–Nirenberg
inequality (see, for example, [30]) to give

‖ f − fΛ‖L∞(D) 6 ck,d‖ f − fΛ‖
d
2k
H k (D,ν)‖ f − fΛ‖

1− d
2k

L2(D,ν), d < 2k 6 2m.

We now use the estimate

‖ f − fΛ‖H l (D,ν) 6 cl,m,dnσ(l)−m
‖ f ‖Hm (D,ν),

where σ(l) = 0 for l = 0 and σ(l) = 2l − 1/2 for l > 0 (see, for example,
[17, (5.8.11)]). Hence

‖ f− fΛ‖L∞(D) 6 ck,m,dn
d(2k−1/2−m)

2k −m(1− d
2k )‖ f ‖Hm (D,ν) = ck,m,dnd(1− 1

4k )−m
‖ f ‖Hm (D,ν).

Setting k = d+1
2 (odd d) or k = d+2

2 (even d) and substituting into (5.4) yields the
first result for Λ = ΛTP

n . For the total degree index set Λ = ΛTD
n , we first recall

that ΛTP
n/d ⊆ Λ

TP
n . We therefore let p = fΛTP

n/d
so that

EΛTD
n ,ε( f ) 6 ‖ f − fΛTP

n/d
‖L∞(D) + ε‖ f ‖L2(D,ν).

The result for this index set now follows from the previous bound for ΛTD
n .

Now consider the case where Ω is Lipschitz and f ∈ H m(Ω,µ). We follow
the argument of [7, Proposition 5.8]. We first note that there is an extension g of
f to H m(D, ν) satisfying

‖g‖Hm (D,ν) 6 cm,d,Ω‖ f ‖Hm (Ω,µ).

Now let p = gΛ be the orthogonal projection of g onto span{ψn : n ∈ Λ}. Then

‖p‖L2(D,ν) 6 ‖g‖L2(D,ν) 6 cm,d,Ω‖ f ‖Hm (Ω,µ),

and, by the previously derived result,

‖ f − p‖L∞(Ω) 6 ‖g − gΛ‖L∞(D) 6 cm,d,Ωnθ(d)−m
‖g‖Hm (D,ν)

6 cm,d,Ωnθ(d)−m
‖ f ‖Hm (Ω,µ).

This gives the second result.
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Unsurprisingly, in scenario (i), one obtains a slightly better error bound, where
the constant in the ε term involves the smaller L2-norm as opposed to the
H m-norm. For completeness, we now also consider the hyperbolic cross index
set.

THEOREM 5.2. Let PΛ be constructed from the tensor Legendre polynomial basis
on L2(D, ν), where D = (−1, 1)d , ν is the uniform measure on D, and Λ = Λn

is the hyperbolic cross index set (3.6) of degree n. If Ω ⊆ D and f ∈ H m(D, ν)
for some m > d/2, then

EΛ,ε( f ) 6 cm,d‖ f ‖Hmd (D,ν)n
θ(d)−m

d + ε‖ f ‖L2(D,ν),

where θ(d) is as in (5.3). Conversely, if Ω ⊆ D is Lipschitz and f ∈ H m(Ω,µ),
where µ is the uniform measure on Ω and m > d/2, then

EΛ,ε( f ) 6 cm,d,Ω

(
n
θ(d)−m

d + ε
)
‖ f ‖Hm (Ω,µ).

Proof. Let n∗ = b(n + 1)1/d − 1c and observe that ΛTP
n∗ ⊆ Λ

HC
n . We now use the

arguments from the proof of the previous theorem.

As is to be expected, Theorems 5.1 and 5.2, which assume only classical
Sobolev regularity, all exhibit the curse of dimensionality. This can be seen by
noting that

nθ(d)−m
� N

d−m
d , n→∞,

for fixed d whenever Λ is the total degree or tensor product index set, since in
both cases N = |Λ| � nd . Conversely, for the hyperbolic cross index set, one has

n
d−m

d � N
d−m

d (log(N ))
(m−d)(d−1)

d ,

since in this case N � n(log(n))d−1.

5.2. Results for the mixed Sobolev spaces Hm
mix. Seeking to mitigate the

curse of dimensionality when using the hyperbolic cross index set, we now
consider the mixed Sobolev spaces H m

mix(D, ν).

THEOREM 5.3. Let PΛ be constructed from the tensor Legendre polynomial
basis on L2(D, ν), where D = (−1, 1)d and ν is the uniform measure on D.
If f ∈ H m

mix(D, ν) for some m > 1, then

EΛ,ε( f ) 6


cm,d‖ f ‖Hm

mix(D,ν)n
1−m
+ ε‖ f ‖L2(D,ν) Λ = ΛTP

n or Λ = ΛTD
n

cm,d‖ f ‖Hm
mix(D,ν)n

1−m(log n)
d−1

2

+ ε‖ f ‖L2(D,ν) Λ = ΛHC
n .
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Furthermore, if Ω is compactly contained in D, then

EΛ,ε( f ) 6


cm,d,Ω‖ f ‖Hm

mix(D,ν)n
1/2−m

+ ε‖ f ‖L2(D,ν) Λ = ΛTP
n or Λ = ΛTD

n

cm,d,Ω‖ f ‖Hm
mix(D,ν)n

1/2−m(log n)
d−1

2

+ ε‖ f ‖L2(D,ν) Λ = ΛHC
n .

Proof. Since f ∈ L2(D, ν), we may let p = fΛ be its orthogonal projection onto
span{ψn : n ∈ Λ}. Then, using (A.1), (A.2) and (A.4), we obtain

‖ f − fΛ‖L∞(D) 6
∑
n/∈Λ

d∏
k=1

√
2nk + 1|〈 f, ψn〉L2(D,ν)|

6

(∑
n/∈Λ

χmix
n,m |〈 f, ψn〉L2(D,ν)|

2

)1/2 (∑
n/∈Λ

∏d
k=1(2nk + 1)
χmix

n,m

)1/2

,

6 ‖ f ‖H̃m
mix(D,ν)

(∑
n/∈Λ

∏d
k=1(2nk + 1)
χmix

n,m

)1/2

,

where H̃ m
mix(D, ν) and χmix

n,m are as in (A.3) and (A.5), respectively. Observe that

χmix
n,m > cm,d

(
d∏

k=1

(nk + 1)

)2m

for some constant cm,d , and therefore

‖ f − fΛ‖L∞(D) 6 cm,d‖ f ‖Hm
mix(D,ν)

(∑
n/∈Λ

d∏
k=1

(nk + 1)1−2m

)1/2

, (5.5)

where we also note that ‖ f ‖H̃m
mix(D,ν)

6 cm,d‖ f ‖Hm
mix(D,ν). We now specify the index

set. First, suppose that Λ = ΛTP
n . Let [d] denote the set of ordered tuples with

entries in {1, . . . , d}. Then

∑
n/∈Λ

d∏
k=1

(nk + 1)1−2m
=

∑
σ∈[d]

n∑
nk=0
k /∈σ

∑
nk>n
k∈σ

d∏
k=1

(nk + 1)1−2m

=

∑
σ∈[d]

(
1+

n∑
l=1

l1−2m

)d−|σ | (∑
l>n

l1−2m

)|σ |
6 cm,dn2−2m .

Substituting into (5.5) now gives the result for Λ = ΛTP
n . Moreover, the result for

the total degree index set now follows as well, after noting that ΛTD
n ⊇ ΛTP

n/d .

https://doi.org/10.1017/fms.2020.23 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.23


B. Adcock and D. Huybrechs 24

Finally, for the hyperbolic cross index Λ = ΛHC
n set we use, for example,

[1, Lemma 2.30] to get∑
n/∈Λ

d∏
k=1

(nk + 1)1−2m 6 cm,dn2−2m(log(n))d−1,

as required.
It remains to consider the case where Ω is compactly contained in D. We first

recall that univariate Legendre polynomials are uniformly bounded in compact
subintervals of (−1, 1):

|ψn(y)| 6 cr , −1+ r 6 y 6 1− r, ∀n ∈ N0, 0 < r < 1,

for some cr > 0. Hence ‖φn‖L∞(Ω) 6 cΩ , ∀n ∈ Nd
0 . Letting p = fΛ and arguing

as before, we get

‖ f − fΛ‖L∞(Ω) 6 cm,d,Ω‖ f ‖Hm
mix(D,ν)

(∑
n/∈Λ

1
χmix

n,m

)1/2

6 cm,d,Ω‖ f ‖Hm
mix(D,ν)

(∑
n/∈Λ

d∏
k=1

(nk + 1)−2m

)1/2

.

We now proceed in the same way, replacing the exponent 1 − 2m by −2m
throughout.

6. Sample complexity

In this section, we consider the efficiency of the approximation. In view of
Theorem 4.1, this requires estimating the constant CΥ,Λ,ε defined in (4.2). Our
main results are twofold. First, in Section 6.2, we show that when the sample
points are drawn independently according to a suitable measure on Ω , then the
sample complexity can always be related to the constant of a certain Nikolskii
inequality for the polynomial space PΛ. Second, in Section 6.3, we show that for
domains satisfying a suitable property, this constant is at most log-quadratic in
the dimension N of the polynomial space PΛ.

6.1. The constant CΥ,Λ. It is difficult to analyze CΥ,Λ,ε directly, since it is
defined in terms of the singular values and singular vectors of the matrix A. In
order to provide concrete bounds, we now consider

CΥ,Λ = sup

{
‖p‖L2(Ω,µ) : p ∈ PΛ,

1
M

∑
y∈Υ

|p(y)|2 = 1

}
.
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Note that CΥ,Λ depends only on the samples Υ and the space PΛ. Unlike CΥ,Λ,ε ,
it is independent of functions φn, n ∈ Λ, used to span this space and consequently
the domain D as well. We also have the following.

LEMMA 6.1. Let CΥ,Λ,ε be as in (4.2). Then CΥ,Λ,ε 6 CΥ,Λ and moreover CΥ,Λ =

CΥ,Λ,ε whenever the minimum singular value of A = AΥ,Λ satisfies σmin(A) > ε.

Proof. Recall that CΥ,Λ,ε is the maximum of C ′Υ,Λ,ε and C ′′Υ,Λ,ε . Consider C ′Υ,Λ,ε .
Let b ∈ CM , ‖b‖2 = 1, and note that TΛ(AΥ,Λ,ε)

†b ∈ PΛ. Hence, by the definition
of CΥ,Λ and (4.5), we have

‖TΛ(AΥ,Λ,ε)
†b‖L2(Ω,µ) 6 CΥ,Λ‖SΥ TΛ(AΥ,Λ,ε)

†b‖2.

Note that A = AΥ,Λ = SΥ TΛ. By standard properties of the SVD,

‖SΥ TΛ(AΥ,Λ,ε)
†b‖2 6 ‖b‖2 = 1,

and therefore ‖TΛ(AΥ,Λ,ε)
†b‖L2(Ω,µ) 6 CΥ,Λ. Since b was arbitrary, we get

C ′Υ,Λ,ε 6 CΥ,Λ.
On the other hand, suppose that σmin(A) > ε. Let p = TΛc ∈ PΛ with
‖SΥ p‖2 = 1. Let b = SΥ p and write p = TΛc. Then

C ′Υ,Λ,ε > ‖TΛ(AΥ,Λ,ε)
†SΥ TΛc‖L2(Ω,µ) = ‖TΛ(AΥ,Λ,ε)

†AΥ,Λc‖L2(Ω,µ)

= ‖TΛc‖L2(Ω,µ) = ‖p‖L2(Ω,µ),

where in the third step we use the fact that AΥ,Λ is full rank. Hence, since p was
arbitrary, we get C ′Υ,Λ,ε > CΥ,Λ, and therefore C ′Υ,Λ,ε = CΥ,Λ in this case.

Finally, consider C ′′Υ,Λ,ε . Let d ∈ CN , ‖d‖2 = 1. Then

‖TΛd − TΛ(AΥ,Λ,ε)
†TΛd‖L2(Ω,µ) 6 CΥ,Λ‖SΥ (TΛd − TΛ(AΥ,Λ,ε)

†AΥ,Λd)‖2

= CΥ,Λ‖(AΥ,Λ − AΥ,Λ(AΥ,Λ,ε)
†AΥ,Λ)d‖2

= CΥ,Λ‖U (Σ −Σ ε)V∗d‖2 6 CΥ,Λε‖d‖2.

Since d was arbitrary, we get C ′′Υ,Λ,ε 6 CΥ,Λ as required. On the other hand, if
σmin(A) > ε, then Σ −Σ ε = 0. Hence C ′′Υ,Λ,ε = 0.

6.2. Random sampling for compact domains and Nikolskii inequalities.
We now show that CΥ,Λ can be bounded using the constant of a suitable Nikolskii
inequality for the space PΛ ⊂ L2(Ω,µ). To this end, let N (PΛ,Ω,µ) be the
smallest positive number in the (L2(Ω,µ), L∞(Ω))-Nikolskii inequality

‖p‖L∞(Ω) 6 N(PΛ,Ω,µ)‖p‖L2(Ω,µ), ∀p ∈ PΛ. (6.1)

Then we have the following result.
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THEOREM 6.2. Let 0 < δ, γ < 1 and suppose that y1, . . . , yM are independent
and randomly drawn according to the probability measure µ defined by (3.2). If

M > (N(PΛ,Ω,µ))2((1− δ) log(1− δ)+ δ)−1 log(N/γ ),

where N = |Λ| and N(PΛ,Ω,µ) is the constant of the Nikolskii inequality (6.1),
then with probability at least 1− γ the quantity CΥ,Λ satisfies

CΥ,Λ 6
1

√
1− δ

.

Proof. Our proof is based on essentially the same arguments as those used in
previous works (see, for example, [22]). First, let {Φn}n∈Λ be an orthonormal basis
for PΛ in L2(Ω,µ). Let p ∈ PΛ be arbitrary and write p =

∑
n∈Λ cnΦn, so that

‖p‖2
L2(Ω,µ) =

∫
Ω

|p(y)|2 dµ(y) = ‖c‖2
2,

where c = (cn)n∈Λ, and 1
M

∑
y∈Υ |p(y)|

2
= c∗Bc, where B ∈ CN×N is the self-

adjoint matrix with

(B)m,n =
1
M

∑
y∈Υ

Φm(y)Φn(y), m,n ∈ Λ.

It follows that CΥ,Λ = 1/
√
λmin(B), where λmin(B) is the minimal eigenvalue of B.

We estimate this quantity by writing it in the usual way as the sum of random
matrices:

B =
M∑

m=1

Xm, Xm =

{
1
M
Φm(ym)Φn(ym)

}
m,n∈Λ

.

By construction, these matrices are independent, nonnegative definite and satisfy
E(Xm) =

1
M I, where I is the identity matrix. Moreover, for any c ∈ CN we have

c∗Xmc =
1
M

∣∣∣∣∣∑
n∈Λ

cnΦn(ym)

∣∣∣∣∣
2

6
(N(PΛ,Ω,µ))2

M

∥∥∥∥∥∑
n∈Λ

cnΦn

∥∥∥∥∥
2

L2(Ω,µ)

=
(N(PΛ,Ω,µ))2

M
‖c‖2

2.

The matrix Chernoff bound (see, for example, [48, Theorem 1.1]) now gives

P(λmin(X) 6 (1− δ)) 6 N exp
(
−
(1− δ) log(1− δ)+ δ
M−1(N(PΛ,Ω,µ))2

)
.

Setting the right-hand side equal to γ and rearranging yields the result.
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This leads to the following result on accuracy of the truncated SVD least-
squares approximation.

COROLLARY 6.3. Let 0 < δ, γ < 1 and suppose that y1, . . . , yM are independent
and randomly drawn according to the probability measure µ defined by (3.2). Let

M > (N(PΛ,Ω,µ))2((1− δ) log(1− δ)+ δ)−1 log(N/γ ),

where N = |Λ| and N(PΛ,Ω,µ) is the constant of the Nikolskii inequality (6.1).
Then with probability at least 1 − γ the truncated SVD least-squares
approximation fΥ,Λ,ε of f ∈ L∞(Ω) satisfies

‖ f − fΥ,Λ,ε‖L2(Ω,µ) 6

(
1+

1
√

1− δ

)
EΛ,ε( f ),

where EΛ,ε( f ) is as in (4.7).

6.3. The λ-rectangle property and log-quadratic sample complexity. We
now consider N (PΛ,Ω,µ). Estimating this constant for general irregular
domains in arbitrarily many dimensions is an open problem. We shall not attempt
to resolve it in full generality here (see Section 9 for some further discussion).
Instead, we show that this constant is at most log-quadratic for a large class of
irregular domains whenever µ is the uniform measure.

The types of domain we now consider are those satisfying the so-called
following property.

DEFINITION 6.4 (λ-rectangle property). A compact domain Ω has the
λ-rectangle property for some 0 < λ < 1 if it can be written as a (possibly
overlapping and uncountable) union

Ω =
⋃
R∈R

R

of hyperrectangles R satisfying

inf
R∈R

Vol(R) = λVol(Ω).

There are many domains of interest that have this property. We now list several
examples:

• L-shaped domains. These are unions of two rectangles, so they clearly have
this property.
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Figure 1. Examples of domains that have the λ-rectangle property: (a) is an
L-shaped domain, (b) is a domain with a linear constraint, and (c) is a domain
with an exclusion.

• Domains with linear constraints. The domain

Ω = {−1 6 y1, y2 6 1, y1 + y2 6 1},

along with its various higher-dimensional generalizations, can be expressed as

Ω =
⋃

x∈[0,1]

Rx , Rx = [−1, x] ⊗ [−1, 1− x].

Hence it has the λ-rectangle property with λ = 4/7. Note that such domains can
occur in problems such as surrogate forward model construction in parameter
studies; for instance, whenever two parameters y1 and y2, rather than being
independent, satisfy a (possibly a priori unknown) linear relation.

• Domains with exclusions. The domain

Ω = {−1 6 y1, y2 6 1, y2
1 + y2

2 > 1/2},

along with various generalizations, also satisfies the λ-rectangle property. Note
that such domains correspond to practical scenarios where, due to certain
physical constraints, f (y) can only be evaluated for y not too close to zero.

See Figure 1 for illustrations. On the other hand, there are a number of notable
domains that do not have this property. These include the unit Euclidean ball
{y ∈ Rd

: ‖y‖2 6 1} and the simplex {y ∈ Rd
: 0 6 y1, . . . , yd−1 6 1, 0 6 yd 6

1− (y1 + · · · + yd−1)}. See Section 9 for additional details.

THEOREM 6.5. Suppose that Ω ⊆ (−1, 1)d has the λ-rectangle property and
let PΛ be constructed from the tensor Legendre polynomial basis on (−1, 1)d ,
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where Λ is any lower set (see Definition 3.1) of cardinality |Λ| = N. Let µ be
the uniform probability measure on Ω and N(PΛ,Ω,µ) be the constant in the
Nikolskii inequality (6.1). Then

(N(PΛ,Ω,µ))2 6
N 2

λ
.

Proof. We first claim that PΛ = span{φn : n ∈ Λ} coincides with the space

PΛ = span {y ∈ Ω 7→ yn
: n = (n1, . . . , nd) ∈ Λ} .

Here we use the notation yn
= yn1

1 · · · y
nd
d . Since φn(y) is a tensor Legendre

polynomial, we have

φn(y) =
d∏

k=1

ψ (k)
nk
(yk) =

d∏
k=1

(
nk∑

mk=0

amk ,nk ynk
k

)
=

n1∑
m1=0

· · ·

nd∑
md=0

am,nym,

where amk ,nk are the coefficients of ψ (k)
nk

in the monomial basis and am,n =∏d
k=1 amk ,nk . Since mk 6 nk for all k, it follows from the lower set assumption

that m ∈ Λ and therefore φn ∈ PΛ. Hence PΛ ⊆ PΛ. In a similar manner, one also
finds that y 7→ yn is in PΛ, and therefore PΛ ⊆ PΛ, as required.

Now let p ∈ PΛ and y ∈ Ω with y ∈ R for some R ∈ R. Define the uniform
measure on R as

dµ̃(y) =
1

Vol(R)
dy,

and note that |p(y)|6 N(PΛ, R, µ̃)‖p‖L2(R,µ̃), where N(PΛ, R, µ̃) is the Nikolskii
constant for the space PΛ with respect to L2(R, µ̃). It is known that (N(PΛ, R,
µ̃))2 6 N 2 [35, Theorem 6]. Also

‖p‖2
L2(R,µ̃) =

1
Vol(R)

∫
R
|p(y)|2 dy 6

Vol(Ω)
Vol(R)

∫
Ω

|p(y)|2 dµ(y) 6
1
λ
‖p‖2

L2(Ω,µ).

Hence |p(y)|2 6 N 2

λ
‖p‖2

L2(Ω,µ)
. Since y ∈ Ω and p ∈ PΛ were arbitrary, we now

get the result.

Combining this with Corollary 6.3 now gives the following.

COROLLARY 6.6. Suppose that Ω ⊆ (−1, 1)d has the λ-rectangle property and
let PΛ be constructed from the tensor Legendre polynomial basis on (−1, 1)d ,
where Λ is any lower set of cardinality |Λ| = N. Let 0 < δ, γ < 1 and suppose
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that y1, . . . , yM are independent and randomly drawn according to the uniform
probability measure on Ω . If

M > N 2λ−1((1− δ) log(1− δ)+ δ)−1 log(N/γ ),

where N = |Λ|, then with probability at least 1 − γ the truncated SVD least-
squares approximation fΥ,Λ,ε of f ∈ L∞(Ω,µ) satisfies

‖ f − fΥ,Λ,ε‖L2(Ω,µ) 6

(
1+

1
√

1− δ

)
EΛ,ε( f ),

where EΛ,ε( f ) is as in (4.7).

7. Truncated estimators and L2-error bounds

The error bounds proved in Corollary 6.3 and elsewhere have the limitation
of relating (in probability) the L2-norm of the error to an approximation error
EΛ,ε( f ) measured in the L∞-norm. In this penultimate section, we show that it
is possible to bound the L2-norm of a related estimator in expectation in terms of
the L2-norm approximation error

ẼΛ,ε( f ) = inf{‖ f − p‖L2(Ω,µ) + ε‖p‖L2(D,ν) : p ∈ PΛ}. (7.1)

We follow the approach of [22]. First, suppose that f ∈ L∞(Ω,µ) and let L > 0
be such that ‖ f ‖L∞(Ω) 6 L . Now define the truncation operator

TL(g)(y) = sign(g(y))min{|g(y)|, L},

where sign(z) denotes the complex sign of z ∈ C. If fΥ,Λ,ε is the truncated SVD
least-squares approximation, we now consider the new approximation

fΥ,Λ,ε,L = TL( fΥ,Λ,ε). (7.2)

Our main result is now the following.

THEOREM 7.1. Let 0 < δ, γ < 1 and f ∈ L∞(Ω) with ‖ f ‖L∞(Ω) 6 L for some
L > 0. Let y1, . . . , yM be independent and randomly drawn according to µ and
fΥ,Λ,ε,L be as in (7.2). If ẼΛ,ε( f ) is as in (7.1) and

M > (N(PΛ,Ω,µ))2((1− δ) log(1− δ)+ δ)−1 log(N/γ ), (7.3)

where N = |Λ| and N(PΛ,Ω,µ) is the constant of the Nikolskii inequality (6.1),
then

E(‖ f − fΥ,Λ,ε,L‖2
L2(Ω,µ)) 6 3

2− δ
1− δ

(ẼΛ,ε( f ))2 + 4L2γ.
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Proof. The proof is based on [22, Theorem 2]. Let E be the event CΥ,Λ,ε 6
1
√

1−δ
,

where CΥ,Λ,ε is as in (4.2). Lemma 6.1, Theorem 6.2 and the measurement
condition (7.3) give that P(E c) 6 γ . Now let dµ be the uniform measure on
Ω and dµM = dµ⊗ · · · ⊗ dµ be the probability measure of the draw y1, . . . , yM .
Then

E(‖ f − fΥ,Λ,ε,L‖2
L2(Ω,µ)) dµM

=

∫
E
‖ f − fΥ,Λ,ε,L‖2

L2(Ω,µ) dµM +

∫
Ec
‖ f − fΥ,Λ,ε,L‖2

L2(Ω,µ) dµM

6
∫

E
‖ f − fΥ,Λ,ε,L‖2

L2(Ω,µ) dµM + 4L2γ. (7.4)

It remains to bound the first term. Assume the event E occurs and let p ∈ PΛ be
such that ‖ f − p‖L2(Ω,µ) + ε‖p‖L2(D,ν) = ẼΛ,ε( f ) (it is straightforward to show
that such a minimizer exists, since PΛ is finite-dimensional). Then, arguing as in
the proof of Theorem 4.1 and using the fact that CΥ,Λ,ε 6

1
√

1−δ
, we have

‖ f − fΥ,Λ,ε,L‖2
L2(Ω,µ)

6 (‖ f − p‖L2(Ω,µ) + C ′Υ,Λ,ε‖SΥ ( f − p)‖2 + εC ′′Υ,Λ,ε‖p‖L2(D,ν))
2

6 3‖ f − p‖2
L2(Ω,µ) +

3
1− δ

‖SΥ ( f − p)‖2
2 +

3ε2

1− δ
‖p‖2

L2(D,ν).

Hence∫
E
‖ f − fΥ,Λ,ε,L‖2

L2(Ω,µ) dµM 6 3‖ f − p‖2
L2(Ω,µ) +

3
1− δ

E(‖SΥ ( f − p)‖2
2)

+
3ε2

1− δ
‖p‖2

L2(D,ν).

Observe that E(‖SΥ ( f − p)‖2
2) = E| f (y)− p(y)|2 = ‖ f − p‖2

L2(Ω,µ)
. Therefore

we obtain∫
E
‖ f − fΥ,Λ,ε,L‖2

L2(Ω,µ) dµM 6 3
2− δ
1− δ

(‖ f − p‖2
L2(Ω,µ) + ε

2
‖p‖2

L2(D,ν))

6 3
2− δ
1− δ

(ẼΛ,ε( f ))2.

Substituting this into (7.4) now gives the result.

Much like in Section 5, we can establish bounds for ẼΛ,ε( f ) under different
regularity conditions.
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THEOREM 7.2. Let PΛ be constructed from the tensor Legendre polynomial basis
on L2(D, ν), where D = (−1, 1)d , ν is the uniform measure on D, and Λ = Λn

is either the tensor product (3.4) or total degree (3.5) index set of degree n. If
Ω ⊆ D and f ∈ H m(D, ν) for some m > 1, then

ẼΛ,ε( f ) 6 cm,d‖ f ‖Hm (D,ν)n−m
+ ε‖ f ‖L2(D,ν).

Conversely, if Ω ⊆ (−1, 1)d is Lipschitz and f ∈ H m(Ω,µ), where µ is the
uniform measure on Ω and m > 1, then

ẼΛ,ε( f ) 6 cm,d,Ω(n−m
+ ε)‖ f ‖Hm (Ω,µ).

Finally, if Λ = ΛHC
n is the hyperbolic cross index set (3.6), then the same results

hold with n−m replaced by n−m/d .

Proof. As in the proof of Theorem 5.1, if f ∈ H m(D, ν), we let fΛ be the
orthogonal projection of f onto span{ψn : n ∈Λ} ⊂ L2(D, ν). Then by Parseval’s
identity and (A.4),

‖ f − fΛ‖2
L2(D,ν) =

∑
n/∈Λ

|〈 f, ψn〉L2(D,ν)|
2 6

1
minn/∈Λ{χn,m}

∑
n/∈Λ

χn,m |〈 f, ψn〉L2(D,ν)|
2

6
1

minn/∈Λ{χn,m}
‖ f ‖2

H̃m (D,ν).

It remains to bound minn/∈Λ{χn,m} for the three index sets. Using (A.5), we first
observe that

χn,m =
∑
|j|16m

d∏
k=1

(nk(nk + 1)) jk > |n|2m
∞
> n2m, n /∈ ΛTP

n .

Similarly, for the total degree index set

χn,m > cm,d |n|2m
1 > cm,dn2m, n /∈ ΛTD

n ,

and for the hyperbolic cross

χn,m > cm,d |n|
2m/d
hc > cm,dn2m/d, n /∈ ΛHC

n .

This gives the first result. For the second result, we argue as in the proof of
Theorem 5.1 to construct an extension g ∈ H m(D, ν) of f , and then use the
previously derived bounds.
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THEOREM 7.3. Let PΛ be constructed from the tensor Legendre polynomial basis
on L2(D, ν), where D = (−1, 1)d and ν is the uniform measure on D. If f ∈
H m

mix(D, ν) for some m > 1, then

ẼΛ,ε( f ) 6 cm,d‖ f ‖Hm
mix(D,ν)n

−m
+ ε‖ f ‖L2(D,ν)

when Λ = ΛTP
n , Λ = ΛTD

n or Λ = ΛHC
n .

Proof. Consider the setup of the previous proof. We have

‖ f − fΛ‖2
L2(D,ν) 6

1
minn/∈Λ{χmix

n,m }
‖ f ‖2

H̃m
mix(D,ν)

,

where χmix
n,m is as in (A.5). We now observe that

χmix
n,m =

∑
|j|∞6m

d∏
k=1

(nk(nk + 1)) jk > cm,d |n|2m
hc > cm,dn2m, n /∈ Λ,

where Λ is any of the three index sets considered. The result now follows
immediately.

8. Numerical results and discussion

We conclude this paper with several numerical experiments illustrating the
theoretical results. Unless otherwise stated, we use Legendre polynomials on
D = (−1, 1)d , hyperbolic cross index sets, samples drawn independently from
the uniform measure on Ω and a threshold parameter ε = 10−8.

8.1. Function regularity. We first consider the approximation of several
bivariate functions. The left panel of Figure 2 shows the approximation of a
smooth function on the domain Ω = {y : f (y) > 0}. The function is singular
on D\Ω . Yet, as predicted by the results of Section 5, this does not hamper
its approximation on Ω . The right panel shows the approximation of a function
defined on the Mandelbrot set. This domain is not Lipschitz, but since the function
has a smooth extension to the whole of D, an accurate approximation is obtained.
This also agrees with the results of Section 5. Note that in neither case does the
domain need to be known in advance in order to compute the approximation. It is
defined implicitly by the data.

8.2. Sample complexity. In Figure 3, we examine the sample complexity of
polynomial frame approximations for a two-dimensional circular domain. This
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Figure 2. Pointwise error for polynomial frame approximations over two bivariate
domains.

requires computing the constant CΥ,Λ,ε , which is discussed in the remark below.
Figure 3(a) suggests that quadratic oversampling is sufficient in this case, even
though the domain is not of λ-rectangle type. Moreover, linear or log-linear
oversampling results in exponential increase of CΥ,Λ,ε , up to roughly 1/ε (recall
that CΥ,Λ,ε . 1/ε; see Section 4.3). On the other hand, Figures 3(b),(c) suggest
that log-linear oversampling is sufficient whenever domain Ω does not touch the
bounding cube D. Furthermore, the constant CΥ,Λ,ε gets smaller (for the same
level of oversampling) as the radius r of the domain decreases, or in other words,
as the distance between the boundary of Ω and the boundary of D grows. These
interesting observations, which are at odds with the log-quadratic rates predicted
in Section 6, have been thoroughly documented in the one-dimensional case in
the related setting when trigonometric polynomials are used instead of algebraic
polynomials [8, 10].

While we currently have no proof, it is possible to give an intuitive explanation
for this phenomenon. The sample complexity relates to the maximal growth of
a polynomial (in an L2-sense) on Ω when it is bounded at M points in Ω .
A polynomial that grows large in this sense must also be large on D\Ω , and
therefore have large coefficients when represented in the Legendre basis. Yet,
when regularizing via the truncated SVD (which prohibits large coefficients),
such polynomials are excluded from the resulting approximation space. This
also explains why the constant CΥ,Λ,ε decreases as r decreases: for r = 1
the boundaries of Ω and D intersect, but as r decreases these boundaries are
increasingly separated. Formalizing this intuition into a proof is an open problem.
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Figure 3. The constant CΥ,Λ,ε against N for ε = 10−6 (top row), ε = 10−8 (middle
row) and ε = 10−10 (bottom row). The domain Ω is a circle of radius r in d = 2
dimensions. Computations were averaged over 20 trials with the median value
taken. The computation of CΥ,Λ,ε was done as in Remark 8.1, using a precomputed
grid of K = 10 000 Monte Carlo points in Ω .

REMARK 8.1. As shown in [6], the constants C ′Υ,Λ,ε and C ′′Υ,Λ,ε can be expressed
as

C ′Υ,Λ,ε =
√
λmax((B′)∗GB′), C ′′Υ,Λ,ε = ε

−1
√
λmax((B′′)∗GB′′), (8.1)

where G = GΛ is the Gram matrix of the truncated frame (2.3), B′ = (AΥ,Λ,ε)
†
=

V(Σ ε)
†U∗ and B′′ = VI⊥ε V∗. Here UΣV∗ is the SVD of A, and I⊥ε is the diagonal

matrix with nth entry 1 if σn 6 ε and zero otherwise. Computing the Gram matrix
G over an irregular domain is difficult, but it can be done approximately via
Monte Carlo integration. Specifically, G ≈ H∗H, where

H = HK ,Λ =

(
1
√

K
φn(zk)

)
k=1,...,K ,n∈Λ

∈ CK×N ,
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Figure 4. The median error over 20 trials versus M for approximating the function
f (y) = 1/

∑d
i=1

√
|yi | on the annular domain Ω = {y : r/4 6 ‖y‖2 6 r}. For

each M , the value of N is chosen as the largest such that N log(N ) 6 M .

and z1, . . . , zK are drawn independently from µ. Replacing G by H∗H in (8.1)
and using standard properties of singular values leads to the simpler approximate
expressions

C ′Υ,Λ,ε ≈ ‖HV(Σ ε)
†
‖2, C ′′Υ,Λ,ε ≈ ε

−1
‖HVI⊥ε ‖2,

where ‖ · ‖2 denotes the matrix 2-norm.

8.3. Higher dimensions. In Figure 4, we consider the approximation error in
various different dimensions. This figure shows the approximation error versus M
for an annular region of several different radii. In view of the previous discussion,
log-linear oversampling was used throughout. It is noticeable that when r = 1,
meaning that Ω touches the boundary of D, the approximation is ill-conditioned,
and the error duly increases for large enough M . As is to be expected, this increase
is most severe in lower dimensions (since the cardinality of the polynomial space
is largest in this setting). Conversely, as soon as Ω is compactly contained in D,
the approximation error decreases as M increases. Note that the function being
approximated is smooth in Ω but singular at y = 0 ∈ D\Ω . As predicted by
the results of Section 5, the approximation error decreases rapidly despite this
singularity.

8.4. Choice of ε. In this section, we discuss the influence of the regularization
parameter on the approximation. First, we note that the approximation is fairly
robust to the choice of the parameter ε. In the noiseless setting, ε can be
considered a target accuracy for the method: namely, for sufficiently large M
and N , the approximation error will be of the order of ε (provided, of course,
ε is larger than machine epsilon, since floating point error will always limit the
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best achievable accuracy in practice). Indeed, under the mild conditions that the
subspaces Λ = ΛN satisfy Λ1 ⊂ Λ2 ⊂ · · · and

⋃
N ΛN = Nd

0 (which certainly
holds for all choices considered in this paper), one has

lim sup
N→∞

ẼΛN ,ε( f ) 6 ε‖ f ‖L2(Ω,µ).

This follows by choosing p = gΛ in (7.1), where g ∈ L2(D, ν) is the extension
of f by zero to D and gΛ is its orthogonal projection (a similar conclusion holds
for EΛ,ε( f ) under slightly stronger regularity assumptions, since this quantity
involves an L∞-norm as opposed to the L2-norm).

This robustness is in stark contrast to the setting of ill-posed problems, where
a careful choice of regularization parameter is usually crucial (see, for example,
[32, 40]). In such problems, one is typically interested in a specific solution c of
the linear system, and the regularization parameter needs to be carefully chosen
to strike a balance between the residual of the linear system and some desired
property of c (for example, smoothness). On the other hand, our concern lies not
with the vector c, but rather with how well the function fΥ,Λ,ε approximates f ,
without preference for one set of coefficients over another, and this implies
that success is measured largely by the size of the residual only. Furthermore,
success is guaranteed for any f by increasing N due to the completeness of the
polynomial frame.

The situation is slightly different if the function samples f (y), y ∈ Υ , are
corrupted by noise. In the setting of ill-posed problems, an optimal choice of
the regularization parameter often involves the corner of the L-curve [31]. Yet,
the method of this paper remains robust in the noisy setting: the presence of noise
merely implies that the limiting accuracy is determined by the maximum of ε and
the noise level.

The above discussion assumes sufficient oversampling so that the constant
CΥ,Λ,ε in Theorem 4.1 satisfies CΥ,Λ,ε . 1. The parameter ε also affects this
constant. Generally, CΥ,Λ,ε increases as ε decreases, reflecting the fact that as
ε decreases more singular values are retained and the regularized approximation
space becomes larger. Hence, smaller ε generally means worse conditioning and
accuracy of the approximation for fixed M . Or equivalently, a larger M is required
to maintain the same level of conditioning and accuracy. Note that this is not
reflected in the sample complexity analysis conducted in Section 6, wherein
the dependence on ε was ignored (recall Lemma 6.1). Nevertheless, this has a
practical impact. If one requires only low accuracy (or if accuracy is limited by
noise in data), then it is disadvantageous to take ε any smaller than needed.

These assertions are confirmed in Figure 3. For all choices of M and N , a larger
ε implies a smaller constant CΥ,Λ,ε . These phenomena have also been investigated
for the closely related Fourier extension approximation in the one-dimensional
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Figure 5. The median error over 20 trials versus M for approximating the function
f (y) = exp(−

∑d
i=1 yi/d) on the corner domain Ω = {y ∈ (−1, 1)d : y1 + · · · +

yd 6 1} using the tensor cosine basis on [−T, T ]d . For each M , the value of N is
chosen as the largest such that N log(N ) 6 M .

setting; see [10]. See also Section 9 for some further comments and formulation
of open problems.

8.5. Other bases. Finally, in Figures 5 and 6, we use different orthogonal
bases on the extended domain. First, in Figure 5, we consider the tensor cosine
basis defined on D = (−T, T )d , where T > 1 is a parameter. The basis elements
in this case are tensor products on the univariate functions

φn(y) = cos(nπ(y + T )/(2T )), n = 0, 1, 2, . . . .

When T = 1, the domain Ω is not compactly contained in D and the
approximation error decreases slowly, at the rate of N−1. This stems from the
fact that cosine expansions, much like Fourier expansions, only converge rapidly
for smooth functions that satisfy additional boundary conditions [1]. When there
is no gap between Ω and the boundary of D, there are no smooth extensions
of f satisfying these boundary conditions. Conversely, once T > 1 and Ω is
compactly contained in D, such extensions exist, and we witness correspondingly
faster convergence. Error estimates similar to those proved in Section 5 can also
be established for these approximations. See [2] for further details.

In Figure 6, we consider Chebyshev polynomials on D = (−1, 1)d and random
sampling according to the tensor Chebyshev density restricted to Ω with log-
linear oversampling. Note that the d = 2 approximation exhibits instability.
We conjecture that this is related to distribution of the sample points. Points
drawn on a cube according to the Chebyshev density cluster quadratically near
the boundary of the cube, a property which generally permits a lower sample
complexity. However, points drawn according to the same density when restricted
to a subdomain Ω do not necessarily cluster in this way over the boundary of Ω .
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Figure 6. The median error over 20 trials versus M for approximating the function
f (y) = cos(

∑d
i=1 yi/d) on the domains Ω = {y ∈ (−1, 1)d : y1 + · · · + yd 6 1}

(left), Ω = {y ∈ (−1, 1)d : ‖y‖2 > 1/2} (middle) and Ω = {y ∈ (−1, 1)d : ‖y‖2
6 1} (right) using Chebyshev polynomials on D = (−1, 1)d and samples drawn
randomly according to the Chebyshev measure restricted to Ω . For each M , the
value of N is chosen as the largest such that 1

2 N log(N ) 6 M .

Unless Ω is compactly contained in D, it appears the severity of the instability is
related to the amount of boundary Ω and D share.

9. Conclusions and challenges

In this work, we have introduced and analyzed a method, known as polynomial
frame approximation, for approximating multivariate functions on irregular
domains. Among the various results proved, we have shown that for functions
of mixed Sobolev regularity, the regularized least-squares polynomial frame
approximation is well conditioned and converges algebraically fast down to a
given threshold parameter ε. Moreover, for a large class of domains, the sample
complexity is provably quadratic in the dimension of the approximation space,
up to a log factor.

This paper marks only a first foray into the broader topic of multivariate
polynomial approximation on irregular domains. Consequently, there are a
number of interesting challenges for future research. We conclude by highlighting
three directions for further work:

1. Sample complexity estimates. When sampling from the uniform measure, we
have shown log-quadratic sample complexity for λ-rectangle domains, with the
factor λ−1 appearing in the sample complexity bound. It is unknown whether
or not this factor is sharp. Moreover, as mentioned, many domains do not have
this property. We conjecture that the same sample complexity holds for a much
more general class of domains which includes spheres and simplices (two notable
domains which do not have the λ-rectangle property) and which is potentially also
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invariant under rotations (rotations generally destroy the λ-rectangle property).
This remains an open problem. Moreover, as discussed in Section 8, log-linear
sample complexity appears to be sufficient whenever Ω is compactly contained
in D. While there is intuition behind this observation, we currently have no proof.

2. Choice of ε. As discussed in Section 8.4, the method is robust to the choice
of ε. Yet this parameter does affect the sample complexity. Understanding the
intricate relationship between the sample complexity, the domains Ω and D, the
subspace PΛ and the parameter ε is very much an open problem. As also noted
in Section 8.4, in this paper, we consider a fixed ε chosen according to some
desired target accuracy (in our experiments, we have simply taken ε = 10−8). The
possibility of adaptive strategies, choosing ε depending onΛ and f , is a topic for
future work.

3. Optimal sampling. Recent work has identified densities for random sampling
which achieve near-optimal log-linear sample complexities for least-squares
approximations [25]. While these densities can be defined over irregular domains,
it becomes challenging to sample efficiently from them in the case where the
domain is not of tensor-product type. One solution to this problem is to employ
discrete measures, supported over a fine grid that suitably fills Ω . This strategy,
which uses ideas of [25], has been recently developed in [5, 36]. Yet this procedure
requires the domain Ω to be known in advance, and requires a fine grid to first
be generated. This may not be possible in all applications, especially in higher
dimensions. For instance, the case Ω = {y : f (y) > 0}, which arises in practical
surrogate model construction problems (see Section 1), presents clear difficulties.
Developing efficient sampling procedures for such problems remains a topic for
future investigation.

4. Compressed-sensing-based polynomial approximations. Polynomial-based
compressed sensing approaches have recently proved effective for high-
dimensional approximation in regular domains (see [3, 4, 20, 39, 42, 51]
and references therein). A problem for future work is to extend these approaches
to irregular domains. Note that since polynomial frames are redundant, the usual
compressed sensing theory for orthogonal bases does not apply.
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Appendix A. Background on Legendre polynomials

This section contains some ancillary results on Legendre polynomials used
earlier in the paper. Let {ψn}

∞

n=0 be the orthonormal Legendre polynomial basis
with respect to the uniform measure on (−1, 1). This is defined by

ψn(y) =
√

2n + 1Pn(y), (A.1)

where Pn is the classical Legendre polynomial with normalization Pn(1) = 1.

A.1. One-dimensional Legendre–Sobolev spaces. Recall that ψn(y) are the
eigenfunctions of the Sturm–Liouville operator L, defined by

L f (y) = ((1− y2) f ′(y))′.

Specifically, Lψn(y) = n(n + 1)ψn(y). The operator L is compact, self-adjoint
and nonnegative definite. Note that

〈L f, g〉L2(D,ν) = 〈 f ′, g′〉L2(D,ρ) = 〈 f,Lg〉L2(D,ν),

where D = (−1, 1), ν is the uniform measure on (−1, 1) and dρ(y) = 1−y2

2 dy.
The operator L has a well-defined square root, which we write as S = L1/2. Note
that

‖S f ‖2
L2(D,ν) = ‖ f ′‖L2(D,ρ) = 〈L f, f 〉L2(D,ν).

With this in hand, for j ∈ N, let S j
= S ◦ S ◦ · · · ◦ S be the j-fold composition

of S and define the Legendre–Sobolev space

H̃ m(D, ν) = { f ∈ L2(D, ν) : S j f ∈ L2(D, ν), j = 0, . . . ,m},
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with inner product and norm

〈 f, g〉H̃m (D,ν) =

m∑
j=0

〈S j f,S j g〉L2(D,ν), ‖ f ‖H̃m (D,ν) =

√√√√ m∑
j=0

‖S j f ‖2
L2(D,ν).

The set {ψn}n∈N0 is an orthogonal basis for H̃ m(D, ν), and one has the expression

‖ f ‖H̃m (D,ν) =

√√√√ ∞∑
n=0

χn,m |〈 f, ψn〉L2(D,ν)|
2, χn,m =

m∑
j=0

(n(n + 1)) j .

Here we use the convention 00
= 1.

A.2. Multidimensional Legendre–Sobolev spaces. Let D = (−1, 1)d be the
unit cube and define the tensor Legendre polynomial basis {ψn}n∈Nd

0
as

ψn(y) =
d∏

k=1

ψnk (yk), n = (n1, . . . , nd) ∈ Nd
0, y = (y1, . . . , yd) ∈ D. (A.2)

For k = 1, . . . , d , let Lk be the compact, self-adjoint nonnegative definite operator

Lk f (y) =
∂

∂yk

(
(1− y2

k )
∂ f
∂yk

)
,

with corresponding square root Sk = L1/2
k and powers S j

k = Sk ◦ · · · ◦ Sk . Now
let j = ( j1, . . . , jd) ∈ Nd

0 be a multi-index. We define the operator

S j
= S j1

1 ◦ · · · ◦ S
jd

d .

With this in hand, we now define the d-dimensional Legendre–Sobolev spaces

H̃ m(D, ν) = { f ∈ L2(D, ν) : S j f ∈ L2(D, ν), |j|1 6 m},

with inner product and norm

〈 f, g〉H̃m (D,ν) =
∑
|j|16m

〈S j f,S jg〉L2(D,ν), ‖ f ‖H̃m (D,ν) =

√∑
|j|16m

‖S j f ‖2
L2(D,ν).

We also define the mixed d-dimensional Legendre–Sobolev spaces as

H̃ m
mix(D, ν) = { f ∈ L2(D, ν) : S j f ∈ L2(D, ν), |j|∞ 6 m}, (A.3)
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with inner product and norm

〈 f, g〉H̃m
mix(D,ν)

=

∑
|j|∞6m

〈S j f,S jg〉L2(D,ν), ‖ f ‖H̃m
mix(D,ν)

=

√ ∑
|j|∞6m

‖S j f ‖2
L2(D,ν).

Both these norms can be characterized in terms of Legendre polynomial
coefficients. Specifically,

‖ f ‖H̃m (D,ν) =

√∑
n∈Nd

0

χn,m |〈 f, ψn〉L2(D,ν)|
2,

‖ f ‖H̃m
mix(D,ν)

=

√∑
n∈Nd

0

χmix
n,m |〈 f, ψn〉L2(D,ν)|

2,

(A.4)

where

χn,m =
∑
|j|16m

d∏
k=1

(nk(nk + 1)) jk , χmix
n,m =

∑
|j|∞6m

d∏
k=1

(nk(nk + 1)) jk . (A.5)

Finally, we note that one has the continuous embeddings H m(D, ν) ↪→ H̃ m(D, ν)
and H m

mix(D, ν) ↪→ H̃ m
mix(D, ν).
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