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Abstract

We discuss the Singer conjecture and Gromov–Lück inequality χ ≥ |σ | for aspherical
complex surfaces. We give a proof of the Singer conjecture for aspherical complex surfaces
with residually finite fundamental group that does not rely on Gromov’s Kähler groups the-
ory. Without the residually finiteness assumption, we observe that this conjecture can be
proven for all aspherical complex surfaces except possibly those in Class VII+0 (a positive
answer to the global spherical shell conjecture would rule out the existence of aspherical
surfaces in this class). We also sharpen the Gromov-Lück inequality for aspherical complex
surfaces that are not in Class VII+0 . This is achieved by connecting the circle of ideas of the
Singer conjecture with the study of Reid’s conjecture.

2020 Mathematics Subject Classification: 53C23 (Primary);
32L20 (Secondary)

1. Introduction and main results

A significant part of modern Riemannian geometry deals with the interaction between
curvature and topology of smooth manifolds. As beautifully recounted in Marcel Berger’s
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2 ALBANESE, DI CERBO AND LOMBARDI

panoramic book on Riemannian geometry (see in particular [Ber03, chapter 12]), Heinz
Hopf was the first to investigate the connections between topology and curvature in a gen-
eral and systematic way. Surprisingly, some of the questions that Hopf posed in the 1930’s
remain unanswered. A well-known example is the following problem on the sign of the
Euler characteristic of aspherical manifolds.

CONJECTURE 1·1 (Hopf Conjecture). If X is a closed aspherical manifold of dimension 2n,
then:

(−1)nχtop(X) ≥ 0.

Thanks to the uniformisation theorem for Riemann surfaces, Conjecture 1·1 is true when
n = 1. On the other hand, this problem is still completely open when n = 2, but if X4 is a
closed, non-positively curved 4-manifold, then John Milnor proved that Conjecture 1·1 is
indeed true in this case, see [Ber03, chapter 12, note 12·3·1·1]. There are several families
of closed aspherical 4-manifolds which do not admit non-positively curved metrics. For
example, non-flat nilmanifolds cannot admit such a metric by [Yau71, corollary A] – of
course, these have Euler characteristic zero, so the Hopf conjecture holds for them.

During the 1970’s, Isadore Singer suggested an approach to Conjecture 1·1 via the study
of L2-harmonic forms on the topological universal cover of X. Taking into account Atiyah’s
L2-index theorem [Ati76], he proposed the following.

CONJECTURE 1·2 (Singer Conjecture). If X is a closed aspherical manifold of real
dimension 2n, then the L2-Betti numbers are:

b(2)
k (X; X̃) =

{
(−1)nχtop(X) if k = n

0 if k �= n,

where π : X̃ → X is the topological universal cover of X.

An affirmative solution to Conjecture 1·2 would also settle Conjecture 1·1. For more
details on this circle of ideas, we refer to Shing–Tung Yau’s influential list of main open
problems in geometry [SY94, section VII, problem 10]. We also refer to Wolfgang Lück’s
book [Luc02] for the definition of L2-Betti numbers and for a comprehensive account on
the history of the Singer conjecture. Interestingly, Conjecture 1·2 is not known to be true for
n = 2 even under the assumption that X4 is non-positively curved.

As observed and discussed by Mikhael Gromov in [Gro93, section 8] and Wolfgang Lück
[Luc94b, theorem 5·1], Conjecture 1·2 implies an effective version of Conjecture 1·1 in
dimension four. More precisely, one can state the following intriguing conjecture regarding
the geography of aspherical 4-manifolds.

CONJECTURE 1·3 (Gromov-Lück Inequality). If X is a closed, oriented, aspherical 4-
manifold, then:

χtop(X) ≥ |σ (X)|,
where σ (X) is the signature of X.

In this paper, we study Conjectures 1·1, 1·2 and 1·3 on closed, aspherical 4-manifolds
that admit a complex structure. Our knowledge of compact complex surfaces via the
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Aspherical complex surfaces 3

Kodaira–Enriques classification is a powerful tool in this case. For example in [JK93,
theorem 2], Johnson–Kotschick show that any complex surface X satisfies the inequality
χtop ≥ |σ | unless X is a ruled surface over a curve of genus g ≥ 2. Since ruled surfaces
are not aspherical, we therefore have that Conjecture 1·3 (and then also Conjecture 1·1)
is true for aspherical complex surfaces. With that said, we do believe that a deeper study
of Conjecture 1·3 is warranted even for complex surfaces. First, Conjecture 1·3 is quite
crude when compared with other geometric inequalities constraining the geography of vast
classes of 4-manifolds. For example, the equality cases in the Hitchin–Thorpe inequality for
Einstein 4-manifolds and the Bogomolov–Miyaoka–Yau inequality for minimal surfaces of
general type are neatly characterised. On the other hand, there is no (conjectural) character-
isation of the equality case in Conjecture 1·1. Moreover, one may wonder if it is useful to
sharpen the Gromov-Lück inequality to a tighter constraint on the geography of aspherical
4-manifolds that do not satisfy χtop = σ = 0. We do have a quite satisfactory answer to all
such questions when X is an aspherical complex surface.

THEOREM 1·4. Let X be a closed, aspherical, complex surface. We have the following
possibilities for its Euler characteristic χtop(X) and signature σ (X):

(i) χtop(X) = −σ (X) > 0 in which case X is a Class VII+0 surface violating the global
spherical shell conjecture;

(ii) χtop(X) ≥ (9/5)|σ (X)| and χtop(X) > 0 in which case X is of general type;

(iii) χtop(X) = σ (X) = 0 in all other cases.

In particular, we see that if the global spherical shell conjecture is true, then the Gromov-
Lück inequality is always strict for closed, aspherical, complex surfaces unless the Euler
characteristic and signature are both zero. Furthermore, we obtain a factor 9/5 > 1 in front
of the absolute value of the signature in all of the remaining cases.

Next, we address the big elephant in the room: is Conjecture 1·2 true for closed,
aspherical, complex surfaces? We observe that Gromov’s characterisation of closed Kähler
manifolds with non-vanishing first L2-Betti number, when combined with the Kodaira-
Enriques classification, suffices to show this conjecture holds true for all closed, aspherical,
complex surfaces that are not in Class VII+0 , see Theorem 4·2. Frustratingly enough, the
validity of Conjecture 1·2 also stumbles upon the existence of aspherical surfaces in Class
VII+0 . We conclude by providing a proof of the following.

THEOREM 1·5. Let X be a closed, aspherical complex surface with residually finite
fundamental group, and let X̃ be the topological universal cover. The L2-Betti numbers are:

b(2)
k (X; X̃) =

{
χtop(X) if k = 2

0 if k �= 2.

Our proof of Theorem 1·5 does not rely upon Gromov’s theory of Kähler groups.
It combines the study of the Albanese map, Lück’s approximation theorem and the
Kodaira–Enriques classification.

In real dimension greater than or equal to four, there is a plethora of examples of closed
aspherical manifolds whose fundamental group is not residually finite. Such examples can
be constructed with the so-called Davis reflection trick [Dav83], see for example [Mes90]. It
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4 ALBANESE, DI CERBO AND LOMBARDI

seems to be currently unknown whether or not there are examples of aspherical smooth pro-
jective varieties with non-residually finite π1. Indeed, the examples of Toledo [Tol93] and
Catanese–Kollár [CK90] of smooth projective varieties with non-residually finite π1 appear
not to be aspherical. It is currently unknown whether the non-positively curved smooth
minimal toroidal compactifications of ball quotients identified in [DiC12, theorem A], or
the negatively curved branched covers constructed in [ST22, theorem 1·5] have residually
finite π1.

2. Aspherical Complex Surfaces

In this section, we give a brief overview of those compact complex surfaces which are
aspherical. These surfaces have contractible universal cover or equivalently, πk vanishes
for k > 1. By [ADC23, lemma 2], such surfaces are minimal. We will work through the
Kodaira–Enriques classification by Kodaira dimension.

Kodaira dimension −∞: In the Kähler case, such surfaces are rational or ruled. The for-
mer consists of CP2 and Hirzebruch surfaces �n = P

CP
1 (O ⊕O(n)). These are all simply

connected, so they are their own universal covers. As they are not contractible, rational
surfaces are not aspherical. Ruled surfaces are holomorphic fiber bundles with fiber CP1

and structure group PGL(2, C) over a smooth connected curve C of positive genus. Every
such surface is the projectivisation of a rank two holomorphic vector bundle over C. From
the long exact sequence in homotopy, it follows that ruled surfaces have non-zero π2. In
fact, if C̃ → C denotes the universal covering of C, pulling back the CP

1-bundle by this
map exhibits ruled surfaces have universal cover CP

1 × C̃ – since C̃ is Stein, we have
H1(C̃, PGL(2, C)) = 0 and hence the CP

1 bundle over C̃ is trivial.
A non-Kähler surface with Kodaira dimension −∞ is called a Class VII surface. A mini-

mal such surface is called a Class VII0 surface, and if furthermore the second Betti number
is positive, then it is called a Class VII+0 surface. A Class VII0 surface with second Betti
number zero is biholomorphic to a Hopf surface or an Inoue–Bombieri surface, see [Bog76,
Bog82, LYZ94 and Tel94]. Hopf surfaces have universal cover C2 \ {0} which is not con-
tractible, while Inoue-Bombieri surfaces have universal cover C×H which is contractible,
so they are aspherical.

A spherical shell in a complex surface is an open subset biholomorphic to a neighbour-
hood of S3 in C

2 \ {0}. If the complement is connected, then it is called a global spherical
shell. A surface which admits a global spherical shell is a deformation of a primary Hopf
surface

1
blownup at finitely many points [Kat78, theorem 1] – note that such surfaces are

not aspherical. The global spherical shell conjecture asserts that all Class VII+0 surfaces con-
tains a global spherical shell. The conjecture remains open with some progress for small
values of b2, see [Tel05, Tel10, Tel18]. It is not yet known if there exists an aspherical Class
VII+0 surface (it would necessarily violate the global spherical shell conjecture).

Since Class VII surfaces have first Betti number 1, such surfaces have χtop(X) = b2(X).
Furthermore, as they are non-Kähler, we see that b+(X) = 2h2,0(X) = 0 and hence σ (X) =
−b−(X) = −b2(X). So Inoue-Bombieri surfaces have χtop(X) = σ (X) = 0, while aspherical
Class VII+0 surfaces have χtop(X) = −σ (X) = b2(X) > 0.

1 A Hopf surface X is called primary if π1(X) ∼=Z. Such surfaces are diffeomorphic to S1 × S3.
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Aspherical complex surfaces 5

Kodaira dimension 0: In the Kähler case, there are two families: tori and their quotients
(bi-elliptic surfaces), and K3 surfaces and their quotients (Enriques surfaces). The former
have universal cover C2 and are therefore aspherical, while the latter have K3 surfaces as
their universal cover and hence are not aspherical.

In the non-Kähler realm, such surfaces are primary Kodaira surfaces and their quotients
(secondary Kodaira surfaces). Primary Kodaira surfaces are holomorphic principal elliptic
curve bundles over a smooth connected genus one curve. It follows from the long exact
sequence in homotopy that πk = 0 for k > 1. Just as in the case of ruled surfaces, we can
also identify the universal cover of Kodaira surfaces as C2 by pulling back such a bundle by
the universal covering of the base. A description of primary Kodaira surfaces as quotients of
C

2 by a group of affine transformations was given by Suwa [Suw75, theorem 2].

Kodaira dimension 1: A compact surface X is called an elliptic surface if there is a smooth
connected curve C and a holomorphic map π : X → C such that the generic fiber is a smooth
genus one curve; the map π is called an elliptic fibration. We call an elliptic surface X
relatively minimal if there are no −1 curves in the fibers of π – every elliptic surface is an
iterated blowup of a relatively minimal elliptic surface. Every surface of Kodaira dimension
1 is elliptic (see [Wal86, lemma 7·2(a)]), but there are also elliptic surfaces of Kodaira
dimension −∞ and Kodaira dimension 0. An elliptic surface with Kodaira dimension 1 is
called a properly elliptic surface.

The non-generic fibers of a relatively minimal elliptic fibration π : X → C, called excep-
tional fibers, were classified by Kodaira, see [Kod63, theorem 6·2]. Aside from multiples
of a smooth genus one curve (known as a multiple fibers with smooth reduction), every
other possibility is a configuration of (possibly singular) rational curves. The elliptic fibra-
tion induces an orbifold structure on C by declaring images of multiple fibers as cone points
whose order is the multiplicity of the fiber. We denote the orbifold Euler characteristic and
orbifold fundamental group of C by χorb(C) and πorb

1 (C) respectively.

PROPOSITION 2·1. An elliptic surface X → C is aspherical if and only if it is relatively
minimal with no exceptional fibers other than multiple fibers with smooth reduction, and X
has Kodaira dimension 0 or 1.

Proof. If X is aspherical, then it is minimal (and hence relatively minimal) by [ADC23,
lemma 2]. Furthermore, if X is Kähler, then X contains no rational curves, so the only excep-
tional fibers must be multiple fibers with smooth reduction. In the non-Kähler case, the same
is true by [Wal86, lemma 7·2(b)]. By [FM94, lemma I·3·18 (ii)], we have χ(OX) = 0. If
χorb(C) > 0 = χ(OX), then κ(X) = −∞ by [Wal86, lemma 7·1]. An aspherical surface with
Kodaira dimension −∞ is either Inoue-Bombieri or a Class VII+0 surface. The former can’t
be elliptic as they contain no complex curves, and the latter can’t be elliptic as they satisfy
c2

1 < 0. Therefore χorb(C) ≤ 0 and hence X has Kodaira dimension 0 or 1 by [Wal86, lemma
7·1].

Conversely, if X → C is relatively minimal with no exceptional fibers other than multiple
fibers with smooth reduction, and X has Kodaira dimension 0 or 1, then χorb(C) ≤ χ(OX) =
0. Therefore C is a good orbifold, i.e. there is a finite orbifold covering C′ → C where C′
is a manifold. Pulling back X → C by this map induces an elliptic fibration X′ → C′ with
no multiple fibers such that X′ is a finite unramified cover of X, see [BHPV04, proposition
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6 ALBANESE, DI CERBO AND LOMBARDI

III·9·1]. Since χ(OX′) = 0, all the fibres of X′ → C′ are isomorphic by [BHPV04, propo-
sition V·12·2] and the remark which precedes it, and hence X′ → C′ is locally trivial by
[FG65]. As the orbifold Euler characteristic is multiplicative under orbifold coverings, we
have χorb(C′) ≤ 0 and hence C′ has positive genus. Applying the long exact sequence of
homotopy groups, we see that X′ is aspherical.

Remark 2·2. In the course of the proof, we showed that an aspherical elliptic surface X has a
finite cover X′ which is a holomorphic fiber bundle over a Riemann surface of positive genus,
with an elliptic curve fiber. The structure group of this bundle is the automorphism group
of the elliptic curve. Since translations form a finite index subgroup, there is a finite cover
C′′ → C′ such that the pullback of X′ → C′ gives a bundle X′′ → C′′ whose structure group
reduces to the group of translations. That is, the bundle X′′ → C′′ is a holomorphic principal
elliptic bundle. Just as in the discussion of ruled surfaces, it follows that the universal cover
of X”, and hence X, is biholomorphic to C×C if X has Kodaira dimension 0, or C×H if X
has Kodaira dimension 1.

COROLLARY 2·3. Aspherical elliptic surfaces contain no rational curves.

Proof. If X is an aspherical elliptic surface, then any map CP
1 → X lifts to the universal

cover since CP
1 is simply connected. As described above, the universal cover is an open

subset of C2, so the lift must be constant.

There are examples of elliptic surfaces which contain finitely many rational curves, and
examples with infinitely many, see [BFO22, section 5].

Note, there are elliptic surfaces with Kodaira dimension −∞, but none of them are aspher-
ical (they are either rational, ruled, or Hopf). As for Kodaira dimension 2, none of them are
elliptic.

There are non-aspherical elliptic surfaces in Kodaira dimensions 0 and 1. By combin-
ing Proposition 2·1 with [Wal86, lemma 7·2(b)], such surfaces must be Kähler. In Kodaira
dimension 0, such surfaces are the elliptic K3 surfaces and all Enriques surfaces, while for
Kodaira dimension 1, homotopy K3 surfaces and Dolgachev surfaces provide examples. One
can construct many more Kodaira dimension 1 examples as follows (the stated examples
arise this way). Choose an elliptic surface with an exceptional fiber which is not a multiple
fiber with smooth reduction (equivalently, has positive Euler characteristic). Applying loga-
rithmic transformations decreases the value of χorb(C), so by [Wal86, lemma 7·1], the result
will eventually have Kodaira dimension 1.

Kodaira dimension 2: Aspherical surfaces with Kodaira dimension 2 exist, but as with
most problems regarding general type surfaces, we have nothing even close to a classi-
fication. Indeed, the list of known aspherical surfaces of general type is not particularly
rich even if there are reasons to expect such surfaces exist in great profusion. The list
includes ball quotients (e.g., fake projective planes), surfaces isogeneous to product of
curves, Kodaira fibrations, Mostow–Siu surfaces, and certain branched covers of ball quo-
tients due to Domingo–Stover [ST22, theorem 1·5]. We refer to the paper of Bauer–Catanese
[BC18] for more details. The list of aspherical surfaces of general type also includes the vast
majority of smooth minimal toroidal compactifications of ball quotients, see [DiC12, the-
orem A]. In all of these examples, when the signature is explicitly computed one has that
σ ≥ 0. It seems currently unknown whether or not an aspherical complex surface of general
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Table 1. Aspherical complex surfaces via the Kodaira-Enriques classification

κ(X) b1(X) List χtop(X) σ (X)
−∞ odd Inoue-Bombieri Potential Class 0 0

VII+0 examples Positive Negative

0 even Tori and 0 0
0 odd quotients All 0 0

1 even Some 0 0
1 odd All 0 0

2 even Some Positive ?

type can have negative signature. In conclusion, we can summarise this discussion into a
table, see Table 1.

3. Singer Conjecture for Surfaces with Residually Finite Fundamental Group

In this section, we show that the Singer conjecture holds true for closed aspherical com-
plex surfaces with residually finite fundamental group. The proof we present here does
not rely on Gromov’s characterisation of Kähler manifolds with non-vanishing first L2-
Betti number [Gro89]. We rely upon the study of the Albanese map given in [DL24a] and
[DL24b], and Lück’s approximation theorem which we now briefly recall.

Let X be a manifold with �
def= π1(X) residually finite. We consider a sequence of nested,

normal, finite index subgroups {�i} of � such that ∩i�i is the identity element. This sequence
is usually called a cofinal filtration of �. Let πi : Xi → X be the finite regular cover of X
associated to �i. Lück’s approximation theorem [Luc94a] ensures that

lim
i→∞

bk(Xi)

deg (πi)
= b(2)

k (X; X̃), (3·1)

where bk(Xi) denotes the kth Betti number of Xi, and b(2)
k (X; X̃) is the L2-Betti number of

X computed with respect to the universal cover X̃. Thus, the limit in (3·1) always exists
and it is independent of the cofinal filtration. We refer to the ratio bk(Xi)/ deg (πi) as the
normalised kth-Betti number of the cover πi : Xi → X. Conjecture 1·2 is then equivalent
to the sub-degree growth of Betti numbers along a tower of covers associated to a cofinal
filtration.

We start with the following proposition that is not limited to complex dimension two.

PROPOSITION 3·1. Let X be an aspherical smooth projective variety. Assume that π1(X)
is residually finite and there exists a cofinal tower of coverings πi : Xi → X such that the
images aXi(Xi) of the Albanese maps are either points or curves in Alb(Xi). We then have

lim
i→∞

b1(Xi)

deg (πi)
= 0.

Proof. Clearly, we just need to study the case where b1(Xi) �= 0 from some point on in the
cofinal tower. Recall that if aXi(Xi) is a curve, it must be smooth, connected, and its genus
equals (1/2)b1(Xi). For simplicity sake, from now on we assume that aXi(Xi) is a curve for
any i ≥ 0 in the cofinal tower. Moreover, we set S: = aX(X) = aX0(X0) and Si: = aXi(Xi). Due

https://doi.org/10.1017/S0305004125101400 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101400


8 ALBANESE, DI CERBO AND LOMBARDI

to the universal property of the Albanese variety, there is a map aπi : Si → S such that the
following diagram commutes:

Xi

πi

��

aXi �� Si

aπi

��
X

aX �� S.

Since πi is unramified, for any i ≥ 1, the branching locus Bi of aπi is contained in the (finite)
set of critical values of aX . In particular, there exists a positive constant C > 0 such that for
all i we have #(Bi) ≤ C. Thus the degree of the ramification divisor Ri of aπi is bounded by
deg Ri ≤ C · deg

(
aπi

)
for any i. By using the Riemann–Hurwitz formula, we have

b1(Si) = 2 deg
(
aπi

) · χ(ωS) + deg Ri + 2 ≤ deg
(
aπi

) · (2χ(ωS) + C) + 2.

Since b1(Xi) = b1(Si), dividing by deg
(
aπi

)
> 0 yields

b1(Xi)

deg (aπi)
≤ 2χ(ωS) + C + 2

deg (aπi)
≤ 2χ(ωS) + C + 2. (3·2)

Next, let ki be the minimal degree of the restriction of πi to a general fiber of aXi . Note
that {ki}i∈N is a sequence of non-decreasing positive integers and

deg πi ≥ ki · deg
(
aπi

) ∀i. (3·3)

We claim that

lim
i→∞ ki = ∞. (3·4)

By contradiction, as the tower of coverings πi : Xi → X is cofinal, the Xi’s converge to the
topological universal cover X̃ (cf. [DD19, section 3]). Now equip the covers Xi with the
metrics induced by a fixed Kähler metric on the base, given by an ample line bundle L on
X, via pullback. Moreover, let Gi be a general fiber of aXi such that ki = deg

(
πi|Gi

)
. In this

way, denoting by F the general fiber of aX , the volume of Gi is computed as

(π∗
i L · Gi) = (L · πi∗Gi) = ki · (L · F) ∀i.

If the ki’s were bounded, there would exist an integer N > 0 such that (π∗
i L · Gi) < N for

all i; but this contradicts [DD19, proposition 3·3] (note that if X is aspherical, then π1(X)
is large, see [LMW21, proposition 6·7] and [Kol93, proposition 2·12·1]). In conclusion, by
(3·2), (3·3) and (3·4) it follows that

0 ≤ b1(Xi)

deg (πi)
≤ b1(Xi)

ki deg (aπi)
≤ 2χ(ωS) + C + 2

ki
.

Taking the limit as i → ∞ concludes the proof.
We can now give a proof of Theorem 1·5 stated in the introduction.

Proof of Theorem 1·5. Since b(2)
0 (X; X̃) = b(2)

4 (X; X̃) = 0 and the alternating sum of L2-

Betti numbers is equal to χtop(X), it is enough to show that b(2)
1 (X; X̃) = 0 by Poincaré

duality. Moreover, we can assume that X is minimal by the asphericity assumption (see
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Aspherical complex surfaces 9

[ADC23, lemma 2]). We divide the proof into several steps according to the Kodaira
dimension (using the results of Section 2).

To begin with, suppose Kod(X) = −∞. In the non-Kähler case, X is of Class VII. All such
surfaces have b1(X) = 1. Moreover any finite covering of a surface of Class VII is again of
Class VII (see for example [FM94, proposition II·1·21] or [Dur05, lemma 5·1]). Thus, the
vanishing of b(2)

1 (X; X̃) follows immediately from Lück’s approximation [Luc94a]. In the
Kähler case, no surface with Kod(X) = −∞ is aspherical.

As discussed in Section 2, aspherical complex surfaces of Kodaira dimension 0 are finitely
covered by either a torus or a primary Kodaira surface. It follows that the fundamental groups
of such surfaces contain a normal subgroup isomorphic to Z

2. Hence, the L2-Betti numbers
vanish by a classical result of Cheeger–Gromov [CG86, corollary 0·6], see also [Luc02,
theorem 1·44].

The aspherical complex surfaces of Kodaira dimension 1 are the properly elliptic surfaces
with no exceptional fibers other than multiple fibers with smooth reduction. By Remark
2·2, such surfaces are finitely covered by holomorphic elliptic curve bundle, and hence their
fundamental groups also contain a normal subgroup isomorphic to Z

2. Again, this implies
that the L2-Betti numbers vanish.

For surfaces of general type, we first recall that they have to be projective (see [BHPV04,
p.189]), and we can use the Albanese map if the surface is irregular (i.e. b1(X) �= 0). Then,
we proceed by using Lück’s approximation [Luc94a] on a cofinal tower. If none of the
covers in the tower is irregular, then the vanishing of b(2)

1 (X; X̃) is immediate and the result
follows. In the other cases, we use either Proposition 3·1, or Theorem [DL24b, theorem
1·3] specialised to complex dimension two. Recall that in complex dimension two, aX is
semismall if and only if it is generically finite onto its image.

4. On the Singer Conjecture for Complex Surfaces

In [Gro89], Gromov shows that if (X, ω) is a closed, Kähler manifold with b(2)
1 (X ;̃X) �=

0, then π1(X) is commensurable to the fundamental group of a compact surface of genus
g ≥ 2. For more details about this important result, we refer to [ABR92] and the nice book
[ABCKT96, chapter 4] on Kähler groups.

Gromov’s theorem implies that no aspherical Kähler surface (X2, ω) can have non-
vanishing b(2)

1 . Indeed, if this was the case then a finite cover of X, say X′, would have
the same fundamental group as a hyperbolic Riemann surface, say C. Since both X′ and C
are aspherical with isomorphic fundamental groups, they are homotopy equivalent [Luc12,
theorem 2·1], which is clearly not possible as H4(X′;Z) �= H4(C; Z) = 0. Let’s summarise
this discussion into a theorem.

THEOREM 4·1 (Gromov). The Singer conjecture is true for closed, aspherical, Kähler
surfaces.

We can now combine some parts of the proof of Theorem 4·1 with Theorem 1·5 to prove
the following.

THEOREM 4·2. The Singer conjecture is true for closed, aspherical, complex surfaces that
are not in Class VII+0 .

Proof. By Theorem 4·1, we only need to check the non-Kähler case. First note that all Inoue-
Bombieri surfaces have solvable fundamental group – in fact, they are all solvmanifolds,
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see [Has05, theorem 1]. Since solvable groups are amenable, it follows that the L2-Betti
numbers vanish [Luc02, corollary 6·75]. This leaves only the minimal non-Kähler surfaces
of Kodaira dimension 0 and 1, all of which are elliptic. As in the proof of Theorem 1·5,
it follows from Remark 2·2 that the fundamental group of such a surface contains a nor-
mal subgroup isomorphic to Z

2. In this case, the L2-Betti numbers vanish by a classical
result of Cheeger-Gromov [CG86, corollary 0·6], see also Lück’s [Luc94b, theorem 4·1]
and [Luc02, theorem 1·44].

Note, if one could show that the fundamental group of a Class VII+0 surface was residually
finite, then we could apply the argument in the proof of Theorem 1·5 to extend Theorem 4·2
to all complex surfaces.

The big elephant in the room. Aspherical Class VII+0 surfaces conjecturally do not
exist. That said, their cohomological structure seems somewhat simple. This motivates the
following.

Question 4·3. Assume there are aspherical Class VII+0 surfaces. Can we prove the Singer
conjecture holds for them?

5. Reid’s Conjecture and Gromov-Lück Inequality

In this section, we prove Theorem 1·4.
By the discussion in Section 2, the only aspherical surfaces with Kodaira dimension −∞

are Inoue-Bombieri surfaces and potential aspherical class VII+0 surfaces. As we have seen,
the former satisfy χtop(X) = σ (X) = 0, while the latter satisfy χtop(X) = −σ (X) = b2(X) > 0.
On the other hand, the aspherical surfaces of Kodaira dimension 0 or 1 all have χtop(X) =
σ (X) = 0. This only leaves surfaces of general type.

Note, the Bogomolov–Miyaoka–Yau inequality states that for a general type surface X
we have χtop(X) ≥ 3σ (X). However, it is not true that χtop(X) ≥ 3|σ (X)| for every such X.
For example, let Xd be a smooth degree d hypersurface of CP3. Note that Xd is a surface
of general type for d ≥ 5, and a simple characteristic class argument shows that χtop(Xd) =
d3 − 4d2 + 6d and σ (Xd) = − 1

3 (d − 2)d(d + 2). So, for example, we have χtop(X5) = 55 and
σ (X5) = −35 so 3|σ (X5)| = 105 > 55 = χtop(X5). In fact, the proposed inequality is violated
by Xd for all d ≥ 5 (also d = 3, 4, but these are not surfaces of general type). Of course,
none of these examples are aspherical since they are simply connected by the Lefschetz
hyperplane theorem (see for example [Laz04, theorem 3·1·17]).

If the signature is non-negative, then of course χtop(X) ≥ 3σ (X) is equivalent to χtop(X) ≥
3|σ (X)|. The discrepancy occurs, as in the examples above, when the signature is negative.

Question 5·1. Does there exist an aspherical complex surface with negative signature?
(Either has to be a counterexample to the global spherical shell conjecture or a surface of
general type.)

This question is yet to be answered, so we continue on our quest to find an inequality
relating χtop(X) and |σ (X)|. To do so, we need to recall the circle of ideas related to Reid’s
conjecture, see for example [BHPV04, chapter VII]. We also refer to the beautiful survey
[MLP12] of Mendes Lopes-Pardini on the geography of irregular surfaces for much more
on this fascinating topic.

https://doi.org/10.1017/S0305004125101400 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101400


Aspherical complex surfaces 11

CONJECTURE 5·2 (Reid). Let X be a minimal surface of general type such that K2
X < 4χhol,

where χhol is the holomorphic Euler characteristic. Then π1(X) is either finite, or it is
commensurable with the fundamental group of a curve.

As shown by Horikawa [Hor76] and Reid [Rei79], Conjecture 5·2 holds true under the
stronger assumption K2

X < 3χhol. We therefore can observe the following.

PROPOSITION 5·3. Let X be an aspherical surface of general type. We then have K2
X ≥

3χhol.

Proof. By [ADC23, lemma 2], X must be minimal. Now an aspherical surface must have
infinite π1, see for example [Luc12, lemma 4·1]. As it was observed at the beginning of
Section 4, π1(X) cannot be commensurable with the fundamental group of a curve. Since
Conjecture 5·2 holds true for minimal surfaces of general type satisfying K2

X < 3χhol, we
conclude that

K2
X ≥ 3χhol,

for any aspherical surface of general type.

We can now prove the desired inequality relating χtop(X) and |σ (X)| for aspherical general
type surfaces.

LEMMA 5·4. Let X be an aspherical surface of general type. We then have:

χtop(X) ≥ 9

5
|σ |.

Proof. Recall that

K2
X = 2χtop(X) + 3σ (X), χhol(X) = χtop(X) + σ (X)

4
.

By using Proposition 5·3, we obtain

χtop(X) ≥ 9

5
( − σ (X)),

which, combined with the Bogomolov–Miyaoka–Yau inequality, gives χtop(X) ≥
(9/5)|σ (X)|.

This completes the proof of Theorem 1·4.
Note that for a minimal surface of general type X, we have c2

1(X) > 0 from which it follows
that χtop(X) > (3/2)( − σ (X)). If the signature is negative, the inequality χtop(X) ≥ (9/5)
( − σ (X)) is stronger. For example, if σ (X) = −3, the former inequality implies χtop(X) ≥ 5
while the latter implies χtop(X) ≥ 6.

Remark 5·5. Reid’s conjecture implies the slightly better bound χtop(X) ≥ 2|σ (X)|.
Note that we actually have χtop(X) ≥ (9/5)|σ (X)| for all aspherical complex surfaces,

except any potential Class VII+0 examples (in all other cases, χtop(X) = σ (X) = 0).
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Remark 5·6. Very recently, in [AMW25, conjecture 1·2], Arapura, Maxim and Wang stated
a Hodge-theoretic version of the Singer–Hopf conjecture: if X is a compact Kähler manifold
of dimension n which is either aspherical or it has nef cotangent bundle, then

(−1)n−pχ(	p
X) ≥ 0 for all p = 0, . . . , n. (·5)

Here 	
p
X denotes the bundle of holomorphic p-forms, and

χ(	p
X) =

n∑
i=0

(−1)i dim Hi(X, 	p
X)

is the associated Euler characteristic. The conjecture is verified by the same authors in
the case of surfaces with nef cotangent bundle (cf. loc. cit. Proposition 2·4). Moreover, by
following [JK93], it also holds for aspherical complex surfaces as

χ(ωX) = χ(OX) = χtop(X) + σ (X)

4
and χ(	1

X) = σ (X) − χtop(X)

2
.

In higher dimension, the conjecture holds for Kähler hyperbolic and Kähler nonelliptic man-
ifolds (see [Gro91] and [JZ00]). As an application of the inequality χtop(X) ≥ (9/5)|σ (X)|
of Theorem 1·4, we observe that the inequalities in (5·5) are actually strict for all complex
aspherical surfaces of general type. More precisely, as aspherical surfaces are minimal and
χtop(X) > 0 for all minimal surfaces of general type, if σ (X) �= 0 we have

χ(ωX) = χ(OX) ≥ 1

5
|σ (X)| > 0 and − χ(	1

X) ≥ 2

5
|σ (X)| > 0,

while if σ (X) = 0 we clearly obtain

χ(ωX) = χ(OX) = χtop(X)

4
> 0 and − χ(	1

X) = χtop(X)

2
> 0.

Finally, it is tantalising to ask what is the optimal constant a > 0, such that χtop(X) ≥
a|σ (X)| for all aspherical surfaces of general type. As remarked above, we currently seem
not to know any example of aspherical surfaces of general type with negative signature. If
this is not an accident simply due to our lack of good examples, but a true fact of nature, by
using the Bogomolov–Miyaoka–Yau inequality we would have

χtop(X) ≥ 3σ (X) ≥ 0,

where the first inequality is saturated if and only if X is a ball quotient. Notice that given
a minimal surface of general type X with σ (X) > 0, the reversed oriented 4-manifold X can
never admit a complex structure compatible with the orientation. This follows from Seiberg–
Witten theory, see [Kot97, theorem 2]. Thus, in order to give a positive answer to Question
5.1, a genuinely new example of a surface of general type would need to be constructed, or
alternatively one would need to provide an aspherical counterexample to the global spherical
shell conjecture!
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