
1
Introduction

This book is about topics in category theory motivated by theoretical computer
science. The study of initial algebras and terminal coalgebras is a lively area
rather than a well-established field. We present a topical picture but do not aim
for the last word on the subject. Our goal in this opening chapter is to motivate
the book and its overall field for readers who open it without understanding
even the title. What are initial algebras, terminal coalgebras, and fixed points
of functors? Why do the authors care about them? What do we hope you will
learn? What background will you need?

1.1 Why Are Initial Algebras and Terminal Coalgebras
Interesting?

Recursion and induction are important tools in mathematics and computer
science. Recursion is a definition principle for functions over (inductive) struc-
tures of data types such as natural numbers, lists, or trees. Induction is the
corresponding proof principle used to prove properties of functions defined
by recursion. An important question of theoretical computer science concerns
the semantics of such definitions. Initial Algebra Semantics, studied since the
1970s, uses the tools of category theory to unify recursion and induction at the
appropriate abstract conceptual level. In this approach, the type of data on which
one wants to define functions recursively and to prove properties inductively is
captured by an endofunctor 𝐹 on the category of sets (or another appropriate
base category such as posets, metric spaces, or vector spaces). This functor
describes the signature of the data type constructors. An 𝐹-algebra is an object 𝐴
together with a morphism 𝛼 : 𝐹𝐴 → 𝐴. An initial algebra for the functor 𝐹
provides a canonical model of a data type with the desired constructors. Typically
the initial algebra is the intended model, and then one tries to use initiality

1

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


2 Introduction

to prove properties of various definitions, such as equivalence of programs or
specifications.

Let us illustrate this with the simplest concrete example: Consider the
endofunctor on sets given by 𝐹𝑋 = 𝑋 + 1. This is the construction adding
a fresh element to the set 𝑋 , made into a functor in the obvious way. An
algebra for 𝐹 is just a set 𝐴 equipped with a unary operation 𝑢 : 𝑋 → 𝑋 and
an element 𝑎 ∈ 𝐴. We combine 𝑢 and 𝑎 into a function 𝛼 : 𝐴 + 1→ 𝐴. We are
going to properly define algebras and their morphisms below along with initial
algebras. For now, we simply assert that the initial algebra of our functor 𝐹 is
the algebra of natural numbersN with the successor function 𝑠(𝑛) = 𝑛 + 1 and
the constant 0. The initiality of this algebra is equivalent to the usual principle of
recursion on natural numbers: given an 𝐹-algebra (𝐴, 𝛼), there exists precisely
one function ℎ : N→ 𝐴 with ℎ(0) = 𝑎 and ℎ(𝑠(𝑛)) = 𝑢(ℎ(𝑛)) for all natural
numbers 𝑛. In other words, functions from the initial algebra to another algebra
can be defined by recursion.

As a second example, consider the set functor 𝐹𝑋 = 𝑋 × 𝑋 + 1. An alge-
bra 𝛼 : 𝐴 × 𝐴 + 1→ 𝐴 consists of a set equipped with a binary operation and a
constant. This time, the initial algebra is the algebra of finite binary trees, and
initiality yields a tree-recursion principle which is quite parallel to the induction
principle for N.

A collection of objects ‘built from below’ (such as the natural numbers or
the finite trees) is typically described as an initial algebra of some set functor.
Addressing our opening question: initial algebras are interesting because they
are the natural objects with which to capture recursion and induction.

A coalgebra for a functor 𝐹 is the dual concept of an 𝐹-algebra: it consists of
an object 𝐴 and a morphism 𝛼 : 𝐴→ 𝐹𝐴. We think of 𝐴 as the set of states in
a system, and 𝛼 assigning to a given state a structured collection formed by its
successor states modelling the one-step behaviour of the state.

For example, a deterministic automaton with input alphabetΣ can be described
by the set 𝐴 of its states together with a function

𝛼 : 𝐴→ {0, 1} × 𝐴Σ

whose first component acc : 𝐴→ {0, 1} describes the yes/no predicate of being
an accepting state. The second component 𝐴→ 𝐴Σ may be canonically recast
as next : 𝐴 × Σ→ 𝐴. This is the next-state function of the automaton. Thus, a
deterministic automaton (with no initial state specified) is a coalgebra for the
set functor 𝐹 given by

𝐹𝑋 = {0, 1} × 𝑋Σ .

As with initial algebras, we mention an example of a terminal coalgebra before

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


1.1 Why Are Initial Algebras and Terminal Coalgebras Interesting? 3

giving the definitions. In the case of deterministic automata, let Σ∗ be the set of
words on the alphabet Σ, and let L = 𝒫(Σ∗) be the set of (formal) languages
over Σ. Then L itself has a natural automaton structure: the next-state function
assigns to a language 𝐿 and an input symbol 𝜎 the language 𝜕𝜎𝐿 of all words 𝑤
with 𝜎𝑤 ∈ 𝐿. The accepting states are the languages containing the empty
word. This automaton turns out to be the terminal coalgebra. To explain this,
we must mention the concept of a coalgebra homomorphism. In general, this
is a morphism in the base category that respect the coalgebra structure. In the
special case of deterministic automata, this would be a function between the
state sets that respects the accepting-state predicate and the next-state function.
Such functions are called strong simulations in automata theory [96]. For a given
automaton (𝐴, 𝛼), we consider the map lang : 𝐴 → L assigning to a state 𝑎
the language 𝐿𝑎 of words accepted by 𝐴 when started in 𝑎. Then acc(𝑎) = 1
iff 𝜀 ∈ 𝐿𝑎 iff 𝐿 is an accepting state of L. Furthermore, 𝜕𝜎 (𝐿𝑎) = 𝐿next(𝑎,𝜎) .
This verifies that lang is a coalgebra homomorphism. With further work, one
verifies that lang is the unique such function. This is what it means to say that L
is a terminal coalgebra.

For another example, take an input alphabet Σ and an output alphabet Γ.
A transducer is an automaton which reads in infinite words on Σ and outputs
infinite words on Γ according to a next-state function, which may be described
as a function of type 𝐴 × Σ → 𝐴 × Γ. Closer to our purposes, we transpose
it into a function 𝛼 : 𝐴 → (𝐴 × Γ)Σ. Thus, we are considering the set func-
tor 𝐹𝑋 = (𝑋 × Γ)Σ. Transducers are precisely coalgebras for 𝐹. Let Σ𝜔 and Δ𝜔

be the set of infinite sequences of elements of Σ and Δ, respectively. Let𝐶 be the
set of functions 𝑓 : Σ𝜔 → Δ𝜔 which are causal: the 𝑛th entry in 𝑓 (𝜎1𝜎2 · · · )
depends only on 𝜎1𝜎2 · · ·𝜎𝑛. The terminal coalgebra is carried by this set𝐶. We
leave it to the reader to guess the terminal coalgebra structure 𝐶 → (𝐶 × Γ)Σ.

The point is that various examples of state-based systems of various sorts
may be taken to be coalgebras for set functors. Then the terminal coalgebra
appears as the ‘intended semantic space’. Terminal coalgebras for set functors
have an infinitary aspect that contrasts with what we saw in the most basic
initial algebras. For example, languages 𝐿 ∈ L usually are infinite sets of words,
and the elements of Σ𝜔 and Δ𝜔 are infinite sequences. Dually to recursion
and induction, there are principles of function definition by corecursion and
proof by coinduction. Proofs by coinduction are a bit more difficult to illustrate;
we present examples in Section 2.6. For now, let us circle back to the title of
this section. Terminal coalgebras are interesting because the intended semantic
spaces associated with various forms of automata appear as terminal coalgebras.
In addition, they are tied up with corecursion, an interesting dual to recursion.

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


4 Introduction

So to the extent that we are interested in recursion (hence in initial algebras), we
should also be at least curious about its cousin, corecursion.

We turn next to the formal definitions of algebra and coalgebra, presented
for all categories 𝒜 and endofunctors 𝐹 : 𝒜 → 𝒜.1 (Incidentally, when 𝒜 is
the category Set of all sets and functions, we speak of set functors in lieu of
endofunctors on Set.) An 𝐹-algebra is a pair (𝐴, 𝛼) consisting of an object 𝐴
of 𝒜 and a morphism 𝛼 : 𝐹𝐴 → 𝐴; the 𝐹-algebra homomorphisms (shortly
homomorphisms) from (𝐴, 𝛼) to (𝐵, 𝛽) are those morphisms ℎ : 𝐴→ 𝐵 of 𝒜
for which the square below commutes:

𝐹𝐴 𝐴

𝐹𝐵 𝐵

𝐹ℎ

𝛼

ℎ

𝛽

The category of algebras is denoted by Alg 𝐹. By an initial algebra 𝜇𝐹 of 𝐹
is meant the initial object in Alg 𝐹 (if it exists): this is an algebra such that for
every algebra, there exists a unique homomorphism from 𝜇𝐹.

When we mentioned N as an initial algebra for the set functor 𝐹𝑋 = 𝑋 + 1,
we stated the initiality property in concrete terms. Now we wish to view the
initiality of N as a special case of the general definitions which we have just
seen. Suppose we are given as set 𝐴 and a function 𝛼 : 𝐴 + 1→ 𝐴. From 𝛼 we
can extract a function 𝑢 : 𝐴→ 𝐴 and an element 𝑎 : 1→ 𝐴. Then the initiality
ofN means that there is a unique function ℎ : N→ 𝐴 as follows:

N + 1 N

𝐴 + 1 𝐴

[𝑠,0]

ℎ+id ℎ

𝛼=[𝑢,𝑎]

How is initiality connected to definition by recursion? Following the element
of the singleton set 1 around the square shows that ℎ(0) = 𝑎, and following
a number 𝑛 in N shows that ℎ(𝑠(𝑛)) = 𝑢(ℎ(𝑛)). So ℎ satisfies the recursion
equation driven by 𝑢 and 𝑎. Conversely, any function ℎ′ which happens to satisfy
those recursion equations is an algebra morphism. So by the uniqueness part
of initiality, ℎ and ℎ′ must be the same. This translates back to the fact that
functions which satisfy recursion equations do so uniquely. The overall point is
that recursion on the natural numbers is tantamount to initiality of (N, [𝑠, 0])
in Alg(𝐹), where 𝐹𝑋 = 𝑋 + 1.

For the coalgebraic concepts, we turn the structure morphisms around. An 𝐹-
coalgebra is a pair (𝐴, 𝛼) with 𝛼 : 𝐴→ 𝐹𝐴. An 𝐹-coalgebra homomorphism
1 This book properly begins in Chapter 2. What we are doing here is presenting just a few

definitions so that we can discuss the content of the book in a very general way.

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


1.1 Why Are Initial Algebras and Terminal Coalgebras Interesting? 5

(shortly: homomorphism) from (𝐴, 𝛼) to (𝐵, 𝛽) is a morphism ℎ of 𝒜 such
that 𝐹ℎ · 𝛼 = 𝛽 · ℎ:

𝐴 𝐹𝐴

𝐵 𝐹𝐵

ℎ

𝛼

𝐹ℎ

𝛽

This defines a category Coalg 𝐹 of coalgebras. The terminal coalgebra𝜈𝐹 is (if
it exists) the terminal object of this category.

We have already seen a homomorphism when we discussed lang : 𝐴→ L in
connection with deterministic automata. The unique homomorphism from an
automaton into the terminal coalgebra assigns to every state its language. We see
again an instance of a general trend: the unique homomorphism from a coalgebra
to 𝜈𝐹 assigns to every state its ‘behaviour’. This underscores the importance of
terminal coalgebras. We make a junction between computer science and category
theory when we see that concepts like language acceptance satisfy universal
properties every bit as compelling, beautiful, and useful as those in other areas
of mathematics. This is one of the reasons to be interested in the coalgebraic
modelling of dynamical systems of all sorts: it leads to a generic description
of behaviour-preserving maps between those systems and an ensuing notion of
behavioural equivalence of states. Two states are behaviourally equivalent if they
are merged by some coalgebra homomorphism. This specializes to well-known
notions of behavioural equivalence, for example language equivalence in the case
of deterministic automata or Milner’s (strong) bisimilarity for labelled transition
systems (modelled as coalgebras). This observation was made forcefully by Jan
Rutten [264]; he presented a persuasive survey of applications of coalgebra to
the theory of discrete dynamical systems. Aczel and Mendler [4] made another
decisive contribution by proposing a categorical formulation of bisimulation
which revised our conception of everything that went before it in this area and
attracted the interest of a new generation of computer scientists. One of the
motivations for this book is to present a selection of the large body of work
inspired by the papers of Rutten and Aczel–Mendler.

Let us return to homomorphisms, this time of algebras. These are the maps
preserving operations, so they are well-known from abstract algebra. The
interest of initial algebras for computer science is bolstered because they provide
minimal realizations of abstract data type specifications as terms possibly
modulo equations.

We shall see in Section 1.3 that initial algebras and terminal coalgebras do
not always exists. When do they exist? How can we describe them when they
exist? If one exists, does the other? These questions turn out to be difficult,

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


6 Introduction

and there are no easily-quoted or complete answers. A large part of this book
addresses them. The most basic construction is discussed in Chapter 3. It applies
to both initial algebras and terminal coalgebras. This leads to a more in-depth
look at certain terminal coalgebras in sets in Chapter 4, and to variations that
work in complete partial orders and complete metric spaces in Chapter 5. These
variations provide settings where 𝜇𝐹 and 𝜈𝐹 are the same. That is, we have an
initial algebra (𝐴, 𝛼) with the property that (𝐴, 𝛼−1) is a terminal coalgebra.

Other chapters which take up the theme of constructing and describing
initial algebras and terminal coalgebras include Chapters 6, 11, 12, 13, 15,
and Appendix A.

1.2 Expected Background

We intend the book to be our part of the deep connection of category theory
to computer science. The root of the matter is that category theory is the
mathematics of structure par excellence and the semantic side of computer
science is full of issues that revolve around mathematical structure.

What background is needed to read this book? We are mainly writing to
readers who already know about basic concepts in category theory: initial and
terminal objects, duality, products and coproducts (and limits/colimits more
generally), monomorphisms, and epimorphisms. Very little else is required.
Later chapters in the book require more, of course. The topics that would be
most helpful for later work include adjunctions, monads, factorization systems,
(co)complete categories, and locally finitely presentable categories.

Even more than knowledge of the specific topics, what we assume is a level
of comfort with the presentational style that comes from category theory. Let
us illustrate this point by presenting a very simple result having to do with an
abstract formulation of induction. The rest of this section contains that result
and, in addition, it is a comment on it and the tone and reasoning style of this
book.

We mentioned at the outset that initiality is connected with recursion and
induction, but we have in fact not said a word about the connection to induction.
Now that we have the category Alg(𝐹), we can connect initiality and induction.
Let 𝒜 be a category, and let 𝐹 : 𝒜 → 𝒜. If (𝐴, 𝛼) is an algebra, a subalgebra
of it is represented by a homomorphism 𝑚 : (𝐵, 𝛽) ↣ (𝐴, 𝛼) which is a
monomorphism in 𝒜 (hence the notation↣). An algebra (𝐴, 𝛼) is minimal if
every 𝑚 : (𝐵, 𝛽)↣ (𝐴, 𝛼) is an isomorphism.

We recall from category theory that a split epimorphism is a mor-
phism 𝑒 : 𝑋 → 𝑌 for which 𝑚 : 𝑌 → 𝑋 exists with 𝑒 · 𝑚 = id𝑌 . The reader will

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


1.2 Expected Background 7

recall that if a morphism is both a split epimorphism and a monomorphism,
then it is an isomorphism.
Proposition 1.2.1. Every initial algebra (𝜇𝐹, 𝜄) is minimal.

Proof By initiality, there is an algebra homomorphism 𝑓 : (𝜇𝐹, 𝜄) → (𝐵, 𝛽).
The composition 𝑚 · 𝑓 is a homomorphism from (𝜇𝐹, 𝜄) to itself, so by initiality
again, 𝑚 · 𝑓 = id𝜇𝐹 . Hence 𝑚 is a split epimorphism and a monomorphism, so
it is an isomorphism. □

This general result specializes to well-known cases. For the set func-
tor 𝐹𝑋 = 𝑋 + 1, it corresponds to weak induction: every subset of N which
contains 0 and is closed under successors contains all natural numbers.

There are other ways to formulate induction. For a parallel pair
𝑓1, 𝑓2 : 𝜇𝐹 → 𝐴 of morphisms in the base category 𝒜 with domain 𝜇𝐹, in order
to prove 𝑓1 = 𝑓2 it is sufficient to present a morphism 𝛼 : 𝐹𝐴→ 𝐴 for which 𝑓1
and 𝑓2 are algebra homomorphisms from (𝜇𝐹, 𝜄) to (𝐴, 𝛼). Notice that this is
not the same formulation that we saw in Proposition 1.2.1. It is very much in the
spirit of this book to investigate different categorial formulations of concepts
like weak induction, strong induction, etc. Coinduction is the dual principle
which for the terminal coalgebra 𝜈𝐹 allows us to prove equality of morphisms
of the form 𝑓1, 𝑓2 : 𝐴→ 𝜈𝐹.

We return to the general point about the tone and reasoning style of the book.
In introducing Proposition 1.2.1, we mentioned what a split epimorphism is
and also one fact about it. Our brief mention is barely enough to read further.
In other words, we want to jog the memories of people who have seen the
definition, and we trust that others will acquire some background on it. The
proof of Proposition 1.2.1 is shorter than almost any result in the book, but the
reasoning style is indicative: it uses point-free category-theoretic arguments and
makes use of universal properties.

We generally assume that readers know about automata, terms and signatures,
equational logic, and other topics used in theoretical computer science. We do
not assume much about any of those topics, but we take for granted that the
reader is interested in them.

Several chapters require background on topics related to metric spaces or
partially ordered sets. We have more background on that material. For example,
we provide an appendix on fixed points in settings that come from complete
metric spaces or complete partially ordered sets. We would like readers to come
away from the book with appreciation of two things: the general theory, and
results about particular concrete categories.

Let us comment on the aspect of the book connected to set theory. Our set

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


8 Introduction

theory is the standard one using the Zermelo–Fraenkel axioms, including the
Axiom of Choice. At times we do need definitions and results from basic set
theory, touching on matters such as ordinal numbers, cardinal numbers, cardinal
arithmetic, and regular infinite cardinals. We have provided a more thorough
introduction to those topics in Chapter 6. We also collect a number of facts
concerning set functors into a single place, Appendix C. Material from this
appendix is used in most of the chapters. In a few other places, we mention
some other concept in set theory (e.g. filters and ultrafilters), and readers who
do not know about such things may skip those passages.

When speaking about a category 𝒞 we assume that the collection 𝒞(𝑋,𝑌 )
of all morphisms from 𝑋 to 𝑌 is a set (not a proper class) for every pair of
objects 𝑋,𝑌 . We also assume that these hom-sets are pairwise disjoint.

1.3 Fixed Points and Special Kinds of Algebras and
Coalgebras

As stated in its subtitle, our book is about the theory of fixed points of functors.
A fixed point of an endofunctor 𝐹 is an object 𝐴 together with an isomorphism

of 𝐹𝐴 and 𝐴. One general reason to be interested in fixed points comes from
the following basic result:
Lambek’s Lemma. Every initial algebra is a fixed point.

Dually, every terminal coalgebra is a fixed point. Besides these two, there are
other interesting fixed points, one of which we now mention.

In the study of state-based systems, one is mostly interested in finite systems
(e.g. finite-state automata), or ones whose state space has a finite representation
(e.g. a finite-dimensional vector space or an orbit-finite nominal set). For
example, in classical automata theory the regular languages are those accepted
by finite automata, and rational streams over a field are precisely those behaviours
obtained from systems whose state space is a finite-dimensional vector space
over the field.

We present a general treatment of regularity of system behaviour and the
semantics of ‘finite’ coalgebras. For this we assume that the functor 𝐹 is
finitary (see Definition 4.3.1). For example, finitary set functors are those
determined by their action on finite sets; for them the behaviour of all finite
coalgebras yields a subcoalgebra of the terminal coalgebra 𝜈𝐹 (consisting of the
behaviour of all coalgebras). This subcoalgebra turns out to be a fixed point of
𝐹 which we call the rational fixed point and denote by 𝜚𝐹. For example, for the
functor 𝐹𝑋 = {0, 1} × 𝑋Σ for deterministic automata, this is the coalgebra of all

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


1.3 Fixed Points and Special Kinds of Algebras and Coalgebras 9

regular languages over the alphabet Σ. For 𝐹𝑋 = 𝑋 × 𝑋 + 1, the rational fixed
point 𝜚𝐹 is the subcoalgebra of 𝜈𝐹 (of all binary trees) consisting of precisely
those binary trees that have only finitely many subtrees (up to isomorphism);
these are precisely Courcelle’s regular trees [107]. In addition to the finite
binary trees, the complete (infinite) binary tree is an example of a tree contained
in 𝜚𝐹.

The concept of a rational fixed point makes sense for endofunctors on
categories other than Set, too. For example, for the functor 𝐹 on the category
of vector spaces whose coalgebras are linear weighted automata, we obtain
the rational formal power series, known from weighted automata theory [113],
as 𝜚𝐹. We study rational fixed points in Chapter 10.

Coming back to initial algebras, it follows from Lambek’s Lemma that
an initial algebra can be considered as a coalgebra by taking the inverse of
its structure morphism. It is interesting to study properties of this coalgebra,
especially ones that characterize it in classes of coalgebras with computational
relevance. We mention two properties here: recursive coalgebras and well-
founded ones. Without going into the technical definitions, let us just say here
that recursive coalgebras are coalgebras which admit function definitions by
structural recursion; a good intuition here is to think about ‘divide-and-conquer’
algorithms. Well-founded coalgebras present the notion of a well-founded
relation at a general coalgebraic level. So they are coalgebras admitting an
induction principle. An initial algebra turns out to be the terminal recursive or
well-founded coalgebra; the latter holds under mild assumptions. We shall study
recursivity and well-foundedness in Chapters 7 and 8.

Yet another application of Lambek’s Lemma, this time in dual form, lets us
consider a terminal coalgebra 𝜈𝐹 as an algebra for 𝐹 using the inverse structure.
We shall be interested in studying properties which characterize 𝜈𝐹 in classes
of algebras with computational relevance. Completely iterative algebras are
connected to the matter of solving recursive equations. Again exemplifying via
automata, we can solve systems of equations for languages in a unique way, such
as 𝐿 = 𝑎𝑀, 𝑀 = 𝑏𝐿 + 1. Completely iterative algebras are even tied up with
areas of mathematics that at first blush have little to do with our subject: fractal
sets, for example. A terminal coalgebra is, equivalently, an initial completely
iterative algebra. Complete iterativity shall be studied in Chapter 7.

Finally, Lambek’s Lemma also has a negative consequence for our study. It
implies that even for 𝒜 = Set, there are important endofunctors that do not have
an initial algebra: the power-set functor 𝒫, for example. A fundamental result
of set theory known as Cantor’s Theorem [99] states that no set 𝐴 is in bĳective
correspondence with 𝒫𝐴. (The short proof may be found in Example 2.2.7(1).)
So no set is a fixed point of 𝒫.

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


10 Introduction

algebra for a functor coalgebra for a functor
initial algebra terminal coalgebra
least fixed point greatest fixed point
congruence relation bisimulation equivalence relation
equational logic modal logic
recursion: map out of an initial algebra corecursion: map into a terminal coalgebra
iterative conception of set coiterative conception of set
set with operations set with transitions and observations
useful in syntax useful in semantics
bottom-up top-down

Figure 1.1 Conceptual comparison.

However, this negative point does raise questions about conditions on functors
that ensure the existence of initial algebras and terminal coalgebras and results
showing how to construct them. For example, what about functors related to 𝒫,
such as the finite power-set functor, or the countable power-set functor? Do
these have fixed points? It is known that in other areas such as metric spaces or
posets, fixed points do exist for important classes of functions. We review this
general topic in Appendix B.

1.4 Algebraic versus Coalgebraic Concepts

Although algebra and coalgebra are dual terms, and although this duality
persists to the level of initial algebra and terminal coalgebra, Alg 𝐹 is not dual
to Coalg 𝐹. There are easy examples of this; here is a very simple one: for
the constant functor with value 1, a one-element set, Alg 𝐹 is the category of
pointed sets, while Coalg 𝐹 is (isomorphic to) the category of sets.

What is true is the following: every functor 𝐹 : 𝒜 → 𝒜 defines a func-
tor 𝐹op : 𝒜op → 𝒜

op by the same rule as 𝐹. The category of algebras for 𝐹
(in 𝒜) is dual to the category of coalgebras for 𝐹op (in 𝒜

op). Shortly,

(Alg 𝐹)op = Coalg(𝐹op).

We present in Figure 1.1 a comparison between concepts and ideas in algebra
and coalgebra. The algebraic concepts on the left are connected to sets with
operations and the coalgebraic ones on the right are about sets with structure
corresponding to transitions and observations. The two columns are duals, we
are speaking of ‘duals’ here in an informal way. This book will not have much
to say about most of this chart: to explore it in any depth would require several
additional chapters at the least, and perhaps an entire book of its own. However,

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002


1.4 Algebraic versus Coalgebraic Concepts 11

we hope that readers find this chart enticing and that they will want to explore
the book in order to construct their own conceptual charts. Our claim in this
book is that the mathematical tools which we study will be useful for anyone
interested in the chart.

To sum up, this book is concerned with fundamental notions in theoretical
computer science related to recursion and induction. These notions are dualized
and generalized, leading to a wealth of questions and results. We bring the
viewpoint of category theory to our subject, therefore we adopt the vocabulary
and tool set from that theory. In addition to general work, we frequently study
particular concrete categories and particular endofunctors.

https://doi.org/10.1017/9781108884112.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108884112.002

