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ON BOUNDARIES OF SCHOTTKY SPACES
HIROKI SATO

0. Introduction.

Let S be a compact Riemann surface and let S, be the surface ob-
tained from S in the course of a pinching deformation. We denote by
I', the quasi-Fuchsian group representing S, in the Teichmiiller space
T(I"), where I' is a Fuchsian group with U/’ =S (U: the upper half
plane). Then in the previous paper [7] we showed that the limit of the
sequence of I', is a cusp on the boundary 07'(I"). In this paper we will
congsider the case of Schottky space ©. Let G, be a Schottky group
with 2(G,)/G, = S,. Then the purpose of this paper is to show what
the limit of G, is.

We will begin with defining the boundary of the Schottky space.
Usually the boundary is considered in C*-* the complex (89 — 3)-dimen-
sional space. However, in our approach, it is more convenient to do it
in €¢%. This will be illustrated by some examples.

First we treat the hyperelliptic case. Let G be a Schottky group
such that 2(G)/G is a hyperelliptic surface whose branch points are a,,
Qpy v v oyl 50,1, ,0;0;,¢eR(G=1,---,290 — 1) and whose branch cuts
are (a;, @,), « -+, (@yy_3 Ayy_3), (0, 1), (@y,_;, ) on R. We consider the defor-
matiom obtained by moving a,,_, to oo increasingly along the real axis
and keeping other branch points and cuts fixed. Then under the defor-
mation there exist sequences of Schottky groups G, tending to a point
on 9,© (Theorem 1) and a point on 9, U 9,& (Theorem 2) (see §1 for
the notations). Next let G be a Schottky group such that 2(@)/G is a
compact Riemann surface of genus g = 2. Let S, be a compact Riemann
surface obtained from S in the course of pinching deformation. We
denote by G, a Schottky group with 2(G,)/G, =S,. Then we show
that the limit of subsequence of G, may be either a cusp (Theorems 3
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and 4), a point on 9,& (Theorem 3) or a “node” (Theorem 6). Observe
a big difference from the case of Teichmiiller space.

In §1 we will state two definitions of a Schottky space and the
definition of a normalized Schottky space. Then we define the boundary
of a Schottky space and show by some examples that it is inconvenient
to use a normalized Schottky space. In §2 we will show that under the
above deformation there exists a sequence of Schottky groups tending
to a point on 9,© in the hyperelliptic case. We note that Lemmas 3 and
4 would be interesting and the technique of the proofs would be useful
for studying relations between locations of branch points and cuts on a
hyperelliptic surface and multipliers of generators of Schottky group
which represents the surface. In §3 we will show that when we per-
form a pinching deformation for a compact Riemann surface S, sub-
sequences of Schottky groups G,, representing the obtained surfaces,
may tend to either a cusp, a ‘“node” or a point on 3,S.

The author is indebted to Professor Lipman Bers for pointing out
some errors in the original version of this paper and the author wishes
to express his deep gratitude to professors K. Oikawa, T. Akaza, T. Kuroda
and K. Matsumoto for their encouragement and advices.

1. Definition of boundaries of Schottky spaces.

In this section we will state two definitions of a Schottky space and
the definition of a normalized Schottky space. Then we will define the
boundary of a Schottky space and will show by some examples that it
is difficult to define the boundary of a normalized Schottky space.

1-1. Definition of a Schottky space. Let C,,Ci,---,C,, C) be a set
of 29,9 = 2, mutually disjoint Jordan curves (we call them defining
curves) on the Riemann sphere which complize the boundary of a 2g-ply
connected region D. Suppose there are g Mobius transformations A,,
-++,A, which have the property that A, maps C; onto C; and A,D) N
D=¢,1<j=<g. Then the g necessarily loxodromic transformations
A; generate a Schottky group of genus g with D as a fundamental
region.

The first definition of a Schottky space is due to Marden [5]. Given
9 =2, consider the compact manifold P§, where P, denotes complex pro-
jective 3-gspace, with the natural topology. We represent points of this
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space by g-tuples of 2 X 2 complex matrices (4,, - - -, A,) (with the natural
equivalence relation). Let X be the variety determined by the equation
[TdetA;, =0 and set V=P¢ — X. Fix a Schottky group G of genus
g and a set of free generators A,,-..,4,. This set of generators deter-
mines the point (4,, ---,4,) e V. To any homomorphism §: G — H, where
H is a group of Mobius transformations, we will associate the point
@@, ---,0(4,)) e V. For simplicity we will use the notation (H,6) for
this point. Conversely, a point (B, ---,B,)eV can be expressed as
(H,6), where H is the group generated by B, ---, B, and 6 is the homo-
morphism determined by 6(4,) = B;. The topology of V corresponds to
the “pointwise convergence” topology in the group H. Namely (H,,8,)
— (H,0 in V if and only if 6,(4,) — 0(4,) for each 7,1 <j<g. Define
the Schottky space &, as follows.

&, = {(H,0) e V:H is a Schottky group and ¢ is an isomorphism} .

Remark. Let G be another Schottky group and /il, .. -,/ig be gen-
erators of G. Let &, be the Schottky space constructed as above with
respect to G and Al, .. -,fig. Then it is easily seen that &, and &, are

essentially the same and that their boundaries defined later coinside.
Since we study boundary of Schottky space in this paper, we may ignore
the letters G, A, ---, A4, for the definition of the first Schottky space.

The second definition of a Schottky spaces is as follows. Let H be
any Schottky group. We denote by 2;,p; and ¢; the multiplier, the
repelling and the attracting fixed points of B;, respectively, where B,
.-+, B, are generators of H and 1 < |4,/ < +oco. Thus H determines
3g9-tuples of complex numbers

(Ais P15 Qus Aoy = 5 gy D5 ) € o,

For simplicity we denote by z such 3g-tuples. Conversely a point - with

;% 00 (1 £7=<9) determines a point (B, ---,B)eV. We define the
second Schottky space &, with the natural equivalence relation as fol-
lows.

G, =1{re C%: ¢ determines a Schottky groupj} .

Then it is easily seen that &, and ©, are equivalent. Thus we may
denote by & instead of &, and ©,. We note that the dimension of & is
34.
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If in the first definition of © we regard as the same point in &,
the points (B,, ---,B,) and (TB, T, ..., TB,T-") with T e SL’(2,C), then
we have a normalized Schottky space [©,] instead of a Schottky space
©,. Similarly if in &,, we regard as the same point (1, 9,,qy, - -+, ;5 Dy»
q,) and (4, Py @iy - - +» Ags Pg» 4,), We have a normalized Schottky space
[©,], where 2,, p; and ¢, are the multiplier, the repelling and the at-
tracting fixed points of TBT-,1 <4 < g, respectively. Then it is easily
seen that [&,] and [S,] are equivalent and so we denote them by [€].
We note that the dimension of [S] is 839 — 3 and [©] is usually called a
Schottky space.

1-2. Definition of the boundary of the Schottky space.

We consider the boundary of a Schottky space. We will use the
notation 98, for the relative boundary of &, in V, that is, for each
(H,0) c0S,, there is a sequence of points (H,,0,) €S, converging to
(H,0). A point (H,6H) c0o©, will be called a boundary group of G. A
point (H, ) € 05, will be called a cusp if there is a loxodoromic element
A e G such that 6(A) is parabolic. Then Chuckrow [3] showed that &,
consists of cusps and non-Kleinian groups.

We consider the boundary of &, in €¥. We classify the boundary
of 9S, into the following three cases as limits of point sequences of
Schottky groups G, = {4.n, - -+, Ay} (Or 7).

(1) We call the first boundary point the following z,¢ C30 For
7,€08,, ¢ Mobius transformations A; are determined as the limit of
A;,1=7j=<9). We denote by 9,8, the set of all such points z,. In this
case 06, = 9,8,.

(2) We call the second boundary point the following z,¢ ¢, that
i8, 7y = (g Dio» Quos * * *» Agos Dgo» o) With 25 = limy, .., A4, Py = limy,... Dy
and g, = lim,_...q;» (1 <7 < 9) such that at least one of 2;,,A <7< 9)
is infinite and all p;, and ¢, (1 =<14,7 < g) are distinet. We denote by
9,9, the set of all such points. Furthermore we call the point ¢,¢3,5,
a “node” if each 2; (% o0),p; and g, determine a loxodromic transfor-
mation. We show an example of z,¢ 3,8, which is not a “node”. Set

An@ = LN and A, = 0F 2>Zz++<r(tn++42;r @/m)

We denote by G, the Schottky group generated by A,, and 4,,. Then
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tn = ((n 4+ 4i/n, 0, 00, 2, =V + D0 + 3)/n, V(0 + D)(n + 3)/n)

and

7, = lim ¢, = (4,0, 00, 00, —1,1) .
Thus 1,, = o0 and A,, = lim,_. 4,, is an elliptic transformation.
(8) We define the third boundary by setting ¢S, — 9,8, — 9,5,, and
denote it by 9,©,. We give an example of a point 7,€ 3,8, Set

Then the group generated by A,, and A,, is a Schottky group. Then

7o = ((n + 1)/n, 0, 00, A, (21 — ¥ 3)/2n, (2n + v/ 3)/2n)

and

to=limz, = (,0,00,7 + 4/3,1,1) .
Thus A,, = lim,_. A,, is an elliptic transformation and z, € 3,S,.
We write 05,0,6,0,& and 9,© instead of 86,,0,&,,0,8, and 3,5,
respectively.
Now we present an example showing that the normalized Schottky
space [&] is not convenient for our study.
Examples. Let

A =2+t1=" " §<,<1
z+1
and
Tz — 29
B,(2) = 2",
(2) P

Let G, be the Schottky group generated by A, and B,, that is, G, =
{4,,B,} and

o=@ =1+ 2/IT =) —VIT =7, /T =7,
(7T+3v5)/2,11 — ¥V5)/2,(A1 + v/'5)/2) .

Set
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T,(2) = 2 + vi—r

-1 =1

A@ =T,AT @) = 2=" % 22«/1 -,

and

é,-(Z) T.B,T;'(2) = (—7* — 28 + 3vV1I — )z + 11/ — 72 + 30 — 1?) .
AIWVI =7 — 380 + )z + BVI — 7% + 28 + 19

Let é, be the Schottky group generated by /f, and l?,, that is, é, =
{4,,B,} and

2, =(2— 7"+ 2/1—19/7%,0,00,(T + 3v'5)/2, 9, 4) .

For each real number 7,0 < r <1, G, and é, determine the same point
in [&]. It is easily seen that

A,(2) =1lim A,(2) = 2/(z + 1)

is parabolic and

B,(?) =1lim B,(2) = (T2 — 29)/(z — 4)

r—1

is loxodromic. And

7, =limz, = (1,0,0,(7 + 3v5)/2,0,5 Q) .

7—1

Hence the group generated by A,(2) and B,(z) is a cusp on 9,S. On the
other hand

A = lim A, =2
is the identity and
B = lgrll B,(2) = (—29z + 29)/(—292 + 29) ,
and |

ty=1lim#¢, = (1,0,00,(7T +3v5)/2,1,1) .

=1
Hence #, is in X and on 4,©.

Furthermore
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Ayz) = ling A=+ 1D/+ 1D

and

Byz) =lim B,(2) = (T2 — 29)/(z — 4) .

Hence

Ty = lim T, = (co, —1,1, (7T + 3\/3)/2, yon qZ)

r=0

is in X and on 9,©. On the other hand
A2 =1im 4,(2) = =
=0

and
Byz) = lim B,(2) = (—25z + 41)/(—19z + 31) .
Hence
& =lim ¢, = (o0,0, 00, (7 + 8v'5)/2, 1. q)
is on 9,©.

G, and GA, represent the same point of the normalized Schottky
space [©]. However, they behave differently as » — 0 or »— 1, This
shows that the Schottky space © is more convenient than the normalized
space [S].

2. The hyperelliptic case.

In this section we will discuss the case where G is a Schottky group
such that 2(G)/G is a hyperelliptic surface, where 2(G) denotes the
region of discontinuity of G, and we will congider limits of the Schottky
groups obtained under the following deformation.

2-1. Let S be a normalized hyperelliptic surface which has branch
points @y, ---,a, 5, 0,1,a,,_;, 00 and has branch cuts (a;,a,), (a5 a), -,
(@yg_s Usy_2), (0,1) and (a,,_,, o) on the real axis, where a, <a, < ... <
Qg <0< 1< @yy_yy|@yye] > |y],0;eR G=1,---,29 — 1) (cf, see Fig. 1
in the previous paper [7]). Take g simple loops «a;, - - -, @, being disjoint
each other on S as follows. Each «; (2 £j < g) surrounds the cut
(ayy_3 05_) and not other cuts in its interior and «, surrounds the cut

https://doi.org/10.1017/50027763000024764 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024764

104 HIROKI SATO

(@yy-1» o) and not other cuts in its interior. Now we consider the defor-
mation under which the branch points a,, ---,a,,_,, 0,1, c0 and the cuts
(@1, @5)y « + +5 (Qgg_3) Ayy_0), (0,1) are fixed, and the point a,,_, increasingly
tends to oo along the real axis.

Let G be a Schottky group of genus g such that 2(G)/G is the above
hyperelliptic surface S and S, be the hyperelliptic surface which has
branch points a,, @, - -+, 055, 0,1,a,,_;, 0 and has cuts (a,,a,), « -+, (@y_s
@yy_2), (0, 1), (asP,, o) on the real axis, where a,,_, < af?,. Now we may
take «, as the circle about 0 of the radius r with |a,| <7 <ay_;. On
the other sheet we denote by «f the circle which has the same projec-
tion as «;. Let D, be the ring domain containing co bounded by «; and
a; on S. Furthermore we write «, and «] for the corresponding loops
on S,. Let D,, be the ring domain containing co bounded by «; and «;
on S,. To the loops @, ---,a, on S we assign Mobius tranformations
A, ---, A, respectively.

We consider the conformal mapping of the Grotzsch extremal region
to the concentric annulus (cf. see Fig. 4 in [7]). We map D, and D,, to
annuli K;: {p, < |2/ <1} and Ki,: {oi» <|2| <1} by conformal mappings
@ and @,, respectively. Then

O((1/P)ay-1) = 1/4/p,
and

We define a q.c. mapping f,: S — S, as follows. Let 7, be an arbi-
trary quasi-comformal mapping of K, onto K,, such that &;'f,0 = id.
on oD,. We define f, by setting

o;'f,0  on D,

o= {identity on S—D,.

LEMMA 1. (Sato [7]).

limp, =0 if and only ¢f limae, = co.
LEMMA 2. For f, defined above, there uniquely exists a q.c. map-
ping F, which satisfies the following conditions:
1) With respect to G, = F,GF;',F,(2(@))/G, = S,
(2) With respect to m,, the natural projection from Q(G,) onto S,,
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7.y = for and
3 Fu0) =0,F,1) =1 and F,(c0) = oo,
where © expresses the natural projection from Q(G) onto S.

Proof. We can prove the lemma by the same method as in the
proof of Lemma 2 in [7], hence we omit the proof here.

Let A, be an element of G with the following property: If a path
22’ is a lift of «,, then 2’ = A,(z). Set A, = F,AF;. We denote by
A the multiplier of A,,. Then by a similar method to the proof of
Lemma 3 in [7] we have the following lemma, but for the completeness
here we give a proof.

LemMma 3. If lim,_.a{, = oo, then lim,.. log|4,| = 0.

Proof. Let p,, and q,, be the fixed points of 4,, and we may as-
sume that p,, = 0 and ¢,, = co. We denote by I',, the set of all simple
closed rectifiable curves y separating 0 and oo and denote by M;, the
extremal length modulo {4,,} (the quantity introduced by Bers [2]), that
is,

(inf o(2) [dz|)2
Mln — Sup r€l Jrerl

’ ”  a(@rdady
Fn(C)/{41n}

where ¢(z) is a non-negative measurable function which satisfies the
identity

b

(A ,,(2) |dA, ()| = a(2) |dz| .
We call the function o(z) an admissible function. Then (Bers [2])

2

=_“r (1)
log |2,

in
We denote by ¢, the lift of the branch cut (a{?,, o) which joins p,, and
¢1n, and denote by E,, the lift of the ring domain D,, such that ¢, ¢ E,,.
We denote by I, the set of all rectifiable curves joining the boundary
|z] =1 and another boundary |z| = p,, in the annulus K, and denote by
Mln the extremal length of I, in K,,. It is known that

M,, = —log p,,/(2n) . (2)
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For each curve yel',, there exists a curve 7 in E,, being a lift of
7el', such that 7* is a part of y. It is not difficult to prove that

My, = M, . (3)

By Lemma 1, if lim,..a{®, = oo, then lim,_. p,, = 0. Hence from (1),
(2) and (3), we have the desired result. Our proof is now complete.

For each j = 2,8, ---,9, let A; be an element of G with the follow-
ing property: If a path 2,2 be a lift of oy, then 2 = Ay(z;). We con-
sider the variations of A4,, ---, A, under the above deformation. Let «f,
---,a, be the loops on the other sheet which have the same projections
as a, ---,a, respectively. Let D, (j=2,---,9) be the ring domain
containing the cut (a,;_s; @,;_,) bounded by «; and «);. Map the ring do-
main D, to the annulus K;: {p; < |2| <1} by a conformal mapping g;,.
Let f, be the q.c. mapping constructed above. We set a;, = fu(@)), &}, =
Ja(&}) and D, = f,(D;). Let g,, be a conformal mapping from D, to
the annulus K;,: {o;, < |2| < 1}.

Let I"; be the set of curves joining the boundary |z| =1 of K, and
another boundary |z| = p, in K,. Let I';, be the set of all curves join-
ing the boundary [2|=1 of K,, and another boundary |z| = p;, in Kj,.
We denote by M, and M,, the extremal length of I*; in K, and of I*,,
in K;,, respectively. Then f, = 9;,./97': K; — K, is conformal, hence

v, Y —lo
Mszﬁhjfﬂ.

Set 4;,,=F,A;F;'(j=2,---,9). We denote by 1;, the multiplier
of A;,. We denote by M,, the extremal length modulo {4,,} by the same
method as in the proof of Lemma 3. Then

2r
My,=_2"_  |2./>1.
J loglljnl I jnl

By the same way as in the proof of Lemma 3, we have

2 > —log p; _
log|2;,] = 2=z
Hence
2
log | 4ja] < — 2% |
—log p;
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2-2. Next we consider the “g”-cycles on S. Let g, ---, 8, be a basis
of “g’-cycles as in the Figure 1 below, that is, g, are mutually disjoint
and a; X B = d;; (Kronecker’s §) and f; is a loop which bounds a ring
domain D¥ together with B, for each j =1,...,9. Furthermore we as-
sume that g8; and 8, 2 <7 < g) are contained in S — D,. We set B;, =
FoB)s Bn = Falf) and D = f,(DH G =1, -+, 9).

We fix 7,2<j7<g9. We assume that 4,,(2) = 2;,2. Let C;, and C,
be defining curves of G, such that A,,(C;,) = (), and one of the lifts
of D* lies between C,, and Cj,. Then C;, and C}, both separate 0 and
. We denote by w,, the ring domain bounded by C;, and Cj,. We
denote by I'#, the set of all curves 7, (0 =<6 < 27) which are the inter-
sections of w;, and rays emanating from the origin, where each 7,eI'%,
consists of finitely many line segments and argz =6 for each zery,.
We denote by M¥%, the extremal length of I'}, in w;,, that is,

o (inf J' o(2) |dz|)2
” o2y dudy

’

where ¢(z) is a non-negative measurable function. Then one of the lifts
of the curves g, is in wy;,, and it is a closed curve which separates 0
and co. We denote the curve by g¥. Similarly we denote by g}’ the
closed curve separating 0 and oo which is a lift of g; in w;,. By
conformal mappings ¢* and g%, we map D¥ and D} to the annuli
K#*:{p¥< |2| < 1} and K%,: {0}, <|2| <1}, respectively. Let I'f and I}, be
the sets of curves joining |2| = 1 and |z| = p}, and |2| =1 and |z| = p},
respectively. We denote by M;F and 117./;“,, the extremal length of I'* in
K¥ and of ['* in K%, respectively. Then by the conformal invariance
of the extremal length we have

fﬂf ﬂ/ﬁ

H— 4
Lo G2 Gzg-3 azo 2 azv -1

\
\ A
\ N

M?:M;“n. (4)
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Furthermore by the same method as in the proof of Lemma 3, we have

iy, < M, . (5)
We eagily see that
ity = logef | (6)
2
Next we show that
M;"né IOgMJnl . (7)
- 2r

Set m(o) = inff d(z) |dz]. Then for any function ¢(2) and for each
79 79

7o€ s
mo) < La a(retd)dr , where z = re® .
Hence
[ m@as = [7] otremaras.
By using the Schwarz inequality, we have
Aoy < I ,2, f _o@rdrdo j: J _Qyndrds

= f L}n o(2)ydudy f:“fm A/r)drdo .

Hence

4z*m()? < I"I 1 rds .
” o(z)dxdy o
®jn

On the other hand let @;, be the image region of w;, under the loga-
rithmie function { =logz,{ = & + iy (see Fig. 2).
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2r +

{=logz
—_—

7o

Figure 2.

Then f (1/7)dr expresses the total length of line segments in @;, N {{|Im {
79
= ¢}. Hence

r" f 1/r)drda
0 79
is the area of @,,. Since
f" f (1/7)drd = 2z log |3,] ,
0 76

we have

m(o)z < lOgl'zjnl .
I‘[ a(z):dxdy 2r
ojn

By the arbitrariness of ¢, we have (7).
By (4),(5),(6) and (7) we have

log |2;4] > —log p¥
2r 2r

b

hence

Mjnl g 1/p.>1k *

https://doi.org/10.1017/50027763000024764 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024764

110 HIROKI SATO

Thus we have the following

LEMMA 4. Under the same deformation as in Lemma 3,

—l—éllmléexp<—4£2—~> 2=si=9.
oF —log p,

Remark. It would be interesting to compare this with a result of
Abikoff [1].

2-3. Now we have

THEOREM 1. Let G be introduced at the beginning of 2-1. Let G, =
{Ayy -+, Ay} be the Schottky group constructed in Lemma 2. Then

1) if G,edS s the limit of T,G,T,}, whose {n;} C {n} and T
are Mobius transformations, then G, is a cusp.

(2) There exists a subsequence {n;} C {n} and Mdbius transforma-
tions T,, such that the limit G, of the sequence T,G,T,} is on 3, N X.

nj

Proof. (1) If the limit G, is a point on 9,&, then by Lemma 3,
A, = lim,,ﬁw Tin,Ain 5, is parabolic, elliptic or the identity and by
Lemma 4, A; = lim,,.., Tjn,A;s,T;., is loxodromic for each 7,2 <7 =<g9.
Hence by Chuckrow [3], A,, must be parabolic. Thus G, is a cusp on
0,S.

(2) We denote by p;, and q;, the repelling and the attracting fixed
points of 4,, (j =1,---,9). Let T, be the Mobius transformation such

that Tn(pm) = O, Tn(qln) = oo and T’n(pzn) = 1. Then

lim 4,, = lim T,4,,T;* = id.  or elliptic
since P, =0,4,, = o and lim,_,|4,| =1, where p,, and ¢,, are the
repelling and the attracting fixed points of Am, respectively.

If Py x Gy, then by Lemma 4, Azo = lim,_. T,A,.T;' is loxodromic,
where 9, = lim,_.. 9, and §,, = lim,_.. 4,, and #»,, and §,, are the re-
pelling and the attracting fixed points of 7,4,.T;!. But by Lemma 4
and its corollary in Chuckrow [3] this case does not occur. Hence 9, =
dn=1. Set

; Gy b . P
Azn = (Azn dﬂzn) ’ azn‘izn - bznczn =1.
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Then by Lemma 4,

. Y R TRV
= E s o0)
D2n — dan
Since
o A A ~1/2
on = Conlon — A3,
bzn = _éznpzn(hn
and
— A B -1/2
izn = —CounPsn — inl/ ’

we have that

lim A,,(2) = (z — 1)/(z — 1) .
Hence éo = lim,_.. én is in X. Furthermore let 7, ¢ © be the associated
element with G,. Then

Ty = lim Tn = (17 O’ 0, 2209 19 19 tt 'zgo’ Dgos ng) .

n—rc0

Hence 7,¢0,©. Our proof is now complete.

2-4. Next we consider “g’-cycles. Let g, ---,B, be a basis of “p"-
cycles on S. We denote by §, the symmetric loop of 8; with respect to
the real axis (j =1, .--,9). We denote by ﬁ;‘ 1 <7 < g) the ring domain
bounded by B; and 3;. Let G* be a Schottky group generated by Mobius
transformations B, - -, B, assigned to the loops B, ---,B,, respectively,
in a similar sense for “a”-cycles. Let S, be the Riemann surface con-
structed in front of Lemma 1 and let f, be the same ¢.c. mapping from
S to S, defined there. Then by the same method as in Lemma 2, we
have

LEMMA 5. There exists a unique q.c. mapping FF which satisfies
the following conditions:

1) With respect to G¥ = FXG*F*-', F¥(Q2(G")/GF = S,

(@) with respect to the natural projection ¥ : QA(G¥) — S,, n¥F¥ = f,x*
and

B F*0) =0,Ff1) =1 and F¥*(c0) = oo,
where n*: 2(G*) — S is the natural projection.
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If we set B, == F}B,Ff'(1<j<g9), then G} ={B,,,---,B;,}. We
denote by % the multiplier of B;,. We set B;, = f.(8,) and j;, = f.(8)
2=<7=<g9). Letb, be the intersection point of 5, and the segment (0, 1).
Let B, be a simple closed curve through the points b, and 2¢, which
does not intersect with 8;, 2 =<7 = 9).

Let @; (j =2, ---,9) be mutually disjoint simple loops homotopic to
a; in S — D, so that each of &, bounds a ring domain D¥ together with
a;, and let @ be a simple loop homotopic to «, so that & is disjoint
from &, @2 <j<g¢9) and bounds a ring domain D} together with «,.
Then D, and D#¥ are conformally mapped to the annuli K,: {3, < |z| < 1}
and IZ}*: {o¥ <|2| <1}, respectively. Then by using similar method to
the proofs of Lemma 3 and Lemma 4, we have the following lemmas.

LEMMA 6. Under the above deformation,

1 4z
—— = 2| S exp (————)
f; ! —log g}

fOT j=2;3’ 9.
LEMMA 7. If

lima,,_, =oco, then limaf = co.

n—sco n—+0

By using Lemma 6 and Lemma 7 we obtain the following theorem.
Here we shall omit the proof.

THEOREM 2. Let GF¥ be the Schottky groups constructed above.
Then the limit Gf ¢9© of the sequence T, GXT,', whose {n;} C {n} and

ngr

T,, are Mobius transformations, is always on 3,& U 0,S but not on 9,S.

Remark. It is not known whether there exists a subsequence
T,,GET, tending to a “node” or not.

3. The general case.

In this section let S be a compact Riemann surface of genus ¢ and
let G be a Schottky group with 2(G)/G = S. Fix the Schottky group
G. Here we study limits of subsequence of Schottky groups G, with
2(G,)/G, = S,, where S, is the Riemann surfaces obtained from S in
the course of the following pinching deformation.
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3-1. Let a;,---,a, be a basis of “a”-cycles on S and D,, ---,D, be
mutually disjoint ring domains such that each D; contains «,(j=1, - - -,
g). We will construct the Riemann surface S, from S as follows. Let
f» be a q.c. mapping with a finite maximal dilatation D( f) <K on S,
where K is a fixed positive constant not depending on n. For j =1,
g, we set d;, = fuley), Dyu = fo(D,) and fu(S) = S,. Map D, to the
annulus K'm:{pm < |2] <1} by a conformal mapping ¢. such that the
image of &,, is homotopic to the circle |z| = +/p,, in K.,.. Let K,, be the
annulus {p,, <|2|<1} and let f, be an arbitrary g¢.c. mapping from K’m
to K,,. Now we let S, be the Riemann surface obtained by joining
S, — ﬁln and K,, so that each point pedsS, — f)m) is identified with
Falin®) € Ky )

We define a q.c. mapping f,: SA,,—»S,L by setting that fo = Fnlin on
ﬁm and fn is a conformal mapping in §n — D,, with the given boundary
correspondence. We set a;, = f,(d;,) and D,, = f,(D;,). And set f, =
fnfn Then f, is a q.c. mapping from S to S, and has a maximal di-
latation D(f,) < Kon S — D,. We call the above deformation a pinching
deformation for «, on S if p,, tends to zero for n — co. We note that
by Bers [2], lim,_., L(p,,) = 0 in this case, where L(p,,) is the least length
of the loops homotopic to «;, in D,,.

We denote by G a Schottky group generated by Mobius transfor-
mations A, ---,A, assigned to the loops «,---,«,, respectively, in a
similar sense in 2-1. We obtain a similar result to Lemma 2. The ob-
tained q.c. mapping is denoted by F,. Set G,=F,GF;' and A,, =
F,AF;' (j=1,---,9). Then G,=1{A,, ---,4,,}. We denote by 2,
(G =1,---,9) the multipliers of A;,. Then we have the following lemma
by the same method as in the proof of Lemma 3.

LEMMA 3. Under the above pinching deformation for wa,

lim log |4;,] = O .

Next we take a basis p,---,8, of “g’-cycles and choose the loops
B+, B, as in §2. We denote by D¥ the ring domain bounded by g,
and g;. By conformal mappings D; and D} are mapped to the annuli
K;:{p; <|z| <1} and K¥: {pf <|z] <1}, respectively. Then by slightly
modyfying the proof of Lemma 4 in § 2, we have the following important
lemma.
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LEMMA 4’. Under the above pinching deformation for a,

()" < 12 5 o (25 )
i — log p;

for 7 =2,---,9.

3-2. Then we have the following main theorems. Theorem 3 is
proved by the same method as in the proof of Theorem 1.

THEOREM 3. Let G, be the Schottky groups constructed above.
Then

Q) if G,edS s the limit of T,G,T,', whose {n;} C {n} and T,,
are Mobius transformations, then G, is a cusp.

(2) There exist a subsequence {n;} C {n} and Mdébius transformations
T., such that the limit G, of the sequence T, G,T,} is on 3,& N X.

THEOREM 4. Set A,, = (‘c"m Zm
jn in

taking T, suitably, consider the sequence normalized so that c,, = 4,
A0 =0 and A,,(2) = 2. Furthermore suppose that the following con-
ditions are satisfied. (1) ¢jpx0,7=1,---,9 and n=1,2,.--, and (2)
There exist defining curves Cy, and C, of Ay (7 =1, -- -, 9), respectively
such that C;, and C’, are the isometric circles I;, of A;, and Ij; of
A3}, respectively, and C;, and Cj, 2 <7 = g) are all outside the disk
{z| £ 1} and 7;'(Dy,) N 0, C {|z| = 1}, where v, s the 2g-ply connected
region bounded by C,,, Cly, -+, Chy.  Then the limit G, of an infinite sub-
sequence {G,,} with {n;} C {n} is always a cusp.

>’ a’jndjn - bjncjn =1 (1 é j é g) By

Remark. As is seen from the proof, it seems that the assumptions
of Theorem 4 would be weakend considerably, although the present one
is sufficient for our purpose. It is not known whether Theorem 4 is
true or not in the hyperelliptic case.

Proof. First we prove the theorem for the case of genus g = 2.
Let A,, and A,, be generators of G,. By the assumption, A,,(0) =0,
A,,(2) =2 and ¢, = 4. We denote by p;, and ¢;, the repelling and the
attracting fixed points of A,, (fj =1,2). We assume that ¢, = 0 and
Qon = 2.

Suppose 7,,, the radius of the isometric circle I,, of A,,, tends to
zero. Since 1 <lim,_. |4 < + o by Lemma 4 and
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o) = M= 2"
Pon — Qon

we have lim,_. p,, = 2. We note that by the assumption the 4-ply con-
nected region bounded by I.,, I}, I,, and I;! is a fundamental region for
G.. Let 7,, be the circle of radius |1/¢,,| + [(@ + d2y)/Con| centered at
Oyn/Crmy and let y,, be the unit circle. Then for large n,y,, surrounds I,
and I3! and is disjoint from y,,. Let y{® and 7{” be the inverse image
of 7, and r,, under the mapping F,, respectively. Then ¢ and y® are
disjoint simple closed curves containing the points 0, p, and the points
2,p, in their interiors, respectively, where p, and p, are the repelling
fixed points of A, and A, (defined in 3-1), respectively. Let R{™ be the
doubly connected region bounded by r™ and y{® and let R,;, be the dou-
bly connected region bounded by 7,, and y,,. We denote by M(R{™) and
M(R,,) the moduli of R{™ and R,,, respectively. It is known that there
exists a constant M such that M(R{®) < M,n =1,2,-... By the well-
known property of modulus,

M(R{M)* =z M(Ry,) ,

since F', is the q.c. mapping with maximal dilatation D(F,) < K on R{™.
On the other hand it is easily seen that

lim M(R,,) = oo .

n—oc0

Hence

oo = lim M(R,,) < lim M(R{™)X¥ < M¥ = a finite constant.

n—co n~co

This contradiction shows that lim,_. 7,, % 0.

Since 1y, = lim,_,, 75, % 0, @, = lim,,_., ¢,, = 2 and |2, = lim,_. |4,,| > 1,
we have p, = lim,_. p,, = 2, that is, 4,,=1im,_. A,, is a loxodromic
transformation.

We show that A4, = lim,..A4,, is a parabolic transformation.
Suppose that lim,_..p,, = P, = 0. Since ¢, =4,¢, =0 and ¢, =
A7 — 25 (D1 — @1a); We have

4 = (A7 — 25" Do -

Then 2, 1 and so by |4, =1 we have 1, =€ (§ % 0). Thus 4, =
lim,_. A,, is an elliptic transformation. This does not occur by Chuckrow
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[3], since A4,, is a loxodromic transformation. Hence p,, =0, so 1, = 1.
Thus A, is a parabolic transformation. Thus G, = {4,, 4,} is a cusp.

Next we prove the theorem for the case of genus g = 3. Let p,,
and ¢, be the fixed points of A;,, 1 <j < g). Suppose that lim,_.. py,
= lim, ... qx, for some k,2 <k < g. We denote by I,, and I;, the iso-
metric circles of A;, and 4;; (1 < j < ¢), respectively. The radius 7,
of I, becomes 0 as n to co. By the assumption, I, and I;; (2=<j7=<9)
are mutually disjoint. Let 7,, be mutually disjoint simple closed curves
surrounding I;, and Ij; which lie outside the disk{|?|<1},2<j<g.
We may take {r:,} as a sequence of simple closed curves as follows: (1)
each 7, surrounds I, and I}, (2) 7z, does not intersect with I;, and
IiiGxk1<37=<9) and () yi, tends to the point lim,_. P, for n— oo.
Let 7., be the unit circle. Then by the assumption I,, and I;! are con-
tained in the interior of 7., and w, N #;'(D,,) C (the interior of ) for
large n.

Now we consider the g-ply connected region «, bounded by y;,
1 <j<g9). By using the well-known theorem of the theory of con-
formal mappings, «, is conformally mapped to the following circular
slit annulus, that is, r,, to the circle |2| = R,,, 74, to the circle |z| = Ry,
and 7,, <7 =<9,7= k) to the circular arc slits on |z| = R;,, where
Ry <R;, <R, Q<j<g,ixk. Set " =F;'"G1a),1<7=<g. We de-
note by «’® the g¢-ply connected region bounded by these ¢ curves.
Then o' is conformally mapped to the circular slit annulus like above.
Thus for the image |z} = R of y{® and the image |2| = R{ of y™,

BE [B* = Ry /R

since F, is the q.c. mapping with maximal dilatation D(f,) < K on o'™.
But by the above construction
lim Rln/Rkn = OO0 .

On the other hand lim,_. R{™/R{® is finite. For, y (1 <j < ¢g) contains
a curve C{ joining the fixed points of A, in its interior for each n and
7. Let o*™ be the g-ply connected region with C{” as the boundaries.
If o*™ is mapped to the circular slit annulus, we denote by R}™/R}™
the ratio of the inner and outer radii of «*™, where R¥™ (j =1,k)
has similar meanings to the above. Then for each n,
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RF¥™ |R¥™ > R™ |R™ |

It is known that there exists a constant M,, such that R¥™/R}™ <
M,n=12,.... Thus for all large n we have

M. = R /RP .

This contradiction shows that lim,_. p., = lim,_. ¢;, @2 < k < ¢). Thus
by Lemma 4/, 2;, = lim,,_.., 4;,, P;o = lim,,_.. p;, and gq; = lim,_., q;, deter-
mine loxodromic transformations 4;, 2<j7 < g. As in the case g = 2,
A, =lim, . A;, is parabolic. In this case the fixed points of 4,,1<7
< g, are all distinct by Marden [5], since A4, are all Mébius transfor-
mations. Hence G, = {4, -- -, A,} is a cusp. Our proof is now com-
plete.

3-3. To illustlate our result we shall present an example of the
sequence {4 ;,} which satisfies the assumptions in Theorem 4. For brevity
we consgider the case of genus g = 2.

Set

A = AUm + VIF AT
1 4z — (1/n) — +/1 + (1/n?)

and

A, (2) = 17/2)z — 13 )
4z — 6

Let G, = {A,,,4,,}. Then G, is a Schottky group and
.= (1 + 2/n) + @/mv1 + 1/7),0,1/(2n),4,13/8,2) .

We have
Au@) = lim A,,(z) = I z+ -
Ay(2) = lim 4,,(z) = 1722 — 13
noe 4z — 6
and

7, = limz, = (1,0,0,4,13/8,2) .

N0

Then it is easily seen that A,, and A,, satisfy the assumptions in Theo-
rem 4.
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With respect to this example, let us construct explicitly S,S,,D,,
D,,, a0, F, and f,, which we constructed at the beginning of 3-1.
We define S and S, by setting S = 2(G)/G, and S, = 2(G,)/G,. We
have the isometric circles I,,,I;!,1,, and I;! of A, A} A,, and Aj},
respectively, as follows:

I,z — @/H(A/n) — V1 + A/n?))| = 1/4,
Iz — @/H(A/n) + V1 + A/n))| =1/4,
L.:|z — (3/2)] = 1/4

and
Iz —Q7/8)|=1/4.

Let o, be the 4-ply connected region bounded by the above 4 isometric
circles. Let &, be the closed interval

[A/D(A/n) — V1T 4+ q/w) + D, Q/D(A/n) + VI + A/n?) + 1] .

Let 6,, and &), be the segment joining (1/4)((1/n) — /1 + (1/nd) + i) to
1/49(1/n) + V1 + (A/nd) + i) and the segment joining (1/4)((1/n) —
VI 4+ @/nd) —1) to A/(A/n) + +/1 + (A/n®) — ©), respectively. We de-
note by E,, the simply connected region bounded by 6,,, 6., I, and I3l
Set E,, ={2/=1} N ,. Then E,, = E, for each n. Set E,, =0, —
E,,UE,,. Then we define D,D,,,«, and «,, by setting D, = =n(E,),
D,, = r.E.), a, = n(&,) and a,, = 7,(&,,), where = and =z, are the natural
projections from 2(G,) onto S and from 2(G,) onto S,, respectively.
Furthermore we define q.c. mappings F, and f, as follows.

First we define a q.c. mapping F, from o, to o, as follows. Let
F, be the identity mapping in E,. If we set z = « + iy, then we define
F, in E,, N w, by setting

V14 A/nd) — V1 —16y° ,
F,(2) = x— (/4 1/(4n .

(2) Vo — JI= 165 ( 1/9) + 1/(4n) + 1ty
Furthermore it is easily seen that there exists a q.c. mapping F, from
E, to E,, with the following boundary correspondences, which has a
maximal dilatation D(F,) < K for a fixed positive constant not depending
on n:F, =1id. on |z| =1,

-1+,\/——41+(1/n2)+4_];%_ on Iﬁlnmm’

F.(z) ==z
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Fn(z)=z—1—ﬁ+4“/1+(1/"z)+£—n on I, N3,

_«/1+(71/n2) 1 1 1.
F,(2) = Ve (x Z) + n + Zz on 4y

and

Then we extend the mapping F', to the whole 2(G) by using the identity
F,GF;' = G,, and denote by the same letter F, the extended mapping. We
define f, as the projection of F',, that is, f, satisfies the identity f,= =
7, F,.

It is easily seen that the modulus of the ring domain D,, tends to
o as n to oo, i.e., lim,_,p, = 0 for the annulus K,,: {p,, <|2| <1} con-
formally equivalent to D,,.

34. Let B, ---,B5, be a basis of “g’-cycles on S. Let G* be a
Schottky group generated by Mobius transformations By, - - -, B, assigned
to B, ---, B, respectively, in a similar sense for “a”’-cycles. Similarly
to Lemma 5, there exists a q.c. mapping F¥. And set G¥ = FF¥G*F}-'.
If we set By, =F}B;Ff'(j=1,..--,9), then G¥ ={By,,---,B,,}. We
denote by 2}, the multiplier of B;,. By the same method as before, we
have the following lemmas. Here g; and ¥ have similar meanings in
§2.

LEMMA 6. Under the pinching deformation for a,

( 1 )”K < |3%| < exp (—41’£~)

17 —log g

for j=2,---,9.
LEMMA 7. Under the pinching deformation for a,

lim | 2%] = oo .

n—oo

3-5. Then we have the following main theorems.

THEOREM 5. Let G¥ be the Schottky groups constructed above.
Then the limit Gf c9S of the sequence T, GXT,.', whose {n;} C {n} and
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T,, are Mébius transformations, is always on 8,& U 3,& but not on 9,&.

We can prove it by using Lemma 7.

We consider the sequence T,G*T;' such that T,B,,T;(—-1) = —1,
T.,B.T;*A) =1 and T,B,,T;%(0) = 0. For brevity we write G¥ and B,,
instead of T,G¥T;' and T,B,.T;' (1 <k < 9g), respectively. By using
Lemma 7/, we note that the radii of the isometric circles of B,, tend to
zero for n — oco. Then we have

THEOREM 6. Set R, ={z+ 1| =<¢} and Ri={z—1| L ¢} for a fixed
small positive number e. If for large m, there exist the mutually dis-
joint isometric circles I, and I} ' (G =1,--+,9) of B,, and Bj}, respec-
tively such that If, and I} (G =2,---,9) are outside R, U R, and
¥ (D) N w¥ C R, U R}, where w} is the 2g-ply connected region bounded
by the above 2g isometric circles and =z} is the natural projection from
AG*¥) to S, then the limit G¥ of the sequence G} is always on 9, and
a “node”.

Proof. First we prove the theorem for the case of genus g = 2.
Let the fixed points of B,, be 0 and ¢f. Suppose that lim,_. ¢¥ = 0.
Then lim,.. ¢,, = oo, so the isometric circles I} and I} of B,, and
B;l, respectively, are contained in the disk

Rzn = {IZI = 0py0p — 0}

for large n, where B,, = <ZZ” Z”), Qynyy — 0pnCon = 1. By Lemma 7/,

2n 2n
the radii of the isometric circles I¥ and I¥* of B,, and B;}, respective-
ly, are small for large n. Hence for large n, If and I} are contained
in R, and R}, respectively. By the assumption, the 4-ply connected re-
gion bounded by the above four isometric circles is a fundamental region
for G¥. Set

R={1—e<|z|]<1+eN{Imz<¢

and let R, be the boundary of E,. For large »n, R, DI U I#{ % R, D o,
N z*-Y(D,,) and the complement of R, contains R,,. Set R™ = F*(R)
and R{® = F*(R,,). We denote by (R,,,R) and (R{,R™) the ring
domains bounded by oR,, and 6R,, and bounded by oR™ and oR{, re-
spectively. Let M} and M™+ be the moduli of (R,,, R,) and (R{®,R™),
respectively. By the well-known fact on modulus property,
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M* < (M™9E |

It is known that there exists a finite positive constant M* such that
M™ < M*,n=1,2,.--. Hence

M¥ < (M¥)E .

On the other hand lim,_..M¥ = co. This contradiction shows that
lim,_. qf %~ 0. Hence by Lemma 6’, B, = lim,_. B,, is a loxodromic
transformation. Thus by Lemma 7', ¢f = lim,_. ¢} is on 3,8, where <*
is the point associated with G¥. It is easily seen that z¥ is a “node”,
since the fixed points of B,, are outside of R, U R’.

Next we prove the theorem for the case of genus g = 8. Suppose
that lim,_. p¥ = lim,_. q¥, for some k,2 <k <g. Let y,, be a simple
closed curve having the following properties: (1) 7., contains the iso-
metric circles If, of By, and I} of Bj, in its interior, (2) rini1 C 74n
(n=1,2,---), (3) yrx, converges to the point lim,_. p}, for n — co and
(4) ry» does not intersect with and not contain the isometric circles I%,
of By, and I} ' of B;;, 1 =<7 <g,7=k) in its interior. We denote by
7o Q= 7= 9,7 % k) mutually disjoint simple closed curves which do not
intersect with 7., such that each 7,, 2 <j < g, = k) contains the iso-
metric circles of B;, and Bj,; in its interior and 7,, contains R, and R;
in its interior and is apart from ., with a constant distance not de-
pending on n. We denote by o} the g-ply connected region bounded by
1A =7=9. For of,7:, and r;,, We use the same argument as in
the proof of Theorem 4. Then we arrive at the same contradiction.
Hence for 2 <j <g,lim,_ . p¥ = lim,_. ¢%. Then by Lemma 6/, =
lim,_., 2%, p% = lim,_.. p}, and ¢}, = lim,_., ¢¥ determine loxodromic trans-
formations (2 < j < g), where p¥ and q¥, are the fixed points of Bj,.

In this case ¢f = lim,.. ¥ ¢ 3,5, where ¢* is the point associated
with G¥. For the proof, let G,* = {B,,, ---,B,,}- Then by Chuckrow
[8], G.* is a Schottky group for each wn. Then since By, = lim,._.. B;,
(2<j < 9) are loxodromic transformations by the above, the fixed points
of Bj, are all distinct by Marden [5]. Furthermore lim,__ 1% = « by
Lemma 7, so ¢f = lim,_.. ¢} is a “node”. Our proof is now complete.

3-6. To illustlate our result we shall present an example of the
sequence {B;,} which satisfies the assumption in Theorem 6. For brevity
we consider the case of genus g = 2.
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Set

Vit + 1z +n
B =YW tletm
m(?) ne + VYnt + 1

and

_ W8T+ 6)z
an(z) - m .

Let G} = {By,, B:x}. Then GF is a Schottky group and
o= @Cn + 1+ 2nvn? + 1, —1,1,73 + 124/37,0,3) .
Thus
¥ = lim z* = (o0, —1,1,73 + 124/37,0,3) .

n~+00

Hence ¥ is a “node”. Furthermore G¥ gsatisfies the assumption in
Theorem 6.

With respect to this example, let us construct explicitly S, S,, D,, D,,,
F* and f,, which we constructed previously. We define S and S, by
setting S = 2(G¥)/G¥ and S, = AGH/G¥. We have the following iso-
metric circles:

itz + Wnr + 1/n)| =1/n,
Iz — (WP + 1/n)| = 1/n,
If: |z + (V3T — 6)/4| = 1/4

and
Itz — (W8T +6)/4|=1/4.

Let o be the 4-ply connected region bounded by I¥,I¥-*, I} and If™.
Give some fixed small positive number . We fix an integer #, as
e/2>2[n,. We set

E: [{1/n, <|z 4+ (Vnd + 1/n)} N {lz + 1] < e/2}]
Ul{t/n, <|z — Wnl+1/n)} N {lz — 1] <¢/2}]

and

E.:[{1/n<|z4+ Wn+1/m} N {z+1]<e2}]
Ut/ <|z—Wn+1/n)} N {z —1]<e/2}]
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for n > n,. We define D,, by setting D,, = z*(F,,), where ¥ is the
natural projection from 2(G¥) onto S,.
Next we define F * ag follows. Let F* be the identity in the set

Hz—11=z¢/2} U {lz + 1| 2 ¢/2}]1 N o} .

It is easily seen that there exists a q.c. mapping F‘;“ in E,,, with the
following boundary correspondences: F* =id. on [z — 1| =« /2, F¥ =id.
on |z + 1| =¢/2,

Fr@ = mo/mz + A/m(Wai + 1 — ¥/n? + 1) on I,

and

Fi@) = mo/m)z — A/m)(Vai + 1 — v/n? + 1) on I%:*.

Then we extend the gq.c. mapping F‘;{‘ to the whole 2(G}) by using the
identity F}GiE}~' = G¥, and denote by the same letter F¥ the extended
mapping. It is easily seen that the modulus of the ring domain D,,
tends to oo as n to oo, i.e., lim,_. p,, = 0 for the annulus K,,: {p,, <|?|
<1} conformally equivalent to D,,. Furthermore we define a q.c. map-
ping F* wl — o} as follows. It is easily seen that there exists a q.c.
mapping F;ﬁ‘0 with the followmg boundary correspondences, Which has a
maximal dilatation D( )__ K for some positive constant K, F'* = id.
on If, F* =id. on I F%(2) =z/n, + W2 — ¥ni + 1)/n, on 1;!; and
F(2) = (2/n) — W2 — ¥ni + 1)/m, on I%* Then we extend the q.c.
mapping to the whole 2(G¥) by using the identity G} = F*G*F;{j, 1 and
denote by the same letter f‘;"o the extended q.c. mapping. If we set
F* = F *F;fo, then F} is the desired q.c. mapping.

If we denote by =n* the natural projection from Q(G¥) onto S, then
we define f, as the projection of F¥, that is, fpr* = oXF¥ is satisfied.
We define D, by setting z*F}'(E,,) =

Remark. As we see from the proof of Theorem 6, it seems that
the assumption in Theorem 6 is weakend considerably, although the
present one is sufficient for our purpose.

Conclusion. Give a compact Riemann surface S of genus g (9 = 2).
Fix a Schottky group G such that 2(G)/G =S. When we perform the
pinching deformation for S, the limit of a sequence of Schottky groups
representing the resulting surface S, may be either (1) a cusp, (2) a
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“node” or (3) a point on 9,&.

Remark. For the Teichmiiller space T(I"), on performing the pinch-
ing deformation, the group we get as the limit of quasi-Fuchsian groups
I, is always a cusp (cf. Bers [2] and Sato [7]), where I' is a fixed
Fuchsian group with U/I" = S (U: the upper half plane) and 2(",)/I,
= S,.
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