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Lagrangean conditions

and quasiduality

B.D. Craven

For a constrained minimization problem with cone constraints,

lagrangean necessary conditions for a minimum are well known, but

are subject to certain hypotheses concerning cones. These

hypotheses are now substantially weakened, but a counter example

shows that they cannot be omitted altogether. The theorem

extends to minimization in a partially ordered vector space, and

to a weaker kind of critical point (a quasimin) than a local

minimum. Such critical points are related to Kuhn-Tucker

conditions, assuming a constraint qualification; in certain

circumstances, relevant to optimal control, such a critical point

must be a minimum. Using these generalized critical points, a

theorem analogous to duality is proved, but neither assuming

convexity, nor implying weak duality.

1. Introduction

A local minimum of a constrained differentiable minimization problem

may be described by lagrangean necessary conditions [10], which extend to

objective functions taking values in a partially ordered space. The

necessary conditions still hold for a critical point, called a quasimin in

[6], weaker than a local minimum; and they are also sufficient [3], [77]

under additional convexity hypotheses. However, [70] and [6] assume that a

cone S , in a constraint -g(x) i S , has an interior; this excludes the

cone L of non-negative functions in an i"-space, important for optimal

control.
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A Fritz John necessary condition for a quasimin is now proved (Theorem

l ) , with a weakened hypothesis on S ; but a counter example shows that

some restriction is necessary (and S = ZF+ is still excluded, unless g

is restricted). A quasimin was defined in [6] using differentiable arcs,

which limits its applicability to optimal control problems; it is now

reformulated more generally. A quasimin is necessary for the Kuhn-Tucker

conditions to hold (generalized to an objective function taking values in a

partially ordered space), and is also sufficient if an extended Kuhn-Tucker

constraint qualification is assumed (Theorem 2). While a quasimin does not

generally imply a local minimum, it does for a substantial class of

problems occurring in optimal control (Theorem 5); optimal control

applications will be discussed elsewhere. For real objective functions, a

kind of duality relation exists, called quasiduality (Theorem 3 ) , between a

quasimin of a minimization problem (which need not be convex) and a

quasimax of a related maximization problem; to each quasimin of the given

problem, there corresponds a quasimax of the quasidual, with the same.

objective value. No convexity assumptions are made, but there is no global

weak duality property.

The following simple example, with x, u, X, u € R , illustrates the

phenomena. Applying to the nonconvex problem

2
(a) Minimize x - x subject to x 5 0 ,

the construction which yields the dual for a convex problem generates here

2
a "dual" with objective function u - u - \u and constraints X t 0 and

1 - 2u - X = 0 ; so the "dual" is equivalent to the problem:

2
(b) Maximize u subject to u 5 % ,

after substituting for X . Now (a) has a minimum of 0 at x = 0 ;

correspondingly, at u = 0 , (b) has a quasimax described by

u - 0 < o( |M-0|) . (A maximum would require u - 0 S O . This

instance of a quasimax happens also to be a local minimum.) Also (a) has a

quasimin of h at x = % , described by (x-x ) - (%-(%) ) > o(|x-%|) ;

correspondingly, at u = % , (b) has a quasimax (in fact a maximum) of H •

Thus the critical points of (a) and (b) correspond in pairs, with zero

"duality gaps"; this is the typical situation, for nonconvex problems.
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But there i s no weak duality: x 2 0 and u 5 % do not imply that

Or-*2) > u2 .

2. Preliminary results

Let X, Y, Z, W be r e a l normed spaces , and X an open subset of

X ; X' denotes the dual space of X , and \-(X, Y) denotes t he space of

continuous l i n e a r maps from X i n t o Y ; R = [0 , <*>) . For a funct ion

U) : X± •* Y , where 0 € X± c X , a>(£) = o( | |£ | | ) means t h a t ||u)(E)||/ll€ll + 0

as ||5|| •+• 0 , £ € X ; i f i n s t ead X = R+ , w(a) = o (a ) means

| |u(a) | | /a -»• 0 as a + 0 . The function g : X ->• Y i s Freohet

differentiable a t a € ̂ Q i f t h e r e i s g'(a) € L(X, Y) for which

(«) g(a-*Z) - g(a) = g'(a)Z + u>(£) where co(£) = o( ||Cll) ;

continuously Freohet differentiable i f a l so g ' ( . ) i s continuous on X~ ;

Hadamard differentiable a t a (. XQ i f (*) i s replaced by

\\g o z(a)-g{a)-g'(a) o 5 ' ( 0 ) a | | / a -»• 0 as a + 0 ,

for each continuous arc a w - ?(a) (a ? R ) such that c(0) = a and the

FrSchet derivative ?'(0) exists. Clearly Frechet implies Hadamard.

Let S c Y, T c Z , and P <= V be convex cones. The dual aone of S

is the convex cone S* = {y' € Y1 : j/'(S) c R+} ; int 5 denotes the

interior (perhaps empty) of 5 . A set B c S* is a oompaot base for S*

if B is weak * compact in Y' , 0 f S , and

S* = {ai> : a € R+, i € S} . The cone S* will be called representable if

5* possesses a convex weak * compact base. This is so, in particular,

if int S is nonempty (see Lemma 3 below). More generally, S* is

representable, by [73, Theorem 3] , if S* is locally compact in the

relative weak * topology of Y' .

Assume that int P t 0 ; let f : X. •*• W be continuous; let

Q c X. . Following the definition in [2], f{x) has a (local) minimum at

a; = a € Q , subject to the constraint x $ Q , if fix) - f(a) $ -int P

whenever x € Q and ||a;-a|| is sufficiently small. (if W = R and

P = R+ , this reduces to fix) - f{a) 2 0.) The point a Z Q will be
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called a quasimin of fix) , subject to x f Q , i f for some

9(x) = o(||x-<z||) (as x -»• a, x € Q) ,

f(x) - f(a) - 9(x) |E - in t P .

If P = R , an equivalent requirement i s that

lim inf [fix)-fia)]/\\x-a\\ 2 0 .
x+a ,xZQ

The present definition supersedes a more complicated, and restricted,

definition, given in [6] in terms of arcs. A quasimax of fix) occurs if

and only if -fix) has a quasimin, subject to the same constraint.

Let h : XQ •*• Z be Hadamard differentiable. The system -hix) € T

is locally solvable at the point a (see [6]) if -hia) Z T and, for some

6 > 0 , whenever the direction d satisfies

||d|| < 6 and hia) + h' (a)d € -T ,

there exists a solution x = a + ad + o(a) to -hix) € T , valid for all

sufficiently small a > 0 . If -hix) € T consists of finitely many

scalar equations and inequalities, then local solvability of -hix) € T is

readily shown to be equivalent to the Kuhn-Tucker constraint qualification.

Thus local solvability generalizes the Kuhn-Tucker constraint qualification

to more general (cone and infinite-dimensional) constraints. Suppose that

hia)B + h'ia)d € -T for some g f R , and that -fc(x) € T is locally

solvable. For sufficiently large Y > 0 , 6 + Y > 0 and \\d" || < 6 ,

where d' = ( S + Y ) " 1 ^ ; also (g+Y)?z(a) + h'(a)d € -T , so

hia) + h'ia)d' € -T . Hence -?j(x) £ T has a solution

x = a + a<i' + o(a) . Hence x = a + ad + o(a) is a solution.

Let B be a (weak * ) compact subset of Y' . Denote by C(£) the

space of continuous (from the weak * topology of B ) real functions on

B , with the supremum norm. It is readily shown that the cone of non-

negative functions in CiB) has nonempty interior.

Let E c X be convex, and let S c Y be a convex cone; then the

function f : E •+ Y is S-convex if, whenever u, v € E and 0 < X < 1 ,

Xfiu) + (l-A)/(u) - f[\u+il-\)v) (. S .

In particular, a linear function is S-convex.
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LEMMA 1. Let X and Y be normed spaces, S c y a convex cone

with int S f 0 , E c X convex, and let f : E •* I be S-convex. Then

either -f(x) f int S for some x € E , or (p o f)(E) c R+ for some non-

zero p € S* , but not both.

Proof. If both systems have solutions, x respectively p , then

both (p o f)(x) < 0 and (p o f)(x) 2 0 , a contradiction. Assume that

there is no x € E with -f(x) (. int 5 . Then H = f{E) + int S is an

open convex set with 0 { ff , so by the separation theorem for convex sets

([77], page 61*), there is a nonzero p € Y' with p(ff) c R+ . If

s € int S and x € E , then s - X f{x) € int 5 for X large enough, so

Xs € H , so pis) £ 0 . Since p is continuous, p(S) c R . Also, for

each e > 0 , f{x) + es € H , so (p o /)(x) 5 -p(es) -»• 0 as e + 0 .

LEMMA 2 (Generalized Motzkin alternative theorem [5]). Let X, Y, Z

be normed spaces, A € L(X, Z) and B € L(X, Y) , S c Y and T c Z

T
convex cones, with int S i- 0 , T closed, and A (T*) weak * closed.

Then either

(i) -Ax 6 T , -Bx € int S , for some x € X , or

(ii) poB+qoA=0 for some q € T* and some nonzero

p (. S* , but not both.

Proof. Set f = B and E = -A~ (T) . By Lemma 1, (i) does not hold

if and only if (30 * p € S*) (p ° B){E) c R+ , thus if and only if

-Ax f T ** (p ° S)(x) € R+ . But this is equivalent, by the generalized

Farkas Theorem (see [?4j, and [S], Theorem 6) since T and A (T*) are

closed, to p o B = q ° {-A) for some q € T* , which is (ii).

LEMMA 3. Let S be a closed convex cone in the normed space Y ;

•let int S # 0 . Then the dual cone S* has a convex (weak * ) compact

base.

Proof. Let h € int S ; then h + N c S for some neighbourhood N

of zero in Y . Let 0 ± v € S* ; then vh > 0 and, if vh = 0 , then

v(N) = v(h+N) c R ; but, given v t- 0 , vn < 0 for some n € N . The

contradiction shows that vh > 0 for each nonzero v € 5* . Setting

5 = {i> € 5* : Vh = 1} , it follows that S* = {ab : a € R+, b € B} ; also

0 £ B , and B is convex and weak * closed. If B is also bounded in
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norm, then B i s weak * compact, from the Banach-Steinhaus Theorem. If

b € B , then bh = 1 and b(h+N) c [o, <*>) ; hence HN) C [ _ I , OO) . s o ,

for each n € N , bn > -1 and b{-n) 2 -1 ; hence ||Z>|| S B where g

depends only on tf .

3. Necessary condi t ions fo r a quasimin

THEOREM 1 . Let X, Y, Z, W be real Banaah spaces, X an open

subset of X ; let P c W , S c Y , T c Z be convex cones, with

in t P ± 0 , S closed, S* representable; let the functions f : XQ •* W,

g : X' -*• Y , and h : X' •+ Z be Hadamard differentiable; let -h(x) € T

be locally solvable at a € X , and let the convex cone

N = W (a) h{a)] (T*) be weak * closed in X' x R . Then a necessary

condition for f{x) to have a quasimin at x = a , subject to the

constraints -g(x) 6 5 and -h(x) (. T , is that, for some u € P* ,

v d S* , w £ T* , with u and v not both zero,

(FJ) uf'(a) + vg'{a) + wh'(a) = 0 ; vg{a) = 0 ; wh{a) = 0 .

Proof. By hypothesis, 5* has a (weak * ) compact convex base B .

From the separation theorem for convex sets,

-g(x) i S *=> (to € 5*) - vg(x) 5 0 «=» (Vb € B) - bg{x) 2 0 <=» -G(x) € K ,

where G : XQ ->• C(B) is defined by (Va: € XQ, Vb 6 B) G(x)(b) = bg(x) ,

and K = {^ € C(B) : \p(B) c R } . Then int K ? 0 ; and G is Hadamard

differentiable.

Suppose that the linear system -Aq € T , -Bq € int V , where

A = [/.'(a) fc(a)] , B =
\f(a) 0

V =

has a solution q = (<2, 3) € X x R . Then -f'{a)d € int P ,

-#'(a)J - g(a)& € int 5 , -h'(a)d - h{a)& i T . From the last, local

solvability gives a solution a; = x(a) E a + ad + o(a) (a + 0) to

-h(x) € T . Then, for sufficiently small a > 0 , -h[x(a)) € T and
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(a)) = -G(a) - aG'{a)d + o(a)

y o(.a)

€ K + int K + o(a) c K .

The quasimin therefore requires that /(x(a)) - /(a) - a(a) f -int P for

some o(a) = o(a) ; hence f (a)d $ -int P , contradicting

f (a)d (. -int P obtained above.

Hence the linear system has no solution q . Since also the cone N

is closed, Lemma 2 shows that, for some nonzero y = (u, A) € V* (thus

u € P* and A € K* ) and some u € T* , wA + j/B = 0 . Hence

M/'(a) + AC'(a) + wh'(a) = 0 ; g(a) = 0 ; wfc(a) = 0 .

If A = 0 , then u t 0 , and so (FJ) holds with V = 0 . Suppose that

A ^ 0 . Since A € (C(B))' , the Riesz representation theorem represents

A by a signed measure y , such that Xi/> = I \i(db)\p(b) for each

JB

^ € C(B) . Then A € K* requires that y(£) 5 0 for each Borel subset

Ec B . Since A f 0 , \i(B) > 0 . For each x t X , G'{a)x maps b € B

to ^ ' ( a ) * . Hence AG'(a)x= y(di)&g'' (a)x = v(B)b*g' (a)x where

fc* = [\i(B)]~1\i(db)b . So fc* is the weak * limit of a net of
}B

approximative sums of the form Y y .b. where each b. € B , y. > 0 ,

£ Y- = 1 • Hence £>* is in the closed convex hull of B , and hence in
i

B , since B is convex compact. Hence AC1(a) = vg'(a) where

V = u(B)b* 6 5 * ; y + 0 since 0 ^ B and \i(B) > 0 . Similarly

XG(a) = 0 implies u(<i&)5g'(a) = 0 , which implies vg(a) = 0 . Thus

(FJ) is proved.

DISCUSSION. Theorem h of [JO] is applicable since the equivalent

constraint -G(x) € K has int K t 0 . However, the following counter

example shows that some restriction on 5 is required. (Hence Theorem

5-11" of•Dempster [J2] requires an additional hypothesis.) A similar

2 2
example is possible with L replacing I
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2
Let I denote real Hilbert sequence space. Define a continuous

linear map M : I •*• I as the map taking x = (x. , x ?, . ..) € I to

Mx = ( a ^ , a ^ , ...) where a^ = n~ . Note that M is not an open

map, and hence the subspace M[l) is not closed in I . Let Q denote

the convex cone Q = \fa , x , ...) € I : (Vn) x > 0> . Then Q* = Q ,

identifying [l ) ' with I . It is readily shown that int Q = 0 . Let

/ = (ax, a2, ...) € (Z2)1 . Since Mx € C *^ (Vw) x > 0 , /(x) is

2
minimized, subject to x € I and ft f S , at x = 0 = (0, 0, ) . If

(FJ) holds at this minimum, then there exist T > 0 and

v = (y , y2, ...) e g * , not both zero, for which if = vM . Hence

TO = v a for each n = 1, 2, ... . Since {v } •* 0 and a > 0 ,

x = 0 ; hence also (Vn) v = 0 , so v = 0 and T = 0 . So (FJ) does

not hold here.

Consider the minimization problem of Theorem 1 with h and T

omitted, and with g(x) = -Mx , S = Q . The example shows that S cannot

then be unrestricted. If, instead, g and 5 are omitted, and

M x ) = -Mx , T = Q , then the linear constraint Mx € Q is locally

solvable; so the example shows that the hypothesis that // is closed

cannot be omitted.

4 . C o n d i t i o n s n e c e s s a r y a n d s u f f i c i e n t f o r a q u a s i m i n

Consider now the constraints -g[x) € S and -h(x) € T combined into

a single constraint k(x) C K . Assume that K is a closed convex cone in

V = 1 x Z . The problem of minimizing f{x) subject to fe(x) € K

satisfies the generalized Kuhn-Tuoker condition at the point a 6 X. if

k(a) (. K , and for some X (. K* and some nonzero T t P* ,

if (a) = \k'(a) ; \k{a) = 0 .

In particular, if W = R and P = R+ , then T = 1 can be assumed, and

the usual Kuhn-Tucker condition is recovered.
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THEOREM 2. Let X, V, W he real Banaoh spaces, X. an open subset

of X ; let P c W and K c V be closed convex cones, with in t P ^ 0 ;

let f : X' ->• W be Frechet different-table at a (. X , and let k : X •* V

be continuously Frechet differentiable. If the generalized Kuhn-Tucker

condition holds at a , then f(x) has a quasimin at x = a , subject to

the constraint k(x) € K . The converse holds under the additional

T
hypotheses that the convex cone N = [k'(a) k(.a)] (K*) is (weak * )

closed in X' x R and that the set U = k(a) + k'(.a){X) - K contains a

neighbourhood of zero.

Proof. Let the generalized Kuhn-Tucker condition hold; let

k(x) € K ; then Xk{x) > 0 ; setting z = x - a ,

Tf'(a)z = Xk'{a)z = Xfe(x) - \k(a) + <f>(a) > <f>U)

where <j)(s) = o(||2||) . Since 0 t x € W' , there is w € W with TU * 0 ;

setting i|> = - ( T W ) ~ <pb) , TI|J = -<j> , so that T[f (a)z+\l)(z) ] i 0 , where

= o(||s||) . If x = a is not a quasimin, then there is some sequence

{z } •+ 0 for which k[a+z ) (. K , and whenever 9(3) = o(||3||) ,

f{a+z ) - f{a) - 6(s ) € -int P .

Now f(a+z ) - f(a) = f'(a)z + o(||s ||) ; so, choosing 6 suitably,

f'(a)z + î (s ) € -int P as n ->• °° , hence T\f'(a)z +\\>(z ) \ < 0 as

n -»• co ; the contradiction shows that x = a is a quasimin.

Conversely, assume a quasimin, let il/ be closed, and let V contain

a neighbourhood. The hypothesis on U , and continuous differentiability

of k , imply ([/6]» Corollary 1, and [6], Theorem 3) that fe(x) Z K is

locally solvable. Then the generalized Kuhn-Tucker condition follows from

Theorem 1, with g and S omitted; since v is absent, T = u ± 0 .

(For this converse, / need only be Hadamard differentiable.)

5. Quasiduality

In this section only, let W = R and P = R+ . Consider the two

problems:

(A) Minimize F(x) subject to i f A ;
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(B) Maximize $(#) subject to y € B .

Problem (B) will be called a quasidual of (A) if the following condition

holds:

if (A) has a quasimin at x = £ 6 A , then (B) has a quasimax at

some y = n 6 B , and F(£) = $(n) .

Under additional hypotheses of convexity (or related properties), which are

not made here, a quasimin is necessarily a minimum, and a quasimax is a

maximum, and quasiduality implies the usual duality.

Consider the following pair of problems:

(QP) quasimin f(x) subject to k(x) € K ;

(QD) quasimax f{u) - vk(u) subject to V € K* ,

f'(u) - vk'(u) = 0 .

THEOREM 3. Let f : X ->• R be Hadamard differentiable; let k be

continuously Fre"chet differentiable; as in Theorem 2, let N~ be closed

and let U contain a neighbourhood of zero. Let (QP) have a quasimin at

x = a € X . Then (QD) is a quasidual of (QP).

Proof. Let (u, v) satisfy the constraints of (QD); let (QP) have a

quasimin at x = a ; from Theorem 2, the Kuhn-Tucker condition holds for

(QP) at x = a , for some X € K* . Set u = a + p and u = \ + q . Then

f(a) - [f(u)-vk(u)] = f{a) - f(a+p) - vk(a+p)

= -f'(a)p - o(\\p\\) + vHa) + U+<?) (*'(<* W I N D ]
= -[f(a)-\kl(a)]p - o(Hpll) + vk(a) + o( ||p||+IM|)

2 o(llplMtell) •

Hence (QD) has a quasimax at (u, v) = (a, X) . Since also \k(a) = 0 , by
the Kuhn-Tucker condition, f(a) - \k(a) , so (QD) is a quasidual of (QP).

There is also a converse quasiduality result, analogous to the
converse duality results of [9], and [4, Theorem 3.1]. These cited results
however assume convexity, which is not required here. Note that (A) is a
quasidual of (B) if, whenever (B) has a quasimax, (A) has a corresponding
quasimin,with equal values of the two objective functions.

THEOREM 4. Let f and k be twice continuously Frichet

https://doi.org/10.1017/S0004972700023431 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023431


Lagrangean conditions 335

differentiable; let (QD) have a quasimax at (u, v) = (a, X) ; let the

adjoint AT of the linear map M = f'(a) - Xk"(a) be bijective. Then

(QP) is a quasidual of (QD).

Proof. Since / and k are twice continuously differentiable, and

AT is invertible, the constraints of (QD) are locally solvable, and the

cone-closure hypothesis of Theorem 1 is fulfilled for (QD). Hence (FJ)

holds for (QD) at (a, X) . The calculation of 14, Lemma 3.1], then

applies, given AT bijective, showing that k(a) € K and the Kuhn-Tucker

condition holds for (QP). From Theorem 2, the Kuhn-Tucker condition

implies a quasimin for (QP). Since also f(a) = f{a) - Xk(a) , (QP) is a

quasidual to (QD).

6. When does a quasimin imply a minimum?

Let J be a compact subset of R™ . Let X = L [i, R ) , the space

of measurable functions x from I into R , having finite L (j)-norm

||x|| = |x(£)|dt , where |*| denotes euclidean norm in R" , and dt

denote Lebesgue measure on J . Let # be an open subset of the space

X . Define f : XQ •* R
r by f(x) = j h[x{t), t)dt , where the function

h : R x I -*• R is continuous. Define minimum and quasimin of

f{x) € K in terms of the cone R , the nonnegative orthant in R^ . Let

k map X into a space of continuous A7-valued functions on I , where M

is a normed space; let S be a convex cone in M . Denote by K the

convex cone consisting of those continuous functions \p : I -*• M for which

|J>(£) € S for each t € I . Then k{x) € K iff (Vt € I) k(x){t) € S .

Consider the minimization problem:

(P*) minimize f(x) subject to k(x) £ K ,

with f,k,K as specified above. This is an abstract version of an

optimal control problem (see, for example, [70]).

The following measure properties will be required (see [J5, Section
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U2]) . A p o i n t t € I i s a point of density of a measurable se t E e l

i f sup [lim sup m(j, n ffj/m^,)^ = 1 , t ak ing l i m i t s over sequences

{ j , } of i n t e r v a l s con t a in ing i . A function g : I -*• R i s

approximately continuous a t t i f t he r e i s a measurable se t E e l such

t h a t £ i s a po in t of dens i ty of E (and hence w(ff_) > 0 ) , and a l so

l i m g(t) = g[t) .

THEOREM 5. Let (P*) fozve a quasimin at x = n € fe~1(^) ; l e t X

have the L (I)-norm; let h satisfy a Lipsahitz condition

\Hu, t)-h(v, t)\ S c\u-v\ [u, v € R") .

Then h{x(t), t] is minimized, almost everywhere in I 3 with respect to

x € k (K) , at x = r| . Consequently (P*) has a minimum at x = r\ .

Proof. If the conclusion does not hold, then for some x* (. k (K)

and some A c I , with measure m[A ) > 0 ,

(i) (Vt € / ) h[x*(t), t) - fc(n(t), t) € -int R^ .

The Lipschitz hypothesis shows that, for each component h. of h , there

is a bounded measurable function (f>. such that

(Vt € J) h.[x*(t), t) - h[n(t), t) = <j>.(t)|x*(t)-n(t)| .

(Where x*(t) = ri(*) , <(>•(*) = ° •) From [J5, Theorem 1*2.3], (j). is

approximately continuous almost everywhere on J , and [75, Theorem U2.2],

shows that the points of a measurable set Eel, with m(ff) > 0 , are

If
almost everywhere points of density of E . Deleting from A the

finitely many subsets on which <J>. is not approximately continuous

(i = 1, 2, ..., r) , and the set of points which are not points of density

of A , leaves a set A , where m(A) = m[A ) . Let tQ (. AQ . Then
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(ii) lim <)>•(*) = $«•[* J K ° »

by the approximate continuity, and also using (i). Consequently, for some

6 > 0 and each t d B - {t d A : \t-t \ < 6} , and each i ,

-^(t) > 6 = %min l-^ttg)! > 0 .
i

Define the continuous (nondifferentiable) arc X •—»• C-, (A € R ) by
A •*

Cx(t) = x*(t) for -t € Bx E {* € B : \t-tQ\ < *(X)} ,

Ci(*) = i(*) otherwise,A

where i/)(X) is chosen so that, as X 4- 0 , the L (J)-norm ||£̂ -nl| = X .

Then £ n = r) , and the form chosen for the constraint k(x) € K ensures

that 5X € k'
1^) . Then, for each i ,

(iii) -/,-(5j + f,-M ̂  f B|x*(*)-n(*)|dt » B|IC,-nll .

A

Hence /(Cj - fM lies in -int R^ , and is distant at least BllĈ -nll

from the boundary of -int R . This contradicts the quasimin of (P*) at

x = n . Thus (i) cannot hold.

Integrating h then shows that (P*) is minimized at x = n .

REMARKS. This theorem depends on the choice of the L (l)-norm. It

extends a result given by Berkovitz [/, p. 288]. The case p > 1

corresponds to an optimal control problem involving a partial differential

equation; this will be detailed elsewhere.

The Lipschitz hypothesis need only hold almost everywhere. The

theorem also holds, with slight change to the proof, if instead / is

Hadamard differentiable.
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