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Lagrangean conditions

and quasiduality

B.D. Craven

For a constrained minimization problem with cone constraints,
lagrangean necessary conditions for a minimum are well known, but
are subject to certain hypotheses concerning cones. These
hypotheses are now substantially weakened, but a counter example
shows that they cannot be omitted altogether. The theorem
extends to minimization in a partially ordered vector space, and
to a weaker kind of critical point (a quasimin) than a local
minimum. Such critical points are related to Kuhn-Tucker
conditions, assuming a constraint qualification; in certain
circumstances, relevant to optimal control, such a critical point
mist be a minimum. Using these generalized critical points, a
theorem analogous to duality is proved, but neither assuming

convexity, nor implying weak duality.

1. Introduction

A local minimum of a constrained differentiable minimization problem
may be described by lagrangean necessary conditions [10], which extend to
objective functions taking values in a partially ordered space. The
necessary conditions still hold for a critical point, called a quasimin in
[6], weaker than a local minimum; and they are also sufficient [3], [17]
under additional convexity hypotheses. However, [10] and [6] assume that a

cone S , in a constraint ~g(x) € S , has an interior; this excludes the

cone Lﬁ of non-negative functions in an Lp-space, important for optimal

control.
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A Fritz John necessary condition for a quasimin is now proved (Theorem

1), with a weakened hypothesis on S ; but a counter example shows that

some restriction is necessary (and S = Lﬁ is still excluded, unless g

is restricted). A quasimin was defined in [6] using differentiable arcs,
which limits its applicability to optimal control problems; it is now
reformulated more generally. A quasimin is necessary for the Kuhn-Tucker
conditions to hold (generalized to an objective function taking values in a
partially ordered space), and is also sufficient if an extended Kuhn-Tucker
constraint qualification is assumed (Theorem 2). While a quasimin does not
generally imply a local minimmm, it does for a substantial class of
problems occurring in optimal control (Theorem 5); optimal control
applications will be discussed elsewhere. For real objective functions, a
kind of duality relation exists, called quasiduality (Theorem 3), between a
quasimin of a minimization problem (which need not be convex) and a
quasimax of a related maximization problem; to each quasimin of the given
problem, there corresponds a quasimax of the qudsidual, with the same.
objective value. No convexity assumptions are made, but there is no global

weak duality property.

The following simple example, with x, u, A, B € R , illustrates the

phenomena. Applying to the nonconvex problem

(a) Minimize x - x2 subject to x> 0 ,
the construction which yields the dual for a convex problem generates here

a "dual" with objective function u - u2 - Au and constraints A 2 0 and

1-2u-XA=03; so the "dual" is equivalent to the problem:

(b) Maximize u° subject to u <% ,

after substituting for X . Now (a) has a minimum of O at x =0 ;
correspondingly, at u« = 0 , (b) has a quasimax described by

u’ - 0% < o(|u-0]) . (A maximum would require W2 -0%2=<0. This

instance of a quasimax happens also to be a local minimum.] Also (a) has a
quasimin of % at x = % , described by (x—xe] - (%—(%)2) > o(|z-%|) ;
correspondingly, at u = % , (b) has a quasimax (in fact a maximum) of % .
Thus the critical points of (a) and (b) correspond in pairs, with zero

"duality gaps"; this is the typical situation, for nonconvex problems.
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But there is no weak duality: x >0 and u <% do not imply that
(@-2°) = u° .

2. Preliminary results

Let X, Y, 2, ¥ be real normed spaces, and X an open subset of

0
X 3 X' denotes the dual space of X , and L(X, Y) denotes the space of
continuous linear maps from X into Y ; R+ = [0, ®) . For a function

WX >Y, where 0 € ex, w(&) = o(l|lEll) means that [lw(E)/IE] + ©

as JlE]l >0, & € X, ; if instead Xl = R+ , w{o) =o(a) means

lw(e)ll/o - 0 as a ¥ O . The function g : X,> Y is Fréchet

differentiable at a € X, if there is g'{a) € L(X, ¥) for which

(*) gla¥) - gla) = g'(a)g + w(€) where w(E) = o(lE]) ;
continuously Fréchet differentiable if also g'(.) is continuous on Xy

Hadamard differentiable at a € X, if (*) is replaced by

lg o gla)~gla)-g'(a) o ¢'(O)all/a > 0 as a + O,

for each continuous arc a > g{a) (a € R+) such that z(0) = a and the

Fréchet derivative '(0) exists. Clearly Fréchet implies Hadamard.

let Sc ¥, Tc Z ,and PC %Y be convex cones. The dual cone of S
is the convex cone S* = {y' € ¥' : y'{(9) c R+} 3 int § denotes the
interior (perhaps empty) of S . A set B < S* is a compact base for S*
if B is weak * compact in Y' , O ¢ B , and
5*={ab : a € R, b € B} . The cone S* will be called representable if
S* possesses a convex weak * compact base. This is so, in particular,
if int S 1is nonempty (see Lemma 3 below). More generally, S* is
representable, by [13, Theorem 3], if S* is locally compact in the
relative weak * topology of Y'

Assume that int P# @ ; let f : Xo + ¥ be continuous; let

Qc X Following the definition in [2], f(x) has a (local) minimum at

o -
z =a €qQ , subject to the constraint z € @ , if f(x) - fla) ¢ -int P
whenever x € @ and |z-a| is sufficiently small. [If W =R and

P = R_, this reduces to f(z) - fla) 2 0 .) The point a € @ will be
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called a quasimin of f(x) , subject to x € @ , if for some

8(x) = olllx—all) (as z>a,z €Qq) ,
flz) - fla) -8(x) F -int P .
If P = R+ , an equivalent requirement is that

lim inf  [f(z)-f(a)]/lz=al = 0 .
xra ,x€q
The present definition supersedes a more complicated, and restricted,
definition, given in [6] in terms of arcs. A quasimax of f(x) occurs if

and only if -f(x) has a quasimin, subject to the same constraint.
Let % : X, > Z be Hadamard differentiable. The system ~h(x) €T

is loecally solvable at the point a (see [6]) if -h(a) € T and, for some

8§ > 0 , whenever the direction d satisfies
ldil <6 and k(a) + A'(a)d € -T ,

there exists a solution x =a +od + o(a) to -h(x) € T , valid for all
sufficiently small o > 0 . If -h(x) € T consists of finitely many
scalar equations and inequalities, then local solvability of -h(x) € T is
readily shown to be equivalent to the Kuhn-Tucker constraint qualification.
Thus local solvability generalizes the Kuhn-Tucker constraint qualification
to more general (cone and infinite-dimensional) constraints. Suppose that
hia)B + h'(a)d € -T for some B € R , and that -h{x) € T is locally
solvable. For sufficiently large Y > 0, B +Y >0 and ld'll <8 ,

where d' = (B+Y)-ld s also (B#)h(a) + h'(a)d € -T , so
h(a) + ' (a)d' € -T . Hence -h{x) € T has a solution

x =a +ad" +o(a) . Hence x =g +0d + o{0) is a solution.

Let B be a (weak * ) compact subset of Y' . Denote by C(B) the
space of continuous (from the weak * topology of B ) real functions on
B , with the supremum norm. It is readily shown that the cone of non-

negative functions in C(B) has nonempty interior.

Let EC X De convex, and let SC Y be a convex cone; then the

function f : E~+ Y is S-convex if, whenever u, v € £ and 0< A <1,
Af(u) + (1-2)F() - FPur(1-A)w) €5 .

In particular, a linear function is S-convex.
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LEMMA 1. Let X and Y be normed spaces, S <Y a convex cone
with int S# @, EcCX comex, and let f : E+ Y be S-convex. Then
either -f(z) € int S for some z € E , or (p o f)(E) c R, for some non-
zero p € S* , but not both.

Proof. If both systems have solutions, x respectively p , then
both (p o f)(x) <0 and (p o f)(x) = 0 , a contradiction. Assume that
there is no z € E with -f(x) € int S . Then H = f(E) + int § is an
open convex set with O § H , so by the separation theorem for convex sets

([17], page 64), there is a nonzero p € ¥' with p(H) < R+ . If

g €int S and x € E, then s - X-lf(x) € int S for A large enough, so
As € H , s0 p(s) 20 . Since p is continuwous, p(S) <R_. Also, for
each >0, flx) +es €H ,s0 (po filx)=-ples) >0 as €+ 0.

LEMMA 2 (Generalized Motzkin alternative theorem [5]). Let X, Y, 2
be normed spaces, A € L(X, Z) and B € L(X, YY), Sc¥Y and Tc 2

convex cones, with int S# @, T eclosed, and AT(T*) weak * closed.
Then either

(i) -Ax €T, -Bx € int S, for some zx € X , or

(i12) poB+qoA =0 for some q € T* and some nonzero
p € S* , but not both.

Proof. Set f =B and E = -A_l(T) . By Lemma 1, (i) does not hold
if and only if (30 # p € 5*) (p © B)(E) ¢ R, , thus if and only if
-Ax € T = (p o B)(x) ¢ R+ . But this is equivalent, by the generalized

Farkas Theorem (see [/4], and [§], Theorem 6) since T and AT(T*) are
closed, to p o B=q o (-4) for some q € T* , which is (iZ).

LEMMA 3. Let S be a closed convex cone in the normed space Y ;
let int S # @ . Then the dual come S* has a convex (weak * ) compact

base.

Proof. Let % € int S ; then h + Nc S for some neighbourhood ¥
of zeroin Y . Let 0 #v € S* ; then vh > 0 and, if vh =0 , then
v(N) = v(h+l) R, ; but, given v #0, vn <0 for some 7n €¥ . The
contradiction shows that vk > O for each nonzero v € S* . Setting
B={v € 8% : vp =1} , it follows that S* = {ab : a € R+, b € B} ; also
O0¢B,and B is convex and weak * closed. If B is also bounded in
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norm, then B is weak * compact, from the Banach-Steinhaus Theorem. If
b €B, then bh =1 and b(h+N) < [0, ») ; hence b(N) c [-1, ») . So,
for each n € N , bn=-1 and b(-n) 2 -1 ; hence |b|] =B where B
depends only on N .

3. Necessary conditions for a quasimin

THEOREM 1. Let X, Y, Z, W be real Banach spaces, X, an open

subset of X ; let PcW, ScY, TcCZ be conver cones, with
int P#@9 , S closed, S* representable; Llet the functions f : Xo +> W,

g : X0 >Y ,and h : Xy Z be Hadamard differentiable; let -h(x) €T

be locally solvable at a € XO , and let the convex cone

N = [h'(a) h(a)]T(T*) be weak * clogsed in X' x R . Then a necessary
condition for flx) to have a quasimin at z = a , subject to the
constraints -g(x) € S and -h(x) € T , is that, for some u € P* ,

v €ES*, we€T*, with u and v not both zero,

(FJ) uf'(a) +vg'(a) +wh'(a) =0 ; vgla) =0 ; wh{a) =0.

Proof. By hypothesis, S* has a (weak * ) compact convex base B .

From the separation theorem for convex sets,

glz) €5 = (W €5*) ~vg(x) 2 0= (Vb €B) -bglx) 2 0 G(x) €K

b

where G : X + C(B) is defined by (Vx € Xy, Wb € B) G(z)(b) =bglz) ,

0
and K ={y € ¢(B) : ¢(B) c R+} . Then intX # @ ; and G is Hadamard
differentiable.

Suppose that the linear system -Aq €T , -Bq € int V , where

f'(a) o -
A = [h'(a) h(a)] s B = . VvV = [K] R
G'(a) G(a)

has a solution q = (d, B) € X xR . Then -f'(a)d € int P ,

—g'(a)d - gla)B € int S , -h'(a)d - h(a)B € T . From the last, local
solvability gives a solution z = x(a) = a +ad +o(a) (a + 0) to
~h(x) € T . Then, for sufficiently small o > 0 , -h(x(a)) €T and
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-G(z(a)) = -G(a) - aG'(a)d + o(a)
(1-08)[-G(a)] + a[-G'(a)d-G(a)B] + o(a)
€ K+ int K +o{a) c K .

The quasimin therefore requires that fo(a)) - fla) - o{a) § -int P for
some o(a) =o(a) ; hence f'(a)d § -int P , contradicting
f'(la)d € -int P obtained above.

Hence the linear system has no solution g . Since also the cone N
is closed, Lemma 2 shows that, for some nonzero y = {(u, A) € V* (thus

u € P* and X € K* ) and some w € T* , wA + yB = 0 . Hence
uf'(a) + AG'(a) + wh'(a) =0 ; gla) =0 ; whia) =

If A =0, then u# 0, and so (FJ) holds with » = 0 . Suppose that

A# 0. Since X € (C(B))' , the Riesz representation theorem represents

A by a signed measure U , such that AP = I u(db)y(b) for each
B

Y € €(B) . Then A € K* requires that u(EZ) = 0 for each Borel subset
EcB . Since A# 0, u(B) >0 . For each z € X, G'(a)r maps b € B

to bg'(a)x . Hence AG'(a)z = J u(db)bg'(a)x = u(B)b*g'(a)r where
B
b* = I W(B)1™u(dp)b . So b* is the weak * 1imit of a net of
B

approximative sums of the form Z Yibi where each bi €B, Y.>0,
i

1
X‘Yz . Hence b* is in the closed convex hull of B , and hence in
7
B , since B 1is convex compact. Hence AG'(a) = vg'(a) where
v =u(B)b* €S* ; v # 0 since 0 § B and u(B) > 0 . Similarly

AG{a) = 0 implies J u(db)bg(a) = 0 , which implies wvg{a) = 0 . Thus
B

(FJ) is proved.

DISCUSSION. Theorem 4 of [10] is applicable since the equivalent
constraint -G(x) € K has int K # § . However, the following counter
example shows that some restriction on S is required. (Hence Theorem

5.11- of ‘Dempster [12] requires an additional hypothesis.) A similar

2
example is possible with L2 replacing 1
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Let 12 denote real Hilbert sequence space. Define a continuous

2 2

linear map M : 1~ » 1 as the map taking x = (xl, Tss ) € 12 to

-2 .
Me = (al:cl, G s ) where @, =n . Note that M 1is not an open

map, and hence the subspace M(Zz] is not closed in 1° . ILet @ denote

the convex cone § = {(xl, Tys ...) € 22 : (Vn) x, = 0} . Then Q* =4 ,

identifying (12)' with 1% . Tt is readily shown that int @ =@ . Let
2y, . - X

f= (otl, %y ] € (Z ) . Since Mx € Q (Vn) x, =20, flz) is

minimized, subject to x € Z2 and Mr € Q@ ,at x=0=(0,0, ...). If

(FJ) holds at this minimum, then there exist T = 0 and

v = (vl, Vys ] € @* , not both zero, for which Tf = vM . Hence
™™, =v_ for each n =1, 2, ... . Since {v}->0 and a > 0 ,
n nn n n
T =0 ; hence also (Vn) v, = 0,s0 v=0 and T =0 . So (FJ) does
not hold here.

Consider the minimization problem of Theorem } with % and T
omitted, and with g(x) = ~Mr , S = @ . The example shows that S cannot
then be unrestricted. If, instead, g and S are omitted, and
hWiz) = -Mx , T =@ , then the linear constraint Mr € @ is locally
solvable; so the example shows that the hypothesis that #N 1is closed

cannot be omitted.

4. Conditions necessary and sufficient for a quasimin

Consider now the constraints -g(x) € § and -k(x) € T combined into
a single constraint k{(x) € X . Assume that K is a closed convex cone in
V=Y X2 . The problem of minimizing f(x) subject to k(x) € K
satisfies the generalized Kuhn-Tucker condition at the point a € XO if

k(a) € XK , and for some A € K* and some nonzero T € P* |
f'(a) = Ak'(a) 3 Mk(a) =0 .

In particular, if W =R and P = R+ , then 17 =1 can be assumed, and

the usual Kuhn-Tucker condition is recovered.
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THEOREM 2. Let X, V, W be real Banach spaces, X, an open subset

of X; let PcW and K<V be closed convex cones, with int P # @ ;

let f : Xy > W be Fréchet differentiable at a € Xy s and let k : Xy > v

be continuously Fréchet differentiable. If the generalized Kuhn-Tucker
condition holds at a , then fl(x) has a quasimin at =z = a , subject to
the constraint k(x) € K . The converse holds under the additional

hypotheses that the convex cone N, = (k" (a) k(a)]T(K*) is (weak * )

closed in X' x R and that the set U = k{a) + k'(a){(X) - K contains a

neighbourhood of zero.

Proof. Let the generalized Kuhn-Tucker condition hold; let
k(z) € X ; then Mk(z) =20 ; setting z=x2-a ,

Tf'(a)z = Mk'(a)z = Ak(x) - Ak(a) + ¢(3) = ¢(z)
where ¢(z) = o(||z]]) . Since O # T € W' , there is w € W with Tw # 0

setting ¢ = -(Tw)-l¢w , T = -¢ , so that T[f'(a)z+(z)] = 0 , where
Y(z) = o(llz]]) . If 2 =a is not a quasimin, then there is some sequence

{zn} + 0 for which k(a+zn) € K , and whenever 0(z) = o(jzll) ,
f(a+zn] - fla) - S(zn] € -int P .

Now f(a+zn) - fla) = f'(a)zn + o(Han) ; so, choosing 6 suitably,
f'la)z, + w(zn] € -int P as n - « , hence Tlf’(a)zn+w(zn]| <0 as
n + o 3 the contradiction shows that « = a is a quasimin.

Conversely, assume a quasimin, let NO be closed, and let U contain

a neighbourhood. The hypothesis on U , and continuous differentiability
of k , imply ([14], Corollary 1, and [6], Theorem 3) that k(x) € X is
locally solvable. Then the generalized Kuhn-Tucker condition follows from
Theorem 1, with g and S omitted; since v is absent, T Zu # 0 .

{For this converse, f need only be Hadamard differentiable.)

5. Quasiduality

In this section only, let W =R and P = R+ . Consider the two

problems:

(A) Minimize P(x) subject to =z €A ;
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(B) Maximize ¢(y) subject to y € B

Problem (B) will be called a quasidual of (A) if the following condition
holds:

if (A) has a quasimin at x = & € A , then (B) has a quasimax at

some y =n €B , and F(£) = o(n) .

i}

Under additional hypotheses of convexity (or related properties), which are
not made here, a quasimin is necessarily a minimum, and a quasimax is a

maximum, and quasiduality implies the usual duality.
Consider the following pair of problems:

(Qp) quasiminx f(x) subject to k(x) € X ;

(QD) quasimax Fflu) - vk(u) subject to v € K* |

R
f'(u) - vk'(u) =0 .

THEOREM 3. Let f : Xy > R be Hadamard differentiable; 1let k be
continuously Fréchet differentiable; as in Theorem 2, let NO be closed

and let U contain a neighbowrhood of zero. Let (QP) have a quasimin at
x=a€X,. Then (QD) s a quasidual of (QP).

Proof. Let (u, v) satisfy the constraints of (QD); let (QP) have a
quasimin at x = a ; from Theorem 2, the Kuhn-Tucker condition holds for

(P) at x =a , for some X €K* . Set u=a+p and v =X +q . Then

fla) - [flu)-vk(u)] = fla) - fla+p) - vk(a+p)
-f'(a)p - ollipll) + vk(a) + (A+q) (k' (a)p+olllpll))
= =[f'{a)-2k'(a)]lp - olllpl) + vk(a} + o({lpli+lqll)

= o(llpll+lqll} -

Hence (QD) has a quasimax at (u, v) = (a, A) . Since also Mk(a) =0 , by
the Kuhn-Tucker condition, f(a) - Ak(a) , so (QD) is a quasidual of (QP).
There is also a converse quasiduality result, analogous to the
converse duality results of [9], and [4, Theorem 3.1]. These cited results
however assume convexity, which is not required here. Note that (A) is a
quasidual of (B) if, whenever (B) has a quasimax, (A) has a corresponding

quasimin,with equal values of the two objective functions.

THEOREM 4. Let f and k be twice continuously Fréchet
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differentiable; let (QD) have a quasimax at (u, v) = (a, A) ; let the
adjoint i of the linear map M = f"(a) - Ak"(a) be bijective. Then
(QP) is a quasidual of (QD).

Proof. Since f and k are twice continuously differentiable, and

MT is invertible, the constraints of (QD) are locally solvable, and the
cone-closure hypothesis of Theorem 1 is fulfilled for (QD). Hence (FJ)
holds for (QD) at (a, A) . The calculation of [4, Lemma 3.1], then

applies, given MT bijective, showing that k(a) € X and the Kuhn-Tucker
condition holds for (QP). From Theorem 2, the Kuhn-Tucker condition
implies a quasimin for (QP). Since also f{a) = f(a) - Ak(a) , (QP) is a
quasidual to (QD).

6. MWhen does a quasimin imply a minimum?

Let I be a compact subset of RP . Let x-= Ll(I, Rn) , the space
of measurable functions x from I into R" , having finite Ll(I)-norm

denotes euclidean norm in R , and dt

lell = [ ()|t , where
I

denote Lebesgue measure on I . Let X0 be an open subset of the space

X . Define f : Xo +RY by flz) = f htr(t), t)dt , where the function
I

n r o . . s -
h:R xI+R 1is continuous. Define minimum and quasimin of

flx) ¢ R® in terms of the cone Rf , the nonnegative orthant in R . Let

k map XO into a space of continuous M-valued functions on I , where M

is a normed space; let S be a convex cone in M . Denote by X the
convex cone consisting of those continuous functions ¢ : I =+ M for which
P(t) €85 for each t € I . Then k(x) € K iff (Vt € I) k(x)(t) €5 .

Consider the minimization problem:

(p*) minimize f(x) subject to k(x) € X ,

x€X0

with f, k, X as specified above. This is an abstract version of an

optimal control problem (see, for example, [10]).

The following measure properties will be required (see [15, Section
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427). A point t, €I is a point of density of a measurable set E C T

if sup [}im sup m(Jk n E)/m(Jk)] =1 , taking limits over sequences
J, >t k
k 70
{Jk} of intervals containing to . A function ¢ : I - R is
approximately continuous at ty 1if there is a measurable set E, < I such
that to is a point of density of EO [and hence m[EO) >0 ), and also

lim  g(¢) = g(t,) -

THEOREM 5. Let (P*) have a quasimin at =z =7 € k_l(K) ; let X

have the Ll(I)-nonw; let h satisfy a Lipschitz condition

|n(u, t)-h(v, )| < clu~v| (u, v € R*) .
Then h(z(t), t) is minimized, almost everywhere in I , with respect to

x € k_l(K) , at x =n . Consequently (P*) has a minimun at z =71 .

Proof. If the conclusion does not hold, then for some x* € k_l(K)
# . #
and some A C I , with measure m(A ) >0,
. # . r
(i) (vt € 4") n(z*(¢), &} - n(n(t), ¢} € -int R .
The Lipschitz hypothesis shows that, for each component hi of h , there

is a bounded measurable function ¢i such that
(vt € 1) h (z*(2), t) - r(n(t), t) = ¢i(t)|x*(t)-n(t)| .

(Where x*(¢) = n(¢) , ¢,(¢) =0 .) From (15, Theorem 42.3], ¢; is

approximately continuous almost everywhere on I , and [!5, Theorem h2.2],

shows that the points of a measurable set E c I , with m(E) > O , are

almost everywhere points of density of E . Deleting from A# the

finitely many subsets on which ¢i is not approximately continuous
(¢ =1, 2, ..., r) , and the set of points which are not points of density

of A# , leaves a set A4 , where m(4) = m(A#) . Let to € AO . Then
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(ii) 1im  ¢.(t) =¢.(t) <0,
>t ted v "( 0)

by the approximate continuity, and also using (i). Consequently, for some
§>0 and each t € B ={t €4 : lt—tol < 8} , and each 1 ,

-,(t) z 8 = ¥ min |—¢i(t0]l >0 .

1

Define the continuous (nondifferentiable) arc A +— EA (X € R+) by

£,(¢) =a*(t) for 't €B, = {t € B : It-tol <y},

El(t) n(t) otherwise,

where Y{\) is chosen so that, as A + 0 , the Ll(I)—norm ”Ek-n” =X .
Then EO =n , and the form chosen for the constraint k(x) € X ensures

_1(

that gk € k (X) . Then, for each 7 ,

(111) £3(6) +rm) = [ sler(e)n()]ds = sly-nll -
B
A

Hence £,) - f(n) 1lies in -int RY , and is distant at least Bl&,-n
A + A

from the boundary of -int Ri . This contradicts the quasimin of (P%*) at

x =n . Thus (i) cannot hold.

Integrating h then shows that (P*) is minimized at x =n .

REMARKS. This theorem depends on the choice of the Ll(I)—norm. It
extends a result given by Berkovitz [7, p. 288). The case p > 1
corresponds to an optimal control problem involving a partial differential

equation; this will be detailed elsewhere.

The Lipschitz hypothesis need only hold almost everywhere. The
theorem also holds, with slight change to the proof, if instead f 1is

Hadamard differentiable.
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