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Quantum Fourier transform

The authors are grateful to Ronald de Wolf for reviewing this chapter.

Rough overview (in words)

The quantum Fourier transform (QFT) is a quantum version of the discrete

Fourier transform (DFT) and takes quantum states to their Fourier-transformed

version.

Rough overview (in math)

The QFT is a quantum circuit that takes pure N-dimensional quantum states

|x⟩ = ∑N−1
i=0 xi|i⟩ to pure quantum states |y⟩ = ∑N−1

i=0 yi|i⟩ with the Fourier-

transformed amplitudes

yk =
1√
N

N−1∑

l=0

xl exp(2πikl/N) for k = 0, . . . ,N − 1. (12.1)

Dominant resource cost (gates/qubits)

The space cost is O(log(N)) qubits and the quantum complexity of the text-

book algorithm is O(log2(N)). In terms of Hadamard gates, swap gates, and

controlled phase shift gates |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Rℓ with

Rℓ =


1 0

0 exp
(
2πi2−ℓ

)
 ,

the quantum circuit is given in Fig. 12.1 (see also [801, Fig. 5.1]), where N =

2n. The swap gates at the end of the circuit are required to reverse the order of

the output qubits. The complexity can be improved to

O
(
log(N) log

(
log(N)ϵ−1

)
+ log2

(
ϵ−1

))
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Figure 12.1 Quantum circuit implementation of QFT.

when only asking for ϵ-approximate solutions [486]. Finite constants and

compilation cost for fault-tolerant quantum architectures are also dis-

cussed in the literature. For example, [795] gives an implementation with

O(log(N) log log(N)) T gates and estimates finite T -gate costs for different

instance sizes.

Caveats

• The QFT does not achieve the same task as the classical DFT that takes

vectors (x0, . . . , xN−1) ∈ CN to vectors (y0, . . . , yN−1) ∈ CN with yk defined as

in Eq. (12.1). The DFT can be implemented via the fast Fourier transform in

classical complexity O(N log(N)), which is exponentially more costly than

the quantum complexity O(log2(N)) of the QFT. However, for the QFT to

achieve the same task as the DFT, pure state quantum tomography would

be required to read out and learn the Fourier-transformed amplitudes, which

destroys any quantum speedup for the DFT.

• When QFT is employed in use cases, for example, for factoring, one has to

be careful in finite-size instances when counting resources [943], and for this

a semiclassical version of the QFT can be more quantum resource efficient

[458].

• The QFT admits an efficient representation as a matrix product operator (a

type of tensor network), meaning that the approximation improves exponen-

tially in the bond dimension [262]. This suggests that quantum algorithms

relying on the QFT for speedup must involve highly entangled input or in-

termediate states, in order to beat state-of-the-art tensor network methods.

Example use cases

• Even though the QFT does not speedup the DFT, QFT is used as a subrou-

tine in more involved quantum routines with large quantum speedup. Ex-

amples include quantum algorithms for the discrete logarithm problem, the
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hidden subgroup problem, the factoring problem, to name a few. The QFT

can be seen as the crucial quantum ingredient that allows for a superpoly-

nomial end-to-end quantum speedup for these problems. We discuss this in

the context of quantum cryptanalysis in Chapter 6.

• The QFT appears in the standard circuit for quantum phase estimation,

where it is used to convert accrued phase estimation into a binary value that

can be read out.

• The QFT is used for switching between the position and momentum bases

in grid-based simulations of quantum chemistry [601] or quantum field the-

ories [588].

Further reading

• Textbook reference [801, Section 5.1].

• The quantum Fourier transform can be generalized to other groups. The ver-

sion presented above is for the group Z/(2n
Z). Its implementation for other

abelian groups as well as nonabelian groups is discussed in [277] and the

references therein.
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