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1. Eddingtonx has considered equations of the gravitational
field in empty space which are of the fourth differential order, viz.
the sets of equations which express the vanishing of the Hamiltonian
derivatives of certain fundamental invariants. The author has shown 2

that a wide class of such equations are satisfied by any solution of
the equations

Gia = Xgl.v, (1.1)

where G^ and gMV are the components of the Ricci tensor and the
metrical tensor respectively, whilst A is an arbitrary constant. For
a V4 this applies in particular when the invariant referred to above is
chosen from the set

where B^^ is the covariant curvature tensor. Kz has been included
since, according to a result due to Lanczos3, its Hamiltonian derivative
P/* is a linear combination of P / " and P / ' , i.e. of the Hamiltonian
derivatives of Ka and K2. In fact

Pf = ±P/" - Pj"-. (1.3)

It appears therefore that the most general invariant which will give
rise to quasi-linear fourth order equations may be taken to be

+ bK2, (1.4)

where a ana b are constants.
1 The question of the general solution of such equations seems to
be as yet unsolved, even in the case of static spherically symmetric
fields, which despite its relative simplicity presents great difficulties.
In the present paper we shall be concerned with a special case of
(1.4), viz. with the invariant

K = ZK2-K,. (1.5)
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invariant is also mentioned in a different context by Gregory4.)
We shall show that if P1" is the Hamiltonian derivative of K, then
the equations

F"'=Q (1.6)

possess as a solution every line element representing a apace conformal
•to an Einstein space.

Furthermore we shall show that the general solution of (1.6) in
the case of the static spherically symmetric field may be written

ds* = <f/ (r) [ - y^dr2 - r2d82 - r2sin2 9d<f>2 + y dt2], (1.7)
where y = 1 — 2m/r — \r2/3 (m, A arbitrary constants), and ifi (r) is
An arbitrary function of r. We are of course dealing with a F4

throughout.

2. Let Cnwp be the conformal curvature tensor5

< V P = B^9 - 2g[li[v(Ga]p] - ±ga]p]G). ' (2.1)
(For the meaning of brackets enclosing indices, vide Schouten6.)
Consider the invariant

K = C^p Cw. (2.2)

Using (2.1) it is not difficult to show that we may write

if= \Kx-ZKi + Kz. (2.3)

Now let L = K1 - <LK2 + K3. (2.4)

Inserting this in (2.3) we obtain

K = L - IK1 + 2K2. (2.5)

In virtue of (1.3) the Hamiltonian derivative of Evanishes identically.
Accordingly we simply consider the invariant K as given by (1.5).
The Hamiltonian derivative P1" of K will then be the same as that

-of K except for a trivial numerical factor.

3. Consider the integral

J = ^K^^~gdr, (3.1)

where K and g are formed with respect to a metrical tensor gM,. In a
conformal transformation in which the gMV are replaced by agMP, where
<J is an arbitrary function of the coordinates, K becomes multiplied
by a'2 and V — g by a2, (in a F4). Now P1™ is defined by the equation

SJ = J P> gfr. ̂ /Zr9 dr, (3.2)
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where variations vanish on the boundary of the region of integration.
It follows that in a conformal transformation the P1"1 merely become
multiplied by a~3. The set of equations

P> == P"- = 0 (3.3)

therefore transforms into itself, and we accordingly say that it is
conform-invariant. (Strictly speaking P1™itself is "conform-covariant".)
Obviously therefore, if g^ is a particular solution of (3.3), then the
product of g/iv with an arbitrary (sufficiently often differentiable}
function of the coordinates is a more general solution. Making use
of the known results stated in §1 we therefore have that if y^, is the
metrical tensor of an Einstein space, i.e. gMl, satisfies the equations
(1.1), and A(xlt x2, x3, xt) is an arbitrary function of the coordinates,
then

SC = A (x) g,n, (3.4)

satisfies the set of equations (3.3); which proves our first assertion..
4. Although it is not essential for our purpose it may be of

interest to write down the explicit form of P1'". In fact, using some
results due to the author', we find without difficult}7 that

i?"" = 2O"<">; ffp - O*<"> Q.f. (4.1)

(4.1) may also be written

P"- = S"' - |</"" S, (4.2).

where £'"• = 3 D ^ - 6 •"*•' + 2GG"' - GB"""' Gap, (S = ££). (4.3)
By (4.2) the spur of P''v vanishes identically. [This is a general
property of the Hamiltonian derivatives of fundamental invariants-
K which are such that the corresponding scalar-densities KV^— ~g are
conform-invariant. This is easily proved by considering the special
variation Sg^ = eg,lv (4.4)
in the equation of definition of Hamiltonian derivatives (cf. (3.2)),
where, e is an arbitrary infinitesimal function of the coordinates,
vanishing on the boundary of the region of integration.]

5. We now come to the case of static spherically symmetric-
solutions of (3.3). If we disregard trivial arbitrary constants, the
only Einstein spaces having the required property are8.

d«2 = ~g/ir dx" dxr s - y " 1 ^ - p2 (d62 + sin2 8 d<j>*) + ydt\ }
y (5.1)

where y = 1 — 2m!p -j Ap2/3, I

m and A being constants of integration. (We consider ' different'
solutions obtainable from one another by coordinate transformations-
as constituting the same solution.)

https://doi.org/10.1017/S001309150001419X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001419X


CONFORM-IN VARIANT EQUATIONS OF TUB GRAVITATIONAL FIELD 19

By a suitable choice of coordinates every spherically symmetric
•static line element may be brought into the form

da1 = — e*W dp2 - p2 (d82 + sin2 6 d^) + e-W dt2. (5.2)

In the present case we may further simplify (5.2) by carrying out first
a conformal transformation in which the right-hand side of (5.2) is
multiplied by e~" throughout, followed by a coordinate transformation

jo=p(r) such that p2exp(— v(p)) = r2. We need then only consider
line elements of the form

ds2 = - (rw)'- dr2 - r2 (dd2 + s in2 6 d<j>2) + dt,2. (5.3)

It is not difficult to confirm that the components of the curvature
tensor do not contain the second derivatives of w. Consequently the
same is true of K, and in fact we find

K = 2(rww' + r-2)2. ' (5.4)

The condition that the Hamiltonian derivative of K vanish then yields
the second order differential equation

( — \~rho == ) 2r6whv" + 6rbw3w' + r6w2w'2 + 1 = 0. (5.5)
\ hio J '

II r — T~1/2 and dots denote differentiation with respect to T, (5.5)
becomes

Sw3w + 4w>2w;2 + 1 = 0, (5.6)

which is easily integrated, its solution being

w2 + 4mw3 = o- — 27w2a2, (5.7)

where we have written a = T — A/3, and m, A are constants of integra-
tion. In terms of a parameter p (5.7) may be given the equivalent
form

a p 3 - p + 2 m = 0 | (5.81)
w^p-1 -3mp-2 .J (5.82)

But if we now apply the transformations described above to the line
•element (5.1) then the relation between p and r is just that given by
(5.81); and it may be confirmed that (5.82) in fact correctly represents-
the resulting function w(r). It follows at once that all static
spherically symmetric solutions of (3.3) can be written in the form
(1.7); which was to be proved.

It may be noted that just the set of equations (3.3) is obtained in
Weyl's theory10 if we attempt to set up field equations by choosing

UP &"" V::r9dr = 0 (5.9)
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as the determining gauge-invariant action principle. This is of course-
not surprising since Weyl's conformal curvature tensor u G'/mrp does not
involve the " electromagnetic potentials " at all. But it is interesting
to observe that in this case we can at least obtain convergent solutions
of the field equations (cf. Bergmann12). On the other hand the " unity "
of gravitation and electromagnetism is then of an even more dubious
kind.

In conclusion I wish to express my thanks to a referee who
pointed out a missing link in the argument of the last section in the
original draft of this paper.
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Note added in proof :

In the transformation of coordinates following (5.2) we have
tacitly assumed that v(p) =j= 2 log p. If this condition is not satisfied
we need only consider a line element of the form

ds*= - e *<<>> dp2 — (ddz + s i n 2 6 d<j>2) + dtz.

Then K = 2 and the Hamiltonian derivative of K is 1. The result of
§5 therefore remains valid.

DEPARTMENT OF PHYSICS,

UNIVERSITY OF TASMANIA.

https://doi.org/10.1017/S001309150001419X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001419X

