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A new lattice Boltzmann model (LBM) is presented to describe chemically reacting
multicomponent fluid flow in homogenised porous media. In this work, towards further
generalising the multicomponent reactive lattice Boltzmann model, we propose a
formulation which is capable of performing reactive multicomponent flow computation
in porous media at the representative elementary volume (REV) scale. To that end, the
submodel responsible for interspecies diffusion has been upgraded to include Knudsen
diffusion, whereas the kinetic equations for the species, the momentum and the energy
have been rewritten to accommodate the effects of volume fraction of porous media
through careful choice of the equilibrium distribution functions. Verification of the
mesoscale kinetic system of equations by a Chapman–Enskog analysis reveals that
at the macroscopic scale, the homogenised Navier–Stokes equations for compressible
multicomponent reactive flows are recovered. The dusty gas model (DGM) capability
hence formulated is validated over a wide pressure range by comparison of experimental
flow rates of component species counter diffusing through capillary tubes. Next, for
developing a capability to compute heterogeneous reactions, source terms for maintaining
energy and mass balance across the fluid phase species and the surface adsorbed phase
species are proposed. The complete model is then used to perform detailed chemistry
simulations in porous electrodes of a solid oxide fuel cell (SOFC), thereby predicting
polarisation curves which are of practical interest.

Key words: porous media, coupled diffusion and flow, kinetic theory

1. Introduction
Fluid flow and transport in porous media is ubiquitous, with applications ranging across
disciplines such as, but not limited to, earth science, biology and energy science. Some
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areas relevant to the times which can benefit from modelling of transport in porous
media include subsurface carbon dioxide or hydrogen storage in geological formations,
geothermal power exploration, renal and pulmonary flows, flows in electrochemical energy
devices etc. In this work, we develop a lattice Boltzmann model for multicomponent
reactive flows with a vision of creating a useful prediction tool for the operation of fuel
cells made up of porous electrodes.

Let us take a brief overview of the literature surrounding simulation of fuel cells,
especially the solid oxide fuel cells (SOFCs). As with any other area of modelling and
simulation, to suit an expected level of accuracy, different models varying in complexity
of the science as well as dimensions exist. One of the most utilitarian and well-validated
models is the one-dimensional button-cell model developed by DeCaluwe et al. (2008)
for the purpose of exploring the influence of anode microstructure on SOFC performance.
The model computes coupled dusty gas model (DGM) and elementary electrochemical
kinetics in a porous nickel–yttria-stabilised zirconia (YSZ) cermet anode, a dense YSZ
electrolyte membrane and a composite lanthanum strontium manganite (LSM)–YSZ
cathode. The effects on overpotential of microstructural parameters, as well as geometric
factors, were analysed and compared against the experimental results of Zhao & Virkar
(2005). The work establishes an excellent detailed chemistry model for both surface
chemistry as well as electrochemistry with elementary mass action kinetics, which we
adopt for our simulations. In higher dimensions, Li & Chyu (2003) has computed
steady-state two-dimensional (2-D) axisymmetric flow in tubular SOFCs with energy
and averaged mass transfer as well as simplified chemistry. Somethree-dimensional (3-D)
simulations of SOFCs have also been performed by various authors, for example, the
steady-state simulations by Cordiner et al. (2007) with approximate chemistry, mass
averaged diffusion, fluid momentum and energy equations to compute the composition
in gas channels as well as porous electrodes. Danilov & Tade (2009) presented a 3-D
computational fluid dynamics (CFD) model for a planar SOFC with internal reforming
for studying the influence of various factors on flow field design and kinetics of chemical
and electrochemical reactions. Electrochemical reactions were computed at the catalyst–
electrolyte interface, described by the approximate Butler–Volmer equations for current.
Possibly representing the state of the art is the 3-D non-isothermal model for anode-
supported planar SOFC of Li et al. (2019). The mass, momentum, species, ion, electric
and heat transport equations were solved simultaneously for co-flow and counter-flow
arrangements. The Butler–Volmer chemistry was approximated by Tafel kinetics and the
study took the effects of molecular diffusion and Knudsen diffusion into account.

In the works mentioned so far, the microstructure of the electrodes was not resolved but
approximated by averaged macroscopic properties like porosity and tortuosity. Shikazono
et al. (2010) conducted a3-D numerical simulation of the SOFC in a resolved microstruc-
ture which had been reconstructed by dual-beam focused ion beam-scanning electron
microscopy. Gas, ion and electron transport equations were solved by the lattice Boltzmann
method (LBM) in conjunction with electrochemical reactions at the resolved three-phase
boundary. The predicted anode overpotential agreed well with the experimental data,
although the electrochemistry was calculated with fitted data from the patterned anode
experiments of Boer (1998). Other related works involving resolved microstructures are
that of Krastev & Falcucci (2019) and Di Ilio & Falcucci (2021), which explore microbial
fuel cells with 2-D and 3-D LBM simulations, respectively. This non-exhaustive list of
studies reveals an interesting trend. As the physical dimension and the scope of science
being replicated expands, the models get simpler. This is expected since not only the com-
putational cost but also the complexity associated with coupling the diverse multi-physics
models becomes a challenge. From a numerical standpoint, more differential equations
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also mean more errors due to the spatial and temporal discretisation. The LBM does away
with spatial discretisation of fluxes and is efficiently scalable due to its simple nearest-
neighbour interaction, making it a good candidate for complex multi-physics simulations.

The LBM, which facilitates efficient transient simulations around complex geometries
without the hassle of mesh generation, has been successful in modelling multicomponent
diffusion with coupled fluid dynamics, species transport, energy and detailed chemistry
with full thermodynamic consistency (Sawant et al. 2022, 2021). Instead of numerically
calculating the fluxes, the LBM relies on streaming of particles for space discretisation,
which results in exact spatial discretisation, a feature which is especially useful for
multicomponent systems with many equations that would otherwise accumulate increasing
error with increasing number of components. For possible future resolved microstructure
simulations, the structured lattice allows complex geometries to be imported and used
without meshing, while also ensuring that there are no conservation errors like finite-
difference based immersed boundary methods. In a nutshell, the LBM does away with the
hassle of meshing like the immersed boundary method while ensuring exact conservation
like the finite volume methods. The algorithm is also fast and scalable due to the memory
accesses being restricted to nearest neighbours. The method does have some limitations,
for example, steady-state simulations cannot be performed. The solution, although time
accurate, is restricted to second-order accuracy in time due to the nature of mathematical
transformations performed on the transport equations. Grid refinement is non-trivial,
although some efforts in this direction show promise (Bauer et al. 2021; Zhang et al.
2019).

Diffusion modelling with multicomponent pairwise interaction such as with the
Stefan–Maxwell model (SMM) or the DGM has been shown to be a better approach
than modelling diffuson with mass averaging as is done in Fick’s model, especially
for experimental validation of fuel cell models (Yakabe et al. 2000; Suwanwarangkul
et al. 2003; Tseronis et al. 2008). However, due to the complexity and cost of the
multicomponent diffusion models, Fick’s law is mostly preferred in both steady-state
(Ferguson et al. 1996; Kim et al. 1999) as well as dynamic simulations (Qi et al.
2006; Bhattacharyya et al. 2009). We have alreadt created and validated a transient 3-D
multicomponent flow solver (Sawant et al. 2021) which exploits the kinetic nature of
the LBM to efficiently model Stefan–Maxwell diffusion, correctly capturing transient
reverse diffusion (Toor 1957; Krishna & Wesselingh 1997). The model has been extended
to reactive flows (Sawant et al. 2022) and validated with 3-D transient simulations in
microcombustors with elementary mass action kinetics for hydrogen–air combustion. In
SOFC simulations, semi-empirical Butler–Volmer kinetics are often used as a simpler
and less demanding alternative to computing the elementary reactions occuring at the
triple phase boundary (TPB) (Hecht et al. 2005; Zhu et al. 2005; DeCaluwe et al. 2008).
Considering the current state of lattice Boltzmann modelling, there is an opportunity to
create an LBM model to simulate SOFCs with both accurate diffusion as well as detailed
chemistry. Such a model has the potential to predict concentration polarisation due to
its sophisticated diffusion model as well as predict activation polarisation due to the
inclusion of detailed reactions (Bhattacharyya & Rengaswamy 2009). The transient nature
of the simulations could reveal the behaviour of the SOFCs under dynamic loading as
well as provide an opportunity to study and optimise the startup behaviour of SOFCs
(Bhattacharyya & Rengaswamy 2009). Since the LBM can already simulate microreactor
combustion, reforming reactions in the electrodes and in the flow channels can also
be readily accommodated (Janardhanan & Deutschmann 2006; Cordiner et al. 2007).
Such a model can also be especially useful for accurate prediction of cell performance
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at high current densities when multiple species and thermal gradients result from internal
reforming (Achenbach 1994; Rostrupnielsen & Christiansen 1995; Iora et al. 2005). In this
paper, with this big picture in mind, we have taken the first step of creating a model capable
enough of predicting polarisation curves of porous SOFCs electrodes through simulation.

The motivation for this work and the justification for adopting the LBM being well
stated, we proceed to a more formal introduction. Within the context of CFD, the
LBM (Higuera & Jiménez 1989; Higuera et al. 1989) solves a discrete realisation of
the Boltzmann transport equation (Grad 1949) at the mesoscale such that the Navier–
Stokes equations are recovered at the macroscale (Chapman & Cowling 1970). The LBM
can simulate a variety of flows including, but not limited to, transitional flows, flows
in complex moving geometries, compressible flows, multiphase flows, multicomponent
flows, rarefied gases, nanoflows etc. (Falcucci et al. 2016; Krüger et al. 2017; Succi 2018;
Sharma et al. 2020). In the preceding works, a model for reactive multicomponent flows
has been developed in which an M component fluid is represented by M kinetic equations
that model their Stefan–Maxwell interaction, a kinetic equation which models the total
mass and mean momentum of the whole fluid and a kinetic equation which models the
total energy of all components that make up the multicomponent fluid. In this work,
we propose a set of M kinetic equations for the DGM (Krishna & Wesselingh 1997)
that model Knudsen diffusion as well as Stefan–Maxwell diffusion in a porous medium.
The corresponding mean field kinetic equations for the momentum and the energy are
formulated to model the representative elementary volume (REV) scale homogenised
Navier–Stokes equations (Whitaker 1999). Together, the M + 2 system of equations
model multicomponent reactive flow in porous media, without resolving the subgrid-
scale microstructure of the solid matrix. The model is first validated by replicating
experimental results for ternary counterdiffusion in capillay tubes over a wide range of
rarefied pressures. Next, since only the bulk fluid phase species are modelled by the
kinetic equations, source terms are developed to correctly model the interchange of mass
and energy between the bulk fluid phase species and the surface phase adsorbed species.
The detailed chemical mechanism from DeCaluwe et al. (2008) is used to introduce the
adsorption/desorption as well as electrochemical redox reactions into the model though
the open source Cantera (Goodwin et al. 2018) package. The resulting programme is
used to compute reactive flow in the porous electrodes of an SOFC. The current density
obtained at different porosity and potentials is validated against the polarisation curves
from experiments of Zhao & Virkar (2005). Beginning with this work, we intend to work
towards developing new models and extending existing ones to become capable to perform
3-D transient multicomponent fuel cell simulations with detailed chemistry.

The paper is structured as follows. We begin with a recap of the nomenclature and
the kinetic system for the bulk fluid phase species in § 2. This section presents the
DGM discrete lattice Boltzmann equations for the species and their implementation on
the standard lattice. Next, we turn our attention to describing the REV scale mean field
approach for modelling the momentum and energy of the reactive mixture flowing through
porous media in § 3. Here, we also discuss the realisation on standard lattice with the two-
population approach. The section closes with a presentation of the resultant macroscopic
homogenised Navier–Stokes equations for porous media in the continuum limit. In § 4,
we introduce the equations for charge transport as well as the source terms which are
necessary to be introduced into the kinetic equations to correctly account for the mass
and energy changes due to heterogeneous chemical reactions with the adsorbed species.
In § 5.1, the model is used to simulate ternary diffusion in a capillary tube to validate
the DGM formulation and implementation. Following the check of the diffusion sub-
component, we discuss the simulation of an SOFC membrane electrode assembly with the
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resultant model and validate it against experiments in § 5.2. We sum up the contributions
to the LBM and to the area of fuel cell simulation of the preceding sections, and
discuss the future possibilities in § 6. Inthe Appendix, we present the Chapman–Enskog
analysis which maps the mesoscale kinetic equations to the macroscale homogenised
Navier–Stokes equations.

2. Lattice Boltzmann model for the species

2.1. Kinetic equations for the species
For completeness, we begin with a recap of the established nomenclature of Sawant et al.
(2021, 2022). The composition of a reactive mixture of M components is described by the
fluid phase species densities ρa , a = 1, . . . , M , while the mixture density is

ρ =
M∑

a=1

ρa . (2.1)

The rate of change of species densities due to the homogeneous gas phase reactions, ρ̇r
a ,

satisfies mass conservation,

M∑
a=1

ρ̇r
a = 0. (2.2)

With the mass fraction, Ya = ρa/ρ and ma being the molar mass of the component a,
the molar mass of the mixture m is given by m−1 =∑M

a=1 Ya/ma . The ideal gas equation
of state (EoS) provides a relation between the pressure P , the temperature T and the
composition,

P = ρRT, (2.3)

where R = RU /m is the specific gas constant of the mixture and RU is the universal gas
constant. The pressure of an individual component is related to the pressure of the mixture
through Dalton’s law of partial pressures, Pa = Xa P , where the mole fraction is Xa =
mYa/ma . The partial pressure takes the form Pa = ρa RaT , where Ra = RU /ma is the
specific gas constant of the component.

The REV can be defined as the minimal volume of a sample from which a given
parameter becomes independent of the size of the sample (Al-Raoush & Papadopoulos
2010). Obtained by running correlation functions or successively expanding sampling
size of images obtained form techniques such as X-ray computed tomography (XCT)
and focused ion beam scanning electron microscopy (FIB-SEM), the size of a typical
REV corresponding to an SOFC microstructure is approximately 4–19 times the average
particle size (Harris & Chiu 2015; Yan et al. 2017). The parameter of interest in this work is
porosity, more specifically, the porosity of electrodes of an SOFC. In a REV of the porous
media, the ratio of the fluid volume to the total volume is represented by the porosity φ.
In this work, for the purpose of formulation, the porosity is considered homogeneous
in space and time invariant. In the kinetic representation, each component is described
by a set of populations fai corresponding to the discrete velocities ci , i = 0, . . . , Q − 1.
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The species densities ρa and the partial momenta ρaua are defined accordingly,

ρaφ =
Q−1∑
i=0

fai , (2.4)

ρaφ
ua

φ
=

Q−1∑
i=0

fai ci , (2.5)

while partial momenta sum up to the mixture momentum,

ρφ
u
φ

=
M∑

a=1

ρaφ
ua

φ
. (2.6)

The velocity u is the actual physical velocity of the fluid, the corresponding superficial
velocity would be φu. In this work, the choice of placing porosity parameter φ into
various moments was made such that the homogenised Navier–Stokes equations (Whitaker
1999) are correctly recovered at the macro scale. The reader is cautioned that, although
other choices such as the zeroth moment (2.4) defined as ρa and the first moment
(2.5) identified as ρaua/φ recover the correct continuity equation, they do not lead to
the expected momentum equation, as per the literature on Navier–Stokes equations for
homogenised porous media. Although we do not emphasise this repeatedly throughout the
paper, the porosity parameter φ has been carefully placed along with the thermodynamic
parameters and moments such as the pressure, enthalpy and the enthalpy flux to recover
the homogenised Navier–Stokes equations in the hydrodynamic limit without resorting
to ad hoc forcing terms in the kinetic equations. The form of these moments have been
derived by repeatedly performing the Chapman–Enskog analysis on the kinetic equations
using intuitive guesses for the form of equilibrium moments.

Starting with kinetic equations of Sawant et al. (2022) for reactive species with Stefan–
Maxwell diffusion, we modify the equations to include Knudsen diffusion. The kinetic
equations for the species are written as

∂t fai + ci · ∇ fai =
M∑

b �=a

P Xa Xb

Dab

[(
f eq
ai − fai

ρa

)
−
(

f eq
bi − f ∗

bi

ρb

)]

− P Xa

Dk
a

(
f ∗
ai − f k

ai

ρa

)
+ ḟ r

ai , (2.7)

where Dab are Stefan–Maxwell binary diffusion coefficients, Dk
a are the Knudsen

diffusion coefficients, while the reaction source population ḟ r
ai satisfies the following

conditions:
Q−1∑
i=0

ḟ r
ai = ρ̇r

a, (2.8)

Q−1∑
i=0

ḟ r
ai ci = ρ̇r

a
u
φ

. (2.9)

We now proceed with specifying the equilibrium f eq
ai , the quasi-equilibrium populations

f ∗
ai and f k

ai , and the reaction source populations.
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2.2. Standard lattice and product form
All the kinetic models including (2.7) are realised on the standard discrete velocity set
D3Q27, where D = 3 stands for three dimensions and Q = 27 is the number of discrete
velocities,

ci = (cix , ciy, ciz), ciα ∈ {−1, 0, 1}. (2.10)

To specify the equilibrium f eq
ai , the quasi-equilibrium f ∗

ai and f k
ai , and the reaction

source term ḟ r
ai in (2.7), we first define a triplet of functions in two variables, ξα and Pαα ,

Ψ0(ξα,Pαα) = 1 −Pαα, (2.11)

Ψ1(ξα,Pαα) = ξα +Pαα

2
, (2.12)

Ψ−1(ξα,Pαα) = −ξα +Pαα

2
, (2.13)

and consider a product form associated with the discrete velocities ci (2.10),

Ψi = Ψcix (ξx ,Pxx )Ψciy (ξy,Pyy)Ψciz (ξz,Pzz). (2.14)

All pertinent populations are determined by specifying the parameters ξα and Pαα in
the product form (2.14). The equilibrium and the quasi-equilibrium populations are

f eq
ai = φρaΨcix

(
ux

φ
,

u2
x

φ2 + RaT

)
Ψciy

(
uy

φ
,

u2
y

φ2 + RaT

)
Ψciz

(
uz

φ
,

u2
z

φ2 + RaT

)
,

(2.15)

f ∗
ai = φρaΨcix

(
uax

φ
,

u2
ax

φ2 + RaT

)
Ψciy

(
uay

φ
,

u2
ay

φ2 + RaT

)
Ψciz

(
uaz

φ
,

u2
az

φ2 + RaT

)
.

(2.16)
The product form (2.14) together with the equilibrium parameters are used to specify the
reaction terms,

ḟ r
ai = ρ̇r

aΨcix

(
ux

φ
,

u2
x

φ2 + RaT

)
Ψciy

(
uy

φ
,

u2
y

φ2 + RaT

)
Ψciz

(
uz

φ
,

u2
z

φ2 + RaT

)
, (2.17)

while the quasi-equilibrium populations responsible for enabling Knudsen diffusion are
specified as

f k
ai = φρaΨcix (0, RaT ) Ψciy (0, RaT ) Ψciz (0, RaT ) . (2.18)

Note that the populations f k
ai (2.18) are evaluated at zero velocity while the populations

f ∗
ai (2.16) in the kinetic equation (2.7) are evaluated at the velocity of the corresponding

component. Intuitively, the populations f k
ai can be thought of as representing the stationary

component, consistent with the idea of the DGM (Mason & Lonsdale 1990). The term
proportional to ( f ∗

ai − f k
ai ) in (2.7) thus represents a retardation proportional the velocity

of the component a due to its interaction with the stationary component.
Along the lines of Sawant et al. (2021), analysis of the hydrodynamic limit of the kinetic

model (2.7) leads to the following. The balance equations for the densities of the species
in the presence of the source term are found as follows:

∂tφρa + ∇ · (ρaua) = ρ̇r
a, (2.19)
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where the component velocities, ua , satisfy the Stefan–Maxwell constitutive relation with
Knudsen diffusion (Mason & Lonsdale 1990; Krishna & Wesselingh 1997; Kee et al.
2003),

P∇ Xa + (Xa − Ya)∇ P =
M∑

b �=a

P Xa Xb

φDab
(ub − ua) − P Xa

φDk
a

ua . (2.20)

Summarising, the kinetic model (2.7) recovers the DGM with a provision for modelling
composition changes due to chemical reactions. The Knudsen diffusivities Dk

a are
computed as a function of porosity, tortuosity, molecular mass and most importantly,
the pore diameter of the porous media. For example, in the case of capillary tubes, the
Knudsen diffusivities are defined by (5.1) below.

2.3. Lattice Boltzmann equation for the species
The kinetic model (2.7) is transformed into a lattice Boltzmann equation by following a
process similar to the one for the Stefan–Maxwell diffusion case and detailed by Sawant
et al. (2021, 2022). Upon integration of (2.7) along the characteristics and application of
the trapezoidal rule to all relaxation terms on the right-hand side except for the reaction
term, we arrive at a fully discrete lattice Boltzmann equation for the species,

fai (x + ciδt, t + δt) = fai (x, t) + 2βa[ f eq
ai (x, t) − fai (x, t)] + δt (βa − 1)Fai (x, t)

+ Rr
ai . (2.21)

Here, δt is the lattice time step, the equilibrium populations are provided by (2.15), while
the relaxation parameters βa ∈ [0, 1] are

βa = δt

2τa + δt
. (2.22)

Their relation to the Stefan–Maxwell binary diffusion coefficients is found as follows.
Introducing characteristic times,

τab = m RU T

Dabmamb
, (2.23)

the relaxation times τa in (2.22) are defined as

1
τa

=
M∑

b �=a

Yb

τab
. (2.24)

In (2.21), the quasi-equilibrium relaxation term Fai is spelled out as follows:

Fai = Ya

M∑
b �=a

1
τab

(
f eq
bi − f ∗

bi

)+ 1
τ k

a

(
f ∗
ai − f k

ai

)
. (2.25)

The relaxation times corresponding to Knudsen diffusion τ k
a in (2.25) are defined as

τ k
a = RU T

Dk
ama

. (2.26)
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The quasi-equilibrium populations f ∗
bi in (2.25) are defined by the product form (2.16),

subject to the following parametrisation:

ξα = uα + Vbα, (2.27)

Pαα = RbT + (uα + Vbα)2 , (2.28)

where the second-order accurate diffusion velocity V b is the result of the lattice
Boltzmann discretisation of the kinetic equation and is found by solving the M × M linear
algebraic system for each spatial component,(

1 + δt

2τa
+ δt

2τ k
a

)
V a − δt

2

M∑
b �=a

1
τab

YbV b = ua − u. (2.29)

Equation (2.29) can be written in a more compact form as(
1 + δt

2τa
+ δt

2τ k
a

)
V a − δt

2

M∑
b

(
1 − δab

τab

)
YbV b = ua − u. (2.30)

The system (2.29) has been altered by the inclusion of Knudsen diffusion, therefore, it is
different from the form that was proposed in the earlier works, e.g. by Sawant et al. (2022).
In our realisation, we solve (2.29) with the Householder QR decomposition method from
the Eigen library (Guennebaud et al. 2010).

Finally, the reaction term in (2.21) is represented by an integral over the characteristics,

Rr
ai = δt

∫ 1

0
ḟ r
ai (x + ci sδt, t + sδt)ds. (2.31)

Taking into account the structure of the reaction term (2.17), we use a simple explicit
approximation for the implicit term (2.31),

Rr
ai ≈ ḟ r

ai (x, t)δt. (2.32)

Reaction rates ρ̇r
a are obtained from the open source chemical kinetics package Cantera

(Goodwin et al. 2018) as a function of mixture internal energy U and composition,
ρ̇r

a = ρ̇r
a(U, ρ1, . . . , ρM ).

Summarising, the lattice Boltzmann system (2.21) delivers the extension of the species
dynamics to the DGM in reactive mixtures. We now proceed with setting up the lattice
Boltzmann equations for the mixture momentum and energy.

3. Lattice Boltzmann model of mixture momentum and energy

3.1. Double population lattice Boltzmann equation
The mass-based specific internal energy Ua and enthalpy Ha of the species are

Ua = U 0
a +

∫ T

T0

Ca,v(T
′)dT ′, (3.1)

Ha = H0
a +

∫ T

T0

Ca,p(T
′)dT ′, (3.2)

where U 0
a and H0

a are the energy and the enthalpy of formation at the reference temperature
T0, respectively, while Ca,v and Ca,p are specific heats at constant volume and at constant
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pressure, satisfying the Mayer relation, Ca,p − Ca,v = Ra . Consequently, the internal
energy ρU and enthalpy ρH of the mixture are defined as

ρU =
M∑

a=1

ρaUa, (3.3)

ρH =
M∑

a=1

ρa Ha . (3.4)

We follow a two-population approach (He et al. 1998; Guo et al. 2007; Karlin et al. 2013;
Frapolli et al. 2018). One set of populations ( f -populations) is used to represent the density
and the momentum of the mixture. Below, we refer to the f -populations as the momentum
lattice. The locally conserved fields are the volume fraction of density and the momentum
of the mixture,

Q−1∑
i=0

fi =
Q−1∑
i=0

f eq
i = φρ, (3.5)

Q−1∑
i=0

fi ci =
Q−1∑
i=0

f eq
i ci = ρu. (3.6)

Another set of populations (g-populations), or the energy lattice, is used to represent the
local conservation of the volume fraction of total energy of the mixture,

Q−1∑
i=0

gi =
Q−1∑
i=0

geq
i = φρE, (3.7)

φρE = φρ

(
U + u2

2φ2

)
. (3.8)

The species kinetic equations are coupled with the kinetic equations for the mixture
through the dependence of mixture internal energy (3.3) on the composition. From (3.1),
(3.3) and (3.8), the temperature is evaluated by solving the integral equation,

M∑
a=1

Ya

[
U 0

a +
∫ T

T0

Ca,v(T
′)dT ′

]
= E − u2

2φ
. (3.9)

The temperature evaluated by solving (3.9) enters the species lattice Boltzmann system
through the pressure (2.3), forming a two-way coupling.

The lattice Boltzmann equations for the momentum and for the energy lattice are
patterned from the single-component developments (Saadat et al. 2021) and are realised on
the D3Q27 discrete velocity set. The mixture lattice Boltzmann equations are written as

fi (x + ciδt, t + δt) − fi (x, t) = ω( f ex
i − fi ), (3.10)

gi (x + ciδt, t + δt) − gi (x, t) = ω1(g
eq
i − gi ) + (ω − ω1)(g

∗
i − gi ), (3.11)

where relaxation parameters ω and ω1 are related to the mixture viscosity and thermal
conductivity, and we proceed with specifying the pertinent populations in (3.10) and (3.11).
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3.2. Extended equilibrium for the momentum lattice
The extended equilibrium populations f ex

i in (3.10) are specified by the product form
(2.14), with the parameters identified as ξα = uex

α /φ and Pαα =Pex
αα ,

f ex
i = φρΨcix

(
uex

x

φ
,Pex

xx

)
Ψciy

(
uex

y

φ
,Pex

yy

)
Ψciz

(
uex

z

φ
,Pex

zz

)
, (3.12)

Here, the extended parameter Pex
αα reads

Pex
αα = Peq

αα +
[
−ς + μ

(
2
D

− R

Cv

)]
(∇ · u)

φρ

+ δt

(
2 − ω

2φρω

)
∂α

(
ρuα(1 − 3RT ) − ρu3

α

φ2

)
, (3.13)

where Cv =∑M
a=1 YaCa,v is the mixture specific heat at constant volume, μ is the dynamic

viscosity, ς is the bulk viscosity, while Peq
αα is

Peq
αα = RT + u2

α

φ2 . (3.14)

Furthermore, the extended velocity uex in (3.12) takes into account the effect of
permeability through the force density due to Knudsen diffusion, Fk :

uex
α = uα

(
1 + δt

ω

1
ρ
Fk

α

)
. (3.15)

As it is visible from the second last term in (2.7), the effect of the Knudsen diffusion is
to introduce a net retardation on the species which would not vanish once the momentum
represented by (2.7) is summed over all the components. This net retardation is provided
by the DGM and it allows to introduce exact penalisation to the hydrodynamic mean
momentum equation (Angot 1999; Hardy et al. 2019; Sharaborin et al. 2021), without
a need for free parameters and making it unnecessary to invoke estimates for permeability
(Brinkman 1949). Once obtained from the net momentum loss associated with the last
term on the right-hand side of (2.20), the penalisation is introduced through the term Fk ,
which essentially acts as a correction to the hydrodynamic flux. It is computed as

Fk = −
M∑

b=1

φP Xb

Dk
b

(
ub

φ

)
. (3.16)

Finally, the effect of extension featured by the third term in (3.13) is to correct for the
incomplete Galilean invariance of the standard D3Q27 velocity set (2.10). The second
term in (3.13) is necessary to impose the correct bulk viscosity ς (Sawant et al. 2022).
With all the above specifications, the equilibrium pressure tensor Peq

αβ is found as

Q−1∑
i=0

f eq
i ciαciβ = Peq

αβ = φρ
uα

φ

uβ

φ
+ φPδαβ. (3.17)

3.3. Equilibrium and quasi-equilibrium of the energy lattice
For the energy lattice, the corresponding equilibrium and quasi-equilibrium populations
in (3.11) are evaluated along the lines of Saadat et al. (2021) using linear operators Oα ,
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acting on any smooth function A(u, T ) according to a rule,

Oα A = RT
∂ A

∂uα

+ uα A. (3.18)

By substituting the parameters ξα =Oα and Pαα =O2
α into the product form (2.14), the

equilibrium populations geq
i are compactly written using the energy E as the generating

function,

geq
i = φρΨcix (Ox ,O2

x )Ψciy (Oy,O2
y)Ψciz (Oz,O2

z )E . (3.19)

A direct computation shows that the equilibrium (3.19) satisfies the necessary conditions
to recover the mixture energy equation, namely, the equilibrium energy flux qeq and the
flux thereof Req ,

qeq =
Q−1∑
i=0

geq
i ci =

(
H + u2

2φ2

)
ρu, (3.20)

Req =
Q−1∑
i=0

geq
i ci ⊗ ci =

(
H + u2

2φ2

)
Peq + P

φ
u ⊗ u, (3.21)

where H is the specific mixture enthalpy (3.4). The quasi-equilibrium populations g∗
i

differs from the equilibrium geq
i by the energy flux only (Karlin et al. 2013; Saadat et al.

2021; Sawant et al. 2021),

g∗
i =

⎧⎨
⎩ geq

i + 1
2

ci · (q∗ − qeq) if c2
i = 1,

geq
i otherwise.

(3.22)

where q∗ is a specified quasi-equilibrium energy flux,

q∗ =
Q−1∑
i=0

g∗
i ci = q − u

φ
· (P − Peq) + qdi f f + qcorr + qex . (3.23)

The two first terms in (3.23) maintain a variable Prandtl number and include the energy
flux q and the pressure tensor P ,

q =
Q−1∑
i=0

gi ci , (3.24)

P =
Q−1∑
i=0

fi ci ⊗ ci . (3.25)

The interdiffusion energy flux qdi f f ,

qdi f f =
(

ω1

ω − ω1

)
ρ

M∑
a=1

HaYa V a, (3.26)

where the diffusion velocities V a are defined by (2.29), contributes the enthalpy transport
due to diffusion, cf. Sawant et al. (2021). Moreover, the correction flux qcorr is required
in the two-population approach to the mixtures to recover the Fourier law of thermal
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conduction (Sawant et al. 2021),

qcorr = 1
2

(
ω1 − 2
ω1 − ω

)
δt Pφ

M∑
a=1

Ha∇Ya . (3.27)

The term qex in the quasi-equilibrium flux (3.23) is required for consistency with the
extended equilibrium (3.12). Components of the vector qex follow the structure of (3.13),

qex
α = uα

(
ω

ω − ω1

) [
−ς + μ

(
2
D

− R

Cv

)]
(∇ · u)

φ

− 1
2
δt

uα

φ
∂α

(
ρuα (1 − 3RT ) − ρu3

α

φ2

)
. (3.28)

Spatial derivatives in the correction flux (3.27) and in the isotropy correction (3.13) and
(3.28) were implemented using isotropic lattice operators (Thampi et al. 2013).

In summary, the lattice Boltzmann model for an M-component mixture of ideal gases
on the standard D3Q27 lattice consists of M species lattices where the lattice Boltzmann
equation is given by (2.21), and the momentum and energy lattice Boltzmann equations
(3.10) and (3.11). In total, the M + 2 lattice Boltzmann equations are tightly coupled, as
has been already specified above: The temperature from the energy lattice is provided to
the species lattices through species equilibrium (2.15) and quasi-equilibrium (2.16), (2.17)
and (2.18), but also in the Stefan–Maxwell temperature-dependent relaxation rates (2.23)
and the Knudsen diffusion temperature-dependent relaxation rates (2.26).

Looking at the information flowing in the other direction, the net force due to Knudsen
diffusion F k (3.16) is an input to the momentum lattice which relies on the component
velocity and composition from the species lattices. The species diffusion velocities serve
also as input to the quasi-equilibrium population of the energy lattice via the interdiffusion
flux (3.26). The mass fractions from the species lattices are used to compute the mixture
energy (3.3) and enthalpy (3.4) in the equilibrium and the quasi-equilibrium of the
momentum and energy lattices. The momentum and the energy lattices remain coupled
in the standard way already present in the single-component setting. In the present
formulation, we use the interconnections between the species, and the momentum and
energy lattices, which has been termed as weak coupling by Sawant et al. (2022). It should
be noted that the other, stronger forms of coupling mentioned by Sawant et al. (2022)
cannot be used with the present formulation. This happens because the stronger forms of
coupling described by Sawant et al. (2022) eliminate the momentum of one of the species,
which would then lead to incorrect net force Fk .

3.4. Mixture mass, momentum and energy equations
With the equilibrium and quasi-equilibrium populations specified, the hydrodynamic limit
of the two-population lattice Boltzmann system (3.10) and (3.11) is found by expanding
the propagation to second order in the time step δt and evaluating the moments of the
resulting expansion. Details of the analysis are presented in the Appendix. The continuity
equation (Whitaker 1999), the momentum equation with penalisation (Whitaker 1999;
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Liu & Vasilyev 2007; Fuchsberger et al. 2022) and the energy equations for a reactive
multicomponent mixture (Williams 1985; Bird et al. 2007; Kee et al. 2017) are respectively

∂tφρ + ∇ · (ρu) = 0, (3.29)

∂t (ρu) + 1
φ

∇ · (ρu ⊗ u) + ∇ · π =F k, (3.30)

∂t (φρE) + ∇ · (ρEu) + ∇ · q + 1
φ

∇ · (π · u) = 0. (3.31)

Here, the pressure tensor π in the momentum equation reads

π = φP I − μ

(
∇u + ∇u† − 2

D
(∇ · u)I

)
− ς(∇ · u)I, (3.32)

where the dynamic viscosity μ is related to the relaxation parameter ω,

μ =
(

1
ω

− 1
2

)
Pδt . (3.33)

Note that, in the present lattice Boltzmann formulation, the bulk viscosity ς is a tuneable
parameter, cf. Sawant et al. (2022). The heat flux q in the energy equation (3.31) reads

q = −φλ∇T + ρ

M∑
a=1

HaYa V a . (3.34)

The first term in (3.34) is the Fourier law of thermal conduction in the gas phase (Kee
et al. 2017), with thermal conductivity λ related to the relaxation parameter ω1,

λ=
(

1
ω1

− 1
2

)
PC pδt, (3.35)

where C p = Cv + R is the mixture specific heat at constant pressure. The second term
in (3.34) is the interdiffusion energy flux. With the thermal diffusivity α = λ/ρC p
and the kinematic viscosity ν = μ/ρ, the Prandtl number becomes Pr = ν/α. For the
present reactive flow formulation, the local dynamic viscosity μ(x, t) and the thermal
conductivity λ(x, t) of the mixture are evaluated as a function of the local chemical state
by using the chemical kinetics solver Cantera (Wilke 1950; Mathur et al. 1967; Kee et al.
2003; Goodwin et al. 2018).

4. Reactions in porous electrodes
To get useful insights from applying the model developed so far to reactive flow in
porous electrodes, the model needs to be augmented with some additions pertaining to
electrochemical reactions. Source terms need to be introduced into the kinetic equation
for energy (3.11) to account for ohmic heat, energy lost as electricity and for balancing
the energy changes due to interchange of species between the surface phase and the bulk
phase. The kinetic equation for momentum (3.10) also needs to account for the change of
mass caused by adsorption and desorption.

Within a representative elementary volume, let us define a(s)
k as the specific surface area

of a reactive surface k. The specific surface area is the area available for surface reactions
per unit volume of the porous material (Kee et al. 2017). The product of specific surface
area and the surface rate of production of species gives the bulk production rate of the
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species. For a gas phase species with the density ρa , its total mass production rate per unit
volume in the gas phase ρ̇

( f )
a is computed as (DeCaluwe et al. 2008)

ρ̇
( f )
a = ρ̇r

a +
κ∑

k=1

a(s)
k ρ̇a,k . (4.1)

In (4.1), ρ̇r
a is the net mass production rate per unit volume of species a in the fluid phase

due to homogeneous reactions and ρ̇a,k is the net mass production rate of species a due
to heterogeneous reactions per unit surface area of the surface k, out of the κ number of
chemically active surfaces. The latter is calculated as

ρ̇a,k = ma Ṁ ( f )
a,k , (4.2)

with Ṁ ( f )
a,k being the molar production rate of the fluid phase species a per unit surface area

of the surface material k. The molar production rate Ṁ ( f )
a,k is responsible for describing

interchange between the aforementioned fluid phase species a and the surface phase
species that exist on the surface in an adsorbed state. The composition of the surface
species is described by the number of moles per unit area of the adsorbed site M(s)

a,k and
the constant site density Γk , which is the total capacity of the surface to host adsorbed
species. The mole fraction of an adsorbed species is then defined as

X (s)
a,k = M (s)

a,k

Γk
. (4.3)

Analogous to the surface reactions, the edges formed at the intersection of the surfaces
are also capable of hosting chemical reactions. The edges are described by their specific
length l(e)p , i.e. the length of the edge p per unit volume of the REV. The net reaction rate
of a surface species a on an edge p are then described by the molar production rate per
unit length Ṁ (e)

a,p. The rate of change of a surface species a residing on the surface k is
the non-dimensionalised sum of its molar production rate on the surface k and its molar
production rate on all the edges p belonging to the surface k. Mathematically, the rate of
change of mole fraction Ẋ (s)

a,k is written as (DeCaluwe et al. 2008)

Ẋ (s)
a,k = 1

Γk

⎛
⎝Ṁ (s)

a,k + 1

a(s)
k

∑
p∈k

l(e)p Ṁ (e)
a,p

⎞
⎠ . (4.4)

In this work, we solve for the flow through porous electrodes which are made up of
spherical microstructures of at most two substances. The anode is made of nickel and
yttria-stabilised zirconia (YSZ), while the cathode is made up of lanthanum strontium
manganite (LSM) and YSZ. The nickel and the LSM form the electrode phase in the anode
and the cathode, respectively. The YSZ forms the electrolyte phase in both the anode and
the cathode. The intersection of the micro spheres of the electrode and the electrolyte phase
form an edge, which is also referred to as the TPB in the literature (Zhao & Virkar 2005).
The TPB is the site of intersection of the electrode, the electrolyte and the gas phase. In this
work, we use the mass action kinetics detailed chemistry model proposed by DeCaluwe
et al. (2008). In this model, the adsorption is modelled though the gas–electrode surface
reactions and the gas–electrolyte surface reactions. There is only one edge phase, which
represents the TPB. The edge reactions involve only the adsorbed surface phase species.
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LSM

YSZ

Ni

Porous anode

Porous cathode

Impervious electrolyte

Figure 1. Sketch of a 1-D SOFC.

The rate equation (4.4) simplifies to

Ẋ (s)
a,electrode = 1

Γelectrode

(
Ṁ (s)

a,electrode + 1

a(s)
electrode

l(e)TPB Ṁ (e)
a,TPB

)
(4.5)

for the species adsorbed on the electrode material surface and

Ẋ (s)
a,electrolyte = 1

Γelectrolyte

(
Ṁ (s)

a,electrolyte + 1

a(s)
electrolyte

l(e)TPB Ṁ (e)
a,TPB

)
(4.6)

for the species adsorbed on the electrolyte material surface.
The oxidation reactions in the anode and the reduction reactions in the cathode are

defined to occur in the TPB. Consequently, the electron production rates are a function of
the composition of the adsorbed species on their respective surfaces as well as the potential
Φ in the bulk electrolyte and the bulk electrode phase. The electric current is obtained
as a product of Faraday’s constant F and the molar production rate of the electrons
Ṁ (s)

electron,TPB . The volumetric current density I(v), which is the current generated per
unit volume of the REV, is calculated as

I(v) = Fl(e)TPB Ṁ (e)
electron,TPB . (4.7)

A positive I(v) indicates production of electrons, which is a result of oxidation, while a
negative I(v) is a consequence of the loss of electrons due to a reduction reaction.

4.1. Charge transport
The simplest SOFC membrane electrode assembly (MEA) consists of three major sections,
as skeched in figure 1. A porous composite anode section made of nickel and YSZ,
an impervious solid electrolyte section consisting only of YSZ, and a porous composite
cathode section made up of LSM and YSZ (Bove & Ubertini 2006). To model charge
transport in the cell, we follow the model proposed by Bessler et al. (2007b). The equations
therein are reproduced in this section for completeness. A typical MEA consists of thin
layers of the three sections sandwiched together. We model the charge transport by only
considering the gradients in a direction x , which is normal to the interface between these
layers. We also colloquially refer to this direction to be along the length of the MEA.

Since the electrode phase has a high electron conductivity as compared with the
electrolyte phase, the electrode phase is assumed to have a spatially constant electric
potential, i.e.

∂xΦelectrode = 0. (4.8)

However, the electrolyte phase has a finite ion conductivity. The current density per unit
area I(a) is obtained by integrating the volumetric current density over and along the
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length of the MEA,

I(a)(x) =
∫

I(v)(x)dx . (4.9)

Function I(a) is often concisely referred to as the current density in the literature. By
Ohm’s law, the potential in the electrolyte phase Φelectrolyte is obtained by integrating the
product of resistivity of the electrolyte phase Ωelectrolyte and the current density,

Φelectrolyte(x) =
∫

I(a)(x) Ωelectrolyte(x)dx . (4.10)

The resistivity of the electrolyte phase is a function of space, owing to the different
composition of the MEA components.

In the simulations, we set a certain potential difference on the anode side of the cell,
�Φanode = ΦNi − ΦY SZ . The potential ΦY SZ is chosen to be zero at the beginning of the
electrochemically active section of the anode. This potential difference, along with the
local composition of adsorbed species and the temperature, produces a certain volumetric
current density described by (4.7). The volumetric current density in the sandwiched solid
electrolyte section is vanishing. Next, we integrate the volumetric current density with
(4.9) to obtain the current density I(a)(x) and simultaneously integrate the current density
with (4.10) to obtain the electrolyte potential throughout the length of the active electrolyte
phase. Once the current density and the electrolyte potential up to the electrolyte–
cathode interface becomes known by integration, the cathode electrode potential ΦL SM
is determined by solving (4.7) in a reverse manner. In other words, the potential difference
�Φcathode = ΦL SM − ΦY SZ is varied by iterating ΦL SM with the Secant method until the
target current density matches the same value as that at the anode is obtained. The cell
voltage is then found as Φcell = ΦL SM − ΦNi .

4.2. Source terms in the hydrodynamics equations

As defined by (4.1), when the mass production rate ρ̇
( f )
a includes the production rates due

to adsorption and desorption reactions, the total post-collision fluid density of the mixture
ρ(pc) changes from the density of the mixture before the species collision step (2.21) is
executed. From the nature of the reaction term (2.32), the change in fluid density can be
computed by summing over the mass production rates,

φρ(pc) = φ

M∑
a=1

ρa +
M∑

a=1

ρ̇
( f )
a δt

= φ

M∑
a=1

ρa +
M∑

a=1

(
ρ̇r

a +
κ∑

k=1

a(s)
k ρ̇a,k

)
δt

= φρ +
M∑

a=1

κ∑
k=1

a(s)
k ρ̇a,kδt. (4.11)

The new density ρ(pc) is recorded by the species system of equations (2.21) due to the
presence of the source terms. However, due to the reduced description of the model,
the kinetic equations for the momentum (3.10) need to be informed about this change.
Analogous to the change in density, there are also implications for the energy tracked by
(3.11) and which we consider in this section.
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In this work, we assume that the adsorbed species and the fluid phase species are in
thermal equilibrium. Therefore, a ‘unified’ internal energy Ũ can be defined in a REV as
a sum of internal energies of both the fluid state species and the adsorbed species. If there
exist M fluid state species, B adsorbed species on the electrolyte surface and D adsorbed
species on the electrode surface, the unified internal energy at temperature T is given by

Ũ = φρ

M∑
a=1

Ya

[
U 0

a +
∫ T

T0

Ca,v(T
′)dT ′

]

+ a(s)
electrolyteρ

(s)
electrolyte

B∑
b=1

Yb

[
U 0

b +
∫ T

T0

Cb,v(T
′)dT ′

]

+ a(s)
electrodeρ

(s)
electrode

D∑
d=1

Yd

[
U 0

d +
∫ T

T0

Cd,v(T
′)dT ′

]
. (4.12)

Electric power produced due to the production of electrons is lost from the hydrodynamic
system (Kee et al. 2017). This electric power can be calculated based on the local
volumetric current as

P̃elec = |Φelectrode − Φelectrolyte| I(v). (4.13)

The resistance of the electrolyte phase to the flow of electrons leads to heating of the
hydrodynamic system. This ohmic heat rate is given by

P̃Ω =
(

aelectrolyte

l(e)TPB

)
I(v)I(v)Ωδx . (4.14)

The net effect of the energy loss due to electrical work and the energy gained due to the
electrolyte phase resistance is combined into an energy source term Ũsource,

Ũsource = (−P̃Ω + P̃elec)δt. (4.15)

Therefore, the unified internal energy after the species collision step is

Ũ (pc) = Ũ + Ũsource. (4.16)

After the collision step, we need to know the post-collision internal energy ρU (pc) of the
fluid state, since the kinetic equations only track the evolution of the bulk fluid phase. The
post-collision internal energy is found by simple arithmetic manipulation of subtracting
the post-collision energy of the adsorbed phases from the post-collision unified internal
energy,

φρ(pc)U (pc) = Ũ (pc) − a(s)
electrolyteρ

(s)(pc)
electrolyte

B∑
b=1

Y (pc)
b

[
U 0

b +
∫ T

T0

Cb,v(T
′)dT ′

]

− a(s)
electrodeρ

(s)(pc)
electrode

D∑
d=1

Y (pc)
d

[
U 0

d +
∫ T

T0

Cd,d(T ′)dT ′
]

. (4.17)

Analogous to (3.7), a distribution geq,source
i is created to account for the change in internal

energy. The zeroth moment of these energy source populations represents the new internal
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energy U (pc),

Q−1∑
i=0

geq,source
i = φρ(pc)

(
U (pc) + u2

2φ2

)
. (4.18)

Finally, the kinetic equations (3.10) and (3.11) are modified to account for the mass and
energy changes,

fi (x + ciδt, t + δt) − fi (x, t) = ω( f ex
i − fi ) +

(
ρ(pc)

ρ
f ex
i − f ex

i

)
, (4.19)

gi (x + ciδt, t + δt) − gi (x, t) = ω1(g
eq
i − gi ) + (ω − ω1)(g

∗
i − gi ) + (geq,source

i − geq
i ).

(4.20)

Kinetic equations for the species (2.21) already include populations ḟ r
ai for mass

production sources through (2.32). In the case of both homogeneous and heterogeneous
reactions, these populations are computed with the total mass production rate ρ̇

( f )
a ,

ḟ r
ai = ρ̇

( f )
a Ψcix

(
ux

φ
,

u2
x

φ2 + RaT

)
Ψciy

(
uy

φ
,

u2
y

φ2 + RaT

)
Ψciz

(
uz

φ
,

u2
z

φ2 + RaT

)
.

(4.21)

5. Validation
In §§ 2 and 3, a lattice Boltzmann model has been formulated for multicomponent
hydrodynamics in porous media. The present formulation replicates the DGM at the
macroscopic scale. To numerically validate the model, in the present section, we evaluate
the component diffusion fluxes in a ternary mixture undergoing counter-diffusion
through a capillary tube. In § 4, the lattice Boltzmann model was extended to include
heterogeneous reactions and electrochemistry. This further development shall be validated
by comparing the polarisation curves of an SOFC against LBM simulation of a membrane
electrode assembly consisting of porous composite electrodes.

Note that the model formulated in this work has been realised on the standard D3Q27
lattice, which makes it readily usable for complex three-dimensional set-ups. The model
can be used to compute realistic geometries such as porous combustors or geological
flows through porous rocks where the geometrical symmetry or lack thereof prohibits
the computational domain to be collapsed into a one-dimensional tube. In principle, the
model can also be used to compute electrochemical flows in resolved microstructures.
In this paper, which is intended for validation of the model, we restrict ourselves to one-
dimensional test cases which have been computed by setting the other two directions
with periodic boundary conditions. Since the homogenisation approach intends to mimic
a three-dimensional microstructure through a unit zero-dimensional volume, the ability
to compute three-dimensional physical geometries with a one-dimensional computational
domain is a more stringent test for the model rather than a simplification.

5.1. Counter-diffusion in capillary tubes
To validate our implementation of the DGM, a one-dimensional domain of 1920 lattice
nodes was used to represent a 9.6 mm capillary tube. Following the experiments of
Remick & Geankoplis (1974), the validation set consisted of five simulations, each
differing in the initialised spatially uniform pressure but with the same spatially uniform
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Phase Species

Gas bulk O2, H2, H2O, N2, ar
Anode side electrode surface Ni(Ni), H(Ni), H2O(Ni), O(Ni), OH(Ni)
Anode side electrolyte surface O(Y SZ), OH(Y SZ), H2O(Y SZ), YSZ(Y SZ)

Cathode side electrolyte surface O(Y SZ), YSZ(Y SZ)

Cathode side electrode surface O(L SM), LSM(L SM)

Electrode bulk e−
Ni(b)

Electrolyte bulk O2−
Y SZ(b)

Table 1. List of species in respective phases as defined in the chemical mechanisms from DeCaluwe et al.
(2008).

He Ne + Ar

Figure 2. Sketch of the initial conditions in the capillary tube.

initial temperature of 300 K. Across the five individual tests, the pressure was varied over
a wide range, from an almost completely molecular diffusion regime at 40 422 Pa to the
nearly fully Knudsen diffusion dominated regime at 60 Pa. As sketched in Figure 2, for
all five simulations, the left half of the simulation domain was approximately initialised
with the composition {X He = 0.9585, X Ne = 0.0265, X Ar = 0.0150}, while the right half
of the domain was initialised with the composition {X He = 0.0571, X Ne = 0.5125, X Ar =
0.4304}. To reproduce the experiments faithfully, small variations in the mole fractions
appearing at the ends of the capillary tubes in the experiment were taken into account by
following the exact values presented in table 1 of Remick & Geankoplis (1974).

The ends of the computational domain were supplied from inlets with a mixture having
the same composition as that with which they were initialised. The temperature of the
incoming mixture is 300 K and the pressure was equal to the initial pressure corresponding
to the test case. The inlet boundary condition for the lattice Boltzmann populations was
imposed by replacing only the missing populations, following the method which has been
described in detail as a ‘simplified flux boundary condition’ by Sawant et al. (2022). To
evaluate the binary diffusion coefficients Dab from the Cantera (Goodwin et al. 2018)
package, we used the parameters pertaining to Lennard-Jones potential for helium, neon
and argon based on Tee et al. (1966), Klopper (2001), Tchouar et al. (2003) and Nasrabad
et al. (2004), respectively. For a capillary tube with a diameter d0 = 39 µm, the Knudsen
diffusion coefficients Dk

a (Mason et al. 1983) were calculated as

Dk
a = φ

τ̄

d0

3

√
8
π

Ru T

ma
. (5.1)

For this specific test case, since the capillary tube is fully open, the porosity φ = 1 and the
tortuosity τ̄ = 1 because the capillary tube is straight. Since the tube diameter, the porosity
and the tortuosity are the only parameters from the physical set-up entering the model, it
is an excellent candidate to test a formulation for DGM because this test case does not
involve any tuneable free parameters. For the purpose of comparison, the component mass
diffusion fluxes ρa V a obtained through (2.4) and (2.30) are converted to physical units
and divided by their molecular weights ma to get the molar diffusion fluxes Na . At the
steady state, the molar diffusion flux of helium, and the negative of the molar diffusion
fluxes of neon and argon which flows in the opposite direction are plotted in figure 3. The
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Figure 3. Molar flux of helium counter diffusing against neon and argon in a 39 µm wide and 9.6 mm long
capillary tube. One-dimensional LBM simulations compared with experiments from Remick & Geankoplis
(1974) performed at different pressures ranging from 60 to 40 422 Pa.

fluxes from the lattice Boltzmann simulations compare well with the fluxes reported from
experiments by Remick & Geankoplis (1974). The model has reproduced the correct flux
in the molecular diffusion regime at the higher pressures, the transition regime at moderate
pressures as well as at the Knudsen diffusion dominated regime at low pressures. This test
instils confidence that the DGM has been correctly formulated and realised in the lattice
Boltzmann framework.

5.2. Solid oxide fuel cell simulation
The LBM is used to perform 1-D1D simulations of an SOFC member electrode assembly
at different porosities and current densities with an intent to obtain polarisation curves,
verifiable against the literature. As described in § 2.2, we use the standard D3Q27 lattice
albeit with periodic boundary conditions in two directions to achieve a 1-D computational
domain. We recall that, since we are working within the REV formulation, a 1-D
computational domain is sufficient to represent the 3-D microstructure of the porous
electrodes through parameters such as the porosity, specific areas and specific lengths.
A sketch of the simulation domain is shown in figure 1 to aid visualisation of the geometry.
The length of the impervious electrolyte section in the middle of the set-up is 8 µm, while
the total length of the cell is 150 µm.

We use the electrochemical and heterogeneous reaction mechanisms from DeCaluwe
et al. (2008), consisting of five gas phase species, O2, H2, H2O, N2 and Ar. In addition
to the gas phase species, the mechanism also contains species which exist as adsorbed
species on the surfaces of the anode material (Ni), cathode material (L SM) and the
electrolyte material (Y SZ). All the species are listed in table 1. The reaction mechanism is
a compilation of anode reactions from Bessler et al. (2007a), cathode reactions from Jiang
(1998), charge transfer reactions from Singhal et al. (2005) and thermodynamic parameters
from various other sources (Gordon 1994; McBride 1996; Janardhanan & Deutschmann
2006; Bessler et al. 2007b).
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Apart from the gas phase and the adsorbed surface phase species, the electrons e−
Ni(b)

reside in the bulk electrode phase while the oxide ions O2−
Y SZ(b) reside in the bulk of

the electrolyte phase. In this paper, we do not model the transport inside these solid bulk
phases. In the unit of mole fractions, the anode is uniformly initialised with a composition
of {H2 0.97, H2O 0.03}, whereas the cathode is uniformly initialised with a composition
of {O2 0.21, N2 0.78, Ar 0.01}.

Throughout the simulation, the electrodes are supplied from the inlets with a mixture
having the same composition as the compositionwith which they were initialised. An
inlet boundary condition is used at both ends of the computational domain to supply
the respective mixtures at a pressure of one atmosphere and a temperature of 1073.15 K.
The inlet boundary condition, which has been imposed by only replacing the missing
populations, has been described in detail as a ‘simplified flux boundary condition’ by
Sawant et al. (2022). The inlet flux boundary condition prescribes the composition of the
incoming mixture, without strictly imposing the composition of outgoing flux, making it
ideal for this 1-D computational domain in which the products leave the domain through
the inlet. At the interface of the porous electrode section with the impervious electrolyte
section, the bounce back boundary condition is applied on the missing populations of
the species lattice as well the on the missing populations of the mean field momentum
lattice and the energy lattice. At the macroscopic level, the application of the bounce back
boundary condition results in no flux, no slip and adiabatic conditions at the interface
(He et al. 1998). For this test case, this means that the gasesous species do not enter the
solid electrolyte region in the middle of the membrane electrode assembly. The reactants
travel through the reactive porous electrodes upto the electrode–electrolyte interface and
stagnate at the interface, while the products travel outwards from where they are produced
in the region near the electrode–electrolyte interface outward towards the open ends of the
computational domain.

For the purpose of validation, we aim to replicate polarisation curves from the
experiments performed on solid oxide button cells by Zhao & Virkar (2005). DeCaluwe
et al. (2008)reproduced the curves through a finite volume DGM discretisation in
conjunction with a set of detailed reaction mechanisms, the latter of which is also used in
this work in conjunction with the proposed LBM. To that end, simulations are performed
for three values of anode porosity, 0.57, 0.48 and 0.32, while the cathode porosity is
kept constant at 0.45. In the experiments of Zhao & Virkar (2005), the porosity of the
electrodes was determined by quantitative stereology using the systematic point count
procedure (Underwood 1973). In reality, the length of the electrochemically active layer
in the porous electrodes is determined by the transport of the O2−

Y SZ(b) ions through
the bulk of the electrolyte. Since we do not model the ion transport through the bulk
electrolyte, it is not possible to know the length of the electrochemically active layer in
the porous electrodes. Consistent with other studies performed under the same limitations,
including that of DeCaluwe et al. (2008), the length of the active layer, also called the
‘utilisation thickness’ δutil , as well as the length of the triple phase boundary l(e)TPB are
treated as free parameters. Their values used in the LBM simulations are reported in
table 2. The utilisation thickness has an inverse relation to porosity as expected (Divisek
et al. 1999; Chan & Xia 2001). The size of the utilisation thickness in the simulation
is controlled by changing the resolution. A lattice resolution of δx = 1µm is used for
φ = 0.57 simulation and the resolution is changed to vary the utilisation length. The
product of utilisation thickness and specific surface area δutila(s) is 20 for all surfaces and
all simulations. The values for specific surface areas have been adopted from DeCaluwe
et al. (2008), who had estimated those values by assuming an average particle size of
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Porosity φ Utilisation thickness δutil(µm) l(e)TPB(mm−3) Resolution δx (µm)

0.57 2.0 3.00 × 1013 1.0
0.48 3.0 0.80 × 1013 1.5
0.32 5.0 0.14 × 1013 2.5

Table 2. Parameters corresponding to simulations performed at different porosity.

d(p) = 2.5 µm and an average pore radius of d0 = 0.5 µm. A REV made up of synthetic
spherical microstructures of these specifications is shown in figure 9. If necessitated by
the transport model (Zhu & Kee 2003; Zhu et al. 2005), the particle size can be used to
estimate permeability using the Kozeny–Carman equation (Kozeny 1927; Carman 1997)
as follows.

Assuming a porous packed bed of identical spherical particles, each of diameter d(p),
the specific surface area a(p) of the microstructure can be approximated as

a(p) = 6
d(p)

. (5.2)

With the specific surface area being known, it can be used to compute the hydraulic radius
r (p) with the expression

r (p) = 2φ

(1 − φ)a(p)
. (5.3)

Assuming unit tortuosity, the permeability B can be approximated from hydraulic radius
and porosity,

B = φ

8
r (p)2

. (5.4)

The permeability can be used to approximate a retardation using Darcy’s law. On the lines
of extended velocity uex

α which is defined in this model by (3.15), an alternate way of
penalising the momentum equation is through Darcy’s law by incorporating the resultant
retardation through the extended Darcy velocity uex D

α ,

uex D
α = uα

(
1 − δtφµ

ωρB
)

. (5.5)

Although we have presented the above discussion on Darcy force for completeness, we
emphasise that in our model, we use the pore size to compute the Knudsen diffusivity
from (5.1), which enters the extended velocity uex

α defined by (3.15), via a penalising force
defined by (3.16).

The SOFC operates at atmospheric pressure and therefore, the Knudsen effect due to
rarefaction is not expected to dominate over the dynamics of the system. However, it should
be emphasised that the DGM formulated in this work enables the simulation to account for
the effect of porosity as a parameter though the Knudsen diffusion term appended to the
Stefan–Maxwell model and the resulting penalisation term in the momentum equation.

Although we do not model the transport of individual ions, we solve the charge transport
equations (4.9) and (4.10) in the solid electrolyte, including the impervious section
and using the values of resistivity from Zhao & Virkar (2005). Therefore, the middle
impervious electrolyte section does cause a drop in the cell potential due to resistance
of the electrolyte phase. The electrolyte phase in the anode section is set to 0 V and the
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Figure 4. Cell potential versus current density.

metal electrode phase is set at a certain potential above the open circuit voltage so that a
certain current density is produced in the anode. This current density is then imposed at
the cathode and a reverse problem is solved, i.e. an electrode potential which produces the
same current is found iteratively by the Newton–Raphson method.

The polarisation curves obtained from the simulation have been compared against
the experimental data of Zhao & Virkar (2005). Figure 4 compares the voltage versus
current density whereas figure 5 compares power versus the current density. From both
the figures, it is evident that a reasonable match has been obtained with respect to
the experimental data for all three values of porosity in the regime of low as well as
medium and high current densities. The model captures losses in all three regimes: the
activation overpotential occuring at low current density originating from activation of the
electrochemical reactions, the ohmic overpotential occuring at moderate current density
originating from the loss due to internal resistance and the concentration overpotential
occuring at high current density due to limitation on the transport of the reactants in the
porous electrodes. The effect of concentration overpotential is unmistakably visible in the
polarisation curve for φ = 0.32 after the current density 1.5 A cm−2. Good agreement with
the experiments is an indication that modelling of the chemistry, charge continuity, and
most importantly the species transport with associated momentum and energy modelling
has been achieved correctly. In our future work, we intend to implement not only tortuosity
as a parameter, but also model the ion transport in the bulk electrolyte which will make
it possible to obtain the utilisation length as an output from the simulation rather than as
an input parameter. Since simulations with detailed chemistry as well as hydrodynamics
have been performed, there is an opportunity to peek into the porous electrodes to observe
the state of various variables that have been modelled. In figure 6, a data point has been
selected for plotting the composition, temperature and potential along the length of the
composite electrodes. The data point corresponds to a φ = 0.57 cell while it produces a
current density of approximately 1 A cm−2. In the figure, the gas phase composition is seen

1011 A9-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.359


Journal of Fluid Mechanics

φ = 0.57, Zhao & Virkar, Expt. 
φ = 0.48, Zhao & Virkar, Expt. 
φ = 0.32, Zhao & Virkar, Expt. 
φ = 0.57, LBM simulation

φ = 0.48, LBM simulation

φ = 0.32, LBM simulation

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0 0.5 1.0 1.5 2.0 3.0 4.03.52.5

Current density (A cm–2)

P
o
w

er
 d

en
si

ty
 (

W
cm

–
2
)

Figure 5. Power density versus current density.

to have an appreciable change only near the interfaces with the impervious electrolyte. On
the left side of the figure, which is the anode section, gaseous H2 is seen to have a drop
in mass fraction accompanied by a rise in the gaseous H2O in the topmost frame. This is
an indication of the oxidation of hydrogen by the oxide ions, resulting in water. On the
cathode section on the right-hand side, there is a drop in to mass fraction of O2, as it gets
converted into oxide ions. The figure also shows mole fractions of adsorbed species and
temperature, which do not show appreciable change in the linear scale. In the bottom most
frame of the figure, the drop in potential due to the resistance of the electrolyte phase is
visible across the impervious electrolyte section, labelled as ‘oxide pot.’. The metal phase
potential is negative on the anode side of the cell and positive on the cathode side of the
cell as expected. In the accompanying figure 7, panel (a) shows a peak in the volumetric
current density due to the generation of electrons at the anode–electrolyte section interface
and a second peak due the consumption of electrons at the cathode–electrolyte section
interface. We plot the current as positive even though the rate of production of electrons
is negative in the cathode. The profile in figure 7(b) is that of the area current density,
which is an integrated quantity. In the simulation, the current density generated at the
anode is imposed as a boundary condition on the cathode and a corresponding cathode
voltage is computed. The decrease of the current density in the cathode section shows that
the cell is correctly charge balanced and ‘connected’, i.e. all the electrons created by the
electrochemical reactions at the anode are consumed by the electrochemical reactions at
the cathode.

Figure 8 presents the same information as in figure 6, with a change in the y-axis scaling.
The mass and the mole fractions are plotted in the log scale to make the species with low
mole fractions more visible. For example, in the second panel from the top, the adsorbed
oxygen and adsorbed water on the nickel surface in the anode section can be seen to
have a small increase in the mole fraction at the interface with the electrolyte section.
There is a similar increase at the interface in the oxygen and the hydroxide adsorbed
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Figure 6. Top to bottom: mass fraction of the gas phase species, mole fraction of the species adsorbed on the
electrode surface, mole fractions of the species adsorbed on the electrolyte surface, temperature and potential
along the length of the MEA. Porosity is φ = 0.57 and the current density is 1.05 A cm−2.
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Figure 7. Top to bottom: current density per unit volume I(v)(x) and current density per unit area I(a)(x)

along the length of the MEA. Porosity is φ = 0.57 and the current density is 1.05 A cm−2.
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Figure 8. Top to bottom in log scale: mass fraction of the gas phase species, mole fraction of the species
adsorbed on the electrode surface and mole fractions of the species adsorbed on the electrolyte surface. In
linear scale: temperature and potential along the length of the MEA. Porosity is φ = 0.57 and the current
density is 1.05 A cm−2.

on the YSZ surface at the anode, visible in the third panel from the top. Perhaps the
most interesting part of figure 8 is the temperature profile. The oxidation reaction atthe
anode being exothermic is seen to have caused an increase in the temperature whereas the
endothermic oxidation (Xia et al. 2012) at the cathode is seen to have produced a drop
in the temperature in the electrochemically active region. These temperature dynamics
reveal an interesting opportunity to also compute the heat conduction in the electrolyte
phase, which will be undertaken as part of our future work.

6. Conclusion
In this work, we started with a reactive multi-component compressible lattice Boltzmann
model with Stefan–Maxwell diffusion. In § 2, we converted the Stefan–Maxwell diffusion
model to the DGM. Next, the LBM was re-designed to obtain a representative
elementary volume hydrodynamic model for porous media in § 3. The resulting dusty
gas– lattice Boltzmann model was validated by computing counter-diffusion molar
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Z

x
Y

Figure 9. A synthetic microstructure with 2.5 µm blue and black spheres representing the electrolyte and the
electrode phase, respectively. The empty space between the spheres represents the hollow space with porosity
φ = 0.57 for the gas phase. The cube has sides of 25 µm each, representing a hypothetical REV of an SOFC
anode.

fluxes through capillary tubes in § 5.1. Furthermore, the model was extended to include
heterogeneous surface and electrochemical reactions in § 4. The complete LBM for porous
electrochemical flows was used to perform simulations of flow in solid oxide fuel cell
electrodes and polarisation curves were compared against experiments in § 5.2.

To recap, through this work, we have developed a lattice Boltzmann model which
encompasses detailed electrochemistry, multi-component mass transport and fluid
dynamics for realistic simulations of fuel cells. Such a model is not only a starting point
to reveal the rich interplay between chemical reactions, fluid flow, species composition
and current density at the pore scale, but also has a potential to function as a digital
twin for developing and optimising practical fuel cell microstructures and geometries
at a reasonable compute cost. In a reduced form, the model can also be used to study
single-component or non-reactive flows in porous media, which is of much relevance to
the geophysics community (Philip 1970; Winter & Tartakovsky 2000). Since the model
at its core is an extension of a compressible lattice Boltzmann model to porous media,
the model also has other potential applications including, but not limited to, petroleum
engineering (Jönsson & Jönsson, 1992; Zidane & Firoozabadi 2014).

In a further development, we intend to reduce the free parameters in the model by
accommodating more physics. To that end, a model for ion transport through the solid
electrolyte will set the solver free from the necessity to use the utilisation thickness as
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a parameter. Heat conduction through the solid matrix has to be modelled, which can
provide additional opportunities to study the thermal gradients and hence the stresses in
the membrane electrode assembly. In addition to the conjugate heat transfer, we also need
to account for the capacitance when dealing with the model for electric current if we need
to make the model useful for transient simulations. Creation of such a predictive tool is
expected to yield theoretical, scientific and practical gains. Mesoscale simulations on full
3-D geometries would provide additional insights into flow, composition and temperature
fields in typical fuel cells, and therefore improve our knowledge of physical and chemical
processes occurring in fuel cells. A computing framework capable of performing realistic
scale simulations of fuel cells will open up interesting opportunities for optimisations
pertaining to geometry, operating conditions, fuel composition and internal reforming.
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Appendix. Hydrodynamic limit of the mean-field LBM
We expand the lattice Boltzmann equations (3.10) and (3.11) in Taylor series to second
order, using space component notation and summation convention,

[
δt (∂t + ciμ∂μ) + δt2

2
(∂t + ciμ∂μ)2

]
fi = ωB( f eq

i − f B
i ) + ω( f B

i − fi ), (A1)[
δt (∂t + ciμ∂μ) + δt2

2
(∂t + ciμ∂μ)2

]
gi = ω1(g

eq
i − gi ) + (ω − ω1)(g

∗
i − gi ). (A2)

To obtain the right-hand side of (A1) from (3.10), the substitution f ex
i = f B

i (1 −
(ωB/ω)) + f eq

i (ωB/ω) has been used. Such splitting of the extended equilibrium f ex
i into

a non-equilibrium f B
i and an equilibrium distribution is only done to ease mathematical

analysis of the system. The extra relaxation ωB introduced here vanishes after converting
the equation back to the form of f ex

i . With a time scale t̄ and a velocity scale c̄, the
non-dimensional parameters are introduced as follows:

t ′ = t

t̄
, c′

α = cα

c̄
, x ′

α = xα

c̄t̄
. (A3)

Substituting the relations (A3) into (A1) and (A2), the kinetic equations in the non-
dimensional form become

[
δt ′(∂t ′ + c′

iμ∂μ′) + δt ′2

2
(∂t ′ + c′

iμ∂μ′)2
]

fi = ωB( f eq
i − f B

i ) + ω( f B
i − fi ), (A4)[

δt ′(∂t ′ + c′
iμ∂μ′) + δt ′2

2
(∂t ′ + c′

iμ∂μ′)2
]

gi = ω1(g
eq
i − gi ) + (ω − ω1)(g

∗
i − gi ). (A5)
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Let us define a smallness parameter ε as

ε = δt ′ = δt

t̄
. (A6)

Using the definition of ε and dropping the primes for ease of writing, we obtain

[
ε(∂t + ciμ∂μ) + ε2

2
(∂t + ciμ∂μ)2

]
fi = ωB( f eq

i − f B
i ) + ω( f B

i − fi ), (A7)[
ε(∂t + ciμ∂μ) + ε2

2
(∂t + ciμ∂μ)2

]
gi = ω1(g

eq
i − gi ) + (ω − ω1)(g

∗
i − gi ). (A8)

Writing a power series expansion in ε as

∂t = ∂
(1)
t + ε∂

(2)
t , (A9)

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i , (A10)

f B
i = f B(0)

i + ε f B(1)
i + ε2 f B(2)

i , (A11)

gi = g(0)
i + εg(1)

i + ε2g(2)
i , (A12)

g∗
i = g∗(0)

i + εg∗(1)
i + ε2g∗(2)

i , (A13)

we substitute the (A9)–(A13) into (A7) and (A8), and proceed with collecting terms of
same order. This procedure is standard (Chapman & Cowling 1970); for the specific case
of the two-population LBM see, e.g. Karlin et al. (2013). At order ε0, we get

f (0)
i = f B(0)

i = f eq
i , (A14)

g(0)
i = g∗(0)

i = geq
i . (A15)

At order ε1, upon summation over the discrete velocities, we find

∂
(1)
t φρ + ∂α j eq

α = 0, (A16)

∂
(1)
t j eq

α + ∂β Peq
αβ = 0, (A17)

∂
(1)
t (φρE) + ∂αqeq

α = 0. (A18)

Here, ρ is the density of the fluid given by the zeroth moment of the f -populations
in (3.5), j eq

α is the equilibrium momentum of the fluid as defined by (3.6), Peq
αβ is the

equilibrium pressure tensor and qeq
α is the equilibrium heat flux as defined by (3.17) and

(3.20), respectively, and ρE is the total energy of the fluid calculated as the zeroth moment
of g-populations using (3.8). Finally, at order ε2, we arrive at

∂
(2)
t ρ = 0, (A19)

∂
(2)
t j eq

α + ∂β

(
1
2

− 1
ω

)
(∂

(1)
t Peq

αβ + ∂γ Qeq
αβγ ) + ∂β

(
1 − ωB

ω

)
P B(1)

αβ = j B(2)
α (ω − ωB),

(A20)

∂
(2)
t (φρE) + ∂α

[(
1
2

− 1
ω

)
(∂

(1)
t qeq

α + ∂β Req
αβ) +

(
1 − ω1

ω

)
q∗(1)
α

]
= 0. (A21)

Here, Qeq
αβγ = φρ(uα/φ)(uβ/φ)(uγ /φ) + φP((uα/φ)δβγ + (uβ/φ)δαγ + (uγ /φ)δαβ) is

the third-order moment of f eq
i and Req

αβ is the second-order moment of geq
i given by (3.21).
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Combining terms at both orders, we recover the following macroscopic equations:

∂tφρ + ∂α j eq
α = 0, (A22)

∂t j eq
α + ∂β Peq

αβ + ε∂β

(
1
2

− 1
ω

)
(∂

(1)
t Peq

αβ + ∂γ Qeq
αβγ )

+ ε∂β

(
1 − ωB

ω

)
P B(1)

αβ = ε j B(2)
α (ω − ωB), (A23)

∂t (φρE) + ∂αqeq
α + ε∂α

[(
1
2

− 1
ω

)
(∂

(1)
t qeq

α + ∂β Req
αβ) +

(
1 − ω1

ω

)
q∗(1)
α

]
= 0, (A24)

where

∂
(1)
t Peq

αβ + ∂γ Qeq
αβγ = P

[
(∂αuβ + ∂βuα) +

(
2
D

− R

Cv

)
∂γ uγ δαβ − 2

D
∂γ uγ δαβ

]
,

(A25)

∂
(1)
t qeq

α + ∂β Req
αβ = uβ

φ
P

[
(∂αuβ + ∂βuα) +

(
2
D

− R

Cv

)
∂γ uγ δαβ − 2

D
∂γ uγ δαβ

]

+φP
M∑

a=1

Ha∂αYa + φPC p∂αT, (A26)

q∗(1)
α =

(
1
ω1

)
(∂

(1)
t qeq

α + ∂β Req
αβ) + 1

ε

(
ω

ω1

)(
−uβ

φ
(Pαβ − Peq

αβ ) + qdi f f
α + qcorr

α + q B
α

)
,

(A27)

Pαβ − Peq
αβ = ε

(
− 1

ω

)
(∂

(1)
t Peq

αβ + ∂γ Qeq
αβγ ) + ε

(
1 − ωB

ω

)
P B(1)

αβ . (A28)

We now substitute for the moments from the expressions (A25) to (A28) in (A22)–(A24)
and for the equilibrium moments to get the resulting macroscopic equations. Equation
(A22) recovers the continuity equation,

∂tφρ + ∂α(ρuα) = 0. (A29)

Equation (A23) recovers the mixture momentum equation,

∂t (ρuα) + 1
φ

∂β(ρuαuβ) + ∂βπαβ =Fα
k, (A30)

with the constitutive relation for the stress tensor,

παβ = φPδαβ − μ

(
∂αuβ + ∂βuα − 2

D
(∂μuμ)δαβ

)
− ς(∂μuμ)δαβ. (A31)

The dynamic viscosity μ is related to the relaxation coefficient ω by (3.33) and the bulk
viscosity ς is an input as described in (3.13). Finally, (A24) recovers the mixture energy
equation,

∂t (φρE) + ∂α(ρEuα) + 1
φ

∂α(παβuβ) + ∂αqα = 0, (A32)
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where the heat flux q has the following form:

qα = −φλ∂αT − εP

(
1
ω1

− 1
2

)
φ

M∑
a=1

Ha∂αYa +
(

ω

ω1
− 1

)
qcorr
α +

(
ω

ω1
− 1

)
qdi f f
α ,

(A33)

with the thermal conductivity λ defined by (3.35). We now choose qcorr
α to cancel the

spurious second term containing the gradient of Ya ,

qcorr
α = 1

2

(
ω1 − 2
ω1 − ω

)
εPφ

M∑
a=1

Ha∂αYa . (A34)

This is equivalent to (3.27). Finally, the inter-diffusion energy flux is introduced by
choosing the last term qdi f f in (A33) as

qdi f f
α =

(
ω1

ω − ω1

)
ρ

M∑
a=1

HaYa Vaα, (A35)

which is equivalent to (3.26). Substituting (A34) and (A35) into (A33), we get the heat flux
q in the energy equation (A32) as a combination of the Fourier law and the inter-diffusion
energy flux due to diffusion of the species (Williams 1985; Bird et al. 2007; Kee et al.
2017),

qα = −φλ∂αT + ρ

M∑
a=1

HaYa Vaα. (A36)
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