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Two-dimensional Euler flows, in the plane or on simple surfaces, possess a material
invariant, namely the scalar vorticity normal to the surface. Consequently, flows with
piecewise-uniform vorticity remain that way, and moreover evolve in a way which is
entirely determined by the instantaneous shapes of the contours (interfaces) separating
different regions of vorticity – this is known as ‘contour dynamics’. Unsteady vorticity
contours or interfaces often grow in complexity (lengthen and fold), either as a result
of vortex interactions (like mergers) or ‘filamentation’. In the latter, wave disturbances
riding on a background, equilibrium contour shape appear to inevitably steepen and
break, forming filaments, repeatedly– and perhaps endlessly. Here, we revisit the onset
of filamentation. Building upon previous work and using a weakly nonlinear expansion to
third order in wave amplitude, we derive a universal, parameter-free amplitude equation
which applies (with a minor change) both to a straight interface and a circular patch in
the plane, as well as circular vortex patches on the surface of a sphere. We show that
this equation possesses a local, self-similar form describing the finite-time blow up of
the wave slope (in a re-scaled long time proportional to the inverse square of the initial
wave amplitude). We present numerical evidence for this self-similar blow-up solution,
and for the conjecture that almost all initial conditions lead to finite-time blow up. In the
full contour dynamics equations, this corresponds to the onset of filamentation.
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1. Introduction
Ideal two-dimensional flows, governed by Euler’s equations, constitute an infinite-
dimensional Hamiltonian system (Morrison 1998). Not only are there energy and
momentum invariants (symmetry permitting), but each fluid particle conserves its scalar
vorticity (the normal component of vorticity for general orientable surfaces, see Saffman
1995; Dritschel & Boatto 2015). Because such flows are incompressible, they evolve
purely by vorticity re-arrangement, determined by a velocity field that depends linearly,
but non-locally, on the vorticity distribution. Few exact solutions are known, and almost
all of them are either steady or in relative equilibrium (see the discussion in Abrashkin &
Yakubovich (1984), Aleman & Constantin (2012), Constantin & Martin (2017), Crowdy
(2004), Krishnamurthy et al. (2021), Majda & Bertozzi (2002) and Stuart (1967)).

For piecewise-uniform vorticity distributions, the flow evolution depends only on the
instantaneous shapes of the contours separating regions of uniform vorticity and on the
vorticity jumps across them (Zabusky, Hughes & Roberts 1979; Dritschel 1989). The
resulting system of equations is called ‘contour dynamics’. These equations also constitute
an infinite-dimensional Hamiltonian system, manifest in practice by contours which
deform, elongate and generally grow in complexity, apparently indefinitely (Dritschel
1988c). Nonetheless, mathematically, contours of a certain regularity class (at least
possessing a continuous tangent vector) preserve that regularity class for all time (Chemin
1993; Bertozzi & Constantin 1993).

The seemingly inevitable growth in complexity of these contours, or ‘vorticity
interfaces’, was first investigated by Dritschel (1988c), who studied the behaviour of
small disturbances to circular contours (or ‘vortex patches’) and to straight contours, both
of which are otherwise in equilibrium. Numerical simulations performed using contour
dynamics, including curvature-controlled point redistribution and a regularisation called
‘surgery’ (Dritschel 1988b), demonstrated that a range of initial disturbances having
small wave slope gradually steepened and folded over, a process called ‘filamentation’.
Moreover, after the first filament forms, further filaments are generated at a frequency
equal to half of the vorticity jump across the interface. For a fascinating historical account
going back to Lord Kelvin (Thomson 1880), see Craik (2012).

The present study focuses on the onset of filamentation, namely the wave-steepening
stage and the approach to infinite wave slope. This was also studied mathematically in
Dritschel (1988c), who developed a weakly nonlinear theory describing the progressive
steepening of an arbitrary disturbance. For this, the disturbance was expressed as a slowly
varying amplitude, A, multiplied by the relatively fast linear oscillation, exp(iωt/2),
with frequency equal to half of the vorticity jump (ω/2) across the interface. Then, by
expanding the equations of contour dynamics to third order in A, and by requiring no
secular growth, a cubically nonlinear evolution equation for A was derived. This was
shown to accurately describe the onset of filamentation by direct comparison with full
contour dynamics numerical simulations.

In the present paper, we revisit this equation and demonstrate that, by introducing
an appropriately re-scaled slow time, the amplitude equation for A is parameter free.
Hence, it applies equally well to disturbances propagating on circular contours in the
plane and on the surface of a sphere. It also applies, with a minor modification (one
less term), to disturbances propagating on straight contours in the plane. A companion
paper (Constantin, Germain & Dritschel 2024) focuses on the mathematical structure of
this equation, its conservation laws and symmetry properties, as well as exact solutions
in special cases. Here, we study this equation numerically and, in particular, provide
evidence for a finite-time singularity in the wave slope. This singularity appears to have a
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self-similar form in the diffusive similarity variable (x − xc)/(tc − t)1/2, where xc is the
point of maximum wave slope and tc is the singularity time.

The paper is organised as follows. In § 2 we review the weakly nonlinear theory
presented in Dritschel (1988c), then show that the amplitude equation can be written in
a parameter-free way in an appropriately re-scaled time variable. In § 3, we examine
numerical simulations starting from a superposition of two low-wavenumber sinusoidal
waves. Generically, for this and many other initial conditions, we find progressive wave
steepening. Our results suggest a finite-time singularity, which is here analysed by fitting
the wave shape to the form proposed in § 3.2. Our conclusions are offered in § 4.

2. Weakly nonlinear theory for vorticity interfaces
We briefly recap the analysis presented in Dritschel (1988c), hereafter referred to as D88c.
In appendix A therein, a cubic-order amplitude equation was derived for small wave-slope
disturbances to a circular vortex patch on the surface of a sphere. This in fact also applies
to a circular patch in the two-dimensional plane R2 in a certain limit, as well as to a straight
interface in R

2, as explained below.

2.1. The sphere
In Cartesian coordinates, the equations of contour dynamics on the sphere closely
resemble those on the plane. For a single contour C across which the vorticity jumps by ω
(the difference between the vorticity to the left of the contour and that to the right), each
point x ∈ C evolves according to

dx
dt

= − ω

4π

∮
C

log |x′ − x|2 dx′; (2.1)

(Dritschel 1988a). In the case of the sphere, the points x and x′ are three-dimensional but
constrained to have magnitude r = 1, without loss of generality. In the case of the plane,
x and x′ are two-dimensional.

We now consider a circular vortex patch boundary lying at constant latitude φ = φ0, and
separating vorticity ωN to the north from ωS to the south (the geometric centre of the patch
lies on the z axis between the north and south poles). Across the boundary or interface,
the vorticity jumps by ω≡ωN −ωS , which here we take to be unity, again without loss of
generality. (Note, this is not a model of rotating planetary flows, which have a continuous
vorticity variation ∝ sin φ, but instead a mathematical model for studying general aspects
of wave steepening on curved vorticity interfaces.)

It is convenient to consider displacements in the axial position or ‘height’ z = sin φ of
the vortex patch boundary, in particular displacements of the form

z(θ, t)= z0 − r2
0ρ(θ, t), (2.2)

where θ is the longitude coordinate, t is time, z0 = sin φ0 and r0 = cos φ0. Here, ρ(θ, t)
is the displacement function, considered small compared with unity (this form facilitates
taking the planar limit, i.e. φ0 → π/2). We follow (A6) in D88c and take

ρ(θ, t)= aη(θ, t), (2.3)

where a � 1 and η=O(1). We assume here that the mean value of ρ, and therefore η,
vanishes. (The mean value plays no role in the disturbance evolution, and corresponds to
an O(a) shift of the mean latitude φ0.)
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t = 0.000 T

t = 0.125 T

t = 0.250 T

t = 0.375 T

t = 0.500 T

t = 0.625 T

t = 0.750 T

t = 0.875 T

t = 1.000 T

Figure 1. Illustration of the linear evolution of disturbances to a vorticity interface, η(θ, t) in (2.5), for −π �
θ � π (shown as the abscissa). Here, T = 4π/ω is the linear wave period and successive times shown are
displaced downwards by an equal increment in the ordinate to avoid overlap. Note that the initial disturbance
reverses after half a period, then recovers its initial form after one full period. After a quarter of a period,
the solution turns from anti-symmetric to symmetric about its centre, and this also reverses after a further
half-period.

Expanding (2.1) to O(a3), the equation satisfied by η takes the form

1
ω

∂η(θ, t)

∂t
− 1

4π

∫ 2π

0

η(α, t) sin(α − θ)

1 − cos(α − θ)
dα= ∂G

∂θ

G(θ, t)= a

4
z0η

2 − a2

6
(z2

0 + 1)η3 − a2

24π

∫ 2π

0

[η(α, t)− η(θ, t)]3

1 − cos(α − θ)
dα , (2.4)

in a frame of reference rotating with the mean angular velocity 1/2ω of the patch boundary
(this is (A7) in D88c, for zero mean η). Without the nonlinear term (G = 0), the equation
is linear in η, and all solutions oscillate at the common frequency 1/2ω, independent of
the spatial structure of η. Specifically, in linear theory, the general solution to (2.4) for
G = 0 is

η(θ, t)=A(θ)e 1
2 iωt + c.c. with A(θ)=

∞∑
m=1

ameimθ , (2.5)

where the coefficients am are arbitrary complex constants, and ‘c.c.’ denotes complex
conjugation. Denoting the real and imaginary parts of A by Ar and Ai , respectively, we
can write this solution in the form

η(θ, t)= 2
(
Ar (θ) cos

(
1
2
ωt

)
−Ai (θ) sin

(
1
2
ωt

))
. (2.6)

This is illustrated in figure 1 for an initially anti-symmetric disturbance. Note that, by a
quarter of the linear wave period, the solution has become symmetric (this is −2Ai ), then
changes back to the initial disturbance except reversed after another quarter period, and so
on. The upshot is that the linear evolution is unsteady, evolving on a time scale inversely
proportional to the vorticity jump ω.
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For the nonlinear equation (2.4) with G 	= 0, we follow the multiple-time-scale ansatz
in (A8) of D88c and look for a solution of the form

η(θ, t)=A(θ, t)e
1
2 iωt + c.c., (2.7)

where A(θ, t)=A0(θ, τ )+ aA1(θ, t, τ )+ · · · , and where τ =ωa2t is the slow time.
Omitting the details, the equation for A0 (hereafter written simply as A) is (A11) of D88c,
rewritten here as

∂A
∂τ

= 1
2
∂

∂θ

(
z2

0T1 + T2 − (z2
0 + 1)|A|2A

)
, (2.8)

where

T1 = i
(
A ∂

∂θ
(W − W̄)− |A|2 ∂A

∂θ

)
, (2.9)

and

T2 = − 1
4π

∫ 2π

0

|A(α, τ )−A(θ, τ )|2[A(α, τ )−A(θ, τ )]
1 − cos(α − θ)

dα . (2.10)

Above, W is the part of |A|2 expressible in positive wavenumbers, i.e.

W =
∞∑

m=1

wmeimθ , (2.11)

and an overbar denotes complex conjugation (note that |A|2 =W + W̄ + P, where P is a
constant of the motion, see below). By explicit calculation starting with the general Fourier
series

A(θ, τ )=
∞∑

m=1

am(τ )eimθ , (2.12)

remarkably, it can be shown that T2 = T1 (Constantin et al. 2024). In this case, by
introducing the re-scaled slow time τ̃ = (1/2)(z2

0 + 1)τ , we have more simply

∂A
∂τ̃

= ∂B
∂θ

(2.13)

B(θ, τ̃ )= − 1
4π

∫ 2π

0

|A(α, τ̃ )−A(θ, τ̃ )|2[A(α, τ̃ )−A(θ, τ̃ )]
1 − cos(α − θ)

dα − |A(θ, τ̃ )|2A(θ, τ̃ ) ,

where we have chosen B = T2 − |A|2A above.
Equation (2.13) models the onset of filamentation on circular vortex patches at any

axial position or ‘height’ z0, including the planar limit z0 → 1. In particular, it does not
explicitly depend on the values of the vorticity ωN and ωS to the north and south of the
interface. Of course, the vorticity jump requires ωN −ωS =ω, and the vanishing of the
mean vorticity over the sphere (by Stokes’ theorem) requires (1 − z0)ωN + (1 + z0)ωS =
0. Combining these relations gives

ωN = 1
2(1 + z0)ω and ωS = −1

2 (1 − z0)ω , (2.14)

showing that, in general, the average vorticity near the interface
1
2(ωN +ωS)= z0ω , (2.15)
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depends on z0. This average vorticity induces a mean shear at the position of the patch
boundary unless z0 = 0, yet this shear plays no role in the filamentation equation (2.13)
above, apart from changing the definition of the dimensionless time τ̃ .

There is also a spectral form of this equation. When deducing T1 = T2 above, we found
that the Fourier coefficients am(τ̃ ) of A(θ̃ , τ̃ ) evolve according to

dam

dτ̃
= 1

2 im
∑

n>0,p>0,
n+p>m

(n + p − |n − m| − |p − m| − 2)anapān+p−m . (2.16)

(This corrects (A12) in D88c, where the term involving z2
0 there is incorrect.) Notably, n +

p − |n − m| − |p − m| − 2 = 2(m − 1) whenever both n � m and p � m. In particular,
this shows that a1 is an invariant of the dynamics: da1/dτ̃ = 0. It can be shown that this
invariant corresponds to conservation of the x and y components of the angular impulse
vector on the sphere

J = 1
2
ω

∮
C

x × dx; (2.17)

(see Appendix B of Polvani & Dritschel 1993). Additionally, the ‘momentum’ P, ‘mass’
M and (kinetic) energy E are all invariant (Constantin et al. 2024); the momentum and
mass are simple sums over spectral coefficients

P =
∑
m>0

|am |2 and M =
∑
m>0

|am |2/m , (2.18)

while the energy has a more complex form (see Constantin et al. 2024 for details).

2.2. The line
In an appropriate limit, (2.13) (or (2.16)) also applies to the onset of filamentation for
weakly nonlinear disturbances to a straight interface, say y = 0, on R

2. Guided by the
analysis in Appendix B of D88c, we substitute θ = −κx , α = −κx ′ and A= κÂ into
(2.13). Then, we take the limit κ → 0, assuming |α − θ | � 1. After dividing by κ and
dropping the hat on Â, we find

∂A
∂τ̃

= ∂B
∂x

B(x, τ̃ )= 1
4π

∫ 2π

0

|A(x ′, τ̃ )−A(x, τ̃ )|2[A(x ′, τ̃ )−A(x, τ̃ )]
1 − cos(x ′ − x)

dx ′, (2.19)

assuming periodicity in x on the interval [0, 2π]. Without periodicity, one would need to
replace 1 − cos(x ′ − x) by (1/2)(x ′ − x)2 and extend the integration over x ′ to the whole
real line (this is effectively (B18) in D88c). This equation has also been re-derived by
Biello & Hunter (2010), but in the differential form involving T1 in (2.9) (with θ replaced
by −x) – see Constantin et al. (2024) for further details.

The only important difference from the spherical case is the absence of the ‘curvature’
term |A|2A. There is also an unimportant sign change due to changing from spherical to
planar Cartesian coordinates. The mode amplitudes (or Fourier coefficients) ak(τ̃ ) in

A(x, τ̃ )=
∞∑

k=1

ak(τ̃ )eikx , (2.20)
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evolve according to

dak

dτ̃
= −1

2 ik
∑

n>0,p>0,
n+p>k

(n + p − |n − k| − |p − k|)anapān+p−k . (2.21)

Compared with (2.16), the ‘−2’ in the bracket there is now missing — this came from the
curvature term |A|2A in the circular case. Now, a1 in general varies in time: none of the
ak are invariant. However, momentum P and mass M as defined in (2.18) are still invariant,
as is the energy E (see Constantin et al. 2024).

2.3. Local, self-similar evolution
Motivated by the results in § 3 below, we seek a local asymptotic approximation of the
above equations, (2.13) and (2.19), depending on a single similarity variable combining
space and time. This asymptotic approximation describes, we conjecture, the moments
before the finite-time singularity in wave slope observed in § 3. That is, the asymptotic
solution is invariant in the similarity variable, but contains a wave-slope singularity in the
original space and time variables.

The similarity variable, ξ , has the same form as that which features in the fundamental
solution of the heat conduction equation, namely

ξ = θ − θmax (τ̃ )√
δ

with δ = 1 − τ̃ /τ̃c, (2.22)

for the case of the sphere (or replace θ by x for the case of the line). We next seek an
approximate solution of the form

A(θ, τ̃ )= δiμψ(ξ) , (2.23)

for some constant μ. This is the only self-similar form consistent with the equations of
motion: the imaginary exponent of δ in the prefactor guarantees that |A|max does not vary
significantly near the singularity time, as observed in the results below. Moreover, this
form leads to |∂A/∂θ |max ∝ 1/

√
τ̃c − τ̃ , again as observed.

An equation for ψ(ξ) can be obtained as follows. Take θ = θmax + δ1/2ξ and α =
θmax + δ1/2ξ ′ in (2.13). Then, assuming δ� 1 while ξ ′ − ξ =O(1), one can show that
B = δiμ−1/2b(ξ) to leading order, where

b(ξ)= − 1
2π

∫ ∞

−∞
|ψ(ξ ′)−ψ(ξ)|2[ψ(ξ ′)−ψ(ξ)]

(ξ ′ − ξ)2
dξ ′; (2.24)

(assuming sufficiently fast far-field decay of the integrand). Notably, the curvature term
|A|2A in (2.13) is O(δ1/2) smaller, so is neglected here. (This curvature term is absent for
the case of the line.) The right-hand side of the evolution equation (2.13), namely ∂B/∂θ ,
is thus δiμ−1db/dξ to leading order. The left-hand side evaluates to

iμδiμ−1ψ + δiμ dψ
dξ
∂ξ

∂τ̃
. (2.25)

However, since ξ = (θ − θmax )δ
− 1

2 , we have

∂ξ

∂τ̃
= −δ− 1

2
dθmax

dτ̃
+ δ−1 ξ

2τ̃c
. (2.26)
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For δ� 1, we can neglect the O(δ− 1
2 ) term, implying that the left-hand side of (2.13) is

δiμ−1
(

iμψ + ξ

2τ̃c

dψ
dξ

)
, (2.27)

to leading order. This has the same δiμ−1 prefactor as the right-hand side, so upon
cancelling this prefactor we obtain an equation entirely in terms of ξ

iμψ + ξ

2τ̃c

dψ
dξ

= − 1
2π

d
dξ

∫ ∞

−∞
|ψ(ξ ′)−ψ(ξ)|2[ψ(ξ ′)−ψ(ξ)]

(ξ ′ − ξ)2
dξ ′ . (2.28)

We conjecture that this equation describes the local blow up of wave slope on vorticity
interfaces, and that almost all initial conditions are attracted to this blow-up solution in
finite time. For the case of the line, we arrive at the same equation, except that now the
complex conjugate of ψ satisfies (2.28).

Note, we can further re-scale the similarity variable, using X = ξ/
√

2τ̃c, so that the
solution ψ(X) depends on only one free real constant, λ= 2τ̃cμ

iλψ + X
dψ
dX

= − 1
2π

d
dX

∫ ∞

−∞
|ψ(X ′)−ψ(X)|2[ψ(X ′)−ψ(X)]

(X ′ − X)2
dX ′ . (2.29)

Supplemented by the requirement that the solution be normalisable, i.e.∫ ∞

−∞
|ψ(X)|2 dX = 1 , (2.30)

this can be viewed as an eigen-problem, with λ (real) serving as the eigenvalue.

3. Results

3.1. Numerical approach
For simulating the evolution of the weakly nonlinear equations (2.13) or (2.19), we have
found that the most robust approach is to solve for the spectral coefficients directly, using
(2.16) or (2.21), with the sums over n and p truncated to ensure n, p and n + p − m all lie
in the range [1, M] (substitute k for m in the case of the line). This is more computationally
intensive than using the differential or integral form of (2.13) or (2.19), but it is stable over
the times of interest. However, numerical stability requires the introduction of a damping
term of the form −ν (m/M)pam on the right-hand side of (2.16) or (2.21), where

ν(τ̃ )= ε rmax (τ̃ )

α
. (3.1)

By careful experimentation, we have found that choosing p = 6 and ε= 10−2 ensures that
the upper end of the variance spectrum |am |2 remains small compared with lower and
mid-range over the entire simulation period. In effect, the highest wavenumber is damped
by the factor e−ε every time step when the time step is limited by rmax .

We employ a standard fourth-order Runge–Kutta time integration scheme, with time-
step adaptation. The time step is limited to

�τ̃ = min (α/rmax , β/M, τ̃save − τ̃ ) with rmax = |∂2Ar/∂τ̃∂θ |max , (3.2)

where τ̃save is the next data save time and Ar is the real part of A. Here, we have chosen
α = 0.2 (or α = 0.1 in the case of the line whose evolution is faster), but results with
half this value are almost indistinguishable. The time step α/rmax attempts to resolve the
increasingly high frequencies on the approach to any singularity. We have also chosen
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β = 2048 × 10−3; the time step β/M acts as a Courant–Friedrichs–Lewy (CFL)
constraint. These criteria for limiting the time step were deduced by trial and error for
a wide range of initial conditions.

3.2. The sphere
We focus on one example in this case which nonetheless typifies the behaviour seen in
many others. The amplitude A is initialised with only two non-zero spectral coefficients,
specifically a2 = √

3/2 and a3 = 0.25eiπ/3. Then, the ‘momentum’ P = |a2|2 + |a3|2
equals 1, and P = ∑

m |am |2 remains equal to 1 for all time τ̃ . We have performed simula-
tions with mode truncations M = 256, 512, 1024 and 2048. All give similar results, but the
highest resolution allows a better resolution of the approach to a singularity in wave slope.

The evolution of A and of its spectrum are shown at a few selected times in figure 2.
The left column shows the real and imaginary parts of the amplitude A(θ, τ̃ ), while
the right column shows the spectrum |am(τ̃ )|2. In general, the waves comprising the
interface propagate to the left, but they also steepen. In the spectrum, this is associated
with the development of a power-law form |am |2 ∝ mq , with q ≈ −3, over a large range of
wavenumbers m. At the final reliable time shown (τ̃ = 0.355), the amplitude A exhibits a
near discontinuous variation, which is nonetheless marginally resolved (as seen, e.g., in a
zoom at this time, discussed below).

We next provide evidence that the solution is approaching a finite-time singularity in
the wave slope |∂A/∂θ |max. This wave slope is determined by finding the θ grid point
having the largest value of |∂A/∂θ |, then fitting a parabola through this value and the
values on either side of this grid point. The maximum in this parabola occurs at θ = θmax ,
which varies with τ̃ . The same procedure is also used to determine the largest value of
|A|, to better understand the nature of the solution near the conjectured singularity. These
diagnostics are shown in figure 3. One sees a dramatic rise in the maximum wave slope
(upper right panel) near the conjectured singularity time, whereas other diagnostics are
tending to finite values. In particular, the maximum amplitude |A|max hardly varies over
the entire evolution. Also, the location of maximum wave slope moves at a moderate speed,
between −10 and −8 approximately.

The maximum wave slope s(τ̃ )= |∂A/∂θ |max appears to exhibit a square-root
singularity, i.e. s ∼ √

c/(τ̃c − τ̃ ) for τ̃c ≈ 0.35748, as shown in figure 4. The singularity
time τ̃c and the constant c were determined by a least-squares fit over the period 0.345 �
τ̃ � 0.355. Specifically, τ̃c and c were determined by minimising

∑
w(τ̃ j ) f 2(τ̃ j ) for

discrete times τ̃ j , where f = s2(τ̃c − τ̃ )− c and w= s, a weight chosen to favour data
closer to the singularity time. The root-mean-square (r.m.s.) error in the fit over this period
is only 0.01189 (note: c ≈ 0.72935).

To appreciate how well the weakly nonlinear theory captures the onset of filamentation,
it is compared in figure 5, at a time just beyond the last time shown in figure 2,
with the results of a full contour dynamics simulation solving (2.1) numerically. The
contour dynamics simulation was initialised with z0 = 0 (i.e. the equator) and ρ(θ, 0)=
2aAr (θ, 0) in (2.2), with amplitude a = 1/40. The vorticity jump across the interface was
taken to be ω= 4π so that one unit of time corresponds to one full linear wave oscillation.
The numerical parameters are now standard and may be found in Dritschel & Fontane
(2010), apart from the large-scale length L used to control the point resolution (here,
we take L = 6.25π/M ≈ 0.009587, giving 3936 initial contour nodes). The agreement
in figure 5 is excellent, apart from a small discrepancy near the point of maximum wave
slope. At earlier times, the solutions overlap within the plotted line width.

Shortly after this time, the waves on the interface do break in the contour dynamics
simulation, as shown in figure 6. Filamentation starts between t = 366 and 367 (note
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Ar, Ai log10 |am|2

log10 mθ
0

–1

0

1

–10

–5

0

–1

0

1

–10

–5

0

–1

0

1

–10

–5

0

–1

0

1

–10

–5

0

–1

0

1

(a) (b)

–10

–5

0

2 4 6 0 1 2 3

0 2 4 6 0 1 2 3

0 2 4 6 0 1 2 3

0 2 4 6 0 1 2 3

0 2 4 6 0 1 2 3

τ = 0.000˜

τ = 0.200˜

τ = 0.300˜

τ = 0.330˜

τ = 0.355˜

Figure 2. Time evolution of the wave amplitude A (a, with real and imaginary parts in blue and red,
respectively) for a circular vorticity interface on a sphere, together with the corresponding power spectrum
|am |2 (b) for 5 selected times τ̃ (increasing downwards). Initially, just a2 and a3 are non-zero.

the interface shape changes greatly between each period, due to the underlying linear
oscillation). In terms of the long time scale, filamentation occurs between τ̃ = 0.3593
and 0.3603, a little later than the time τ̃c ≈ 0.35748 indicated by the singularity fit in the
weakly nonlinear theory.

The behaviour seen in this example appears to be common to any (multiple-harmonic)
initial condition: inevitably the maximum wave slope appears to blow up in finite time, and
this is associated with the spectrum filling out, possibly tending to the form |am |2 ∼ m−3

at the singularity time. Moreover, the blow up is local, occurring over a small range in
θ . This observation motivated the derivation of the self-similar equation (2.28), whose
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Figure 3. Time evolution of various diagnostics, as labelled, from τ̃ = 0 to 0.355 (the last reliable time). In the
figure for dθmax/dτ̃ , 1-2-1 averages (replacing data values, say fi , by ( fi−1 + 2 fi + fi+1)/4) were repeated
64 times to remove most of the noise occurring around the maximum near τ̃ = 0.32 (endpoint values were
replaced by linear extrapolation of the averaged interior data points). This noise arises from the imprecision in
locating θmax .
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Figure 4. Time evolution of the maximum wave slope s(τ̃ )= |∂A/∂θ |max together with a fit to
√

c/(τ̃c − τ̃ )

(a), and the function f (τ̃ )= s2(τ̃c − τ̃ )− c (b) which would be zero for a perfect fit.

Ar

θ

τ̃  = 0.3553927 ⇔ t = 362

–0.4

–0.6

–0.8

1.8 1.9 2.0

Contour dynamics

Weakly nonlinear theory

2.1 2.2

Figure 5. Zoom of a portion of the curve Ar (θ, τ̃ ) at τ̃ ≈ 0.3553927 (blue) compared with a contour
dynamics simulation (black) at the equivalent time, here 362 linear wave periods (see the text for details).
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Figure 6. A portion of the interface in the full contour dynamics simulation at successive linear wave periods,
from t = 362 at the top to t = 376 at the bottom. Here, ρ(θ, t) is plotted over the range 1.85 � θ � 2. Note
that, between the times shown, the interface exhibits a relatively fast oscillation over the linear wave period,
analogous to that illustrated in figure 1.

solution would have the same form. However, we have been unable to solve (2.28) directly,
due to its nonlinear and non-local character. In lieu, we next provide evidence that the
observed behaviour in figure 2 is consistent with the self-similar form proposed in (2.23).
To this end, starting from a guess for the constant μ, we define

ψ(ξ)=
∫ τ̃2
τ̃1
δ−iμ− 1

2A(θmax + δ
1
2 ξ, τ̃ )dτ̃∫ τ̃2

τ̃1
δ− 1

2 dτ̃
, (3.3)

as a guess for the form of ψ (here integrals over time are discretised as sums). We use δ− 1
2

to preferentially weight the data closer to the singularity time. We then seek the constant
μ which minimises

H(μ)=
∫ τ̃2
τ̃1
δ− 1

2
∫ ξmax
−ξmax

w(ξ)|δ−iμA(θmax + δ
1
2 ξ, τ̃ )−ψ(ξ)|2dξdτ̃∫ τ̃2

τ̃1
δ− 1

2 dτ̃
∫ ξmax
−ξmax

w(ξ)dξ
, (3.4)

where w(ξ)= 1 + cos(πξ/ξmax ) is a spatial weight favouring values in the centre of the
interval (and vanishing at the endpoints). Again, spatial integration is done by discrete
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Figure 7. The estimated self-similar solution ψ(ξ) (real part in cyan, imaginary part in magenta), together with
scaled numerical profiles (see the text) at times τ̃ = 0.345, 0.347, 0.349, 0.351, 0.353 and 0.355 (real part in
blue, imaginary part in red, with fading backwards in time).

sums (here over 1024 intervals in ξ ). In practice, H(μ) exhibits a single, simple minimum
at the target value of μ.

We have chosen the time interval between τ̃1 = 0.345 and τ̃2 = 0.355 (including both
endpoints) to do the analysis, because this interval provides the best fit to the observed
wave-slope growth in figure 4. We have also chosen ξmax = 1 to limit periodicity effects
coming from the range in θ when sampling A in (3.3) and (3.4). With these choices, we
find μ≈ 0.2307 where H(μ)≈ 0.005163. For this value of μ, we can construct ψ(ξ) from
(3.3) and compare this with the scaled numerical profiles, specifically with δ−iμA(θmax +
δ1/2ξ, τ̃ ), at selected times in the sampling period. This is done in figure 7. While the
collapse is not perfect, it is suggestive of the existence of a self-similar solution, ψ(ξ).
The neglect of terms of O(δ 1

2 ) likely results in some of the scatter observed. For instance,
the neglected term in (2.26) involving dθmax/dτ̃ is questionable, since this derivative is
nearly −8 just before the singularity time, whereas δ

1
2 varies from 0.1117 to 0.04983 over

the time period analysed. This neglected term is not necessarily small. Nonetheless, the
results in figure 7 at least provide a hint to the possible form of the solution to (2.28).

3.3. The line
Equation (2.19) governing the onset of filamentation on the periodic line is nearly identical
to that on the sphere, (2.13), except for the curvature term |A|2A in the definition of B,
and a sign difference. In fact, the complex conjugate of A for the line satisfies the same
equation as A for the sphere, after dropping the curvature term. Hence, to compare the
sphere and line most closely, we use the same initial condition (after complex conjugation)
in spectral form, namely a2(0)=

√
3/2 and a3(0)= 0.25e−iπ/3, with all other coefficients

zero.
The evolutions of A and of its spectrum |ak(τ̃ )|2 are shown at a few selected times in

figure 8. As for the sphere, the waves generally propagate to the left and steepen. The
spectrum develops a power-law form ∝ kq , with the exponent q tending to −3 at the
latest time. The same behaviour was found for the sphere. At the final reliable time shown
(τ̃ = 0.173), the amplitude A exhibits a near discontinuous variation. However, the details
differ somewhat from those seen for the sphere in figure 2, for instance the ‘kink’ now
appears in the real part of A rather than the imaginary part. Also, the evolution is nearly
twice as fast. Finally, unlike for the sphere, the lowest harmonic a1 varies in time.
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Ar, –Ai log10 |ak|2(b)(a)
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Figure 8. Time evolution of the wave amplitude A (a, with real and imaginary parts in blue and red
respectively) for a vorticity interface on the periodic line, together with the corresponding power spectrum
|ak |2 (b) for 5 selected times τ̃ (increasing downwards). Initially, just a2 and a3 are non-zero. Compare with
figure 2 for the circular case.

We next examine the evolution of the maximum wave slope |∂A/∂x |max in figure 9,
along with other diagnostics. There is again an indication that the system is approaching
a finite-time singularity in wave slope. Near the final time shown, the maximum wave
amplitude |A|max hardly varies. The location of maximum wave slope, xc(τ̃ ), moves at a
moderate speed, even faster than in the case of the sphere (indeed almost twice as fast).

Like in the case of the sphere, the maximum wave slope s(τ̃ )= |∂A/∂x |max appears
to exhibit a square-root singularity s ∼ √

c/(τ̃c − τ̃ ), now for τ̃c ≈ 0.17478, as shown in
figure 10. The singularity time τ̃c and the constant c were determined by a least-squares
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Figure 9. Time evolution of various diagnostics, as labelled, from τ̃ = 0 to 0.173 (the last reliable time). In the
figure for dxmax/dt , 1-2-1 averages were repeated 8 times to remove most of the noise occurring around the
maximum near τ̃ = 0.16. Compare with figure 3 for the circular case.
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Figure 10. Time evolution of the maximum wave slope s(τ̃ )= |∂A/∂x |max together with a fit to
√

c/(τ̃c − τ̃ )

(a), and the function f (τ̃ )= s2(τ̃c − τ̃ )− c (b) which would be zero for a perfect fit. Compare with figure 4
for the circular case.

fit over the period 0.163 � τ̃ � 0.173, using the same approach used for the sphere. The
r.m.s. error in the fit over this period is only 0.00788 (note: c ≈ 0.65997).

We next provide evidence for a self-similar solution of the form A= δiμψ(ξ), where
ξ and δ have the same definitions given in (2.22) except θ is replaced by x , and the
complex conjugate of ψ satisfies (2.28). As for the sphere, we fit the scaled numerical
data over a time period extending from τ̃1 = 0.163 to τ̃1 = 0.173 to estimate the form of
ψ(ξ) and the exponent μ. That fit gives μ≈ 0.3150 (cf. μ≈ 0.2307 for the sphere), and
H(μ)≈ 0.005163 in (3.4). The estimated form of ψ along with the scaled numerical data
δ−iμA(xmax + δ

1
2 ξ, τ̃ ) are shown in figure 11. The form of ψ compares well with the

spherical case in figure 7, though there are some differences. These differences, and the
scatter in the fit, may result from the impact of higher-order terms, formally O(δ 1

2 ) smaller
but in practice potentially comparable due to the computational difficulty in getting closer
to the singularity time. Nonetheless, these results hint at the likely form of the solution to
the self-similar equation (2.28).
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Figure 11. The estimated self-similar solution ψ(ξ) (real part in cyan, imaginary part in magenta), together
with scaled numerical profiles (see the text) at times τ̃ = 0.163, 0.165, 0.167, 0.169, 0.171 and 0.173 (real part
in blue, imaginary part in red, with fading backwards in time). Compare with figure 7 for the circular case.
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Figure 12. Time evolution of various diagnostics for a simulation starting from a weakly perturbed travelling
wave having ε = 0.1 (see the text). See figure 3 for the analogous diagnostics in the case of a larger initial
perturbation having ε = 0.5.

3.4. Stability of travelling waves
All single-mode disturbances, which take the form

A(θ, τ̃ )= akeikθ−k(k−1)|ak |2τ̃ , (3.5)

are exact solutions of (2.13) or (2.16), and translate in θ at speed −(k − 1)|ak |2 (Constantin
et al. 2024). (In the case of the line, the k − 1 factor is replaced by k.) Here, we briefly
examine the stability of a few of these solutions numerically. We initialise as before by
choosing another mode p> k with initial amplitude ap(0)= εeiπ/3, then chose ak(0)=√

1 − ε2 so that P = ∑
m |am |2 = 1, without loss of generality. Again, we take k = 2 and

p = 3, but take ε = 0.1, which is 5 times smaller than in the previous example. (Other
values are discussed below.)

Figure 12 shows various diagnostics including the maximum wave slope |∂A/∂θ |max .
Comparing with the case with ε = 0.5 in figure 3, we see that smaller ε delays the
1008 A48-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.190


Journal of Fluid Mechanics
|A

| m
ax

|∂
A/

∂θ
| m

ax

0 2.5 5.0 7.5 10.0 0

101.20

1.15
5

2.5 5.0 7.5 10.0

θ m
ax

d
θ m

ax
/

d
τ̃

6

4

2

–2

–4

0

0

2.5 5.0 7.5 10.0 0 2.5 5.0 7.5 10.0

τ̃ τ̃

τ̃ τ̃

Figure 13. As in figure 12 but for a slightly larger disturbance amplitude, here ε = 0.12.
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Figure 14. Late-time evolution of the relative errors in momentum P and mass M. A subscript ‘0’ refers to
their initial values. Prior to τ̃ ≈ 34, errors are O(10−11) but likely smaller because the spectral coefficients am
were only saved to 11 digit accuracy.

onset of filamentation, which appears to occur after a series of growing oscillations; this
behaviour is found also for ε = 0.11 and 0.12, see e.g. Figure 13, whereas ε = 0.13 and
larger ε exhibit a single diverging peak in wave slope. The oscillations correspond to
the almost periodic amplification and reduction of the tail of the power spectrum, with
each amplification being larger than the last. The wave form A begins to develop a kink
and a near discontinuity by τ̃ = 37.2 for ε = 0.1. The recovery of |∂A/∂θ |max after this
time is likely to be spurious – significant errors in the conserved momentum P and mass
M develop especially around τ̃ = 37, when the final peak occurs – see figure 14. The
numerical filtering at high wavenumbers m arrests the growth in wave slope, which likely
diverges soon after τ̃ = 37 in reality. Notably, the best-fit spectral slope q climbs through
−3 at τ̃ = 37.06, when strong numerical dissipation occurs. All evidence points to a wave-
slope singularity in finite time; it appears that even weakly perturbed translating waves are
eventually subject to filamentation.

4. Discussion
This paper has revisited a generic aspect of vorticity interfaces, namely the
tendency for unsteady disturbances to steepen and ‘break’, resulting in ‘filamentation’
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(Dritschel 1988c). Specifically, we have studied an equation first derived in Dritschel
(1988c) describing the weakly nonlinear development of shallow (small wave slope)
disturbances to circular and linear interfaces. That equation is shown to have a simpler,
universal form in a re-scaled slow-time variable (see also Constantin et al. 2024 for details
of its mathematical structure, invariants and some exact solutions).

We have studied the onset of filamentation on both a circular interface (applicable to
interfaces on the sphere or on the plane) and a periodic linear interface. In both cases, we
find generically that unsteady initial conditions tend to steepen, apparently exhibiting an
inverse square root time singularity in wave slope at one location. This is the manifestation
of filamentation discussed in Dritschel (1988c), who showed that the results compare well
with full contour dynamics simulations up to the point of filamentation (this is confirmed
here with more accurate simulations). The significance of this finding is that vortex patch
boundaries inevitably and endlessly grow in complexity due to filamentation. Almost no
initial condition can avoid this fate – only some sort of regularisation can prevent or limit
filamentation.

Motivated by the numerical findings, we have developed a theory for the self-similar
evolution of the interface close to the singularity in wave slope. This is a cubically
nonlinear, nonlocal equation for a complex function ψ(ξ) in a similarity variable ξ , of
the form that appears in the heat equation. The equation has an eigenvalue μ related to
the time-scaling factor with exponent iμ used to define ψ . We have not been able to solve
this equation, but have provided an estimate of the form of ψ by fitting numerical data
close to the singularity time. Future work will target finding numerical solutions of this
self-similar equation and, more generally, rigourously proving the self-similar equation is
an attractor for almost all initial conditions.
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