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Abstract
The abundance of dust within galaxies directly influences their evolution. Contemporary models attempt to match this abundance by simulating
the processes of dust creation, growth, and destruction. While these models are accurate, they require refinement, especially at earlier epochs.
This study aims to compare simulated and observed datasets and identify discrepancies between the two, providing a basis for future
improvements. We utilise simulation data from the SIMBA cosmological simulation suite and observed data from the Galaxy and Mass
Assembly (GAMA), a subset of the Cosmic Evolution Survey (G10-COSMOS), and the Hubble Space Telescope (3D-HST). We selected
galaxies in the observed and simulated data in a stellar mass range of (108.59 < M⊙ < 1011.5) and at redshift bins centering around z = 0.0,
z = 0.1, z = 0.5, z = 1.0, and z = 1.5 in a homogeneous dust mass range (106 < MD[M⊙]< 109). Our results show notable deviations between
SIMBA and observed data for dust-poor and rich galaxies, with strong indications that differences in galaxy populations and SIMBA limitations
are the underlying cause rather than the dust physics implemented in SIMBA itself.
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1. Introduction

In modern galaxy evolution studies, dust is crucial in how galaxies
evolve and change across cosmic time. The abundance of dust
in galaxies is directly connected with galaxy evolution (Santini
et al. 2014), as stars would not form effectively without it, as dust
catalyses the formation of molecules (Wakelam et al. 2017; Chen
et al. 2018) and enables the fragmentation of gas clouds (Omukai
et al. 2005; Schneider et al. 2006). However, the exact abundance of
this dust in galaxies is unclear, especially at earlier epochs when the
age of the Universe was comparable to the typical dust formation
time scales (Todini & Ferrara 2001; Bianchi & Schneider 2007;
Leśniewska, Aleksandra & Michałowski, Michał Jerzy 2019).

Modern galaxy evolution models have attempted to match the
different dust abundances across galaxy populations at different
epochs (McKinnon et al. 2016, 2017; Popping et al. 2017; Hou
et al. 2019; Triani et al. 2020; Vijayan et al. 2019; Parente et al.
2022, 2023). Although significant advancements have been made
in modelling the life cycle of dust, the mechanisms behind the
creation, growth, and destruction of dust, particularly concerning
dust content, remain a topic of debate in the modern era (Hensley
& Draine 2023; Ragone-Figueroa et al. 2024; Yates et al. 2024).
Enhancing our models through direct comparisons of simulated and
observed data is crucial for deepening our understanding of dust’s
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life cycle and its contents in galaxies and, consequently, galaxy
evolution. Recent results suggest a substantial evolution of the dust
content of galaxies since z ∼ 1 (Parente et al. 2023; Eales & Ward
2024).

Despite these current efforts, most comparisons currently lack
a sufficiently large sample size to reveal significant discrepancies,
particularly in earlier epochs where surveys are lacking. Most mod-
ern comparisons with models and observations (Li et al. 2019;
McKinnon et al. 2017; Popping et al. 2017, e.g.) rely on low sample
size observational datasets nearly a decade old (Eales et al. 2009;
Dunne et al. 2011; Clemens et al. 2013) that focus on later epochs
(0 < z < 1) containing 82, 1867, and 234 sources, respectively. The
only outlier most studies utilise is Beeston et al. (2018), which
includes 15,750 sources at a redshift < 0.1 due to its utilisation
of more modern surveys. However, this is only at a small redshift
range at later epochs. To properly understand the properties that
govern the abundance of dust in galaxies, more complete samples
at earlier epochs are necessary for enhancing our comparisons.

The current aim of this study is to compare the simulated and
observed datasets with a larger sample size and later redshifts than
previously accomplished to help remedy this issue. We strive to
identify the discrepancies between the dust mass generated by
modern galaxy evolution models and measured observational data.
Using an extensive data set to identify these discrepancies, this
paper serves as a first-effort basis for improving galaxy evolution
models across epochs up to z = 1.5.

We, therefore, utilise the dust mass data produced by the hydro-
dynamical model SIMBA and compare it using various methods
with a large, homogeneous, and detailed dust mass dataset, as

c© The Author(s), 2025. Published by Cambridge University Press on behalf of Astronomical Society of Australia. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.

This peer-reviewed article has been accepted for publication in Publications of the Astronomical Society of 

Australia but not yet copyedited or typeset, and so may be subject to change during the production process. 

The article is considered published and may be cited using its DOI. 10.1017/pasa.2025.10029
 

 

 

 

  
1

https://doi.org/10.1017/pasa.2025.10029 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10029


2 Trevor Butrum et al.

Figure 1: The complete data sets of GAMA, G10-COSMOS, 3D-HST with stellar mass (left) and dust mass (right) up till the intermediate Universe
(z ≈ 1.5). The more yellow the data displayed on the figures, the greater the data contained in that area, and the bluer the less. The clumps observed
correspond to different surveys. GAMA covers up to the near Universe (z < 0.5) and corresponds to the high-density clump at the top left of the plots.
G10-COSMOS and 3D-HST cover up to the intermediate Universe (z < 1.75) and are harder to distinguish as there is little separation between the data.

described in Driver et al. (2018). The observed dataset includes
data from Galaxy and Mass Assembly (GAMA), an offshoot of
GAMA, the Cosmic Evolution Survey (G10-COSMOS), and the
Hubble Space Telescope 3D project (3D-HST). We note that the
data received from G10-COSMOS and SIMBA were obtained via
private communication and are not publicly available.

The paper is organised as follows: in Section 2, we summarise
our observational datasets: GAMA, G10-COSMOS, and 3D-HST.
In Section 3, we briefly describe the dust evolution model present
in SIMBA and the simulations used in our paper. In Section 4, we
explain our galaxy selection progress for both the observational
and simulated datasets. In Section 5, we explore the results of our
comparisons between the two datasets, and in Section 6, we discuss
further the implications of these results and put them into context
with other works. Finally, we finish with our conclusions in Section
7.

2. Data

We combine the three datasets outlined in Driver et al. (2018):
GAMA (Driver et al. 2011; Liske et al. 2015), G10-COSMOS
(Davies et al. 2015; Andrews et al. 2017), and 3D-HST (Momcheva
et al. 2016). These studies contain data from the ultraviolet (UV),
mid-infrared (MIR), and far-IR (FIR) wavelengths. The GAMA
and G10-COSMOS studies also contain constraints from Herschel
Space Observatory’s SPIRE (Griffin et al. 2010; Poglitsch et al.
2010) and PACS instruments (Eales et al. 2010; Oliver et al. 2012),
which allows for robust dust mass measurements. The three stud-
ies GAMA, G10-COSMOS, and 3D-HST, extend to the nearby
(z ≤ 0.5), intermediate (z < 1.75), and high-z Universe (z < 5.0),
respectively. Each dataset comprises approximately 200,000 galax-
ies that sample a broad range in stellar mass, dust mass, and
look-back time. Each dataset was subject to data cuts based on
flux limitations set in Driver et al. (2018) and active galactic nuclei

(AGN) contamination removal. Each sample was processed using
MAGPHYS, a spectral energy distribution fitting (SED) code, to
provide estimates of dust mass, stellar mass, and star-formation
rates (SFR) based on the flux limitations (see Sections 2.1, 2.2, and
2.3).

2.1. GAMA

The GAMA survey (Driver et al. 2009, 2011; Liske et al. 2015)
is a complete (98 % to r < 19.8 mag) spectroscopic survey up to
the near universe (z ≤ 0.5). The survey consists of five regions
G02 (∼ 56 deg2), G09 (∼ 60 deg2), G12 (∼ 60 deg2), G15 (∼
60 deg2), and G23 (∼ 51 deg2) for a total area of roughly 180
deg2 with about 70,000 galaxies per region. Driver et al. 2018
uses LAMBDARCatv01, a catalogue for GAMA made with in-
house software (LAMBDAR; Wright et al. 2016) which provides flux
limits with their errors, upper-limits, and flags. These objects were
filtered from an initial value of 200,246 to 128,568 based on specific
quality criteria, with values subsequently adjusted to be compatible
with MAGPHYS. They also implemented an additional cut step to
eliminate high stellar mass outliers. We use the MAGPHYS SED fits
data-products with the high stellar mass cut (Driver et al. 2018) for
the described 128,568 objects in this study.

2.2. G10-COSMOS

The G10-COSMOS survey (Davies et al. 2015; Andrews et al.
2017) is a subset of HST COSMOS survey that covers a 1 deg2

region of the survey (Scoville et al. 2007b,a) and is 100 percent
redshift complete up to a specified flux limit of i < 25 mag. The
survey includes wavelengths from UV to FIR. The survey uses
the data collected by the Galaxy Evolution Explorer (GALEX;
Martin et al. 2005; UV), Canada–France–Hawaii Telescope (CFHT;
Cuillandre et al. 2012; optical), Subaru (Taniguchi et al. 2007;
optical), HST (Scoville et al. 2007b; optical), Visible and Infrared
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Figure 2: The dust mass ranges selected for this study. We plot GAMA/G10-COSMOS/3D-HST data as black dots. We plot the selected data with the
ranges applied in green dots with a box surrounding them. The red dotted line represents the dust mass volume limits of the surveys. Note that we exclude
GAMA data at z = 0.5 due to volume-related issues in the selections.

Survey Telescope (VISTA; Emerson & Sutherland 2002; Jarvis
et al. 2013; NIR), Spitzer (Werner et al. 2004; Sanders et al. 2007;
MIR), and some Herschel (Pilbratt 2003; Shirley et al. 2021; FIR).

Similar to the GAMA dataset, G10-COSMOS utilizes the
LAMBDAR G10CosmosLAMBDARCatv06 catalog (Andrews et al.
2017a; Wright et al. 2016). This catalogue also similarly underwent
AGN cuts based on different criteria outlined (Donely et al. 2012;
Seymour et al. 2008; Laigle et al. 2016), as well as the removal
of high stellar mass outliers. It includes a total of 142,260 objects
found in the intermediate Universe (z < 1.75). We use the MAG-
PHYS SED fits data products with the AGN cut (Driver et al. 2018)
for the 142,260 objects described in this study.

2.3. 3D-HST

The 3D-HST survey (Brammer et al. 2012; Momcheva et al. 2016)
is an almost complete (up to 85 percent at F160W = 26.0 mag)
photometric, grating-prism (GPRISM), and spectroscopic survey
up to the high-z universe (z < 5) that covers a ∼ 0.2 deg2 area
of the sky. The fields 3D-HST covers are sub-regions of the All-
Wavelength Extended Groth Strip International Survey (AEGIS)
(Davis et al. 2007), Cosmic Evolution Survey (COSMOS) (Scoville
et al. 2007b), Great Observatories Origins Deep Survey (GOODS-
South) (Nonino et al. 2009), GOODS-North (Barger et al. 2008),
UKIRT Infrared Deep Sky Survey (UKIDSSUDS) Almaini et al.
(2007), and Cosmic Assembly Near-infrared Deep Extragalactic
Legacy Survey (CANDELS) (Grogin et al. 2011). Unlike GAMA
and G10-COSMOS, 3D-HST does not include FIR coverage from
Herschel, which is currently under development (Hurley et al.
2017). The 3D-HST catalog consists of 204,294 galaxies and AGN,
with a redshift estimate of 3,839 from spectroscopic, 15,518 from
GRISM, and 185,843 from photometric data. We use the MAGPHYS
SED fits data products from the fair AGN cut, which follows the
criteria set by Donely et al. (2012), as well as the exclusion of high

stellar mass outliers (Driver et al. 2018), for the 188,235 objects
discussed in this study.

2.4. MAGPHYS

To calculate the physical properties for dust mass, stellar mass,
and SFR used in this study, the three datasets containing 128,568,
142,260, and 188,235 objects, respectively, were parsed through
the SED-fitting code MAGPHYS. For further details on the data
preparation process and MAGPHYS, we point the reader to Driver
et al. 2018 and da Cunha et al. 2008. This parsing through MAG-
PHYS standardises the assumptions and systematics of dust mass,
stellar mass, and SFR estimates between the datasets, which min-
imises the errors between the surveys and allows us to combine the
datasets and make proper comparisons with the simulated galaxies
in SIMBA.

3. The SIMBA simulation

In this study, we utilise the cosmological simulation SIMBA (Davé
et al. 2019), which is the successor to MUFASA and is built upon
the GIZMO hydrodynamic code (Hopkins & Lee 2015), for our
comparisons. Here, we will present a summary of the relevant
physics in SIMBA to help explain our findings in Section 5.

SIMBA presents a self-consistent model for dust production,
growth, and destruction (Li et al. 2019; Davé et al. 2019). This
model tracks eleven elements (H, He, C, N, O, Ne, Mg, Si, S,
Ca, and Fe) across cosmic time, with enrichment sourced from
Type II SNe, Type Ia SNe, and AGB stars. In SIMBA, dust is fully
coupled with gas flows, a treatment considered accurate due to
the simulation’s under-resolved drag force and radiative pressure.
Dust grains are also modeled with a consistent size of 0.1µm and a
density of 2.4 g cm−3 (Draine 2003).
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Table 1. : Results of our sample selections. Data with prevalent volume limitations have been removed and labelled as ”. . . ”.

Redshift Bins (z) GAMA G10-COSMOS 3D-HST Total SIMBA

0.0-0.05 1411 . . . . . . 1411 28 984

0.07748-0.12748 14 949 175 . . . 15 124 27 715

0.46544-0.51544 . . . 2276 406 2682 21 247

0.9677-1.0177 . . . 4616 1543 6176 15 713

1.4717-1.5217 . . . 2034 1661 3695 11 808

Total 16 360 9101 3610 29 088 105 467

Dust production in SIMBA is determined by taking fixed frac-
tions of metals from Type II SNe and AGB star condensations,
based on the work of Popping et al. (2017), which updates earlier
findings by Dwek (1998). Below are the equations (outlined in
Li et al. 2019; Davé et al. 2019) that describe how dust mass is
determined using AGB stars and Type II SNe where mj

i,d refers to
the ith element (C, O, Mg, Si, S, Ca, and Fe) produced by the jth
stellar process (AGB stars or SNeII) and where mj

i,e j refers to the
mass ejected from the jth process.

The mass of dust produced by AGB stars with a carbon-to-
oxygen ratio of greater than one (C/O > 1) is expressed as

mAGB
i,d =

{
δ AGB

C

(
mAGB

C,e j − 0.75mAGB
O,e j

)
, i =C

0, otherwise,
(1)

where δ AGB
i is the fixed condensation efficiency of element

i in AGB stars based on Ferrarotti & Gail 2006. The dust mass
produced by AGB stars with carbon-to-oxygen ratios less than one
(C/O < 1) is expressed as

mAGB
i,d =


0, i =C
16 ∑

i=Mg,Si,S,Ca,Fe
δ AGB

i mAGB
i,e j , i = O

δ AGB
i mAGB

i,e j , otherwise,

(2)

where µi is the mass of element i. Finally, the mass of dust
produced by Type II SNe is described as

mSNII
i,d =


δ SNII

C mSNII
C,e j , i =C

16 ∑
i=Mg,Si,S,Ca,Fe

δ SNII
i mSNII

i,e j , i = O

δ SNII
i mSNII

i,e j , otherwise,

(3)

where δ SNII
i is the fixed condensation efficiency of element i for

SNe II based on Bianchi & Schneider 2007.
Dust grains are then formed through the accretion of local

gaseous metals following Dwek (1998).

(
dMd

dt

)
grow

=

(
1 − Md

Mmetal

)(
Md

τaccr

)
(4)

where Mmetal is the total mass of dust and local gas-phase metals.
The accretion timescale τaccr is then found following Hirashita
(2000) and Asano et al. (2013) and is

τaccr = τre f

(
ρre f

ρg

)(
Tre f

Tg

)(
ZM⊙

Zg

)
(5)

where pg, Tg, and Zg are the local gas density, temperature,
and metallicity, respectively, and the others are reference values.
pre f = 100H atoms cm−3, Tre f = 20K and τre f = 10 Myr.

These dust grains are eventually destroyed by thermal sputtering
following Popping et al. (2017) and McKinnon et al. (2017), with
the timescale expressed as

τsp = a
∣∣∣∣da

dt

∣∣∣∣−1

∼ (0.17Gyr)
(

a
0.1µm

)(
10−27g cm−3

ρg

)
×
[(

T0

Tg

)w

+ 1
]
. (6)

where w = 2.5 controls the low-temperature scaling of the sput-
tering and T0 = 2 × 106K is the temperature above where the
sputtering curve starts to flatten. The growth rate of the dust due to
this sputtering is then calculated by

(
dMd

dt

)
sp
=− Md

τsp/3
. (7)

SN blasts are not resolved in the simulations and are imple-
mented by a subgrid model for dust destruction by SN shocks
following Dwek & Scalo (1980), Seab & Shull (1983), and McKee
et al. (1987); McKee (1989). The timescale τde is

τde =
Mg

εγMs
, (8)

where Mg is the local gas mass, ε = 0.3 is the efficiency of local
gain destruction, γ is the local SNe II rate, and Mg is the mass of
the local gas shocked at 100km s−1. Finally, a solar abundance of
Z⊙ = 0.0134 is assumed for the star formation and grain growth
models taken from Asplund et al. (2009).

The parameters governing these processes are listed in Table 1
(Li et al. 2019). It is important to note that these parameters are
adjusted to align with observations at low redshifts; therefore, the
z = 0 simulation matches observations by construction rather than
prediction.

We utilize the SIMBA m100n1024 simulations at redshifts
z = 0.0, 0.1, 0.5, 1.0, 1.5 for our comparisons. This simulated cos-
mological cube has a side length of 100h−1 Mpc and contains 10243

dark matter and gas elements. The mass resolution limits of SIMBA
are 9.6 × 107M⊙ for dark matter particles and 1.82 × 107M⊙ for
gas elements. This simulation adheres to the Planck16 concordant
cosmology method (Planck Collaboration et al. 2016).
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4. Sample selection

To start our comparisons between the observations and SIMBA, we
must ensure that our combined observational dataset is compre-
hensive and addresses any limitations inherent to each dataset. To
accomplish this, we applied specific restrictions regarding red-
shift, dust mass, stellar mass, and SFR to our datasets. These
measures helped facilitate fair and accurate comparisons between
observations and simulations.

Our implementation of redshift restrictions relies primarily
on the snapshots provided by SIMBA, as described in Section 3.
Accordingly, we also must limit our observational datasets to these
ranges. A cut of z = 0.025 was then applied at each redshift on
either side of the initial redshift to ensure consistent comparisons
across cosmic time, resulting in a total bin width of ∆z = 0.05.
Since no data is available before z = 0.0, we have limited the right-
hand side of the data to the specified redshift bin while maintaining
the same range.

These datasets also have limitations concerning volume and
sensitivity (see Section 6.2). Given these constraints, along with the
stellar mass and dust mass resolution limits of SIMBA described in
Section 3, we chose to limit our dust mass to 106 < MD[M⊙]< 109,
stellar mass to 108.59 < M⊙ < 1011.5, and SFR to 10−2 < M⊙/yr <

102. These selected ranges proved to be the most effective in min-
imising the limitations of each dataset and ensuring a complete
sample across the datasets. We also excluded GAMA at z = 0.5,
G10-COSMOS at z = 0.0, and 3D-HST for z < 0.5 because these
volume limitations at these redshifts negatively influenced our
results.

Please refer to Table 1 and Figure 2 for a comprehensive
overview of our redshift selections and a quantitative comparison
of the number of galaxies between observations and simulations.

5. Results

After selecting and constraining our samples, we compare the dust
content and properties between GAMA/G10-COSMOS/3D-HST
and SIMBA, following the selections outlined in Section 4. We
acknowledge that the significant differences in sample size (Table
1) may introduce some bias in our results and could account for
some observed differences between the observations and the model.

5.1. Dust mass functions

Figure 3 shows the redshift evolution of the DMFs, comparing
ours, the simulation and other observational data consisting of data
from Dunne et al. (2011), Clemens et al. (2013), and Beeston et al.
(2018) at z = 0.0 and Eales et al. (2009) at z = 1.0. We use these
findings, presented in Li et al. (2019), as an additional complement
to our results. We also do not standardise our data to their assumed
dust mass absorption coefficient and cosmological parameters, as
the difference between the observations and simulations is trivial.
This may introduce some slight discrepancies, but it should be
sufficient for our comparisons.

At z = 0.0, our data agrees well with SIMBA and broadly follows
the other observed data. SIMBA data underestimates the DMF in
the medium-mass range, where the observational dataset contains
about ∼ 36% of the total galaxies observed. Otherwise, it matches
quite well in the low-mass end. The model at z = 0.1 exhibits
similar characteristics with a more significant underestimate in the
medium-mass range where a substantial portion of the observational

a

Figure 3: DMFs from observations and simulations at z = 0 − 1.5. Eales
et al. (2009) is plotted from data in the range 0.6 < z < 1.0 and Dunne et al.
(2011) and Beeston et al. (2018) is plotted from data in the range 0.0 <
z < 0.1. Our results are not standardised to the cosmological parameters
described in Li et al. (2019).

dataset lies (∼ 50%) and a slight underestimation near the high-
mass end, but this range consists only of ∼ 5% of the total galaxies
in the observations. The model at z = 0.5 is where Simba begins to
deviate from the observational data noticeably. SIMBA significantly
underestimates the low-mass end where a significant portion of
the observational data lies (∼ 74%) and slightly underestimates
the high-mass end, but similar to z = 0.1, it consists of only about
∼ 5% of the total observational total. This pattern continues in
the z = 1.0 model, where SIMBA underestimates dust near the low
and high ends again, where the observational data constitutes ∼
52% and ∼ 9% of the total galaxies, respectively. In contrast, the
z = 1.5 model largely agrees near the low-mass end and similarly
underestimates the high end. However, unlike z = 0.1 and z = 0.5,
the high end of the observational dataset contains about ∼ 25% of
the total galaxies. Please refer to Table 2 for the complete counts of
the observational data in each redshift, dust mass, and stellar mass
bin. We will explore the stellar and dust mass bins further in the
next section.

5.2. Dust mass versus stellar mass

To further investigate the inconsistencies shown in Figure 3, we will
examine the evolution of dust with stellar mass throughout cosmic
time between the two datasets. We illustrate our comparisons in
Figure 4 (log(SFR) ≤ 0) and 5 (log(SFR) ≥ 0) as hex-bin (simu-
lations) and contour (observations) plots color-coded with the star
formation rates of the datasets and normalised stellar mass in Figure
6 to examine the populations explicitly. The graphs (Figure 4 and

https://doi.org/10.1017/pasa.2025.10029 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10029


6 Trevor Butrum et al.

Figure 4: A relation between dust mass and stellar mass of SIMBA and
GAMA/G10-COSMOS/3D-HST of quenching galaxies (SFR ≤ 0) at
z = 0.0 − 1.5. Observations, represented by contours weighted by star for-
mation rates, are drawn at -8, -4, -2, -0.5, 0.5, 2, 4, and 8. The simulation,
SIMBA, is plotted as hex-bins. Both are colour-coded according to star
formation rates.

5) are divided into log(SFR) ≤ 0 and log(SFR) ≥ 0 galaxies and
catalogues (Figure 6) to highlight where the differences between
the datasets are the most concentrated.

We will start with our results from Figure 4 representing low-
SFR galaxies. At z = 0, our data generally agrees well with SIMBA.
However, there is a noticeable mismatch between the observations
and the simulations. The observations’ low-SFR dust-poor galaxies
are found at the lowest stellar masses (108.59 − 109.5) consisting of
about 74% of the total observed galaxies in this SFR range, while in
the simulations, they are more prevalent at medium stellar masses
(109.5 − 1010.5). However, compared to SIMBA, the sample size of
GAMA (see Table 1) is significantly smaller, which may explain
this difference. In contrast to z = 0.0, at z = 0.1, the data matches
closely with the model but misses massive dust-poor galaxies and
dust-rich galaxies. The z = 0.5 model, on the other hand, resembles
the z = 0.0 model but offers an improved match in the previously
identified mismatched region. Regardless, the model misses a small
fraction (< 2%) of dust-rich galaxies at this redshift. At z = 1.0, the
model matches closely with the observations but similarly misses
some dust-rich galaxies (< 5%). Once again, the z = 1.5 model
closely matches the observations; however, the observations do not
reflect the massive dust-poor galaxies predicted by the simulations.

We will now focus on the results from Figure 5 representing
high-SFR galaxies. At z = 0.0, the observational data with galaxies
near the minimum SFR closely aligns with the simulated galax-
ies, yet it misses massive high-SFR galaxies. The data shows a
trend similar to that in Figure 4 at z = 0.1, with the simulated
data failing to account for dust-rich galaxies of all sizes, which

Figure 5: A relation between dust mass and stellar mass of SIMBA and
GAMA/G10-COSMOS/3D-HST of star-forming galaxies (SFR ≥ 0) at
z = 0.0 − 1.5. Observations, represented by contours weighted by star for-
mation rates, are drawn at -8, -4, -2, -0.5, 0.5, 2, 4, and 8. The simulation,
SIMBA, is plotted as hex-bins. Both are colour-coded according to star
formation rates.

consists of ∼ 11% of the total number of galaxies in this SFR
range. Additionally, while the concentration of high SFR in the
observations is comparable, it is more concentrated in medium-
sized galaxies than in massive ones. Once again, the z = 0.5 model
closely resembles the z = 0.0 data and misses massive high-SFR
galaxies. At z = 1.0, the model produces results consistent with
those shown in Figure 4. At z = 1.5, the general trend of the obser-
vational data aligns with the simulations. However, the model fails
to predict the clump of small dust-rich galaxies at this redshift,
consisting of ∼ 20% of the total observed galaxies at this SFR
range.

Figure 6 coincides with a lot of the discrepancies we are seeing
in these low- and high-SFR galaxies. At z = 0.0, we can clearly
see a peak of the galaxy population in the SIMBA data around
109 − 1010M⊙ that aligns perfectly with the large distribution in
this range in low-SFR galaxies in Figure 4. This peak continues
to z = 0.5 and vanishes from z = 1.0 onward, matching again what
we see in the low-SFR figure. The massive dust-poor and rich low-
SFR galaxies missing in the SIMBA data can also be seen here, as
the observational data favours high-mass galaxies, while SIMBA
favours low- to intermediate-mass galaxies. However, this high
mass favour in the observations is likely due to the sensitivity limits
in GAMA (see Section 6.2). At redshifts z = 0.5 to z = 1.5, the
population of galaxies reveals a distinct difference between SIMBA
and the observations, as the observations appear to favour and peak
at low masses, whereas SIMBA peaks at more intermediate masses.
This aligns perfectly with what we see in Figures 4 and 5.
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Figure 6: Normalized counts of stellar mass from SIMBA and GAMA/G10-
COSMOS/3D-HST. The observational dataset is separated into individual
surveys to highlight the distinctions between them.

6. Discussion

Through our analysis comparing observations with simulations and
using dust masses derived from Driver et al. (2018) and simulated
by Davé et al. (2019), we have identified several significant discrep-
ancies in the modern simulation model SIMBA. Notably, we find
a tension between the dust-rich and dust-poor galaxies modelled
in SIMBA and those observed. In the following sections, we will
attempt to address follow-up questions related to our conclusions,
including discussing notable limitations of our datasets, comparing
our work with similar analyses conducted by others, and outlining
potential future research that could enhance the outcome of our
results and improve our models.

6.1. Comparison to other works

Our understanding of how dust evolves across cosmic time has
evolved rapidly over the past decade, thanks in part to the hard work
done to simulate the physical processes that govern its creation,
growth, and destruction. To ensure the precision of these simu-
lations, it is crucial to compare leading models, such as SIMBA,
directly with observational data and each other. This comparison
helps us determine how effectively each model reproduces the
observed data and where future models can improve. In this con-
text, we compare our findings with previous works, focusing on
those that have performed analyses similar to ours.

Since our work builds directly on the findings of Li et al. (2019),
a paper that also compares with the SIMBA model, it is encouraging

that our results align well with theirs. Especially at z = 0.0, we
find that our findings agree well with the previous observations,
also included in our paper, and also follow a trend similar to the
simulations provided by SIMBA. We also find agreement at z = 1.0
with their findings and previous observations from Eales et al.
(2009) that SIMBA underestimates the observed DMF, especially
at the higher end. With our additional data, we also found that
SIMBA underestimates a large fraction of dust-poor galaxies at this
redshift and similarly at z = 0.5. We believe that this underestimate
is probably a byproduct of an inherent resolution limit (Zheng et al.
2021) in SIMBA, as this is consistent between z = 0.5 and z = 1.5.

The M16 (McKinnon et al. 2016) and L25n256 (McKinnon
et al. 2017) models are hydrodynamical dust models that track dust
production, growth, and destruction up to the early universe, similar
to SIMBA. We note that the L25n256 model is the successor of the
M16 model that includes thermal sputtering and uses different
dust growth parameters following the work by Hirashita (2000).
At a redshift z = 1.0, the high-mass end of the DMF predicted
by the M16 model aligns well with our observations, though it
overestimates it at z = 0.0. The M16 model appears to excel at
assembling massive dust-rich galaxies, more so than SIMBA, which
may explain its overestimation at z = 0.0. On the other hand, the
L25n256 model presents the opposite and matches the high-mass
end at z = 0.0 but significantly underestimates the DMF at z = 1.0,
similar to SIMBA.

The fiducial dust model in Popping et al. (2017) is a semi-
analytical model (SAM) that includes new recipes to track the
production and destruction of dust up to the early universe. Despite
the difference in how SIMBA and Popping et al. (2017) model dust
across cosmic time, both present similar dust mass functions that
generally agree with each other. Due to this agreement, the fiducial
model similarly underestimates the DMF at z = 1.0. Unlike SIMBA,
the model presents a slightly worse match at z = 0.0 as it overesti-
mates the DMF at the high end compared to our observations. This
work also considers the dust-to-stellar mass relation as we do in
Figures 4 and 5. However, Popping et al. (2017) presents their com-
parisons as functions, and although different, their overall shape
seems to agree well with our observations at z = 0.0 and z = 1.0.

Donevski et al. (2020) also compares this dust-to-stellar mass
relation and uses SIMBA, similar to ours. However, they focus on
earlier redshifts outside the scope of this paper, so we are unable to
compare their results directly.

Similarly to the work done by Popping et al. (2017), Triani et al.
(2020) uses a SAM model incorporated with their Dusty SAGE
model. Their model effectively matches the dust mass functions
compared to ours at z = 0.0 and shows good agreement with SIMBA
and may even be a better match. They also present a dust mass
function at z = 1.386, which underestimates the function compared
to our similar redshift results at z = 1.0 and z = 1.5. Additionally,
their model includes a dust-to-stellar mass relation; however, like
Popping et al. (2017), their comparison is based on functions, pre-
venting a direct comparison. However, the shape of their data
appears to follow a trend similar to ours.

The Hou et al. (2019) model is a hydrodynamical simulation
with a dust enrichment model that takes into account two different
grain sizes and accounts for stellar dust production and interstellar
dust processing. Unlike these other models, the proposed model
disagrees with our observations at all epochs. At both z = 0.0 and
z = 1.0, the model overproduces dust-rich galaxies and does not
align with our observed DMFs in shape. It is possible that they
produce too many massive galaxies at all redshifts in this case.
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Table 2. : Galaxy counts for GAMA/G10-COSMOS/3D-HST in different stellar mass, dust mass, and SFR bins.

Redshift Bins (z) log M∗ [M⊙] SFR > 0 SFR < 0

log Md [M⊙] = 6 − 7 log Md [M⊙] = 7 − 8 log Md [M⊙] = 8 − 9 log Md [M⊙] = 6 − 7 log Md [M⊙] = 7 − 8 log Md [M⊙] = 8 − 9

0.0 – 0.05

8.59-9.5 26 28 1 601 88 0

9.5-10.5 25 170 15 164 148 1

10.5-11.5 0 42 6 54 40 2

0.07748 – 0.12748

8.59-9.5 513 492 57 1507 681 0

9.5-10.5 951 2753 392 2579 1904 62

10.5-11.5 45 833 272 1107 893 76

0.46544 – 0.51544

8.59-9.5 466 65 6 878 41 1

9.5-10.5 156 179 56 360 95 18

10.5-11.5 14 88 51 93 99 12

0.9677 – 1.0177

8.59-9.5 1450 869 53 800 16 1

9.5-10.5 413 886 178 496 218 24

10.5-11.5 19 220 259 73 138 63

1.4717 – 1.5217

8.59-9.5 655 471 260 568 15 0

9.5-10.5 215 579 444 41 52 1

10.5-11.5 11 116 242 1 13 7

6.2. Limitations

Here, we discuss the limitations of our datasets to attempt to explain
the discrepancies observed between SIMBA and our observations
in Section 4.

6.2.1. Observational limitations

As noted in Sections 2.1-2.3, our datasets vary significantly in the
FIR coverage, directly affecting the dust mass estimation performed
by MAGPHYS. The GAMA dataset provides full FIR coverage,
while G10-COSMOS offers partial coverage, and the 3D-HST
dataset lacks any coverage. In cases where FIR coverage is present,
dust mass estimations in G10-COSMOS depend on constraints
from total IR emissions (Jin et al. 2018; Magnelli et al. 2024).
Meanwhile, dust mass estimations for the 3D-HST dataset depend
solely on extinction measurements due to the absence of FIR data
in MAGPHYS (da Cunha et al. 2008). These indirect methods for
estimating the dust mass can lead to systematic underestimations
for G10-COSMOS and 3D-HST. As noted in Driver et al. (2018),
the absence of FIR coverage in these surveys adds systematic error
to the dust mass estimates produced by MAGPHYS, particularly in
the earlier redshifts where G10-COSMOS and 3D-HST coverage
is prevalent (see Table 6). Future research should concentrate on
improving our far-infrared coverage to address this limitation.

Beyond this, these datasets are volume-limited down to specific
dust mass, stellar mass, and star formation rate at low redshifts
and similarly sensitivity-limited at high redshifts due to the inher-
ent limitations of each survey (see Table 3; Driver et al. 2018).
These volume and sensitivity limits result in significant systematic
uncertainties and limit our sample sizes (see Table 1). For exam-
ple, volume limits result in a minimum dust mass that correlates
with the redshift for z ≥ 1.5, adding restrictions to our sample (see
Figure 2). Furthermore, in Figure 6, we can see that GAMA and
G10-COSMOS are sensitivity limited at z = 0.1 and z = 1.5, respec-
tively, while G10-COSMOS and 3D-HST are volume limited at
z = 0.1 and z = 0.5, respectively. These limitations also introduce
random errors, such as cosmic variance and Poisson errors, as well
as errors from Eddington Bias (see Tables 3-6; Driver et al. 2018).

Improving survey volume and sensitivity is imperative to overcome
this limitation, especially in earlier epochs.

Finally, while not as significant as the other limitations, AGN
contamination in the data can lead to extreme estimates of stellar
masses and star formation rates, with some minor impact on dust
estimates. Therefore, it was essential to remove AGN contaminants
(described in Sections 2.1, 2.2, and 2.3) to avoid these effects.
However, as noted in Driver et al. (2018), the removal process
introduces errors (see Tables 4-5).

6.2.2. Model caveats

Although robust, the SIMBA model also has some caveats that
affect our comparisons. We also summarise these caveats in three
main points. First, the parameters that govern dust production,
growth, and destruction are not well constrained, which introduces
uncertainties in the model predictions (Table 1; Li et al. 2019). A
combination of these different free parameters from what Li et al.
(2019) chose may lead to a better match with the observations.
Second, the model does not fully incorporate dust physics. It only
models the ISM by depleting gas-phase metals and includes inac-
tive dust particles that are only coupled to gas particles and do not
change in size over time. However, the latter is more of an issue in
a higher resolution simulation. Finally, the simulation of 100h−1

Mpc lacks sufficient resolution to resolve the smallest scales of a
multiphase ISM accurately. To overcome this resolution limitation,
the model was adjusted such that τref, the growth timescale of dust
in the SIMBA, was modified to increase the effective gas density
and the parameters governing dust destruction and condensation
were fixed. Popping & Péroux (2022), a paper that compares mul-
tiple simulations, including SIMBA, also suggests that this time
scale is too short and that modelling these effective yields requires
more parameters than our simulations cannot yet resolve. Thus, con-
straining the free parameters in a fully resolved multiphase ISM in a
higher resolution simulation will allow us to understand small-scale
dust physics better and help improve the match to observational
data, ushering in the need for better modelling and observations
to contain those models. However, despite the presence of these
dust-related caveats, we see no indication that these caveats are
having a significant effect on our results.
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7. Conclusion

We have presented dust comparisons between our observational
data and the simulation model SIMBA. The SIMBA model exhibits
rough agreement with our observations in DMFs and dust mass
versus stellar mass across all epochs, but its limitations are apparent.
From our comparisons, we concluded the following:

(i) SIMBA misses dust-rich galaxies for all epochs above z = 0.0
(Figure 3-5). This is consistent in low and high SFR and is
likely a byproduct of the limitations of the SIMBA model at
later redshifts and a byproduct of survey limitations at earlier
redshifts (see Section 6.2.1-6.2.2).

(ii) SIMBA has a higher concentration of intermediate-mass
low-SFR galaxies when compared to observations (Figure 4-6).
This is consistent in redshifts up to z = 0.5. At these redshifts,
SIMBA may not be able to accumulate sufficient stellar mass to
form more massive dust-rich galaxies as SIMBA galaxies seem
to clump around 109 − 1010M⊙.

(iii) SIMBA does not accurately model low-dust mass galaxies at
earlier redshifts, specifically at z = 0.5 and z = 1.0. We believe
that this is a limitation in SIMBA presenting at these redshifts
(Figure 6).

Overall, with our current comparisons, we do not see specific
indications that SIMBA has problems related to its implementations
of dust physics, despite the limitations of the dust model itself.
Rather, we predominantly see that issues arise from differences
in galaxy populations, leading to the observed discrepancies in
dust mass. Some of these issues could be solved with a higher
resolution simulation, especially between z = 0.5 and z = 1.5, but
later redshifts indicate a problem within the SIMBA model itself.
As for the observational data, significant survey limitations impact
some of our results, so future observations should focus on improv-
ing survey volume and FIR coverage. Several surveys promise to
improve statistics here, such as WAVES for spectroscopic redshifts,
Rubin Observatory’s Deep Drilling Fields combined with Euclid
Deep Field observations, and the ALMA-wide survey on COSMOS,
which covers only the brightest galaxies and will improve statistics
there.
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