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The influence of parametric forcing on a viscoelastic fluid layer, in both gravitationally
stable and unstable configurations, is investigated via linear stability analysis. When such
a layer is vertically oscillated beyond a threshold amplitude, large interface deflections
are caused by Faraday instability. Viscosity and elasticity affect the damping rate of
momentary disturbances with arbitrary wavelength, thereby altering the threshold and
temporal response of this instability. In gravitationally stable configurations, calculations
show that increased elasticity can either stabilize or destabilize the viscoelastic system.
In weakly elastic liquids, higher elasticity increases damping, raising the threshold
for Faraday instability, whereas the opposite is observed in strongly elastic liquids.
While oscillatory instability occurs in Newtonian fluids for all gravity levels, we
find that parametric forcing below a critical frequency will cause a monotonic
instability for viscoelastic systems at microgravity. Importantly, in gravitationally unstable
configurations, parametric forcing above this frequency stabilizes viscoelastic fluids, until
the occurrence of a second critical frequency. This result contrasts with the case of
Newtonian liquids, where under the same conditions, forcing stabilizes a system for all
frequencies below a single critical frequency. Analytical expressions are obtained under
the assumption of long wavelength disturbances predicting the damping rate of momentary
disturbances as well as the range of parameters that lead to a monotonic response under
parametric forcing.
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1. Introduction
The damping rate of the interface of a viscoelastic liquid, such as a polymeric solution,
depends on both its viscous and elastic properties, when the fluid is subjected to
momentary disturbances. The viscous component dissipates the imposed disturbances,
while the elastic component gives rise to restorative forces due to elastic stresses. The
memory associated with these stresses therefore alters the behaviour of the fluid when it
is subjected to time-periodic acceleration, which is the subject of the current study.

The influence of viscoelasticity is apparent in its notable impact on the instability
threshold that arises from parametric forcing, as reported in early theoretical studies
(Kumar 1999; Müller & Zimmermann 1999). These theoretical investigations compared
the resonant characteristics of Newtonian fluids with polymeric solutions in the presence
of gravity. The onset of the instability, known as Faraday instability, was predicted by a
mathematical model similar to the one proposed by Kumar & Tuckerman (1994), upon
incorporating a Maxwell constitutive relationship (Bird et al. 1987). The mechanical
analogue of the dynamic behaviour of Maxwell fluids is often represented by a dashpot
and spring in series, where the dashpot reflects the viscous response to disturbances
and the spring reflects the elastic response (Guyon et al. 2015). Viscoelastic fluids, such
as the one studied by Kumar (1999) and Müller & Zimmermann (1999), following a
Maxwell constitutive relationship, behave more like a viscous liquid under low-frequency
oscillatory disturbances and more like an elastic solid under high-frequency oscillatory
disturbances. By contrast, soft polymeric gels characterized by Kelvin–Voigt constitutive
laws exhibit the opposite response (Morozov & Spagnolie 2015). Likewise, different
dynamic behaviour and temporal response are reported when solid gels are subjected to
parametric forcing as seen in several interesting studies (Shao et al. 2018, 2020; Bevilacqua
et al. 2020).

Focusing on the dynamical behaviour of a Maxwell fluid in the presence of parametric
forcing, linear stability calculations were performed by Kumar (1999) and Müller &
Zimmermann (1999) who assumed the properties of various polymer solutions with
different levels of elasticity, expressed in terms of the relaxation time, i.e. the time
scale for the polymer chains to relax within the solvent. It was demonstrated that the
threshold amplitude for the onset of Faraday instability decreases with an increase in
elasticity. The findings of these studies, which assumed infinitely wide and deep fluid
layers, revealed a predominantly harmonic interface response for frequency ranges where
the forcing frequency is close to the inverse of the relaxation time. Beyond these frequency
ranges, it was shown that a subharmonic mode becomes more unstable than the harmonic
mode. This is in contrast to a Newtonian liquid, where a subharmonic response is always
dominant in deep liquid layers (Kumar 1996). In the work of Kumar (1999), Faraday
forcing in finite depths were also considered and it was observed that the harmonic mode
becomes more dominant than the case of infinitely deep liquids. This result was attributed
to increased vertical viscous stresses.

Experimental validation of these theories was provided by Wagner et al. (1999) who
used a dilute solution of polyacrylamide-co-acrylic acid polymer in a glycerol–water
mixture solvent. Such a fluid mixture is not shear-thinning and follows a Maxwell
constitutive relation. Through these experiments, the authors not only confirmed the
presence of harmonic patterns but also demonstrated that the theoretical models of Müller
& Zimmermann (1999) and Kumar (1999) accurately predict the experimental onset of
Faraday waves. By contrast, experiments performed by Raynal et al. (1999), Ballesta
& Manneville (2005) and Cabeza & Rosen (2007) employing shear-thinning polymeric
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solutions, while showing qualitative agreement, revealed quantitative discrepancies
with the theories for non-shear-thinning fluids (Kumar 1999; Müller & Zimmermann
1999).

In a recent study, Schön & Bestehorn (2023) investigated the threshold limits and
nonlinear behaviour of the interface of a Maxwell fluid undergoing resonant instability.
They used a reduced-order model, making a thin-layer approximation that included both
inertial and elastic terms, crucial to predicting the Faraday instability. Using this model,
they observed that the threshold amplitude for the onset of Faraday instability decreases
with an increase in frequency and does so at a faster rate compared with a Newtonian
liquid.

The principal purpose of the current work is to study the effect of different gravity levels
on the parametric forcing of a layer of viscoelastic fluid. To this end, we consider the same
constitutive model, i.e. the Maxwell model, studied theoretically by Kumar (1999), Müller
& Zimmermann (1999), Schön & Bestehorn (2023) and experimentally by Wagner et al.
(1999), now focusing on the effect of gravity on a parametrically forced viscoelastic fluid
layer.

The current work differs from earlier studies on gravitationally stable configurations
in two significant ways. First, we present new findings for the gravitationally stable
case in the weakly elastic limit. Second, we examine two additional scenarios: one in
which gravity is weak, i.e. the microgravity case and another where the system becomes
gravitationally unstable. As a result, we make several important observations. In the
gravitationally stable case, while Kumar (1999) observed that the threshold for Faraday
instability decreases as the Deborah number increases for high Deborah values under
Earth’s gravity, our study goes further by exploring weakly elastic fluids, i.e. having small
relaxation times. Upon doing so, we find that in the weakly elastic limit, the threshold for
Faraday instability actually increases with elasticity, which contrasts with the behaviour
observed in strongly elastic fluids. These results are supported by asymptotic expressions
for the inverse time constants in the long-wavelength limit. In the microgravity case, we
observe a striking transition from oscillatory to monotonic behaviour as the gravity level
decreases. As gravity approaches zero, monotonic instability dominates, a phenomenon
that has not been previously reported. This shift to monotonic instability in microgravity
has implications for the case in which the fluid is gravitationally unstable. Finally, in
the gravitationally unstable case, unlike the case of Newtonian fluids where parametric
forcing always has a stabilizing effect (Sterman-Cohen et al. 2017), the present study
reveals the possibility of either stabilization or destabilization for the case of viscoelastic
fluids. Specifically, upon considering fluids of finite lateral extent, we find a range of
forcing amplitudes between two critical parametric frequencies where we can stabilize
an otherwise gravitationally unstable system, without triggering resonance. This stands in
stark contrast to a Newtonian fluid system where we have only one critical frequency below
which complete stabilization may be achieved (Ignatius et al. 2024). These new results are
supported by algebraic expressions derived from a low-dimensional model based on a
long-wavelength approximation (Ruyer-Quil & Manneville 2000). These expressions not
only predict the instability ranges but also provide insight into the physical phenomena
involved in the parametric forcing of viscoelastic fluids.

The manuscript is arranged as follows. In § 2, we give the mathematical model for
the parametric forcing of a Maxwell liquid in a configuration as described in figure 1.
In § 3, we investigate the effect of elasticity on the fluid’s damping rates, or more generally
the inverse time constants, to momentary disturbances. The behaviour of the inverse time
constants with fluid elasticity forecasts the effect of the latter on the threshold amplitude
of Faraday instability as well as the interface’s temporal response in both gravitationally
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g Passive gas

Viscoelastic liquid

z∗

x∗

d∗

W ∗
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s (ω ∗t ∗)

Figure 1. Schematic of the studied configuration in the moving frame of reference. Depicted is a viscoelastic
liquid layer in contact with a passive gas aligned with the gravity vector, g. The fluid container is subject to a
vertical mechanical acceleration, A∗ω∗2 cos(ω∗t∗)ez, with respect to the laboratory frame.

stable and microgravity configurations. This is analysed in § 4. Finally, in § 5, we discuss
the influence of parametric forcing on a gravitationally unstable viscoelastic system.

2. Mathematical model
Consider a viscoelastic liquid layer of unperturbed height, d∗, in a container of width, W ∗,
and in contact with a passive gas as shown in figure 1. The fluid system is subjected to the
gravitational acceleration, g, and a mechanical oscillation of angular frequency, ω∗, and
amplitude, A∗, in the direction of gravity. We consider this system in the moving frame
of reference, x∗, z∗, i.e. a frame that rests on the initial flat interface and moving with the
container. In addition to properties such as density, ρ, viscosity, μ, and surface tension,
γ , the liquid possesses a shear modulus, G, which imparts elastic character. Fluid flow
in the system is governed by the nonlinear equations of momentum subject to continuity
and appropriate interfacial conditions. These are expressed next in the moving frame of
reference first in unscaled form, and then rendered dimensionless using suitable scaling
variables.

2.1. Nonlinear equations
The continuity and momentum equations are

∇∗.v∗ = 0 (2.1)

and

ρ

(
∂v∗

∂t∗
+ v∗ · ∇∗v∗

)
= −∇∗ p∗ + ∇∗ · τ ∗ − ρ

(
g + A∗ω∗2cos(ω∗t∗)

)
ez, (2.2)

where τ ∗ is the stress tensor and ez is the unit vector in the z-direction. The constitutive
equation for the viscoelastic liquid is described by an upper-convected Maxwell equation
(Morozov & Spagnolie 2015), a nonlinear model that includes frame-invariant derivatives
in the stress-strain rate relationship. This is expressed as

τ ∗ + λ
(
∂τ ∗

∂t∗
+ v∗ · ∇∗τ ∗ − (∇∗v∗)T · τ ∗ − τ ∗ · (∇∗v∗)

)
=μ

(
∇∗v∗ + (∇∗v∗)T

)
,

(2.3)
where λ=μ/G is the relaxation time.

At the bottom wall, z∗ = −d∗, we impose no-slip and no-penetration conditions, i.e.

v∗ = 0. (2.4)
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At the impenetrable interface, z∗ = h∗(x∗, t∗), the jump mass balance gives

(v∗ − u∗) · n∗ = 0. (2.5)

The jump force balance yields an equation in terms of the stress tensor, τ∗, and is given
by

− p∗n∗ + n∗ · τ ∗ + γ n∗∇∗ · n∗ = 0, (2.6)

for which the interface speed, u∗ · n∗, and the unit normal, n∗, are given by

u∗ · n∗ =
∂h∗

∂t∗(
1 +

(
∂h∗

∂x∗

)2
) 1

2
and n∗ =

− ∂h∗

∂x∗ ex + ez(
1 +

(
∂h∗

∂x∗

)2
) 1

2
. (2.7)

The characteristic scales used to convert the governing equations into scaled form are

x = x∗

W ∗ , z = z∗

d∗ , t = t∗( d∗

εU

) , ω=ω∗ ( d∗

εU

)
, u = u∗

U
, w= w∗

εU
,

p = p∗( μU
d∗

) , τxx = τ ∗
xx( εμU
d∗

) , τxz = τ ∗
xz( μU
d∗

) and τzz = τ ∗
zz( εμU
d∗

) , (2.8)

where U is a characteristic velocity in the x-direction to be defined in § 4, (4.1).
Note that we render x and z dimensionless using W ∗ and d∗, respectively. This leads to

a length scale separation parameter, ε, given by ε = d∗/W ∗, which will play an important
role when we consider the long-wave limit of the problem to derive algebraic formulae that
can predict stability ranges. Non-dimensionalizing equations (2.1) and (2.2) and expressing
them in component form, we get

∂u

∂x
+ ∂w

∂z
= 0, (2.9)

εRe

(
∂u

∂t
+ u

∂u

∂x
+w

∂u

∂z

)
= −ε ∂p

∂x
+ ε2 ∂τxx

∂x
+ ∂τxz

∂z
(2.10a)

and

ε3Re

(
∂w

∂t
+ u

∂w

∂x
+w

∂w

∂z

)
= −ε ∂p

∂z
+ ε2 ∂τxz

∂x
+ ε2 ∂τzz

∂z
− ε(G +A cos(ωt)).

(2.10b)
Likewise the scaling of (2.3) yields

τxx + De

[
∂τxx

∂t
+ u

∂τxx

∂x
+w

∂τxx

∂z
− 2

(
τxx

∂u

∂x
+ 1
ε2 τxz

∂u

∂z

) ]
= 2

∂u

∂x
, (2.11a)

τxz + De

[
∂τxz

∂t
+ u

∂τxz

∂x
+w

∂τxz

∂z
−

(
ε2τxx

∂w

∂x
+ τzz

∂u

∂z

) ]
= ∂u

∂z
+ ε2 ∂w

∂x
(2.11b)

and

τzz + De

[
∂τzz

∂t
+ u

∂τzz

∂x
+w

∂τzz

∂z
− 2

(
τxz
∂w

∂x
+ τzz

∂w

∂z

) ]
= 2

∂w

∂z
. (2.11c)
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In the above, the Reynolds number is given by Re = ρUd∗/μ. It is the ratio of the
characteristic time due to viscous damping and the characteristic time due to flow.
The Deborah number, De = λ(εU/d∗)= (μ/G)(εU/d∗) characterizes the ratio of the
relaxation time due to elasticity and the characteristic time due to flow. The ratio De/Re
is thus independent of the characteristic flow speed, U . The scaled gravity is given by
G = ρgd∗2/(μU ) and scaled forcing amplitude becomes A = ρA∗ω∗2d∗2/(μU ).

The scaled boundary conditions are

u = 0 and w= 0 at z = −1, (2.12)

while at the interface, z = h(x, t), the jump mass balance condition become

εw− εu
∂h

∂x
= ε

∂h

∂t
, (2.13a)

and the tangential and normal components of the force balance become

τxz

(
1 − ε2

(
∂h

∂x

)2
)

+ ε2(τzz − τxx )
∂h

∂x
= 0 (2.13b)

and

−εp + ε2

[
τzz + ε2τxx

(
∂h

∂x

)2

− τxz

(
∂h

∂x

)] [
1 + ε2

(
∂h

∂x

)2
]−1

= ε3 1
Ca

∂2h

∂x2

[
1 + ε2

(
∂h

∂x

)2
]− 3

2

,

(2.13c)

where Ca =μU/γ is the capillary number.
In nonlinear simulations, solving (2.11) at high De can lead to numerical instabilities.

Methods to address such issues in viscoelastic flow have been reviewed by Alves et al.
(2021). For instance, Sureshkumar & Beris (1995) introduced an artificial diffusive stress
term to suppress instabilities, which necessitates specifying boundary conditions for the
stress tensor. In our study, however, we do not perform nonlinear simulations and thus do
not encounter numerical instabilities. Instead, we use linear stability analysis where, as
we shall see in § 2.2, the stress tensor components can be directly determined in terms of
velocity components or their spatial derivatives (see (2.19)).

2.2. Linear stability
Assuming stress-free side conditions at x = 0 and x = 1, the governing equations (2.9)–
(2.13) are perturbed around the base state, which is quiescent with respect to the moving
frame of reference, using

φ = φ0 + φ1 = φ0 + sin kx eσ t
n=N∑
n=−N

φ̂ne
(inωt)/2 (2.14)

and

ψ =ψ0 +ψ1 =ψ0 + cos kx eσ t
n=N∑
n=−N

ψ̂ne
(inωt)/2, (2.15)
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where φ corresponds to the unknown dependent variables u and τxz and ψ corresponds
to w, τxx , τzz , p and h. The subscript 1 denotes the infinitesimal disturbance with a
wavenumber, k, and an inverse time constant, σ . The summation in (2.14) and (2.15)
ensures compatibility with the parametric forcing term in (2.10b), with N denoting the
number of oscillatory modes considered (Nayfeh 1981). The quiescent base state (denoted
by subscript 0) is given by

u0 =w0 = 0, τxx0 = τxz0 = τzz0 = 0, −∂p0

∂z
= G +Acos(ωt) and h0 = 0. (2.16)

Next, we substitute the forms given by (2.14), (2.15) and (2.16), into (2.9)–(2.13)
and linearize these in terms of the amplitudes φ̂ and ψ̂ . In the resulting equations,
(2.17)–(2.23), which are written below, we have dropped for convenience the terminology
related to the summation over the temporal modes, except for (2.23). Thus, we obtain

ku + ∂w

∂z
= 0, (2.17)

εRe
(
σ + inω

2

)
u = εkp − ε2kτxx + ∂τxz

∂z
, (2.18a)

ε3Re
(
σ + inω

2

)
w= −ε ∂p

∂z
+ ε2kτxz + ε2 ∂τzz

∂z
(2.18b)

and

τxx + De
(
σ + inω

2

)
τxx = 2ku, τxz + De

(
σ + inω

2

)
τxz = ∂u

∂z
− ε2kw

and τzz + De
(
σ + inω

2

)
τzz = 2

∂w

∂z
.

(2.19)

Equations (2.19) reflect the same constitutive relationship used by Müller & Zimmermann
(1999), Kumar (1999) and Schön & Bestehorn (2023). At the bottom wall, z = −1, we
have

u = 0 and w= 0 (2.20)

and at the interface, z = 0, we have

εw= ε
(
σ + inω

2

)
h, (2.21)

τxz = 0 (2.22)

and
n=N∑
n=−N

e(inωt)/2
{

− ε p̂n + ε[G +A cos(ωt)]̂hn + ε2τ̂zz n + k2ε3 1
Ca

ĥn
}

= 0. (2.23)

The above linearized equations are examined from two perspectives. In the first
perspective, A and ω are set to zero and the set of the inverse time constants, σ , is then
computed, observing that, in general, σ is complex. The real parts of σ are negative when
the fluid is in a gravitationally stable configuration. The leading σ is the inverse time
constant whose real part is the least negative among all complex σ . The imaginary part of
the leading σ gives an estimate of the natural frequency of the system (Dinesh et al. 2023).
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When a system is parametrically forced at its natural frequency, resonance-induced
instability is known to occur (Kumar & Tuckerman 1994). Knowing how the real part
of the leading σ behaves with De informs us on how the threshold of the instability
behaves. The more negative the leading σ , the higher the threshold of the resonance-
induced instability. To obtain analytical expressions on the behaviour of σ with De we
appeal to a reduced-order model (the derivation of which is given in Appendix A).

In the second perspective, the dimensionless forcing amplitude, A, is calculated by
setting σ to zero and expressing the dependent variables in terms of the interface
deflection, h (Kumar & Tuckerman 1994). This results in an eigenvalue problem arising
from (2.23) and takes the form

Cx =A Dx, (2.24)

with eigenvalues, A, and eigenvectors x = {̂hN , ĥN−1 . . . .̂h−N }. The detailed forms of the
matrices, C and D, are provided in Appendix B. It should be noted that the eigenvalues
will appear in pairs as ±A on account of the periodic forcing term given in (2.2).
We therefore take A to be positive without any loss of generality. The solutions to
the eigenvalue problem (2.24) are numerically obtained using the Eigenvalue routine in
Mathematica®. The neutral stability curves, A versus k, thus obtained are used to examine
the effect of viscoelasticity on the resonant or Faraday instability. These calculations are
done by relaxing the assumption of small ε, thereby allowing consideration of arbitrary
wavenumbers, k. This is done by using a common length scale, d∗, which amounts to
scaling the horizontal direction with d∗ and setting ε = 1 in the scaled forms given in
(2.8).

The threshold amplitude, numerically obtained using (2.24), can also be obtained
accurately for low wavenumbers by appealing to a reduced-order model (assuming
ε << 1) derived in Appendix A. The advantage of this model is that it provides explicit
relations for σ and A as functions of the wavenumber, k, without having to determine the
eigenfunctions. We now briefly discuss the main results arising from such a model.

2.3. A brief discussion on the reduced-order model
The reduced model is obtained upon dropping terms of O(ε2) in (2.17) to (2.23) and
integrating (2.17) to (2.19) along the z-direction using (2.20) to (2.23) (Kalliadasis et al.
2011). The model yields the following dispersion relation (cf. (A20))

n=N∑
n=−N

e(inωt)/2
{[

1 +
(
σ + inω

2

)
De

][
2
5

(
σ + inω

2

)2

Re ĥn

+1
3

(
Gk2 + 1

Ca
k4
)
ĥn + 1

3
A cos(ωt)k2ĥn

]
+

(
σ + inω

2

)
ĥn

}
= 0.

(2.25)

To get an algebraic expression that yields the inverse time constants, σ , for a system subject
to momentary disturbance, we set A= 0 and ω= 0 in (2.25), divide by a and obtain

(aDe)
(σ
a

)3 +
(σ
a

)2 +
(

1 +
[
b

a

]
(aDe)

) (σ
a

)
+

[
b

a

]
= 0, (2.26)

where the parameters a and b are given by

a = 5
2

1
Re

and b = 1
3

(
k4

Ca
+ k2G

)
. (2.27)
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Solutions to the characteristic equation for inverse time constant, σ (cf. Appendix A),

(aDe)

(
σ

a

) 3

+
(
σ

a

) 2

+
(

1 +
[
b

a

]
(aDe)

)(
σ

a

)
+

[
b

a

]
= 0. (3.1)

In the limit k → 0, (3.1) becomes

(aDe)

(
σ

a

) 3

+
(
σ

a

) 2

+
(
σ

a

)
= 0. (3.2)

(a) De = 0: σ1/a = 0, σ2/a = −1

(b) Small De:
σ1/a = 0, σ2/a = −1 − aDe + O(aDe)2, and σ3/a = −1/(aDe)+ 1 + aDe + O(aDe)2

(c) Large De: σ1/a = 0, and σ2,3/a = −1/(2aDe)± i
√

1/(aDe)− 1/(2aDe)2

Table 1. Inverse-time constants at A= 0 and k = 0 for different De limits. Parameters a and b are given
by (2.27).

Observe that the terms (aDe), i.e. (5/2)(De/Re), (σ/a) and (b/a) are independent of the
characteristic time. The solutions to (2.26) for the inverse time constants are presented in
table 1.

To get an algebraic expression determining the critical amplitude, A, for the dominant
harmonic response, we set σ = 0 in (2.25) and then employ a truncated Floquet expansion
up to three terms for n = 2, 0 and −2, yielding (cf. (A26))

A=
√

6
( 1
Ca

+ G
k2

) [(ω+ Deωc)2 + c2]
(1 + De2ω2)c + Deω2 , (2.28)

where c = b −ω2/a. In addition, this expression is used to provide useful insight into
the interface’s temporal response as well as the stability characteristics of gravitationally
unstable systems undergoing parametric forcing.

3. Effect of elasticity on the fluid’s damping
The role of elasticity on the fluid’s damping can be understood by visualizing its
behaviour as a simple spring–dashpot system (illustrated in table 1), with the stress–strain
relationship given by (2.19). The viscoelastic fluid consists of a viscous component with
viscosity, μ, represented by the dashpot, while the elastic component of shear modulus, G,
is represented by the spring. When the fluid system is subjected to a disturbance, the strain
is distributed between the viscous and elastic components. If the value of G is large, i.e.
at small values of Deborah numbers, the elastic component stores substantial normal and
shear stresses while undergoing minimal deformation. Consequently, the main part of the
deformation is undergone by the dashpot, leading to enhanced damping, dissipating the
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stresses acting on the system and thus stabilizing it. Conversely, at small values of G or
large Deborah numbers, the elastic component deforms more readily and the deformations
undergone by the viscous component are reduced, thereby decreasing overall damping
within the system. In the following section, we substantiate these statements by examining
the values of the leading σ for A= 0 for different values of G by considering three cases:
De = 0 (a Newtonian fluid); small Deborah numbers (i.e. a weakly elastic fluid); large
Deborah numbers (i.e. a dominantly elastic fluid).

3.1. Newtonian fluids: De=0
Analytical solutions for σ in the case of a Newtonian liquid can be obtained by setting
De = 0 in the characteristic equation (3.1) given in table 1 and solving for the resulting
quadratic roots. This yields

σ1,2

a
= −1

2
± i

√
b

a
− 1

4
, (3.3)

where the real part of σ/a, which is independent of the characteristic time, gives the decay
rate of the disturbances and the imaginary part, its natural frequency.

Observe that for gravitationally stable configurations, i.e. when b/a > 0, both roots
have a negative real part. Such a system is stable due to the viscous dissipative effects
that dampen all disturbances. However, for gravitationally unstable configurations, i.e.
when b/a < 0, we obtain two real roots, one root being positive, other being negative.
The interface of such a system grows with time.

3.2. Viscoelastic fluids: De �= 0
If De �= 0, the characteristic cubic equation (3.1) exhibits three solutions, where the
additional σ arises from the time derivative in the stress-strain constitutive equation (2.19).
While solutions to these cubic equations may be rigorously obtained, we can easily derive
expressions for the real parts of σ in the limit k → 0. These expressions, also given in
table 1, will be employed to elucidate the impact of elasticity on the fluid’s damping in the
next two subsections.

3.2.1. Low Deborah numbers or weakly elastic fluids
Consider the effect of elasticity for small Deborah numbers. Recall, from the example of
a spring–dashpot system that, at small De, damping is enhanced. This is evident by the
trends shown by σ1 and σ2 in the limit k → 0 (cf. table 1(b)) and depicted in figure 2(a)
where we plot the real part of σ/a, denoted Re(σ/a), versus (aDe), two quantities that are
independent of the characteristic time. The root, σ3, is real and negative, the implication
being it cannot influence an oscillatory Faraday instability threshold when the system is
subjected to parametric forcing. However, we can see by computations that σ1 and σ2,
although real as k → 0, become complex conjugates beyond a threshold wavenumber, k,
that depends on the value of (aDe), (G/a) and aCa, quantities that are also independent of
the characteristic time. This result is depicted in figure 2(b). Observe that as k approaches
zero, σ1 approaches zero and σ2 becomes more negative as De increases, implying that
overall damping within the system increases with an increase in elasticity. This behaviour
continues even when k is increased and σ1,2 become complex, thereby showing an increase
in the Faraday instability threshold for an increase in De in the low Deborah number
regime.
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Figure 2. (a) The real part of σ/a, denoted Re(σ/a), versus aDe from (3.2). The arrow denotes the location
beyond which σ2 and σ3 become complex conjugates. (b) Here Re(σ/a) versus k2 for two different values
of (aDe) in low Deborah number regime for parameters aCa = 5.3 and G/a = 0.63, corresponding to the
properties of a fluid given in table 2. The inverse time constant, σ3, which has very large negative values at low
De is not shown here. The symbol � denotes the location beyond which σ1 and σ2 become complex conjugates.

Physical property Symbol Value

Viscosity μ 0.28 Pa s
Shear modulus G 1.55 Pa
Density ρ 1000 kg m−3

Surface tension γ 0.074 N m−1

Film thickness d∗ 5 × 10−3 m

Table 2. Physical parameters used in the calculations. Fluid properties correspond to 0.5 % wt./vol. aqueous
polyacrylamide solution (Sobti et al. 2018) making De/Re = 2, which is independent of any time scale.

3.2.2. Large Deborah numbers or strongly elastic fluids
Contrasting the case of a low Deborah number with that of large De, we observe that
now the decay rates decrease with an increase in De. This is depicted in figure 2(a) and
supported by the equations given in case (c) of table 1, from which we also see that when
(aDe) > 1/4, i.e. De/Re> 1/10, σ2 and σ3 are complex conjugates, their real parts being
inversely proportional to De. Therefore, for large De, the elasticity-induced inertia reduces
the stability of the system, i.e. making it more susceptible to Faraday instability.

The behaviour of σ values with De as discussed above and its implication in Faraday
instability is delineated in two cases. These are parametric forcing on a gravitationally
stable system and forcing on a gravitationally unstable system. We turn to these two cases
in the following sections.

4. Parametric forcing of a viscoelastic fluid in a gravitationally stable orientation

4.1. Relating the behaviour of the Faraday instability to the inverse time constants
In the last section, it was hypothesized that damping rates ought to be connected to
the stability threshold of resonant instability. To verify this, we examine the stability
characteristics by considering a viscoelastic fluid whose properties are given in table 2,
focusing on the case of a gravitationally stable system where g = 9.8 m s−2, i.e Earth’s
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Figure 3. Critical A versus k curves, shows the effect of elasticity on the Faraday instability threshold at g =
9.8 m s−2. (a) The solid curve represents De = 0 and the open circle markers represent De = 0.01 (b) The solid
curve De = 1.1 and the open circle markers represent De = 10. The dimensional frequency, ω∗ = 2π rad s−1

and f ∗ = 1 Hz.

gravity level. Linear stability calculations are performed using the complete set of
equations (2.17) to (2.23) for arbitrary wavenumbers, k.

In a weakly viscoelastic fluid, we noted in § 3 that there is increased damping due to
elasticity. This, in turn leads to increased threshold amplitudes for the onset of Faraday
instability as illustrated in the A versus k graphs of figure 3(a). These graphs are plotted for
two different values of Deborah number in the low Deborah number region, viz., De = 0
and De = 0.01, reflecting a change only in the shear modulus in table 2. Henceforth we
take the characteristic velocity to be

U ≡ d∗ω∗, (4.1)

thus requiring the scaled frequency to be ω= 1, from (2.8).
By contrast with a low De region, we observed in § 3 that at large De there is a

decrease in the damping rate with an increase in De (cf. figure 2a). This implies that
the threshold amplitude for the Faraday instability ought to decrease with an increase in
De due to the inertia-like action provided by elasticity. This is illustrated by the results in
figure 3(b). A significant reduction in critical amplitude is shown for this case in the figure
where A versus k is plotted for two different values of Deborah numbers, viz., De = 1.1
and De = 10. The value G = 1.55 Pa given in table 2 for a realistic fluid corresponds to
De = 1.1, placing it within the large Deborah number category. Observe in figure 3(b)
that there is a noticeable difference in the shape of the second tongue and subsequent
tongues (not shown), as we transit from De = 1.1 to De = 10, where the elasticity of the
fluid becomes dominant. This difference is attributed to the memory effect imparted by the
fluid’s elasticity as characterized by the change in the relaxation time of the fluid. The core
characteristics of the stability curves, however, remain unchanged, such as the alternating
subharmonic and harmonic responses.

4.2. The temporal response of the interface due to Faraday instability
Just as the real part of σ informs us about the behaviour of the Faraday threshold, the
imaginary part of σ provides information about the interface’s temporal response. Recall,
from the earlier section that we obtain three roots to σ when (3.1) is solved, yielding
two complex conjugate roots and one purely negative root, for a wavenumber, k, above
a minimum value as depicted in figure 2(b). The very existence of complex σ suggests
the possibility of an oscillatory response upon resonant instability, as observed in the case
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of Newtonian fluids (Kumar & Tuckerman 1994). On the other hand, the presence of a
purely negative σ , indicates the possibility of a monotonic response. We shall show that
such a response is indeed possible and becomes dominant compared with an oscillatory
instability for large De as gravity approaches zero.

To determine the temporal response of the instability we revisit the A versus k graph
represented by the solid curve in figure 3(b), i.e. for De = 1.1 and g = 9.8 m s−2. The
graph depicts a critical curve consisting of multiple ‘tongues’, each associated with
distinctive temporal modes. Typically, the interface response at the onset of instability
corresponds to the temporal mode with the lowest of all the critical amplitudes. The nature
of the temporal response of the interface at a given critical amplitude, A, is determined
by examining the coefficients, ĥn , in the Floquet summation (2.24). If the dominant
coefficient corresponds to n = 0, the response is said to be monotonic. Otherwise, it is an
oscillatory response. Among the oscillatory modes, depending on whether the dominant
coefficient is odd or even, the interface response is either subharmonic or harmonic.
We note that higher-order subharmonics may occur when the dominant coefficient
corresponds to n = 3, 5, 7, etc. And higher-order harmonics may occur when n = 4, 6, 8,
etc. As an example, the response of the interface deformation is subharmonic at the
minimum of the second tongue (cf. solid curves in figure 3b) as all the even coefficients
are zero and the indices of the dominant coefficients are odd. On the other hand, the
response of the interface deformation at the minimum of the first tongue is harmonic as
all the odd coefficients are zero and the indices in the dominant coefficients are even.
Although not displayed in figure 3(b), our calculations show that for De ∼ 1, we observe a
transition between subharmonic and harmonic responses, in agreement with earlier works
(Kumar 1999; Müller & Zimmermann 1999). It is noteworthy that earlier workers have also
observed a harmonic response in parametric forcing in the case of soft solids (Bevilacqua
et al. 2020).

The relative importance of a monotonic response with respect to a first harmonic
response in the first tongue may be estimated from the ratio obtained using a three-term
Floquet summation of the reduced-order model, i.e. when ε�1. The details of such a
model are given in Appendix A, where, from (A27) we obtain

ĥo
ĥ2 + ĥ−2

= A
2
(

k2

Ca + G
) . (4.2)

The corresponding critical amplitude, A, obtained from (2.28), is given by

A=
√

6
( 1
Ca

+ G
k2

) [(1 + cDe)2 + c2]
(1 + De2)c + De

, (4.3)

where c(k)= b(k)− 1
a , and where a and b are given by (2.27). Recall that the

dimensionless frequency, ω, is equal to one. Observe that as k goes to zero, the
ratio ĥ0/(̂h2 + ĥ−2) and the critical amplitude, A, approach infinity provided G > 0.
In figure 3(b), this region, where the monotonic mode is dominant corresponds to the
descending region in the first critical curve, denoted I. However, as k increases, i.e. as we
approach the minima of the first critical curve, denoted II, the harmonic modes become
important. It should be noted that the monotonic behaviour for curves characterized by
De = 1.1 will also occur for curves with different shear moduli, G, but at a different
parametric frequency.

Now, as G is reduced, the region I of the curve shifts downward faster than the region
II and all other regions, subsequently becoming the most unstable mode with the lowest
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Figure 4. The existence of a monotonic Faraday instability mode, depicted by graphs using the properties of
the fluid given in table 2 with G = 0 (a) Critical A versus k. (b) The ratio ĥ0/(̂h2 + ĥ−2) versus k obtained
using (4.2). The dimensional frequency, ω∗ = 2π rad s−1 and f ∗ = 1 Hz.

critical amplitude at G = 0. This is illustrated in figure 4(a) where the lowest amplitude
corresponds to the point where the curve touches the ordinate (marked by a star), i.e.
k = 0. Indeed, the ratio ĥ0/(̂h2 + ĥ−2) versus k graph plotted in figure 4(b) shows that
the monotonic behaviour of the system increases with a decrease in wavenumber and
eventually becomes purely monotonic at k = 0. The critical amplitude as k approaches
zero can be accurately determined using the expression for A from (4.3). This expression
is in good agreement with figure 4(a) in the limit of small wavenumbers (see the figure in
Appendix A).

4.3. Criteria for the existence of a purely monotonic faraday instability at G = 0
The criteria for the existence of purely monotonic instability can be derived by requiring
that De and Re be such that (4.3) yields a real value of A as k → 0. Doing this results in
the criteria taking the form

De

1 + De2 >
2
5
Re, (4.4)

an inequality that is derived in Appendix A (cf. (A29)). It can be observed from (4.4) that
the left-hand side reaches a maximum at De = 1, i.e. when the forcing frequency is the
inverse of the relaxation time. At this value of De, the left-hand side of (4.4) is 1/2 and
Re< 5/4. Thus, to get a monotonic mode, Re must depend on this condition but must not
exceed 5/4, i.e. the inertia due to momentum must be weak.

At high Re, such that (4.4) is not satisfied, the fluid interface exhibits oscillatory
behaviour because the viscous damping within the system is reduced. However, even at
low Re, i.e. if Re< 5/4, but high De i.e. if De> 1, (4.4) will also not be satisfied and the
response of the interface will be oscillatory because of the elasticity-induced inertia.

We can use the criteria given in the relationship given by (4.4), to determine bounds on
G, μ and ω∗. As an example, for assigned values of μ, ω∗, etc., we can obtain G from De
by a rearrangement of relationship (4.4), viz.

5
4Re

−
√

25
16Re2 − 1< De<

5
4Re

+
√

25
16Re2 − 1. (4.5)
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Figure 5. Phase diagrams illustrating the parameter ranges within which a purely monotonic mode exists at
G = 0. (a) Here Re versus DeRe, determining the bounds of μ for fixed G and ω∗ from (4.6). (b) Here Re
versus De/Re, determining the bounds of ω∗ for a fixed G and μ from (4.7).

Likewise, we can obtain μ from Re with another rearrangement of (4.4), i.e.√
5
2
(ReDe)− (ReDe)2 > Re (4.6)

for assigned values of G,ω∗, etc. Finally, for assigned values ofμ, G, etc., we may estimate
the values of the dimensional frequency, ω∗, from Re with one more rearrangement of
(4.4) as √

5
2
De
Re − 1
De
Re

> Re (4.7)

observing that De/Re is independent of ω∗. These bounds on G, μ and ω∗ are also
illustrated using the phase diagrams shown in figures 5(a) and 5(b). In both graphs,
the intersection of the horizontal and vertical dashed lines marked by ‘�’ indicates the
parameter values used to generate figure 4(a), depicting the presence of a purely monotonic
mode. Observe that the maximum value of Re, Re = 5/4, above which monotonic
instability cannot occur, a result that we derived earlier from (4.4), is also denoted on
figures 5(a) and 5(b).

Using the properties of a viscoelastic fluid given in table 2 in the relationship (4.7), we
can see that the pure monotonic mode occurs for frequencies of forcing, less than 1.8 Hz.
This cutoff frequency can also be obtained from the graph in figure 5(b) by calculating ω∗
from Re at De/Re = 2 (marked by •). Beyond this frequency, pure monotonic instability
does not exist, though a predominantly monotonic response is still observed near this
critical frequency. As the forcing frequency is increased further, the instability response
changes to a dominantly oscillatory behaviour.

To ensure that disturbances are in the low wavenumber limit, the finiteness of the
container must be taken into account. For example, in containers of finite width, W ,
and with stress-free sidewalls, we have a set of allowable wavenumbers, k, where
k =mπ/W , with m∈N. Consequently, in a narrow container, only shorter waveforms
leading to oscillatory instability will occur as the permissible wavenumber belongs to
the large wavenumber region (cf. figure 4a). However, in wide containers long wavelength
waveforms will develop, leading to a dominantly monotonic instability.
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Figure 6. Viscoelastic fluid layer in an RT arrangement (a) without forcing – neutral stability curve. The point
� is the intersection between B = 0.1 and k = π/W (the first allowable wavenumber) and lies slightly above
the neutral line (b) with forcing – stability bounds for the monotonic (s) and oscillatory (o) modes for B =
0.1, width W = 10, De/Re = 2. Integers between parentheses, (m), identify the most unstable wavenumber
k=mπ/W . The two critical frequencies, f ∗

c1 and f ∗
c2, are marked � and ◦, occurring where dashed and solid

curves intersect.

The occurrence of a monotonic response, a new observation in parametric forcing of
viscoelastic fluids is thus attributed to the inverse time constant, σ , which is purely real.
It might be of related interest to note that other monotonic long-wave instabilities, such as
the Rayleigh–Taylor (RT) instability of Newtonian fluids, are also characterized by purely
real σ . Further, such an instability may be stabilized by parametric forcing (Sterman-
Cohen et al. 2017). This therefore encourages the question: Can the RT instability of a
viscoelastic fluid be staved off upon parametric forcing? To answer this question we set G
to be negative, i.e. with gravity now pointing upwards in figure 1, fix the container width,
and then analyse the regions of stability/instability when parametric forcing is employed.

5. Parametric forcing of a viscoelastic fluid in a gravitationally unstable orientation
A fluid that is in a gravitationally unstable configuration may be stabilized by restricting
the disturbances to short enough wavelengths such that the surface tension force exceeds
the gravitational force. This is the familiar RT problem (Chandrasekhar 1961). The neutral
stability threshold is given by B = k2

c and depicted in figure 6(a), where kc is the cutoff
wavenumber. Here, B is the Bond number, given by B = −GCa, where B > 0 and G < 0,
due to the reversal in direction of the gravity vector from that shown in figure 1. The
relationship between B and k2

c depicted in figure 6(a) is unaffected by the fluid’s elasticity
as observed from (2.17)–(2.23), when σ , A and ω are set to zero. Above the critical line
in figure 6(a), the fluid system is unstable. Therefore, in an unbounded container, the most
unstable wavenumber is k = 0 and we always have instability. However, in finite-width
containers, as noted earlier, the lowest allowable wavenumber is k = π/W , marked by a
vertical dashed line in figure 6(a). For Bond numbers less than k2|m=1, we have stability.

It is known from earlier work that a Newtonian fluid in a RT unstable configuration
can be stabilized by parametric forcing (Sterman-Cohen et al. 2017). Because the Faraday
instability is inertia-driven, the transient nature of the stress–strain constitutive relationship
in a viscoelastic fluid must necessarily affect the manner in which parametric forcing can
stabilize an otherwise RT unstable configuration. In this section, we therefore discuss the
effect of such forcing on a viscoelastic fluid layer whose properties are given in table 2.
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To understand the salient features of parametric stabilization of our gravitationally
unstable system we turn to figure 6(b), which depicts forcing amplitude versus frequency
for an example case where W = 10 and B = 0.1. The critical curves in figure 6(b) are
displayed in dimensional form in order to show that the results are in a practically
achievable range. The curves in the figure are obtained by computing the two lowest critical
amplitudes amongst all allowable wavenumbers for each input parametric frequency.
The critical values are then sorted based on their temporal response, the dashed curve
indicating the monotonic mode denoted, As , where s represents a steady or monotonic
mode. The solid curves represent oscillatory modes with critical amplitudes denoted, Ao.
These curves divide the A∗ versus f ∗ graph into three regions of stability/instability, where
f ∗ =ω∗/2π . Below the dashed curve, the viscoelastic fluid system is monotonically
unstable, and above the solid curve, it will exhibit an oscillatory response. Outside of
these regions, there exists a stable region (white region), with a finite range in amplitude,
lying between two critical frequencies (marked by � and ◦), where the dashed and
solid curves intersect. Below the first critical frequency, denoted f ∗

c1, the system is
always unstable. Observe that f ∗

c1 = 1.9 Hz is very close to the frequency f ∗ = 1.8 Hz,
below which a monotonic Faraday instability in the absence of gravity was predicted
in § 4.3.

To understand the origin of f ∗
c1 (marked by � in figure 6b), we turn to figures 7(a)

and 7(b) where we graph the A versus k critical curves plotted for two frequencies on
either side of f ∗

c1, say f ∗ = 1 Hz and f ∗ = 2 Hz, marked by vertical arrows in figure 6(b).
Let us focus on the low wavenumber regime near k = kc (marked by upward arrows in
figures 7a and 7b), where we have a predominantly monotonic mode. The allowable
wavenumbers are represented using vertical dotted lines in both figures. At A= 0, the
system is unstable to all wavenumbers to the left of kc (marked by an upward arrow in
figure 7a), implying that the waveform k|m=1, i.e. a half-wave is unstable. At a frequency
of f ∗ = 1 Hz, this waveform remains unstable as we increase the forcing amplitude.
Beyond a threshold amplitude, two half-waves become unstable but with an oscillatory
response. On the other hand, at a frequency of f ∗ = 2 Hz, the system transitions to a stable
quiescent state at a critical amplitude of forcing, As , before it advances to the onset of
oscillatory instability at a critical amplitude Ao (greater than As), upon further increase in
amplitude.

A prediction of f ∗
c1 can be estimated by considering the relationship between A2 and k2

at k = kc, where A= 0. This is done by appealing to the expression from the long-wave
analysis given in (4.3). Prior to doing so, we first observe that if the curvature of the graph
at k = kc is negative and its slope is infinite, as depicted in figure 7(a), then the parametric
forcing is of a destabilizing character. However, if the curvature is positive with an infinite
slope, now depicted in figure 7(b), the parametric forcing has a stabilizing effect.

Therefore, f ∗
c1 signals the transition of the parametric forcing from a destabilizing to a

stabilizing regime. Its value can be determined from (4.3) by evaluating

dA2

dk2

∣∣∣∣
k=kc

= A
k

dA
dk

∣∣∣∣
k=kc

=
(

− G
k4
c

) [(1 + De c)2 + c2]
(1 + De2) c + De

, (5.1)

and setting its reciprocal to zero, upon noting that b = 0 and c = −(2/5)Re for k = kc.
Observe that (5.1) is positive when the denominator is positive. This criterion is exactly
satisfied when (4.4) is satisfied, for which monotonic Faraday instability occurs in the case
of zero gravity.

Let us now consider how f ∗
c1 changes with elasticity. To do this, we employ (4.7) and

draw figure 8, which implicitly depicts the dependence of f ∗
c1 =ω∗

c1/2π on elasticity,
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Figure 7. Here A versus k curves obtained at frequencies (a) f ∗ = 1 Hz, (b) f ∗ = 2 Hz and (c) f ∗ = 8 Hz
illustrating the existence of two critical frequencies. Panels (a) and (b) illustrate the presence of the first
critical frequency, f ∗

c1. Panels (b) and (c) demonstrate the presence of the second critical frequency, f ∗
c2. The

symbol ◦ represents As and the symbol • represents Ao. The vertical dotted lines represent the permissible
wavenumbers.

i.e. 1/G. The scaled frequency is expressed here as Rec1 =ω∗
c1 × (d∗2ρ/μ) and the scaled

elasticity is expressed as De/Re = (1/G)× (μ2/d∗2ρ), assuming ρ, μ and d∗ are held
fixed. Equation (4.7) reveals that the lowest permissible value of De/Re is 2/5. We also
see from (4.7) that Rec1 increases to a maximum value of 5/4 when De/Re is 4/5.
This implies that at the maximum, Rec1 × (De/Re)=ω∗

c1 × (μ/G)= 1. That is, at the
maximum, the critical frequency is equal to the inverse of the relaxation time. The decrease
in Rec1 after the maximum is due to the inertial effects provided by elasticity. Further
increase in De/Re cause Rec1 to approach zero as De/Re → ∞.

In summary, the first critical frequency approaches zero at the low end of De/Re due
to inertial action by momentum and at the high end of De/Re due to elastic effects.
As illustrated by the phase diagram, figure 8, parametric forcing cannot stabilize a
gravitationally unstable system below the curve, whereas above the curve, parametric
forcing can stabilize an otherwise gravitationally unstable system. This sets apart the
behaviour of the viscoelastic case from the Newtonian case, for which the first critical
frequency is completely absent. We now turn to the second critical frequency.

The second critical frequency, denoted f ∗
c2 and marked by ◦ in figure 6(b) is defined as

the frequency beyond which stabilization cannot be achieved. This frequency is greatly
influenced not only by De/Re but also by the Bond number, B. Its origin can be
determined by comparing the A versus k critical curves plotted for two frequencies
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Figure 8. Phase diagram depicting the first critical frequency, f ∗
c1 =ω∗

c1/2π , expressed as Rec1 versus
De/Re, obtained from (4.7). The maximum critical frequency for a given De/Re is denoted by •.

on either side of f ∗
c2, say f ∗ = 2 Hz and f ∗ = 8 Hz, marked by the vertical arrows in

figure 6(b). As illustrated in figure 7(b) (at f ∗ = 2 Hz), the threshold for stabilization of
the monotonic mode, As , marked by the open circle, has a lower value compared with the
critical amplitude for the onset of the oscillatory instability, Ao, marked by the filled circle.
By contrast, in figure 7(c) (at f ∗ = 8 Hz), we observe the opposite trend. Thus, there must
be a critical frequency at which As equals Ao. Beyond this value, a resonant instability
is observed and stabilization of a gravitationally unstable system can no longer be
achieved.

Let us first consider how f ∗
c2 changes with elasticity. Recall from § 3 that the damping

rate increases with an increase in De in the low Deborah number regime (De/Re< 1/10,
cf. figure 2a), whereas it decreases with an increase in De in the large Deborah number
regime. This translates into an increase in Ao with increasing De in the low De region,
therefore shifting f ∗

c2 to the right and vice versa in the large De region. We illustrate this
change within the large De region using figure 9(a), where all parameters are the same as
in figure 6, except for De/Re, which is now much lower, i.e. De/Re = 2/5. As a result
f ∗
c2 shifts to the right, and the region where stabilization can be achieved displays several

islands of stability, due to the choppiness of the threshold, Ao, for the oscillatory mode.
However, the bounds for the monotonic and oscillatory modes do not intersect in the low-
frequency regime, as predicted by (4.7), which requires De/Re> 2/5 for the existence of
f ∗
c1

. Thus, there is only one critical frequency, i.e. f ∗
c2.

Another interesting limit to consider is where the stabilization region in figure 6(b)
disappears entirely. This is shown in figure 9(b), where all parameters are the same as in
figure 6, except for B, which is now higher, i.e. B = 0.32. An increase in Bond number,
B, i.e. an increase in gravitational acceleration, necessitates higher values of forcing
amplitudes, As , for complete stabilization. However, it does not significantly change Ao.
Consequently, the value of f ∗

c2 decreases and the region of stability in figure 6(b) shrinks.
At a certain Bond number value, the first and the second critical frequencies coincide,
i.e. f ∗

c1 = f ∗
c2, and stabilization via parametric forcing can no longer be achieved. For the

viscoelastic fluid under consideration in figures 6(b) and 9(b), this value is B = 0.32.
In summary, while moving from figure 6(b) to figures 9(a) and 9(b), we observe either

two, one, or zero critical frequencies, i.e, the stabilization region is bounded either on both
sides, on one side or is simply non-existent.
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Figure 9. Stability bounds using the same properties as in figure 6 except for different values of De/Re and
B. (a) Single critical frequency for B = 0.1 and De/Re = 2/5; (b) coinciding critical frequencies for B = 0.32
and De/Re = 2. The � marks f ∗

c1 = f ∗
c2.

6. Summary
In this work, the stability characteristics of a viscoelastic fluid layer undergoing parametric
forcing in both gravitationally stable (g> 0) and unstable (g< 0) configurations have been
investigated by calculations that are supported by analytical expressions. The inverse time
constants, σ , obtained in the absence of forcing for g> 0 are used to gain insight into the
threshold amplitudes and the temporal response of the Faraday instability. In particular, we
track how the real part of the leading σ , i.e. the damping rate, changes with elasticity. For
weakly elastic fluids, we find that increased elasticity increases the damping rate, thereby
raising the Faraday instability threshold. By contrast, for dominantly elastic fluids, the
damping rate is reduced with increasing elasticity, thus decreasing the threshold.

The imaginary part of the inverse time constants informs us about the temporal
response of the interface to Faraday instability. We find the possibility of both purely
real σ , as well as complex σ , thereby introducing the possibility of both monotonic and
oscillatory responses upon instability. We show further that the nature of the response upon
parametric forcing is highly dependent on the direction and the magnitude of gravitational
acceleration, g.

If g> 0, an oscillatory response is seen upon resonance, when |g| is of the order of
Earth’s gravity. However, at low g and in microgravity (g ∼ 0), a dominantly monotonic
response will arise, if the momentum-induced inertia is weak compared with elastic
effects. For a given viscoelastic fluid, this new type of instability is observed until a critical
frequency, beyond which the momentum-induced inertia of the fluid dominates, leading
to an oscillatory response. By contrast, in Newtonian liquids, an oscillatory instability is
observed at all gravity levels.

If g< 0, the stabilizing or destabilizing influence provided by parametric forcing
changes with the fluid’s elasticity. We find that a stable quiescent state is achievable when
forced within a finite amplitude range between two critical frequencies. For amplitudes
below this range, a monotonic response is observed due to a Rayleigh–Taylor instability
mechanism. For amplitudes above this range, an oscillatory response is observed on
account of a Faraday instability mechanism. The quiescent stable region disappears if the
frequency is either decreased below the first critical frequency or increased beyond the
second critical frequency.

The first critical frequency depends on both the fluid’s elasticity and viscosity,
characterized by De/Re. The value of the second critical frequency is additionally
dependent on the magnitude of the gravitational acceleration, g, characterized by the Bond
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number, B. At frequencies below the first critical frequency, parametric forcing promotes
monotonic growth of the interface due to the weak influence of fluid inertia. However,
at frequencies greater than the second critical frequency, inertia dominates, causing the
system to exhibit oscillatory instability before stabilization can be possibly achieved.
Consequently, outside the range bounded by the two critical values, the fluid is always
unstable, with the system directly transitioning from monotonic to oscillatory instability.
The stabilization region is the largest for weakly elastic fluids, for which the first critical
frequency goes to zero and the second critical frequency increases significantly due to a
higher Faraday threshold. Conversely, for strongly elastic fluids, the stabilization region
decreases and then entirely disappears for a large enough Bond number.

Thus, we find for viscoelastic fluids that the number of critical frequencies are two, one
or none. This stands in stark contrast with the case of Newtonian fluids, where the region
of stabilization is always bounded by a single critical frequency. It might be noted that
complete stabilization is possible because the parametric forcing is normal to an erstwhile
flat interface in the fluid’s base state. On the other hand, if other directions of parametric
forcing are considered, the base state will necessarily involve sloshing and a non-flat
interface in containers of finite horizontal extent as opposed to unbounded containers,
cf. Or (1997). Therefore, complete stabilization to a quiescent state would not be possible
in bounded containers with horizontal forcing (Wolf 1969; Shevtsova et al. 2016; Garcia-
Gonzalez 2017; Gligor et al. 2020; Piao & Juel 2025). Notwithstanding a non-trivial base
state, future studies ought to consider other directions of parametric forcing due to their
interesting physics (Piao & Juel 2025).

The work in this study has used an upper convected Maxwell fluid as an example of a
viscoelastic fluid. As there are several examples of Rayleigh–Taylor instability with soft
solids (Mora et al. 2014; Riccobelli & Ciarletta 2017; Tamim & Bostwick 2020; Dinesh &
Narayanan 2021; Slutzky et al. 2023), studies on the effect of G on parametric forcing of
other types of fluids and soft solids could be future avenues of research.
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numbers 2025117, 2422919) and NASA (R.N., grant numbers NNX17AL27G, 80NSSC23K0457). I.B.I.
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Appendix A. Derivation of the linear WRIBL model from § 2.3 and the algebraic
expressions in table 1 and §§ 4.2 and 4.3.
In this appendix, we derive the linear long-wave model introduced in § 2.3, which is
based on the WRIBL (weighted residual integral boundary layer) approach (Ruyer-Quil
& Manneville 2000), and which we have used to obtain the algebraic expressions for the
inverse time constants in table 1 and the expressions for neutral stability bounds in §§ 4.2
and 4.3.

Long-wave approximation
We commence by invoking the long-wave approximation, i.e. ε�1, where ε = d∗/W ∗ is
the length scale ratio according to the scaling introduced in (2.8). Then, truncating the
linearized governing equations (2.17)–(2.23) at O(ε), we obtain the continuity equation

ku + ∂w

∂z
= 0, (A1)
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and the momentum equations

εRe
(
σ + inω

2

)
u = εkp + ∂τxz

∂z
(A2)

and

− ε
∂p

∂z
= 0, (A3)

where we have assumed Re to be at least O(1). Inertia, which plays an important role in
Faraday instability, is retained as it enters at O(ε) in (A2). Applying the same procedure
to the relevant component of the constitutive equations for the polymeric stresses (2.19),
we obtain (

1 + De
(
σ + inω

2

))
τxz = ∂u

∂z
, (A4)

where we have assumed De to be at least O(ε).
The boundary conditions at the bottom wall (2.20), z = −1, become

u = 0 and w= 0, (A5)

and the interphase coupling conditions, (2.21)–(2.23), at z = 0 become

ε w= ε
(
σ + inω

2

)
h, (A6a)

τxz = 0, i.e.,
∂u

∂z
= 0 (A6b)

and
n=N∑
n=−N

e(inωt)/2ε p̂n =
n=N∑
n=−N

e(inωt)/2
{
ε(G +Acos(ωt))̂hn + ε3

Ca
k2ĥn

}
, (A6c)

where we have assumed G and A to be at least O(1) and Ca to be at least O(ε2).
We remind the reader that (A1)–(A6b) imply summation over all the temporal modes
introduced in (2.14) and (2.15), which we had omitted in the writing of (2.17)–(2.22), for
convenience.

From (A3), we see that p is independent of z. Therefore, p is fully defined by (A6c),
which is then substituted into (A2), resulting in

n=N∑
n=−N

e(inωt)/2
{
ε Re

(
σ + inω

2

)
ûn

}

=
n=N∑
n=−N

e(inωt)/2
{[

ε3

Ca
k3 + ε (G +A cos(ωt))k

]
ĥn + ∂τ̂xz n

∂z

}
. (A7)

Finally, (A7) is inserted into (A4), to obtain

n=N∑
n=−N

e(inωt)/2
{[

1 + De
(
σ + inω

2

)][
ε Re

(
σ + inω

2

)
ûn

− ε3

Ca
k3ĥn − ε(G + A cos(ωt))kĥn

]}
=

n=N∑
n=−N

e(inωt)/2
∂2ûn
∂z2 .

(A8)
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Equation (A8) may be solved for ûn(z) subject to (A5) and (A6b). Inserting this solution
into (A1) and integrating the latter from z = −1 to z = 0, while invoking (A5) and (A6a),
yields a characteristic equation for the eigenvalue, σ . This equation may be viewed from
two perspectives. In the first perspective, A is set to zero, which implies N = 0, yielding
a transcendental algebraic equation for σ(k2), which must be solved numerically for the
roots. In the second perspective, σ is set to zero and an equation of the form (2.24) is
obtained, which must be solved numerically for A, yielding the critical forcing amplitude.

However, by applying the WRIBL approach to the linearized equations, (A1) and
(A8), an approximate characteristic equation for σ can be obtained, which is analytically
tractable in certain limits. This is due to the integral nature of the WRIBL approach, which
dispenses with needing to solve for the eigenfunctions, ûn(z), ŵn(z) and p̂n . In particular,
we will obtain analytical expressions for (i) σ in terms of k in the Newtonian limit and
A= 0 and (ii) the critical A in terms of k for a viscoelastic fluid. Capturing the dependency
on k, turns out to be crucial in our current system.

The WRIBL model
We reduce the dimension of the system of governing equations (A1) and (A8) by
eliminating all spatial dependence and describing the flow in terms of the flow rate, q,
and interface deflection, h. This is achieved by integrating (A1) and (A8) across the film
thickness, i.e. from z = −1 to z = 0. To this end, we integrate the continuity equation (A1)
and invoke (A6a). This yields (

σ + inω

2

)
h + kq = 0, (A9)

where q = ∫ 0
−1 u dz.

We next obtain an integrated form of the integral momentum equation. To do this we
first decompose the dependent variable, u, into a leading-order contribution (denoted by a
tilde) and an O(ε) correction (denoted by a prime), i.e.

u(z)= ũ(z)︸︷︷︸
O(1)

+ u′(z)︸︷︷︸
O(ε)

. (A10)

The leading-order velocity, ũ, is obtained by truncating (A1)–(A8) at O(1), restricting
Ca to be at most of order O(ε3).

The boundary value problem, governing ũ is

∂2ũ

∂z2 = K , ũ| z=−1 = 0,
∂ ũ

∂z

∣∣∣∣
z=0

= 0 and
∫ 0

−1
ũ dz = q, (A11)

where K is a constant.
Solving (A11), yields

ũ = −3q(z2 − 1)
2

, (A12)

which implies for the velocity correction, u′,∫ 0

−1
u′ dz = 0, u′| z=−1 = 0 and

∂u′

∂z

∣∣∣∣
z=0

= 0. (A13)

We next introduce (A10), (A12) and (A13) in (A8), truncate the resulting equations at
O(ε), multiply by a weight function F(z) to be determined later, and integrate across the
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film height, obtaining
n=N∑
n=−N

e(inωt)/2
{ ∫ 0

−1

[
1 + De

(
σ + inω

2

)][
εRe

(
σ + inω

2

)̂̃un
− ε3

Ca
k3ĥn − ε(G + A cos(ωt))kĥn

]
F dz

}
=

n=N∑
n=−N

e(inωt)/2
∫ 0

−1

∂2

∂z2 (̂̃un + û′
n)F dz ,

(A14)
where the boxed terms in (A14) can be rewritten, upon integration by parts, as∫ 0

−1

∂2

∂z2 (̂̃un + û′
n)F dz =

[
∂(̂̃un + û′

n)

∂z
F − (̂̃un + û′

n)
∂F

∂z

]0

−1

+
∫ 0

−1
(̂̃un + û′

n) dz.

(A15)
The weight function, F(z), is a polynomial obtained by solving an equation similar to that
of the leading-order velocity ̂̃un (A11). This weighted integration also called the Galerkin
projection will cancel all of the û′

n terms, which are unknown in (A15). The governing
equations for F are

∂2F

∂z2 = 1, F | z=−1 = 0 and
∂F

∂z

∣∣∣∣
z=0

= 0, (A16)

yielding

F = 1
2
(z2 − 1). (A17)

This results in the following form of the integrated momentum equation:
n=N∑
n=−N

e(inωt)/2
{[

1 + De
(
σ + inω

2

)][ 2
5
εRe

(
σ + inω

2

)
q̂n

−1
3

(
ε(G + A cos(ωt))k + ε3

Ca
k3
)
ĥn

]
+ q̂n

}
= 0.

(A18)

To make the equations applicable when we consider disturbances of arbitrary
wavenumbers, we rescale the equations by using a common length scale, d∗, and time
scale, d∗/U . This results in σ → σ/ε, ω→ω/ε, k → kε, De → εDe. The resulting
equation takes the form

n=N∑
n=−N

e(inωt)/2
{[

1 + De
(
σ + inω

2

)][ 2
5

Re
(
σ + inω

2

)
q̂n

−1
3

(
(G + A cos(ωt))k + 1

Ca
k3
)
ĥn

]
+ q̂n

}
= 0.

(A19)

Substituting q from the integrated continuity equation (A9) into (A19), yields
n=N∑
n=−N

e(inωt)/2
{[

1 + De
(
σ + inω

2

)][ 2
5
Re

(
σ + inω

2

)2

+1
3

(
Gk2 + 1

Ca
k4
)

+ 1
3
A cos(ωt)k2

]
ĥn +

(
σ + inω

2

)
ĥn

}
= 0.

(A20)

which is the same as (2.25).
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Characteristic equation for inverse time constant, σ
To determine the inverse time constants, we set A= 0 and ω= 0 in (A20) and divide the
result by a, yielding a characteristic equation for σ/a, viz.

(aDe)
( σ
a

)3 +
( σ
a

)2 +
(

1 +
[
b

a

]
(aDe)

) (σ
a

)
+

[
b

a

]
= 0, (A21)

a group that is independent of the characteristic time scale, where a = 5/(2Re) depends
on the viscosity, ν, and b = (1/3)(k4/Ca + k2G) depends on the wavenumber, k. Equation
(A21) is the same as (2.26).

Although these σ can be determined numerically from (A21), we shall be interested in
the limit k → 0. Algebraic expressions for the σ can then be obtained. This task is enabled
by considering the fluid to be of infinite horizontal extent, upon which the unknown
dependent variables, ψ , are now expressed as ψ =ψ0 +ψ1eikxeσ t , now taking k to be
continuous. This results in the characteristic equation:

(aDe)
( σ
a

)3 +
( σ
a

)2 +
( σ
a

)
= 0. (A22)

To obtain these forms, ε must now be d∗/Λ∗ in the scaled forms given in (2.8), where Λ∗
is the characteristic wavelength. The cubic equation (A22) yields three roots for σ , with
one of the roots being zero. Equation (A22) may be examined in the limit of low De and
high De.

(i) Small De. For small values of De, a singular perturbation expansion in (aDe) given
by ( σ

a

)
= 1
(aDe)

( σ(0)
a

)
+

( σ(1)
a

)
+ (aDe)

( σ(2)
a

)
. . . (A23a)

is employed to solve (A22). Upon substitution of the expansion, the resulting equations are
solved for different powers of (aDe). The roots thus obtained are

σ1

a
= 0,

σ2

a
= −1 − aDe + O(aDe)2, and

σ3

a
= − 1

aDe
+ 1 + aDe + O(aDe)2.

(A23b)
(ii) Large De. At large values of De, since one of the roots is known to be zero, the

other two roots can be found from the resulting quadratic equation. The roots obtained
using (A22) are

σ1

a
= 0, and

σ2,3

a
= − 1

2aDe
± i

√
1

aDe
− 1

4(aDe)2
. (A24)

These results for the inverse time constants are presented in table 1.

Analytical expression for critical amplitude, A
The critical amplitude for predicting the onset of monotonic instability due to parametric
forcing can be calculated by setting σ = 0 and performing the Floquet summation for
n = −2, 0 and 2, i.e. thereby considering only the monotonic and lowest harmonic modes.
This yields an eigenvalue problem of the form

Cx =A Dx, (A25)
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Figure 10. Here A versus k curves. Comparison of threshold obtained using the algebraic expression (A26)
(dashed curve) and the numerical results obtained using the full equations (solid curves).

with eigenvalue, A, and eigenvectors x = {̂h2, ĥ0, ĥ−2}. The Det[C −AD] must be zero
for non-trivial solutions, yielding the square of the critical amplitude as

A2 = 6
( 1
Ca

+ G
k2

) [(ω+ Deωc)2 + c2]
(1 + De2ω2)c + Deω2 , (A26)

where c = b − ω2

a . Note that the frequency is scaled with respect to ω∗, the parametric
frequency, thereby rendering ω= 1. The extent of the monotonic nature of the interface
response can be determined from the ratio

ĥo
ĥ2 + ĥ−2

= A
2
(

k2

Ca + G
) . (A27)

The algebraic expression (A26), which is the same as (2.28), accurately predicts the
critical amplitude at low wavenumbers and when the instability response is monotonically
dominant. This is illustrated in figure 10, where this expression, depicted by a dashed
curve, is compared with the numerical results obtained using the full-governing equations
shown in figure 4(a).

Criteria for the existence of a purely monotonic response
We observe from expressions given in (A26) and (A27) that, when G → 0 and k → 0,
we have a purely monotonic instability for A2 � 0. To see this, we set G = 0 and k = 0
and determine the parameters for which the expression in (A26) yields a positive value.
Equation (A26) becomes

A2 = 6
Ca

[(1 − ( De
a ))

2 + ( 1
a )

2]
[−(1 + De2) 1

a + De] . (A28)
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Notice that the numerator in expression (A28) is always positive, thereby requiring the
denominator also to be positive. This yields the condition

De

1 + De2 >
2Re

5
. (A29)

This criterion for the existence of a pure monotonic instability is presented in § 4.3.

Appendix B. The detailed form of (2.24) to determine A
The matrix form of the eigenvalue problem in (2.24) is as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎣

CN .. 0 0 0 0 ..0
0 CN−1.. 0 0 ..0
0 0 CN−2.. 0 ..0

. . . ..

0 0 ..C−N+2 0 0
0 0 0 ..C−N+1 0
0 0 0 0 0 ..C−N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĥN

ĥN−1
ĥN−2
. . .

ĥ−N+2
ĥ−N+1
ĥ−N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

x

=A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 DN−2 0.. 0 0 0
0 0 0 DN−3 0.. 0 0
DN 0 0 0 DN−4 0.. 0
. . . ..

0 . . . 0 D−N+4 0 0 0 D−N
0 0 . . . 0 D−N+3 0 0 0
0 0 0 . . . 0 D−N+2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĥN

ĥN−1
ĥN−2
. . .

ĥ−N+2
ĥ−N+1
ĥ−N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

x

(B1)

where Cn = (Re(inω/2)dcn/dz−(1/(1+ inωDe/2)) d3cn/dz3+(3k2/(1 + inωDe/2))
dcn/dz + Gk2 + k4/Ca)|z=0, cn = ŵn/ĥn and Dn = k2/2. Here n varies from −N to N .
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