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Abstract

We experimentally study how individuals strategically disclose multidimensional information to a Naive
Bayes algorithm trained to guess their characteristics. Subjects’ objective is to minimize the algorithm’s
accuracy in guessing a target characteristic. We vary what participants know about the algorithm’s function-
ing and how obvious are the correlations between the target and other characteristics. Optimal disclosure
strategies rely on subjects identifying whether the combination of their characteristics is common or not.
Information about the algorithm functioning makes subjects identify correlations they otherwise do not
see but also overthink. Overall, this information decreases the frequency of optimal disclosure strategies.

Keywords: Classification algorithms; data management; experiments; strategic disclosure
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1. Introduction

Since 2018, the General Data Protection Regulation has imposed obligations on any organization that
collects data related to people in the European Union. Two of the principles identified as key to ensure
data privacy and security are algorithmic transparency and user control. The first principle prescribes
that individuals must be informed in a “concise, transparent, intelligible and easily accessible” way
about how their data is processed (see Art 12-14 GDPR). The second principle provides individuals
with some control over their personal data in the precise sense of a “right to object, at any time, to
processing of [this] data” (see Art. 21 GDPR). Underlying these principles is the assumption that
informed individuals who have the possibility to manage their data will effectively do it in their best
interest.

We propose an experiment to test this assumption and examine what helps subjects manage their
data. Subjects face a classification algorithm trained on other individuals’ data to guess their personal
attributes. Classification algorithms are nowadays prevalent. They segment people into categories
which predict who they are, what they will do or like."! We implement a stylized, simplified version of
these situations in which individuals’ objective is clearly defined - they must prevent the algorithm
from guessing one specific personal attribute - and their task consists in strategically disclosing or

"For example, classification algorithms are used to target advertisements and recommend content (Basu et al., 1998),
categorize job applicants (Pal et al., 2022) or group individuals by levels of risk (Rawat et al., 2021).

© The Author(s), 2025. Published by Cambridge University Press on behalf of Economic Science Association. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/eec.2025.10030 Published online by Cambridge University Press


mailto:jeanne.hagenbach@sciencespo.fr
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/eec.2025.10030

2 Jeanne Hagenbach and Aurélien Salas

hiding only six attributes. We show that less than 40% of individuals’ data management decisions are
optimal and, while information helps subjects understand some aspects of the problem, it does not
always help them play more optimally.

Our pre-registered experiment is made up of three parts. In the first part, subjects answer six binary
questions about themselves. This part allows us to obtain a set of characteristics for every individual:
gender, marital status, children, time spent weekly listening to music, and preferences about ice cream
flavor and nuclear power. In the second part, subjects play against an algorithm which does not know
their individual characteristics but has been trained to guess them. In each round of play, the sub-
jects’ goal is to prevent the algorithm from guessing the answer they gave to one of the six questions
of Part 1, the target question for that round. To do so, subjects must decide, for each answer they gave
in Part 1, whether to disclose or hide it to the algorithm (no lie possible). Experimental payments
represent a trade-off commonly faced by individuals disclosing personal data to algorithms. On the
one hand, hiding characteristics is costly, translating the idea that it takes time and effort to pre-
vent algorithms from accessing personal data. On the other hand, hiding characteristics reduces the
information that the algorithm can use to guess subjects’ characteristics. In the experiment, subjects’
payment is inversely proportional to the accuracy with which the algorithm guesses their answers to
the target questions. In the third part of the experiment, we ask subjects to report the correlations
they see between the questions of Part 1.

The algorithm we use is a Naive Bayes Classifier. For a given target question, this algorithm guesses
the subject’s answer according to the following main principles. First, it only uses the answers dis-
closed by the subject and does not deduce anything from the hidden (missing) characteristics. Second,
to guess the probability of a given answer to the target question conditional on a set of disclosed
answers, the algorithm uses Bayes’ rule with the ‘naive’ assumption that the subject’s characteristics are
mutually independent conditional on the characteristic it is trying to guess. This assumption ensures
that every disclosed answer independently contributes to the algorithm guess, thereby simplifying
subjects’ task. Third, to compute its guess, our algorithm uses the prior and conditional probabilities
of the different characteristics which are the frequencies of these characteristics in a population of
around 500 individuals. These individuals participated in a pre-study which generated the training
data for the algorithm. In short, our algorithm uses existing correlations between the characteristics
to guess subjects’ answers based on the partial information they disclose.

In order to ‘game’ the algorithm at the lowest cost, subjects need to understand how it functions
and, once they know it uses correlations, to properly identify these correlations. Our experimental
treatments involve variations along these two dimensions. First, we vary, between subjects, the infor-
mation given about the functioning of the algorithm: in Control, subjects are simply told that the
algorithm uses the answers they disclose to guess their answer to the target question; in Info, subjects
are additionally told that the algorithm uses correlations between answers to deduce theirs, and that
it has been trained on the answers of 500 individuals to identify these correlations. Second, subjects
play with four different target questions. This allows us to consider both strong and absent corre-
lations between target questions and other questions, as well as vary how obvious the correlations
are. Precisely, we consider the following four targets: two questions, abbreviated ICE and MUS for
favorite ice cream and time spent listening to music, whose answers are not correlated to any other
answers given in Part 1; the question about marital status, abbreviated MAR, whose answer is highly
and obviously correlated to the answer about having children; the question about being favorable to
nuclear power, abbreviated NUC, whose answer is correlated to gender.

We examine subjects’ behavior by considering the number of answers they hide from the algorithm
and the frequency with which they use optimal disclosure strategies. Given our experimental payofts
and training data, optimal strategies, which we characterize for every subject and target question,
turn out to be relatively intuitive. When the target question is uncorrelated (ICE and MUYS), it is
optimal for subjects to hide only the answer to the target question itself. When the target question
is correlated (MAR and NUC), the optimal strategy depends on whether subjects are common or
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uncommon, that is, on whether they answered like the majority of individuals in the pre-study or not.
Common subjects should hide the answer to the target question and the answer to the question which
is most correlated to that target. For example, if subjects do not want the algorithm to guess they are
married, they should hide that the fact they have children. In contrast, uncommon subjects should
hide only the answer to the target question. For example, non-married subjects with children should
disclose having children to mislead the algorithm into guessing they are married. Our paper is the
first to shed light on the distinction between common and uncommon subjects, which is key to play
optimally against the algorithm.?

The first results relate to the aggregate effects of our two experimental variations. First, pooling
all target questions, the frequency with which subjects play optimal strategies is lower in Info than
in Control. Contrary to what we had hypothesized and pre-registered, subjects disclose less opti-
mally when they have more information about the functioning of the algorithm. Overall, information
pushes subjects to over-think: they see correlations which do not exist and hide more answers than
what is optimal. As we will see in the next paragraph, this general observation hides important dif-
ferences between the target questions. Second, conditional on the treatment being Control or Info,
the frequency of optimal strategies is lowest when the target question is NUC. This confirms the
pre-registered hypothesis according to which subjects play better against the algorithm when they
understand well how their answer to the target question correlates to other answers.

Our main result is that the effect of information, not beneficial for subjects overall, varies drasti-
cally with the initial level of knowledge that subjects have about existing correlations. When the target
questions are ICE and MUS, subjects understand well the absence of correlations and that it is opti-
mal to hide the answer to the target question only. The Info treatment pushes subjects to search for
nonexistent correlations and play sub-optimally. When the target question is MAR, a large majority
of the subjects identify well that this question is correlated to the question about children, and the
Info treatment does not significantly change the way they play. When the target question is NUC, the
Info treatment helps a significant share of subjects find the correlation to gender. It however does not
help them to understand the direction of this correlation, which is needed to play optimally.

Finally, we try to examine in more details the logic behind subjects” disclosure choices (at least
for subjects who, in the first place, hide the answer to the target question itself). We show that a
majority of subjects choose disclosure strategies that are consistent with the correlations they have
identified, and that the level of consistency is similar in Control and Info. However, as explained in
the previous paragraph, information changes the correlations identified by the subjects, sometimes
in the direction of a lower accuracy. This explains part of the overall negative effect of Info on the
optimality of players’ strategies. For another part, subjects who understand correlations properly still
need to be sophisticated enough to play differently when being common or uncommmon.

Related literature. First, our paper is related to theoretical works studying situations in which agents
input private data into systems which generate payoft-relevant outcomes for them. These works span
computer science, statistics and economics.

In computer science and statistics, the focus is on building algorithms that are robust to strategic
manipulation of their data by the agents. In Meir et al. (2012), experts with personal interests provide
training data to classification algorithms. In a seminal article, Hardt et al. 2016 consider individuals
who can manipulate their attributes at some cost to obtain better classification outcomes. For certain
instances of these problems, the authors propose algorithms which achieve minimal classification
errors.” We study individuals’ strategies for a fixed algorithm rather than adapt the algorithm to these
strategies.

’A similar distinction between gender-stereotypical and non-gender-stereotypical personal attributes appear in Slokom
et al. (2021). This distinction is used to design recommendation systems which keep gender private.

*Extensions to this work include Kleinberg and Raghavan (2020) which examine individuals® efforts to manipulate their
attributes, Krishnaswamy et al. 2021 which considers agents withholding information instead of lying, and Hu et al. 2019
which consider heterogeneous gaming abilities.
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In economics, Frankel and Kartik (2022), Perez-Richet and Skreta (2022) and Ball 2024 consider
the problem of a designer who commits to a mechanism or a test which determines allocations or
scores as a function of agents’ reports. These works show how to use reported information in a way
that induces more truthful revelation from agents who want higher allocations or scores. Bjorkegren
et al. (2020) is close in spirit to these papers in that it designs an algorithm that is robust to manipu-
lation by agents, and tests it in a large field experiment in Kenya. In a different type of work, Eliaz and
Spiegler (2019), Eliaz and Spiegler 2022 consider a statistician using a penalized regression model to
determine the best action for an agent. The statistician and the agent have aligned interests, but sam-
pling errors and penalties for including variables in the model can create incentives for the agent to
misreport his characteristics. In most of the above-mentioned theoretical works, agents, at least some
of them, are assumed to be sophisticated enough to adjust to the mechanisms or the models they face.
We evaluate this sophistication experimentally. In a closely-related model, Miklds-Thal et al. (2024)
consider agents who disclose multi-dimensional data to a firm. The firm infers hidden information
from disclosed information using correlations deduced from gathering “users” data over time. In the
long term, when users are aware of these correlations, they either disclose all information or become
digital hermits who hide all information.

Second, our paper is linked to a large experimental literature in economics and psychology which
study how individuals’ attitude towards privacy affects online information disclosure. In comprehen-
sive surveys, Acquisti et al. (2017) and Acquisti et al. 2020 discuss various factors at the origin of
the privacy paradox, the frequently-observed disconnection between stated privacy preferences and
actual behavior: individuals prioritize immediate rewards over long-term privacy (Acquisti, 2004),
individuals disclose more sensitive information when they perceive others are doing so (Acquisti
etal., 2012), individuals stick with default revelation options leading to less (John et al., 2011), and so
on. Our results show that managing personal data is challenging for subjects even when abstracting
away from privacy concerns.

B¢ et al. (2023) report an experiment closely related to ours. They study how users manipulate
their responses to a questionnaire in order to achieve favorable pricing in a price discrimination
setting. They show that users effectively manipulate their answers only when the link between these
answers and the proposed price is direct and obvious. In their study, subjects can lie whereas we focus
on hard information disclosure. The algorithm used in B6 et al. (2023) is an OLS regression which
estimates subjects’ willingness-to-pay from their answers; our algorithm is a Naive Bayes classifier
trained to guess personal attributes, which could be used subsequently for various purposes. Using
different approaches, both papers suggest that transparency and user control still lead to sub-optimal
disclosure decisions. More broadly, our paper relates to a body of work studying why individuals
are averse to rely on algorithms for some tasks typically done by humans, even if algorithms often
perform better (see Dietvorst et al. (2015), Dietvorst et al. (2018), Castelo et al. (2019), or Jussupow
et al. (2020)). Within this literature, Dargnies et al. 2024 focuses on hiring algorithms and study
the effect of transparency on their adoption. We study how transparency affects subjects’ strategic
communication with algorithms.

2. Experimental design

We describe the overall structure of the experiment before giving details about the treatments. To
develop and train the algorithm against which subjects play in the experiment, we collected data in a
pre-study.

2.1. Pre-study

The pre-study involved 505 Prolific participants (fluent in English and based in the USA) who
completed a simple task: They answered 30 binary questions about themselves.* Subjects were paid

*Only the question about gender was not binary. The pre-study questionnaire is given in the Online Appendix.
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a fixed amount of 60 pence for filling out that questionnaire, which took on average 2 minutes 51
seconds. We had explained to the subjects that there were no right or wrong answers and that they
should answer honestly, so we consider their answers as truthful.

2.2. Main experiment

Our experiment is made up of three parts. The instructions for each part are given to subjects along
the way. Subjects complete each part without knowing what the next part is made of. Subjects can
earn money in each part as detailed below. The complete instructions are given in section 3 of the
Online Appendix.

2.2.1. Partl
In the first part, each subject completes a short questionnaire consisting of six questions about demo-
graphics and preferences. The questions are presented in one of three random orders, and, as in the
pre-study, subjects are asked to answer honestly. For completing the questionnaire, subjects receive a
fixed payment of £1.2. The six questions and possible answers are given below. We explain in section
A4 of the Appendix how we selected these questions from the questionnaire and data of the pre-
study. In the paper, we refer to each question by using the three letters which appear below, before
each question.

CHI - Do you have children? Yes / No

GEN - What gender are you currently? Male / Female / Non-Binary.

MAR - Are you married or in a domestic partnership? Yes / No

MUS - How much time do you spend listening to music per week? 3 hours or less / More than
3 hours

ICE - Which flavor of ice cream do you prefer? Chocolate / Vanilla

NUC - Are you in favor of the use of nuclear power? Yes / No

2.2.2. Part2

In the second part of the experiment, subjects play four rounds of a game against an algorithm. The
general idea of this game is as follows: The algorithm does not know the subjects’ answers to the ques-
tionnaire completed in Part 1 but it is trained to guess them. In every round, the subjects’ objective
is to prevent the algorithm from guessing their answer to one specific question asked in Part 1. We
refer to this question as the target question. Each round of the game proceeds in three steps.

- First, we tell the subject which question is the target question and remind him/her the answer
he/she gave in Part 1.

- Second, the subject must decide, for each of the six answers he/she gave in Part 1 (including the
answer to the target question), whether or not he/she wants to disclose it to the algorithm. We do not
offer subjects the possibility to manipulate the answer they gave, only to hide it from the algorithm
(no lies are possible). Figure 1 is a screenshot of the interface subjects used to make these choices.

- Third, once the subject made his/her six disclosure decisions, the algorithm uses the disclosed
answers to compute a probability for each possible answer to the target question (the algorithm does
not deduce anything from undisclosed answers). For example, if the target question is “Do you have
children?’, the algorithm computes the probability that the answer of the subject was “yes” and the
complementary probability that the answer of the subject was “No”. The probability that is computed
for the answer effectively given by the subject in Part 1 is called the guess of the algorithm.

*We did not have enough Non-binary participants in the pre-study to train the algorithm properly for these subjects. In the
main experiment, the 12 subjects who answered Non-Binary to the gender question could play but were later dropped from
the main analysis.
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The target question is : Are you married or in a domestic partnership?
Your task is to prevent the algorithm from guessing your answer was Yes.

Now you can decide which of your answers you want to disclose to the algorithm

and which of your answers you want to hide.

Do you have children?

You answered Yes

Disclose this answer

Hide this answer

How much time do you spend listening to

Are you in favor of the use of nuclear
power?
You answered Yes

Disclose this answer

Hide this answer

Which flaver of ice cream do you prefer?

music per week?

You answered 3 hours or less You answered Chocolate

Disclose this answer Disclose this answer

Hide this answer Hide this answer

What gender are you currently? Are you married or in a domestic

partnership?

You answered Male You answered Yes

Disclose this answer Disclose this answer

Hide this answer Hide this answer

Fig. 1 Ascreen seen by subjects when they had to make their disclosure choices

We give the details of the subjects’ payments later but the key trade-off is the following: hiding
answers to the algorithm is costly to the subject but, if done strategically, can prevent the algorithm
from making more accurate guesses.

2.2.3. How does the algorithm compute its guesses?
We now describe the environment more formally to explain how the algorithm computes its guesses
in every round of the game. In the environment we consider, there are six binary random vari-
ables, X; to X4, each corresponding to a question asked in Part 1. Every subject is characterized
by the realizations of these variables, that is, by the set of six answers he/she gave in Part 1, A =
{x1, %5, X3, X4, X5, X }» and discloses a subset of these answers, D C A, to the algorithm.

The first property of the algorithm we implement is that it uses only disclosed answers to make its
guesses, in the sense that it does not make any inferences from hidden answers. Next, the algorithm
we implement is the Naive Bayes Algorithm: when the target question is j and the subject discloses
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D, the guess of the algorithm corresponds to g = P(x;|D) which is computed using Bayes’ rule
with the “naive” assumption that all variables in {X;},.; are mutually independent conditional on
x;. The assumption of conditional independence simplifies considerably. the relationship between
disclosed answers and the guess. Because each disclosed answer contributes independently to the
guess, subjects can think about the effect of disclosing each answer in isolation.®

Formally, when D # {), the algorithm’s guess is given by:

P(xj> Hx,.eD P(xi|xj)
P(D)

¢h = P(x|D) = (1)

where

P(D) = Pr(x;) [ | P(xilx;) + Pr(=x;) [ P(xi|x;).

x;€D x;€D

To compute the guesses, according to (1), the algorithm only uses the prior probabilities P(x;) of tar-
get questions j and the conditional probabilities P(x;|x;) for every i and target j. It computes these
probabilities using frequencies from the pre-study dataset. Precisely, P(x;) correspond to the fre-
quency of answer x; in the pre-study dataset, and P(x;|x;) to the frequency with which the answer
x; occurs in conjunction with x; divided by the frequency of x;. In the particular case in which the

subject discloses the answer to the target question j itself, then (1) leads to g, = 1.7 If the subject does
not disclose any answer, D = (), equation (1) is not defined. The guess of the algorithm then simply
corresponds to the prior probability of answer x;, P(x;), given by the frequency of ; in the pre-study
data.

The Naive Bayes Algorithm is widely used in practice.® According to Wu et al. (2007), Naive Bayes
ranks among the top 10 algorithms used in both the industry and the academic world for analyz-
ing large datasets. Its applications range from medical classification tasks, such as predicting cancer
progression in patients (Kamel et al., 2019), to everyday use like spam filtering in software such as
Apache SpamAssassin and Mozilla Thunderbird. Naive Bayes algorithms also perform well for rec-
ommendation tasks. For instance, Wang and Tan 2011 shows that an improved version of the Naive
Bayes algorithm performs better than the Amazon recommendation algorithm, and Sahu et al. 2017
found the Naive Bayes approach to be the most precise for movie recommendations. In addition,
Pronk et al. 2007 and Valdiviezo-Diaz et al. (2019) argue, respectively, in favor of the Naive Bayes
Algorithm because it is relatively simple to use and to explain to individuals.

2.2.4. Subjects’ paymentin part 2

In each round of the game against the algorithm, the payoffs are as follows. The subject starts each
round with an endowment of £3.2. This endowment is reduced in two ways: (1) For each answer
that the subject decides to hide from the algorithm, the endowment is reduced by 20 pence. (2) At
the end of the round, the endowment is reduced by two times the guess (between 0 and 1) of the
algorithm. We remind that this guess corresponds to the probability, computed by the algorithm, that
the subject’s answer was the one truly given in Part 1. With such payofs, hiding answers is costly but
reduces the information available to the algorithm to guess the subject’s answers. We will later show
that reducing this information can have ambiguous effects on how accurate the algorithm guess is,
and derive subjects’ optimal disclosure strategies.

SIf the algorithm did not assume that all variables {X;}i4+ are independent conditional on x;, it would be hard for subjects
to evaluate the effect of disclosing an answer on the guess. They would have to think about the direct effect of this answer on
the guess, but also about the indirect effect on other answers which also affect the guess.

"This is true in theory. In practice, algorithms need to avoid break-downs linked to zero probabilities, so they apply smooth-
ing methods to their computations. Our algorithm delivers a guess of at least 0.983 for the cases in which subjects disclose the
answer to the target question.

*We use the BernouilliNB code in the Python sklearn package. For details, see section 4 of the Online Appendix.
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Before starting the four rounds of game, subjects need to answer correctly some comprehension
questions. Once a round is over, subjects move to the next round without getting any feedback about
the guess of the algorithm. Each round corresponds to a different target question, and the order of
the four rounds/target questions is randomized at the subject level. Rounds are independent in the
sense that the answers disclosed in one round by the subject cannot be used by the algorithm in the
next rounds. One of the four rounds is picked at random for the payment of Part 2 of the experiment.

2.2.5. Part3
Part 3 consists of a questionnaire whose goal is to get a sense of the correlations that subjects see
between the answers to the six questions of Part 1. For each of the four target questions, we ask
subjects to imagine they would have to guess someone’s answer to that target question. Then we ask,
if they could see this person’s answer to one other question, which they think would be most useful.
To capture the possibility that subjects see no correlations between the target question and the other
questions, we offer subjects the option to answer “none of the questions would help me much to
make that guess”. For every correct answer given by the subjects in the Part 3 questionnaire, that is,
when they can identify the most correlated question or rightly identify that the target question is
not correlated to any other question, they get 10 pence. Finally note that, in Part 3, we elicit whether
subjects see correlations but do not ask them the direction of these correlations.

At the very end of the experiment, subjects are asked about their age and experience with
algorithms, Internet and statistics.

2.2.6. Implementation

The experiment was run on Prolific and involved 970 subjects (fluent in English and based in the
USA).” The experiment took, on average, 8 minutes and 43 sec. (sd 5 minutes and 11 sec.) and
subjects earned an average of £2.99 (sd 50 pence). (The pre-registration - reference #128706 on
Aspredicted - included an additional treatment, presented and briefly analyzed in section 2 of the
Online Appendix.)

2.3. Experimental treatments

Our objective is to understand what affects subjects’ ability to “game” the algorithm, that is, to prevent
the algorithm from guessing their answers with a high probability. Subjects may fail to do so for at
least two reasons. One reason is that they do not know how the algorithm functions and, in particu-
lar, that it uses correlations between questions to make guesses. Another reason is that, even if they
understand that the algorithm uses correlations to make guesses, they do not identify which questions
are correlated to each other, and which are not correlated to any other. We design two dimensions of
treatments along these two lines: One dimension varies the information we give to subjects about the
functioning of the algorithm; the other dimension varies how easy it is for subjects to understand the
correlations or the absence of correlations.

2.3.1. Variation 1: information about the algorithm

Subjects are randomly assigned to the Control or to the Info treatment (between subjects implemen-
tation). In the beginning of Part 2, we explain to the subjects the game they will play against the
algorithm and, in particular, give them the following information:

- In the Control treatment, subjects read: In every round, you will have to decide, for each answer

you gave in Part 1, whether you want to disclose it or hide it to the algorithm. The algorithm will
use the answers you disclose to deduce your answer to the target question.

°As explained earlier, out of 982 in total, we had to drop the 12 subjects who answered Non-Binary to GEN.
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- Inthe Info treatment, subjects read the same sentences as in the Control treatment but we add the
following text: To make this deduction, the algorithm has been trained on about 500 subjects, who
previously completed the same questionnaire as the one you completed in Part 1. The algorithm
uses their answers to identify correlations between answers. For example, it can identify whether
women are more or less likely than men to listen to more than three hours of music per week.

2.3.2. Variation 2: correlations between target questions

Every subject plays four rounds of the game against the algorithm. In every round, the target question
is different. We selected target questions which were not correlated to each other and with different
levels of correlation to other questions.

We use ICE, MUS, MAR and NUC as target questions.'® In the pre-study dataset, the correlation
between ICE and MUS and any other question is lower than 0.10. We refer to ICE and MUS as uncor-
related target questions. In the pre-study dataset, the answer to MAR is correlated to the answer to
CHI (Pearson correlation coefficient is 0.47) and, more precisely, subjects who are married are also
more likely to have children (and vice versa). The answer to MAR is not correlated to the answer to
any question other than CHI. Finally, NUC is correlated to GEN (Pearson correlation coefficient is
0.29) and, more precisely, male subjects are more likely to be in favor of the use of nuclear power (and
vice versa)."" Again, the answer to NUC is not correlated to the answer to any question other than
GEN. We refer to MAR and NUC as correlated target questions.

Finally, we assume that the correlation between MAR and CHI is easier to identify for subjects than
between NUC and GEN. We also assume that the absence of correlation of MUS and ICE with any
other question is easier to see than the correlation between NUC and GEN. At the end of section 3.1,
we give arguments supporting these assumptions.

2.4. Optimal disclosure strategies

In this subsection, we derive the subjects’ optimal disclosure strategies before discussing the gener-
ality of the theoretical predictions established for our experimental setting.

To find optimal disclosure strategies, we must find, for every subject, the largest disclosure set
(hiding is costly) which prevents the algorithm from making too accurate guesses. As mentioned
above, a subject is characterized by the six answers he/she gave in Part 1, A = {x;, x,, x3, X4, X5, Xg }
D C Ais the set of answers disclosed by the subject. When the target is j, the guess g7, of the algorithm
is given by (1) if the set of disclosed answers is D # () and by P(x;) if D = (). Given experimental
payofls, the subject’s objective is the following:

max 2¢h — 0.2 % |A\ D|
where |A \ D| corresponds to the number of answers hidden by the subject.

To establish results about optimal strategies for all subjects, we need to consider all possible sets
of answers A. For a given A, we then need to compare the subjects’ payofts for all possible disclosure
strategies. For that, we design a procedure which compares disclosure strategies two by two for a
given A, and then repeats this exercise for all possible A. The proofs of the two following propositions
are given in section A.5 of the Appendix.

We start by establishing a rather intuitive result, namely that it is always beneficial for a subject to
hide the answer to the target question itself.

Proposition 1. In the game against the algorithm, it is always strictly beneficial for the subjects to hide
the answer to the target question.

"Section A.4 of the Appendix explains how we selected these questions.

""This result is not specific to our sample. Solomon et al. (1989) and Kennedy et al. (2023) report a similar link between
being a man and the acceptance of nuclear power.
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For the uncorrelated target questions, ICE and MUS, hiding only the target answer is always opti-
mal. Intuitively, since the target questions are uncorrelated, hiding additional answers will have only
a negligible effect on the guess of the algorithm while costing 20 pence. For the correlated target ques-
tions, MAR and NUC, the guess of the algorithm is strongly determined by the answer to the question
that is correlated to the target (if disclosed), respectively CHI and GEN. For subjects who answered
these questions like the majority of subjects in the pre-study, disclosing these answers help the algo-
rithm make a better guess about their answer to the target question. For subjects who answered
differently from the majority of subjects in the pre-study, these answers mislead the algorithm about
their answer to the target question. For each target question, we respectively define common and
uncommon subjects as follows.

Definition 1. Let the target question be MAR. A common subject either answered Yes to both MAR
and CHI, or answered No to both MAR and CHI. An uncommon subject either answered Yes to MAR
and No to CHI, or answered No to MAR and Yes to CHIL.

Definition 2. Let the target question be NUC. A common subject either answered Yes to NUC and
Male to GEN, or answered No to NUC and Female to GEN. An uncommon subject either answered
Yes to NUC and Fermale to GEN, or answered No to NUC and Male to GEN.

We now can give the optimal strategies for all target questions and types of subjects.

Proposition 2.

(a) When the target question is uncorrelated (ICE or MUS), it is optimal for every subject to hide
only the answer to the target question.

(b) When the target question is correlated (MAR or NUC), it is optimal for every common subject
to hide the answer to the target question and the answer to its correlated question (resp. CHI or
GEN).

(c) When the target question is correlated (MAR or NUC), it is optimal for every uncommon subject
to hide only the answer to that target question.

The above propositions are established for the specific costs - cost to hide an answer, cost to see
the answer to the target question accurately guessed - implemented in our experiment. Let us discuss
the case in which subjects’ payoft is, more generally, given by

—agh — B |A\D|

with o > 0 parameterizing the cost incurred by subjects when the algorithm guess becomes more
accurate and 5 > 0 the cost incurred for every hidden answer. If & goes to zero, the cost to be
identified is so small compared to the costs of hiding that subjects should disclose all answers. If § goes
to zero, the cost of hiding is negligible: subjects’ optimal strategy consists in hiding all answers which
were also given by a majority of the subjects who gave the same answer as themselves to the target
question, and disclosing all answers which were given by only a minority of the subjects who gave
the same answer as themselves to the target question.'? In that sense, the common versus uncommon
distinction presented in Proposition 2 captures a general feature of optimal disclosure strategies. Our
experiment, however, does not implement any of these two extreme cases, so we identify optimal
disclosure strategies by comparing the cost to hide any question to the impact it has on the algorithm’s

_ 12Gi_ven equation (1), it is straightforward to show that, for all target question j, other question k and disclosed set D,
g —g’D\{Xk} > 0 (<0, resp.) if and only if P(x; | x;) > 0.5 (< 0.5, resp.).
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guess. Given our training dataset, all our Propositions hold as long as the ratio between f and « lies
in [0.053,0.12].13

2.5. Hypotheses

The optimal strategies are relatively simple as they all consist in hiding only one or two answers. The
objective of this paper is to study what affects players’ ability to play these strategies. Clearly, to play
optimally, subjects need to understand how the algorithm functions and, provided they understand
it uses correlations, to identify these correlations.

The first treatment variation varies whether or not subjects were informed that the algorithm
makes its guesses using correlations. Regarding this variation, we make the following, pre-registered,
hypothesis:

Hypothesis 1. For every target question, subjects play the optimal strategy more often in the Info
treatment than in the Control treatment.

The second treatment variation aims at examining how subjects play when correlations or absence
of correlations between questions are more or less easy to identify. Regarding this variation, we make
the following, pre-registered, hypothesis:

Hypothesis 2. Given a level of information about the functioning of the algorithm, subjects play
the optimal strategy more often when the correlations or absence of correlations are easier to iden-
tify. Hence, subjects play the optimal strategy more often when the target question is MAR, ICE
or MUS than when it is NUC.

3. Results
3.1. Description of the data

In our dataset, an observation corresponds to one of the four games played by one of the 970 subjects.
We have 3880 observations in total, each consisting in a set of answers A given by the subject, a target
question j and a set of disclosed answers D. For each observation, the previous propositions charac-
terize the optimal disclosure strategy. The first three lines of Table 1 give the number of observations
per treatment and target question. The bottom part of the table gives, for each target, the percentage
of cases in which the optimal disclosure strategy is to hide only the answer to the target question. For
MAR and NUC, this percentage corresponds to the fraction of uncommon subjects (defined only for
correlated targets).

Regarding subjects’ characteristics A, the answers to each of the six binary questions in Part 1 are
well balanced: No answer is given by more than 62% of the subjects and no answer is given by less
than 38% of the subjects. The proportion of each answer is not significantly different in Control and
Info, except for slightly fewer married subjects in Info. In the subsequent analysis, one additional sub-
jects’ characteristic will prove relevant, namely whether or not subjects had already taken a course in
statistics. This is the case for almost half of the subjects (46.49%) and highly correlated to educational
attainment (Pearson correlation coef. of 0.48). Details about characteristics are given in section A.1
of the Appendix.

Regarding disclosure strategies, we start with a few general remarks before examining in detail
how subjects play in the next sections. First, according to Proposition 1, subjects should always hide

“The bound 0.12 corresponds to the impact on the algorithm guess of hiding GEN when the target question is NUC and
for the common subject for whom doing this has the smallest impact. The bound 0.053 corresponds to the impact on the
algorithm guess of hiding CHI additionally to GEN when the target question is NUC and for the common subject for whom
doing this has the largest impact. Both bounds appear in the proof of Proposition 2.
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Table 1. Summary of data

MUS ICE MAR NUC Total
Control 477 477 477 477 1908
Info 493 493 493 493 1972
Total 970 970 970 970 3880
Hiding the target only is optimal (in %) 100 100 25.36 35.26 65.15
Fraction of uncommon subjects (in %) - - 25.36 35.26 -

the answer to the target question. This result is intuitive for subjects who have understood the game
and we use it to check whether they did: In 79.95% of the rounds, subjects indeed hide this answer
from the algorithm;'* 78.56% of subjects hide the answer to the target question in at least three of the
four rounds they play. These statistics do not significantly differ for the Info and Control treatments,
nor for the different target questions. Second, in every round of game, subjects decide whether to hide
or disclose each of the six answers they gave in Part 1 which results in 64 possible strategies. Two such
strategies can be considered as relatively “naive” in that they consist either in hiding all answers or in
disclosing all answers; they are respectively used in 3.69% and in 10.34% of the cases. Since hiding
is costly but disclosing the target question helps the algorithm too much, another “natural” strategy
consists in hiding only the answer to the target question. This strategy, sometimes optimal, is used
widely, namely in 34.23% of all cases.

The data also contain the answers given by subjects in Part 3 of the experiment. These answers
indicate, for each target question, which other question is considered by the subject as most correlated
to the target, if any. Half of the 3880 answers (50.59%) given in Part 3 are correct, that is, correspond
to a case in which the subject identifies well the strongest correlation or the absence of correlation.
In section A.2 of the Appendix, we summarize all answers given by subjects in Part 3. These answers
support our assumption that the correlation between NUC and GEN is harder to identify for subjects
than the correlation between MAR and CHI or the absence of correlation for ICE and MUS. For the
uncorrelated targets ICE and MUS, the most common answer (respectively 50.21% and 46.08% of
answers) is that these questions are correlated to no other question; about 80% of subjects answer
that the MAR target is correlated to CHI; for the NUC target, the most common answer (38.35% of
answers) is that it is correlated to no other question, which is incorrect.

3.2. Overall effect of information

In what follows, we analyze subjects’ disclosure strategies by considering two main experimental
outcomes: The frequency of optimal strategies and the number of hidden answers.'> We start by exam-
ining the effect of the Control and Info treatments on these outcomes at the aggregate level, that is, by
pooling all target questions.

Opver all observations, subjects play the optimal strategy 33.97% of the time. This frequency equals
37.26% in Control against 30.78% in Info, which is significantly lower (p < 0.001). This means that,
at the aggregate level, subjects play significantly less well when informed that the algorithm uses
correlations to deduce their answers. This finding invalidates hypothesis 1 and is confirmed by the

"In the data we analyze, we keep the observations in which subjects disclose the answer to the target question. Our results
are robust to dropping these observations and to dropping subjects who disclosed the answer to the target at least once over
the four rounds they play.

"For several reasons, it is hard to use subjects’ realized payoffs to evaluate subjects’ ability to play the game. First, each
subject’s best possible payoft depends drastically on his/her specific answers to the initial questionnaire. In particular, common
and uncommon players reach very different payoffs when playing optimally. To control for these differences, we could look at
the difference between subjects’ realized and best possible payoffs. Again, we can show that such a measure is problematic: The
consequences on realized payoffs of any given strategic error are not the same for two people with different characteristics.
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Table 2. Optimal strategies - all targets

Optimal strategy

(1) () 3)

Info -0.065*** -0.065*** -0.067***
(0.021) (0.021) (0.021)

Round 0.019*** 0.019***
(0.006) (0.006)

Stats 0.050**
(0.021)
Female 0.007
(0.021)

Age -0.002**
(0.001)

Constant 0.373*** 0.326*** 0.380***
(0.016) (0.021) (0.043)
Observations 3880 3880 3880

Note: The table reports OLS coefficients (standard errors, clustered by subject, appear in parentheses). * p < 0.10, ** p < 0.05, *** p < 0.01.
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Fig. 2 Hiding 0 to 6 answers, per treatment and pooling all targets

regressions presented in Table 2. In this table, we examine the effect of the Info treatment dummy,
the Round of play (ranging from 1 to 4), and subjects’ demographics (gender, age and whether or not
they took a course in Stats) on the probability to play the optimal strategy. This probability is lower
in the Info treatment and increases when the subject is younger, knows some basics of statistics and
has gained some experience with the game.

The negative effect of information is tightly linked to the overall effect of Info on the number of
answers (out of six) which are hidden by subjects. On average, subjects hide more answers in Info
than in Control, respectively 1.97 and 1.88 answers (p = 0.064). The frequencies with which subjects
hide different numbers of answers is given in Figure 2. The distributions of these frequencies are
significantly different in Control and Info according to the Kolmogorov-Smirnov test (p < 0.001).
Mainly, we see significantly fewer subjects hide one answer and significantly more subjects hide two or
three answers in Info than in Control (all differences being significant at the 1% level). Said differently,
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the Info increases the share of subjects who hide two or three answers, a sub-optimal choice in 65.15%
of the cases. An interpretation is that, overall, information about the functioning of the algorithm
makes subjects over-think and look for more correlations than there truly are. This interpretation is
reinforced by the reports subjects make in Part 3: In Control, subjects answer that the target question
is correlated to no other question 40.46% of the time while they give this answer only 31.95% of the
time in Info, a significant difference (p < 0.001).

Result 1. Pooling all target questions, the frequency of optimal strategies is lower in Info than in Control.
Fewer subjects hide one answer and more subjects hide two or three answers in Info than in Control.

3.3. Effect of target questions

In this section, we unpack result 1 for each target and examine the validity of hypothesis 2.

Figure 3 gives the frequency of optimal strategy in Info and Control for each target question sepa-
rately. Conditional on each treatment, subjects play the optimal strategy significantly less frequently
when the target question is NUC than when it is any other question (all p-values are smaller than
0.002). This finding validates hypothesis 2 and suggests that subjects play more optimally when it is
easier for them to identify the correlation or absence of correlation between the target question and
other questions.

Result 2. Conditional on the information subjects have about the functioning of the algorithm, the
frequency of optimal strategy is lower when the target question is NUC than when the target is any other
question.

For the two uncorrelated targets, the frequency of optimal strategies is significantly higher in
Control than in Info: It falls from 50.10% to 36.51% for ICE (p < 0.001) and from 42.56% to 31.64%
for MUS (p < 0.001). Table 7 in section A.3 of the Appendix provides the regressions confirming
this finding. This decline coincides with an increase in the average number of answers hidden by
subjects: The average increases from 1.68 to 1.83 for ICE (p=0.089), and from 1.78 to 1.96 for
MUS (p = 0.054).'® In fact, the above-stated Result 1 is importantly driven by how subjects play with

"Considering the two uncorrelated targets, the Kolomogorov-Smirnov test establishes that the distributions of the
frequencies with which subjects hide from 0 to 6 answers are different in Control and Info (p = 0.001).
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the uncorrelated targets: In Info, subjects see more correlations than there are, which significantly
decreases the share of subjects who hide the target only. In Part 3, 53.35% of subjects properly iden-
tify that the target is correlated to no other question in Control while this number decreases to 43.10%
in Info (p < 0.001).

Result 3. When the target question is uncorrelated, the frequency of optimal strategies is lower in Info
than in Control. In the former treatment, subjects search for nonexistent correlations and hide more
answers than what is optimal.

As it appears on Figure 3, when the target is MAR or NUC, there is no statistically significant
difference in the frequency of optimal strategy between Control and Info. Table 8 in section A.3 of
the Appendix provides the regressions confirming this finding. For MAR, this frequency is 34.38% in
Control versus 32.05% in Info (p = 0.441). For NUGC, this frequency is 22.01% in Control versus 22.92%
in Info (p = 0.735). Pooling MAR and NUC, the average number of hidden answers are not different
in Control and Info, respectively 2.03 and 2.04 answers (p = 0.938)."” However, it is hard to interpret
the absence of treatment effect for correlated questions because it hides very important difference
between the MAR and NUC target questions, and between the way common and uncommon subjects
play with these questions. We describe these differences in detail in the next section.

3.4. Effect of being a common or an uncommon subject

In this section, we examine how common and uncommon subjects play when the target questions are
MAR and NUC."® We remind the reader that the optimal strategy of common subjects is to hide their
answers to the target question and to the most correlated question whereas the optimal strategy of
uncommon subjects is to hide only their answer to the target (Proposition 2). We will see that, when
the target is MAR, common and uncommon subjects reach similar frequencies of optimal strategies,
necessarily by making different disclosure choices. In contrast, when the target is NUC, common
and uncommon subjects make similar disclosure choices, thereby reaching different frequencies of
optimal strategies.

One important reason behind these findings is that MAR and NUC are very different correlated
target questions. On the one hand, 79.69% of subjects (pooling Control and Info) correctly identify
that the question about being married is correlated to the question about having children. In addition,
it is very likely that, by identifying this correlation, subjects also directly identify its direction: Being
married is correlated to having children, not to having no children. On the other hand, only 26.39%
of subjects (pooling Control and Info) correctly identify that the question about the use of nuclear
power is correlated to gender. And, if subjects identify this correlation correctly, its direction may not
be obvious.

3.4.1. The MAR target question
When the target is MAR, common and uncommon subjects play differently. This is shown on
Figures 4(a) and (b) which display, for common and uncommon subjects separately, the frequencies
with which they hide 0 to 6 answers in each treatment.

We start with the Control treatment. In this treatment, common and uncommon subjects reach
similar share of optimal strategies (34.35% and 34.48% respectively, p = 0.979), which they do by
making different disclosure choices. This is visible by looking at the light gray bars on both sides

Y Considering the two correlated targets, the Kolomogorov-Smirnov test establishes that the distribution of the frequencies
with which subjects hide from 0 to 6 answers are not different in Control and Info (p = 0.225).

"®This part of the analysis is exploratory as we did not pre-register any hypothesis about how these two types of subjects
would play.
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Fig. 4 Hiding 0 to 6 answers for the MAR target, per treatment. (a) Common subjects. (b) Uncommon subjects

of Figure 4: Only 18.84% of common subjects hide one answer against 34.48% of uncommon sub-
jects (p < 0.001); 39.89% of common subjects hide two answers against 30.17% of uncommon subjects
(p =0.060)." Clearly, when uncommon subjects hide the target question only (the optimal strategy
for them), it could be either because they use this relatively natural strategy without thinking much or
because they are sophisticated enough to do so to mislead the algorithm. These two possibilities are
confounded in our data. The number of common subjects who hide only the target (a sub-optimal
strategy for them) is 14.96%. If we consider this number as a benchmark for the fraction of subjects
who use this strategy simply because it is natural, it leaves about 20% of uncommon subjects (a signifi-
cant difference between 34.48% and 14.96%, p < 0.001) who use this strategy because they understand
that disclosing their answer to CHI misleads the algorithm. Overall, the data in Control suggests that,
when subjects have well understood a correlation, a significant share of them is sophisticated enough
to strategically play with it against the algorithm.

Next, we consider the Info treatment. For common subjects, as well as for uncommon subjects,
there is no significant effect of the Control versus Info treatment on the frequency of optimal strategies
or on the number of hidden answers. For common subjects, the share of optimal strategy is 34.35% in
Control and 29.48% in Info (p = 0.160), and they hide an average of 2.22 answers in both treatments
(p = 0.947). For uncommon subjects, the share of optimal strategy is 34.48% in Control and 39.23%
in Info (p = 0.443), and they hide an average of about two answers in both treatments (p = 0.188).
Our interpretation is that, when the correlation is obvious and identified by most subjects, it does not
bring much to subjects to learn that the algorithm uses correlations.

Second, the small, insignificant effect of Info on subjects” disclosure strategies goes in different
directions for common and uncommon subjects. It follows, as shown on Figure 4, that the difference
in play between common and uncommon subjects is even larger for Info than for Control.** In Info,
the share of optimal strategies for common subjects is significantly lower than the share for uncom-
mon subjects (29.48% against 39.23%, p = 0.041). In fact, the Info treatment pushes common subjects
in the same direction as the one identified earlier for uncorrelated targets: They start thinking about
nonexistent correlations and hide more than what is optimal. In particular, 24.79% of common sub-
jects sub-optimally hide three answers in Info against 18.56% in Control (p = 0.042). For uncommon
subjects, the Info treatment pushes subjects in the other direction in that more subjects hide one

PFor Control, the Kolomogorov-Smirnov test confirms that the distributions of frequencies with which common and
uncommon subjects hide 0 to 6 answers are different (p = 0.036).

*For Info, the Kolomogorov-Smirnov test confirms that the distributions of frequencies with which common and
uncommon subjects hide 0 to 6 answers are different (p < 0.001).
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Fig. 5 Hiding 0 to 6 answers for the NUC target, per treatment. (a) Common subjects. (b) Uncommon subjects

answer only (42.31% in Info versus 34.48% in Control, p=0.210). This suggests that the Info treat-
ment not only pushed to think about correlations but also pushes some subjects to think about the
direction of these correlations, and to play slightly better as uncommon subjects.

Result4. When the target question is correlated and the correlation is well-understood by most subjects,
common subjects play differently from uncommon subjects, both in Control and in Info. For each group
of subjects, there is no significant effect of the Control versus Info treatment on the frequency of optimal
strategy.

3.4.2. The NUC target question

When the target is NUC, common and uncommon subjects play similarly. This appears on
Figures 5(a) and (b) which display, for common and uncommon subjects separately, the frequencies
with which they hide 0 to 6 answers in each treatment.

We start with the Control treatment. Looking at Figure 5, we see that common and uncommon
subjects play similarly, most often hiding one answer only (41.61% of common subjects and 48.50%
of uncommon subjects do so, p =0.149).*! This is linked to the fact that 46.71% of common subjects
and 43.23% of uncommon subjects answer that NUC is correlated to no other question in Part 3 of
the experiment. The similar disclosure strategies used by common and uncommon subjects result in
very different shares of optimal strategies: 8.06% of common subjects play optimally against 47.90%
of uncommon subjects (p < 0.001).

Next, we find that the Info treatment importantly affects the beliefs about correlations reported in
Part 3 of the experiment. In Control, only 20.96% of subjects correctly report that GEN is correlated to
NUC. This share goes to 31.64% in the Info treatment (p < 0.001). In parallel, the share of subjects who
answer that NUC is not correlated to any other question decreases from 44.44% in Control to 32.45%
in Info (p < 0.001). As it appears on Figure 5, these changes in beliefs go with a decrease in the share
of subjects (common and uncommon) who hide one answer only. This share goes from 44.03% in
Control to 32.25% in Info (p < 0.001). We also observe a significant increase in the share of subjects
who hide three answers (p = 0.007). These changes are importantly driven by a higher fraction of
subjects hiding their gender in Info (41.38% against 30.19% in Control, p < 0.001). Since common
and uncommon subjects react similarly to Info by hiding more answers, the frequency of optimal
strategies increases for common subjects and decreases for uncommon subjects. This is summarized

*'For Control, the Kolomogorov-Smirnov test confirms that the distributions of frequencies with which common and
uncommon subjects hide 0 to 6 answers are not different (p = 0.992).
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on Figure 6. Overall, this suggests that, while the Info treatment helps subjects identify better which
question is correlated to the target, it does not necessarily help them to understand the direction of
this correlation and to play better as uncommon subjects.

Result 5. When the target question is correlated but the correlation is hard to identify, common and
uncommon subjects play similarly. Subjects identify better the correlation in Info than in Control. The
frequency of optimal strategies is higher in Info than in Control for common subjects, and lower in Info
than in Control for uncommon subjects.

3.5. Consistent strategies

In previous sections, we examine subjects’ behavior by considering the optimality of their disclosure
strategies. In this section, we take another approach and evaluate the consistency between subjects’
disclosure strategies and the correlations they report in Part 3 of the experiment. Because we try to get
at the logic behind disclosure choices, we first restrict our dataset to the strategies for which subjects
hide the answer to the target question. We are left with 3102 observations (for this subsection). Next,
we define a consistent strategiy:

o When a subject reports no correlation between the target question and any of the other questions
(in Part 3), we say that his/her strategy is consistent if he/she hides only the target question; the
strategy is inconsistent otherwise.

o When a subject reports a correlation between the target question and another question
(in Part 3), we say that his/her strategy is consistent if he/she hides the answer to that other
question and the answer to the target; the strategy is inconsistent otherwise.

A number of remarks about the definition of consistent strategies are in order. First, the definition
is independent of whether or not the reports made in Part 3 are correct. Second, we consider that
a subject who, for example, reports that NUC is most correlated to GEN uses a consistent strategy
if he/she hides the answer to NUC and GEN independently of whether he/she hides other answers.
Recall that, in Part 3, subjects can only report the question they consider is most correlated to the
target, not all questions they believe are correlated. Third, note that the definition of consistency does
not consider the distinction between common and uncommon subjects. We define consistency as
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Table 3. Frequency of consistent strategies, by treatment and target

Control Info Overall p-value
ICE 57.40 52.21 54.81 0.148
MUS 52.27 50.00 51.11 0.531
MAR 62.47 61.10 61.77 0.692
NUC 52.32 52.96 52.64 0.859
Total 56.15 54.12 55.13 0.257

Table 4. Frequency of correctly identified correlations, by treatment and target

Control Info Overall p-value
ICE 52.99 45.45 49.22 0.037
MUS 52.00 37.44 44.58 <0.001
MAR 80.46 83.54 82.03 0.261
NUC 22.16 33.42 27.80 <0.001
Total 51.92 50.22 51.06 0.345

the act of hiding the answer to a question identified as most correlated to the target, ignoring that
it is sub-optimal for uncommon subjects. Said differently, we consider as inconsistent the optimal
strategies of uncommon subjects.

Table 3 gives the frequency of consistent strategies per treatment and target question. Pooling all
treatments and targets, 55.13% of strategies are consistent. In addition, for a given target, the level of
consistency is never affected by the Control versus Info treatment.

Overall, strategies are more consistent (55.13%) than they are optimal (33.97%). Playing optimal
strategies requires that subjects correctly understand, among other things, the correlations between
the targets and other questions. In Table 4, we give the frequency of correct answers given in Part 3,
that is, the share of cases in which subjects see that CHI is correlated to MAR, that GEN is correlated
to NUC, and that no question is correlated to ICE and MUS (see Appendix A.2 for details for the
whole sample). For uncorrelated targets, Info makes subjects less accurate. For correlated targets, Info
has no effect on the reported correlation for MAR but helps subjects identify the correct correlation
for NUC.

Combining a relatively constant level of consistency with reports about correlations that vary
across treatments, we get the following result. It can partly explain why the overall effect of infor-
mation on the optimality of disclosure strategies is negative.

Result 6. More than half of the disclosure strategies are consistent with the correlations that subjects
report, and the level of consistency is independent of the treatment. The treatment however affects the
accuracy of reported correlations: When the target is uncorrelated, subjects act on less accurate reports
in Info than in Control; when the target is correlated, subjects act on similar or more accurate reports in
Info than in Control.

4. Conclusion

We propose an experiment in which subjects strategically disclose multi-dimensional information
about themselves to a Naive Bayes algorithm trained to deduce non-disclosed attributes from dis-
closed ones. In an experimental variation, we explain to the subjects that the algorithm uses existing
correlations between attributes to make deductions. Such information about the functioning of the
algorithm affects subjects’ behavior in ways that importantly depend on what they initially know
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about existing correlations:When subjects rightly expect no correlations between some attributes,
the information makes them overthink and disclose less optimally; when correlations are obvious, the
information has little effect on disclosure strategies; when correlations are hard to see, information
helps subjects identify these correlations but not necessarily their directions.

A central message of our work is that, in order to play optimally against algorithms trained on
large datasets, individuals need more than transparency about the functioning of the algorithms —
they must understand the underlying statistical structure of the data on which the algorithms rely.
A large body of research has documented behavioral biases, such as base-rate neglect (Kahneman
and Tversky, 1973) and correlation neglect (Enke and Zimmermann, 2019), as well as cognitive
limitations like limited memory (Wilson, 2014). These factors can influence individuals’ beliefs about
the characteristics present in the training data and the correlations between them. Recent literature
in behavioral economics explores how people form mental models of variable relationships based
on personal observations (Fréchette et al., 2025). In our experiment, we inform participants that the
algorithm relies on correlations, which encourages them to think about these relationships. However,
we do not explicitly design a treatment to prompt them to consider the nature of the training data.

Our work further shows that individuals additionally need to understand how the characteristics
of the training dataset relate to their own characteristics. In the well-structured setting we consider,
it is possible to characterize optimal disclosure strategies for all subjects, that is, for all their possi-
ble sets of characteristics. This characterization demonstrates that the distinction between common
and uncommon subjects is crucial: Subjects whose characteristics are not mainstream can trick the
algorithm into making wrong guesses about their characteristics precisely because the algorithm is
trained on large data. This observation raises novel questions about how subjects perceive themselves
in relation to others. In the experimental psychology literature, Ross et al. (1977) shows that individ-
uals are biased towards seeing more consensus about their (hypothetical) decisions or characteristics
than there is. Our study suggests that it is important to understand the extent to which people can
identify the traits that make them different from or similar to the crowd.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/eec.2025.
10030.

Replication package. The replication material for the study is available at https://zenodo.org/records/17085920.
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