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Transient response of idealized glaciers to climate variations
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ABSTRACT. The transient response of glaciers to climate variations is investigated with a novel low-
order model of an idealized glacier resting on uniformly inclined bedrock. The model consists of two
volumes representing the accumulation and ablation areas, which are joined by a flux gate controlling
mass flow according to the shallow-ice approximation. Under the assumption of a constant vertical
mass-balance gradient, a volume–length scaling relation is derived which depends explicitly on mass-
balance gradient and bedrock slope. Analytic expressions for the volume and area timescales are given,
which are inversely proportional to the mass-balance gradient and a geometric factor which is the ratio
between the vertical extent of the ablation area and the ice thickness at the equilibrium line. From the
low-order model, a dynamical system in length and volume is obtained. Results from this system are
in good agreement with solutions obtained from a transient finite-element model solving the full force-
balance and mass-conservation equations. Under periodic forcing there are significant deviations of the
length response, which show that the usual relaxation-type parameterization of length change is not
well suited for short-term reactions. Switching on and off periodic climate forcing, the model glaciers
show surprisingly large initial and final transient responses that have not been investigated before. These
results are of significance for the interpretation of length and thickness changes observed on glaciers.

1. INTRODUCTION
The transient response of glaciers to climate variations is
one of the fundamental topics of glaciology. The response of
glaciers to changes in mass balance has been investigated
for both step changes (Nye, 1960, 1963; Hutter, 1983;
Jóhannesson and others, 1989; Van de Wal and Oerlemans,
1995; Pfeffer and others, 1998; Harrison and others, 2001,
2003; Oerlemans, 2001; Leysinger Vieli and Gudmundsson,
2004) and small periodic oscillations (Nye, 1965; Hutter,
1983).
Glacier response times have been determined by investig-

ating the asymptotic transitions between steady states under
step changes in climate. For small changes, a good fit to the
volume evolution is

ΔV (t ) = ΔV∞
(
1− e− t

τv

)
(1)

where ΔV∞ is the ultimate volume change and the time
constant τv is called the volume timescale.
While steady states are important limiting cases, most

glaciers are not near an equilibrium for most of the
time. Harrison and others (2003) investigated the transient
response of out-of-equilibrium glaciers. Assuming that a
glacier is characterized by its volume and area, they obtained
an elegant description of the macroscopic glacier response
as a critically damped harmonic oscillator in glacier volume
or area.
A low-order macroscopic glacier model is developed,

yielding an approximate scaling relation between glacier
volume and length and explicit expressions for volume and
area timescales dependent upon a parameter ζ (determined
by glacier geometry). Combining these relations, a dynamical
system in the variables glacier length L and volume V is
formulated (referred to as the LV-model). For small deviations
from a steady state, the LV-model is equivalent to the damped
harmonic oscillator derived by Harrison and others (2003).

To investigate the transient response of glaciers to climate
variations and the performance of the LV-model, a full-
Stokes finite-element (FE) model with transient evolution of
glacier geometry (referred to as the FS-model) is used. The
response of both models to periodic forcing shows all the
features described in the linearized treatment for assumed
distributions of kinematic wave velocity and diffusivity (Nye,
1965; Hutter, 1983). The transition from a steady state to
periodic oscillations (and vice versa) is characterized by
surprisingly large transients. While surprising for glaciers,
such a behaviour is well known for dynamical systems such
as a forced, linearly damped harmonic oscillator.

2. MODEL ASSUMPTIONS
With the goal of determining the basic aspects of glacier
reaction to climate, a very simple glacier geometry is
investigated. The model glaciers are assumed to be infinitely
wide, such that boundary effects of valley walls do not
play a role (two-dimensional, or 2-D, plane strain). To
calculate volumes, a width of W = 1m is assumed such
that given glacier volumes correspond to the vertical cross-
sectional areas. Consequently, the variable W is suppressed
throughout the paper. The simplest bedrock geometry was
chosen (Fig. 1): a plane of constant inclination β with
slope mb = tanβ = dzb/dx, highest elevation z0 and
parameterized by

zb(x) = z0 −mbx. (2)

At x < 0 the bedrock elevation increases almost vertically.
Net mass balance b is assumed to be elevation-dependent
with a constant mass-balance gradient db/dz = γ and is
parameterized by

b(zs) = γ(zs − zELA), (3)

where zs is the elevation of the glacier surface and zELA is the
equilibrium-line altitude (ELA). For convenience we consider
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Fig. 1. The geometry of the LV-model of a glacier resting on bedrock
of inclination β. The glacier parts A and B have volumes VA
and VB . They are linked by a flux element at the location of
the equilibrium line with horizontal coordinate G , where the ice
thickness is H. The vertical distances Z , between the highest point
of the bedrock and the equilibrium line, and Z�, between the
equilibrium line and the glacier terminus, are indicated on the right.

mass balance in ice-equivalent units in the remainder, for
which b has units of velocity.
A power-law rheology for isothermal ice is assumed.

Glen’s flow law (e.g. Paterson, 1999) relates the deformation
rate tensor

D =
1
2

(
∇v + (∇v)T

)
to the deviator of the Cauchy stress tensor

tD = t − 1
3
tr(t)

by

D = A σn−1e tD =
ε̇0
σn0

σn−1e tD, (4)

where σe is the effective shear stress defined as

σ2e =
1
2
tr(tD : tD) = IItD .

The second expression in Equation (4) serves to obtain
a timescale for deformation, given a reference stress σ0.
Using standard values for temperate ice, i.e. n = 3, A =
0.215bar−3 a−1 (Paterson, 1999), and a reference stress
σ0 = 1bar = 1 × 105 Pa leads to a reference strain rate
of ε̇0 = 0.215a−1.
The ice flux through a vertical section of thickness h and

surface inclination

ms =
dzs
dx

= mb +
dh
dx

in the shallow-ice approximation (i.e. neglecting longitudinal
stress gradients) is

q(h) =
2 ε̇0
(n + 2)

(
ρGms

σ0

)n
hn+2 = ε̇0κm

n
s h

n+2, (5)

where G and ρ denote gravitational acceleration and ice
density, respectively, and κ = 2.912× 10−4 m−2.

Table 1. List of symbols

Symbol Definition Unit

a Scaling relation factor m3−μ

b Net mass balance ma−1
be Effective mass balance ma−1
B Total mass (volume) balance m3a−1
f , fA, fB, f� Shape factors –
G Horizontal position of equilibrium line m
h Ice thickness m
H Ice thickness at equilibrium line m
H, He Mean and effective ice thickness m
L Glacier length m
ms Tangent of surface slope tanα = dzs/dx –
mb Tangent of bed slope tan β = dzb/dx –
V , VA, VB Volumes of glacier parts m3

x Horizontal coordinate m
zs, zb Elevation of surface and bed m
z0 Highest point of bed (at x = 0) m
Δz Elevation difference z0 − zb(L) = mbL m
Z Elevation difference z0 − zELA m
Z� Elevation difference zELA − zb(L) m
α Surface slope angle ◦
β Bedrock slope angle ◦
ε̇0 Flow law parameter a−1
γ Mass-balance gradient a−1
κ Flow law parameter m−2
λ Damping parameter of harm. oscillator a−1
μ Scaling relation exponent –
ν Parameter μf /f� –
τa, τv Area and volume timescales years
ζ (mbL− Z )/He = (zELA − zb(L))/(μfH) –
ω0 Eigenfrequency of harmonic oscillator a−1

3. PROPERTIES OF THE LV-MODEL
In this section some properties of steady-state, out-of-
equilibrium and periodically forced glaciers are derived.
First we obtain relations for ice thickness at the equilibrium
line and ice volume. From these expressions, approximate
volume–length scaling relations are derived. Explicit expres-
sions for the characteristic volume and area timescales τv and
τa are given. We then formulate a dynamical system in the
variables length L and volume V (called the LV-model) which
reproduces the behaviour of the full system model glaciers
(called the FS-model) well. We show that the dynamical
system is equivalent to the forced damped harmonic
oscillator proposed by Harrison and others (2003), for which
eigenfrequency and damping constant are explicitly given.
All notation is defined in Table 1.

3.1. Total balance
Given the bedrock geometry and the altitude of the
equilibrium line zELA, the total balance (rate of volume
change) B(x1,x2) of the glacier part between x1 and x2 is

B(x1,x2) =
∫ x2

x1
b(zs(x)) dx = γ

∫ x2

x1
(zs(x)− zELA) dx, (6)

where the net balance (Equation (3)) has been used. Since
surface and bedrock elevation are linked by the ice thickness
zs(x) = zb(x) + h(x), the above integral becomes

1
γ
B(x1,x2) = V(x1,x2) − zELA(x2 − x1) +

∫ x2

x1
zb(x) dx

= V(x1,x2) + (zb − zELA)(x2 − x1) (7)
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where V(x1,x2) =
∫ x2
x1
h(x) dx is the ice volume between

x1 and x2 and zb = (x2 − x1)−1
∫ x2
x1
zb(x) dx is the mean

elevation of the bedrock. Total balance of our simple glaciers
is determined by their volume V = V(0,L) and length L;
evaluating Equation (7) shows that

1
γ
B(V , L) =

1
γ
B(0,L) = V + (zb − zELA) L. (8)

Obviously, the mean bedrock elevation zb is dependent
upon L.

3.2. Geometrical properties of steady states
Steady states serve as reference states to which the transient
and periodically forced glaciers can be compared. In a steady
state the glacier geometry and the flow field are stationary,
and the total volume balance is B = 0 which facilitates the
derivation of several important relations.
The first aim is to calculate the volume of a steady-state

glacier. Using B(0,L) = 0 in Equation (8), the ice volume and
mean thickness are

V = V(0,L) = (zELA − zb)L, (9a)

H =
V
L

= zELA − zb. (9b)

The above expressions are important since they relate
volume and mean ice thickness to bedrock geometry and
glacier length only, without explicit dependence on mass-
balance gradient γ or flow law parameter ε̇0. We should
note, however, that Equation (9a) is not generally a linear
relationship between volume and length, since glacier length
is implicitly included in zb. Assuming a constant bedrock
slope (Equation (2)) zb = z0−mbL/2, the steady-state volume
becomes

V =
(
zELA − z0 + mb

2
L
)
L =

mb
2
L2 − ZL, (10)

where Z = z0 − zELA has been introduced for convenience.
The mean ice thickness is then (cf. Oerlemans, 2001,
equation (5.21))

H =
V
L
=
mb
2
L− Z . (11)

We also note that net mass balance is zero at the
equilibrium line (with horizontal coordinate xELA = G), such
that the ice thickness there is

H = h(G) = mbG − Z . (12)

To proceed, we make use of the fact that glacier shapes
are approximately similar for glaciers of different sizes. The
volumes of the accumulation area, ablation area and the
whole glacier are therefore written as VA = fAHG, VB =
fBH(L−G) and V = fHL, where the f s are factors dependent
upon the longitudinal profiles of the glacier parts. Typical
values from the FS-model results are fA ∼ 0.95, fB ∼ 0.8
and f ∼ 0.88 (for 5◦ bed slope). Total mass balances of the
accumulation and ablation area can be calculated with these
declarations and the mean bedrock elevations:

zb,A = z0 − mb
2
G, (13a)

zb,B = z0 −mbG − mb
2
(L−G) = z0 − mb

2
(L+G). (13b)

Evaluating B(0,G) and B(G,L) with Equation (7) and substi-
tuting H with Equation (12) yields

1
γ
BA = (1− fA)ZG +

(
fA − 1

2

)
mbG

2, (14a)

1
γ
BB = (1− fB)Z (L− G)−

(
fB − 1

2

)
mbG

2

− mb
2
L2 + fBmbGL. (14b)

In a steady state, the ice flux through a vertical section
at the equilibrium line equals the total mass balance of
the accumulation area. Combining Equations (14a) and (5),
evaluated at x = G and for n = 3, yields

H5 =
γ

ε̇0κ

1
m3
s
G

[
(1− fA)Z +

(
fA − 1

2

)
mbG

]
, (15)

where ms is now the surface slope at the equilibrium line.
The thickness and length of a glacier are ultimately controlled
by the size of the accumulation area, which can be derived
numerically from Equations (12) and (15).

3.3. Volume–area scaling relations
The steady-state values of H and G can be explicitly
calculated from Equations (12) and (15) for the special values
mb = 0 or Z = 0, or if a reasonable assumption about ms
and fA can be made.
The casemb = 0 corresponds to an ice sheet on a flat base,

the elevation of which is arbitrarily set to zb = 0. The length
L can be interpreted as the distance from the ice divide to
the margin. Equation (9b) shows that H = zELA = −Z , and
Equation (12) shows that −Z = H. Therefore V = HL = HL
(and therefore f = 1) and, from Equation (12), Equation (15)
simplifies to

H4 =
γ

ε̇0κ

1
m3
s
(fA − 1)G, (16)

which is only valid if fA > 1. Introducing the accumulation
area ratio (AAR), r = G/L allows us to replace G with rL,
and yields

V = HL =
[

γ

ε̇0κ

r (fA − 1)
m3
s

] 1
4

L
5
4 = asL

μ. (17)

The first expression in brackets depends on the parameters
related to mass balance (γ) and ice deformation (ε̇0); the
second expression depends upon the ice-sheet geometry.
Under the assumption that the shape of an ice sheet is
invariable for different sizes, fA, ms and r are constants and
Equation (16) is a volume–length scaling relation. The scaling
exponent μ = 1.25 is the same as that derived by Paterson
(1972) and Bahr and others (1997) for ice sheets on flat
bedrock.
In the special case mb > 0, Z = z0 − zELA = 0 and the

equilibrium line is at the highest point of the bedrock. Since
Z = 0 impliesmbG = H (Equation (12)), Equation (15) gives
a unique value of H:

H = mbG =
1
ms

(
γ

ε̇0κ

1
mb

(
fA − 1

2

)) 1
3

, (18)

from which the length can be calculated as L = 2fH/mb
using Equation (11).
For the remainder of this discussion we assume mb > 0

and Z > 0, which corresponds to a mountain glacier
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geometry. To derive a volume–length scaling relation, we
have to make assumptions about ms and fA. Results from
the FS-model show that the mean ice thickness in the
accumulation area is similar to the ice thickness at the
equilibrium line (fA ∼ 0.95), so that fA ∼ 1. Under
the additional assumption that the surface slope at the
equilibrium line is equal to the bed slope (ms ∼ mb),
Equation (15) yields

H ∼
(

γ

2κε̇0m2
b

) 1
5

G
2
5 . (19)

Since the AAR is almost constant at r ∼ 0.53 for all steady
FS-model glaciers, G can be replaced by rL, yielding

H �
(

γ

2κε̇0

) 1
5
(
r
mb

) 2
5

L
2
5 , (20)

V � f
(

γ

2κε̇0

) 1
5
(
r
mb

) 2
5

L
7
5 = aLμ. (21)

As in the case of an ice sheet, the first expression in
parentheses depends upon the parameters for mass balance
and ice deformation; the second expression depends upon
geometry. The scaling exponent μ = 1.4 is similar to the
value of 1.36 obtained by Bahr and others (1997), although
for a different geometric setting. Moreover, the dependence
of the scaling factor a on mass-balance gradient γ, ice flow-
rate factor ε̇0 and bedrock slope mb is explicitly given in
Equation (21).
From the three expressions relating steady-state volume

to glacier length (Equations (10) and (21) and V = fHL),
only Equation (21) relates V and L directly (although only
approximately). Nevertheless, it is used below in Equation
(27) to obtain estimates of the characteristic timescales.

3.4. Transient response and timescales
Next we investigate the transient reaction of a glacier to
changes in ELA. The dynamic reaction is governed by
characteristic timescales for volume and area, which are
given explicitly.
Total balance B(V , L, t ) is a function of glacier volume,

length and, through zELA, time (Equation (8)). The linear
expansion around an arbitrary reference state (V ′, L′) with
total balance B′(t ) = B(V ′, L′, t ) is

B(V , L, t ) =
∂B
∂V︸︷︷︸
=γe

ΔV +
∂B
∂L︸︷︷︸
=be

ΔL+ B′, (22)

where ΔV = V − V ′, ΔL = L − L′, be is an effective net
balance, γe an effective mass-balance gradient and B′(t ) is
the extra mass balance on the initial geometry (Harrison and
others, 2001). In the absence of basal or internal volume
changes, B = dV /dt = dΔV/dt (since V ′ is constant) and
Equation (22) becomes an evolution equation for ΔV :

dΔV
dt

= γeΔV + beΔL + B
′. (23)

After the replacement ΔL = (∂L/∂V )ΔV = (1/He)ΔV ,
the evolution of glacier volume becomes (Harrison and
others, 2001):

dΔV
dt

=
(

γe +
be
He

)
ΔV + B′ = − 1

τv
ΔV + B′, (24)

where τv is the volume timescale and is defined as

τv = −
(

γe +
be
He

)−1
=

He
(−be)− γeHe

. (25)

The second form highlights that τv is an extension of the
volume timescale He/(−be) proposed by Jóhannesson and
others (1989), and also shows that τv can change sign since
be < 0 as is shown in Equation (26) below.
For constant B′ (e.g. a step change in climate), Equa-

tion (24) has Equation (1) as solution, with ΔV∞ = B′τv.
The effective quantities γe, be and He can be explicitly

calculated for steady states of the LV-model glaciers.
Equation (8) for constant L shows that γe = γ. Equation (8)
for constant V gives:

be =
∂B
∂L

= γ
(
Z −mbL

)
= −γZ � = bL < 0, (26)

where the elevation difference Z � = zELA− zb(L) = mbL−Z
between equilibrium line and terminus has been introduced
(Fig. 1), and bL = b(L) is the net balance at the terminus. The
effective ice thickness can be approximately obtained from
the scaling relation (21) which, together with Equation (20),
yields

He =
(

∂L
∂V

)−1
� μa Lμ−1 = μfH = μH. (27)

Since μ = 1.4 and f ∼ 0.88 (from FS-model results; see
Table 3) the effective ice thickness is He ∼ 1.23H.
For the remaining discussion it is advantageous to define

the dimensionless quantity

ζ =
Z �

He
=
mbL− Z

μfH
> 0, (28)

which only depends on geometric quantities, and parameters
from the scaling relation (μ) and self-similarity (f ). The
quantity ζ is the vertical extent of the ablation area scaled
by effective ice thickness (essentially the inverse of H/Zt→eq
discussed in Harrison and others (2001)). The volume
timescale can now be written in the simple form

τv =
1

γ(ζ − 1) . (29)

To describe the dynamic reaction of glacier length, we
follow Harrison and others (2003) and assume a relaxation-
type behaviour of the form

dL
dt
= − 1

τa
(L− La(V )) , (30)

where La(V ) is the area-adjusted state for a certain volume
(i.e. the length calculated for a given volume using
Equation (21)), which need not be in balance with climate.
To write Equation (30) in terms of ΔL = L − L′, we expand
La(V ) linearly around V ′:

La(V ) = La(V
′) +

dLa
dV︸︷︷︸
= 1
He

ΔV . (31)

We also extend Equation (30) by adding and subtracting
L′/τa, and note that dL/dt = dΔL/dt since L′ is constant,
yielding

dΔL
dt

= − 1
τa
ΔL+

1
τaHe

ΔV − 1
τa
ΔL0, (32)
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Fig. 2. (a) Variation of timescales τv and τa with ζ. The dashed curve
is for f� = fB and the dotted curve for f� = 1. Curves are scaled
with γ. (b) Variation of the parameters ω0 (solid and dash-dot) and
λ (dashed and dotted) for f� = fB and f� = 1, respectively. Curves
are scaled with 1/γ. The values ζeq where ω0 = λ are indicated
with a dot (for f� = fB) and a triangle (for f� = 1).

where ΔL0 = L′ − La(V ′) quantifies how far L is from an
equilibrium state.
For an estimate of τa we consider a length deviation ΔL

from a steady state while H and G are held constant at
their steady-state values H′ and G′. In the theory outlined
above, a length change happens only because of a change
in total balance of the ablation area, which itself depends
only on volume and length of the ablation area. The volume
difference ΔV = V − V ′ = f�HΔL is not unique and will
be parameterized by f� (f� > 0). The change in total mass
balance is the difference between the new and the steady
state and (using Equation (8) and neglecting a term in ΔL2)
amounts to:

ΔB = γ
(
Z −mbL′ + f�H′

)
ΔL

= γ
(
f� − μf ζ

)
H′ΔL. (33)

Using ΔV = f�H′ΔL, ΔB can be replaced with

ΔB =
dΔV
dt

= f�H
′ dΔL
dt

. (34)

Combining Equations (33) and (34), while simplifying
notation by introducing ν = f�/μf , leads to

dΔL
dt

= γ

(
1− ζ

ν

)
ΔL. (35)

With the above definitions of ν and ΔV , Equation (32) for
ΔL0 = 0 becomes

dΔL
dt

= − 1
τa

(
1− f�

μf

)
ΔL = − 1

τa
(1− ν)ΔL (36)

and τa follows from a comparison with Equation (35):

τa =
ν

γ

1− ν

ζ − ν
. (37)

The derived area timescale is not unique, but depends on
the volume perturbation and therefore f�. It seems reasonable
to choose an f� between fB and 1, corresponding to ν=0.65–
0.81.Which values are useful is investigated in section 6.5 by
comparing the dynamical system derived from the LV-model
with the FS-model.

Both the volume and the area timescale are inversely
proportional to the mass-balance gradient γ. Their variation
with ζ is similar, as shown in Figure 2a. The relation
τv > τa obviously holds in the domain ζ > 1. The
volume timescale has a singularity at ζcrit = 1, is positive
and monotonically falling above and negative below the
singularity. The significance of a negative volume timescale
is discussed in section 6.3.
A noteworthy property of both timescales is that they

decrease with increasing ζ and therefore glacier length
for constant mb and γ. To see this, we rewrite ζ using
Equations (12) and (20) and G = rL:

ζ =
Z �

He
=
mb(1− r )L+H

μfH

=
1
μf

[(
2κε̇0

γ

) 1
5 1− r
r
2
5

m
7
5
b L

3
5 + 1

]
. (38)

3.5. Dynamical system
It is now possible to formulate a dynamical system in L
and V that describes the evolution of the glacier. With the
identification B = dV /dt , the assumption of a simple bed
(Equation (2)) and the scaling relation Equation (21)

La(V ) = a−
1
μV

1
μ , (39)

Equations (8) and (30) become

dV
dt

= γV + γZL− γmb
2
L2, (40a)

dL
dt
=

1

τa a
1
μ

V
1
μ − 1

τa
L. (40b)

The dynamical system, Equation (40), contains an external
forcing term in Z which is given by the ELA variation. The
behaviour of the system close to a steady state (V ′, L′) is
determined by the linear expansion in the variables ΔV =
V − V ′ and ΔL = L− L′:

d
dt

[
ΔV
ΔL

]
=

[
γ be
1

τaHe
− 1

τa

]
︸ ︷︷ ︸

=J

[
ΔV
ΔL

]
. (41)

This, of course, is the same as the system formed by
Equations (23) and (32), but with the forcing terms omitted.
The qualitative behaviour and the stability of the dynamical
system around the steady state are determined by the trace
and determinant of the system Jacobian:

tr J = γ − τ−1a = −2λ, (42a)

det J = (τaτv)
−1 = ω20 . (42b)

The eigenvalues of J are then given by

ε1,2 = −λ±
√

λ2 − ω20, (43)

and are real for ω0 < λ, complex for ω0 > λ and coincide for
ω0 = λ. By inserting the timescales Equations (29) and (37)
into Equations (42), the parameters λ and ω0 can be written
as

λ =
γ

2

[
ζ − ν

ν(1− ν)
− 1

]
, (44a)

ω20 = γ2
(ζ − 1)(ζ − ν)

ν(1− ν)
. (44b)
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Figure 2b shows ω0 and λ as functions of ζ for two
different choices of f�. The condition that a steady state is
a stable attractor is a negative real part of the eigenvalues or
equivalently tr J < 0 (e.g. Sprott, 2003). This is the case if
λ > 0 or

ζ > ν(2− ν) = 0.88−0.96 (45)

for f� = fB, . . . , 1. For negative λ, the steady states are
unstable.
The values for which ω0 = λ (ζeq ∼ 1.41 for f� = fB and

ζeq ∼ 1.06 for f� = 1) are marked with symbols in Figure 2b.
Since ω0 ≤ λ in the whole domain, steady states are centres
with non-spiralling trajectories (e.g. Sprott, 2003).

3.6. Harmonic oscillator
A somewhat different view of the linearized dynamical
system is gained if the two equations are combined. Solving
Equation (23) for ΔL and inserting into Equation (32) yields

d2ΔV
dt2

+ 2λ
dΔV
dt

+ ω20ΔV =
1
τa
B′ +

dB′

dt
− be

τa
ΔL0, (46)

which is a driven, damped harmonic oscillator in ΔV with
eigenfrequency ω0 and damping constant λ (first derived by
Harrison and others, 2003).
The dynamics of a harmonic oscillator is again governed

by the relation between ω0 and λ, where ω0 > λ indicates
an under-damped, ω0 < λ an over-damped and ω0 =
λ a critically damped oscillator (the case investigated by
Harrison and others, 2003). Figure 2b shows that for f� = fB,
we should generally expect a slightly over-damped reaction
since λ exceeds ω0.

4. FULL-STOKES FLOW MODEL
To calculate glacier response to climate forcing on arbitrary
geometries, a full-Stokes FE model of ice flow with free
surface evolution was implemented, referred to as an FS-
model. Such models have a long history in glaciology (e.g.
Iken, 1977) and are becoming a standard tool (e.g. Pattyn
and others, 2008). Velocity fields were calculated using
the Stokes equations on a given geometry. The force- and
mass-conservation equations, expressed in terms of the field
variables velocity v and pressure p, are written

−∇p + η∇2v + 2D · ∇η + ρg = 0 (47a)

trD = ∇ · v = 0, (47b)

where D = (1/2)
(∇v + (∇v)T ) is the strain-rate tensor and

η is the effective viscosity calculated from Glen’s flow law
(Equation (4)). We have

D = A σn−1e tD ⇐⇒ η =
A−

1
n

2
II
1−n
2n
D , (48)

where tD is the deviatoric Cauchy stress tensor and IID =
(1/2)tr(D : D). These equations were solved numerically
with the FE method implemented in the libMesh FE library
(Kirk and others, 2006). To obtain a numerically stable
solution, P2P1 and Q2Q1 Taylor–Hood elements (six-node
triangles and nine-node quadrilaterals which fulfil the inf-sup
condition) were used.
A full Lagrange evolution of the model geometry was

implemented. Given the flow field from the previous time-
step, all node positions x were updated during the time-step

Table 2. Parameters used for designation of FS-model runs

Climate Type β γ Z ΔzELA T

◦ a−1 m m years

Steady S 5 0.006 400 — —
Jump J 5 0.006 400 100 —
Periodic P 5 0.006 400 100 50

Δt according to the local flow velocity by Δx = vΔt . Nodes
on the glacier surface were moved according to

Δxs =
(
v + bez

)
Δt , (49)

where b is the net balance and ez is a vertical unit
vector. The time-step Δt was chosen so that the maximum
displacement was 2m. This led to typical time-steps of
Δt =0.2–1 years. If mesh quality became unsatisfactory
due to distorted elements, the surface node positions and
the bedrock geometry were fed into an automatic mesh
generator (GMSH, www.geuz.org/gmsh) to generate a new
mesh with smaller elements at the terminus and in areas of
high velocity gradients.
A Dirichlet boundary condition v = 0 (no sliding) was

applied everywhere on the bedrock. The advance of the
glacier consequently led to a very steep or bulging glacier
snout and overriding of bedrock.
The flow model was checked for the conservation of mass

by running it for 1000 model years (about 4000 time-steps)
with zero net mass balance. The model leaked mass at a rate
of < 1×10−5 per model year, or < 1% for the whole model
run. Expressed in terms of mass balance, the mass loss is
< 3mma−1, which is small compared to the surface mass
balance.

5. NUMERICAL EXPERIMENTS
A series of numerical experiments was conducted with
varying climate-forcing parameters and different bedrock
slopes. To investigate the reaction of the model glacier to
climate variations, the equilibrium-line altitude zELA was
changed. As an example, we consider the model experiment
with the designation [P/5/0.006/400/100/50] and the corres-
ponding steady state [S/5/0.006/400]. Table 2 defines the
model parameters where ΔzELA and T characterize climate
oscillations (Equation (50) below), Z = z0 − zELA and z0 is
arbitrarily set to 2000m.
All model runs start from a steady-state geometry which

was obtained by letting the glacier evolve for 500 model
years at constant zELA until changes in geometry become
negligible (e.g. model run [S/5/0.006/400]). Starting from the
steady-state geometry, the glacier is forced by sinusoidally
varying the equilibrium line with period T during nT periods,
according to the history

zELA(t ) =

⎧⎪⎨
⎪⎩
zELA,0 t < 0,
zELA,0 + ΔzELA sin( 2πT t ) 0 ≤ t ≤ nT T ,
zELA,0 t > nT T .

(50)

Figure 3 shows the climate forcing and the resulting
changes in glacier length and volume for nT = 30 (whichwas
mostly used). The reaction of the glacier is initially dominated
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Time (years)

Fig. 3. (a) The model glaciers are forced with sinusoidal variations
of the ELA with 100m amplitude for 30 climate cycles of length
T = 50years. Solid curves indicate initially rising ELA, and dotted
curves initially falling ELA. The response of (b) glacier length and
(c) volume (curve styles correspond to the forcing) are shown. Model
runs [P/5/0.006/400/±100/50].

by large transients that die out after several climate cycles,
when the glacier reaction settles into a periodic succession
of values with the same period as the external forcing. Four
distinct stages of glacier evolution are indicated in Figure 3:
the initial and final steady states (SS), the initial transients
(IT) after the beginning of periodic forcing, the periodic
response (PR) under periodic forcing of the ELA and the final

Fig. 4. Phase space diagram showing relative deviations from the
steady state (solid dot) during the climate history of Figure 3a.
The solid curve represents the response to an initially rising ELA
[P/5/0.006/400/100/50] and the dotted line represents the steady
states for [S/5/0.006/300. . . 500].

Fig. 5. Surface geometries for different ELAs between Z = 100
and Z = 600m (indicated below the glacier terminus) (runs
[S/5/0.006/100 . . . 600]). Solid dots indicate the horizontal location
of the equilibrium line, upward-pointing triangles the maximum
ice thickness and downward-pointing triangles maximum flow
velocities.

transients (FT) after periodic forcing has been switched off.
The response is similar (with opposite sign) for the cases
of initially rising or falling ELA. The different stages are
investigated in this section.
A useful way to display the glacier response is the phase

space diagram. Figure 4 shows the deviations of glacier
length and ice volume from the steady state during the history
of Figure 3a. After initial transients (IT, spiralling loops on
the left) the response becomes periodic (PR, limit cycle).
During the final transients (FT) after the climate becomes
constant, the glacier advances considerably at an almost
constant volume.

5.1. Steady states
Modelled steady-state glacier geometries are shown in
Figure 5. The ice thickness in the upper part of the glacier
varies only moderately for different ELAs (different values
of Z ). The mass flux is maximum at the equilibrium line
(indicated with symbols). Due to the varying surface slope,
the location of the maximum ice thickness is above the
equilibrium line and the maximum flow velocity is below.
Modelled steady-state glacier geometries for different ac-

cumulation rates are plotted in Figure 6. Glaciers are thicker
under high mass-balance gradients. Their increased length
is mainly due to the mass-balance–elevation feedback,
which shifts the horizontal location of the equilibrium line
downstream. An eightfold increase of mass-balance gradient
(from γ = 0.006 to 0.048a−1) has only a moderate effect on
glacier length and barely doubles glacier volume (Table 3).
The relation between glacier length and volume is shown

in Figure 7 for mass-balance gradients γ = 0.006–0.048a−1

and Z = 100–600m at bed inclinations of 5◦ and 10◦.
The steady-state volume can be related to glacier length

with a power-law relation V = aLμ. The best fit for various
values of γ and Z is μ ∼ 1.39–1.40, as shown in Table 3.
Ice thicknesses calculated with Equations (19) and (20) and
glacier volumes from Equation (21) agree with the FS-model
results (Table 3) within a few percent.
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Fig. 6. Surface geometries for different mass-balance gradients (runs
[S/5/0.006 . . . 0.048/400] indicated below the glacier terminus).
The dashed curve shows the glacier geometry of [S/5/0.006/500]
for comparison. Solid dots indicate the horizontal location of
the equilibrium line, upward-pointing triangles the maximum
ice thickness and downward-pointing triangles maximum flow
velocities.

The scaled shapes of steady-state glaciers in a wide range
of values for γ and Z is compared in Figure 8. Larger glaciers
are somewhat thinner in the accumulation area in a relative
sense, and somewhat thicker in the ablation area than small
glaciers. This influences the values of fA and fB, but not f
(Table 3).
The variation of ice-flow velocity at the surface is shown in

Figure 9. The velocity maximum is reached downstream of
the half-length of the glacier, with a value within 5% of the
velocity calculated with the shallow-ice approximation for
the ice thickness H (at the equilibrium line) and the bedrock
slope mb:

v (H) =
dq
dh
(H) =

n + 2
n + 1

κε̇0m
n
bH

n+1. (51)

The velocity variation is well approximated by a quadratic
function (Nye’s (1965) ‘special model’, as indicated in the
figure):

v (x) =
4vmax
L2∗

x (L∗ − x), (52)

where L∗ = (1 + δ)L corresponds to Nye’s L and δ = 0.07.

Fig. 7. Volume vs length for steady states at different ac-
cumulation rates (runs [S/5/0.006. . . 0.048/100. . . 600]) and for
run [S/10/0.006. . . 0.012/100. . . 600] (symbols and dotted lines).
Numbers at the right indicate bedrock inclination (5◦ and 10◦) and
mass-balance gradient γ; numbers on top represent the elevation
difference Z = z0 − zELA. Solid lines show the volumes corrected

by m2/5b γ−1/5.

5.2. Periodic response
After any initial transients have died out, the glacier
response becomes periodic. The glacier geometry, and
all associated quantities such as flow velocity, undergo a
periodic succession of states f (t ) = f (t + T ), where T is the
forcing period. In a phase space diagram such as Figure 4,
the periodic response appears as a closed loop.
Figure 10a shows a phase space diagram of the reaction

of a glacier to a forcing with period T between 10 and 1000
years. The volume varies during rapid oscillations, while the
glacier length is almost constant (vertical bar in the centre of
Fig. 10a). For long oscillation periods, the relative variations
in volume and length become nearly equal (20–25%). The
long axis of the limit cycle approaches the slope of the steady-
state volume–length relation (dotted line in Fig. 10a) with the
slope μ from the scaling relation Equation (21). (The same
slope is apparent at the low-frequency end of the solid curve
in Figure 10b with value arctan μ ∼ arctan 1.41 = 55◦.)
The reaction of the glacier lags behind the external forcing.

Figure 11 depicts the phase lag and the oscillation amplitude

Table 3. Results from steady states of the FS-model are shown in columns 2–4. Columns 9–11 show the relative deviations from the FS-model
thickness H and volume V of δHG = (HG − H)/H, δHL = (HL − H)/H and δVL = (VL − V )/V calculated with the scaling relations
Equations (19), (20) and (21) using r = 0.53 and f = 0.88

Model run V G L H f fA fB r δHG δHL δVL a μ ζ τv τa
106 m3 km km m – – – – % % % m3−μ – – years years

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

[S/5/0.006/200] 1.08 4.08 7.77 155 0.89 0.96 0.79 0.53 3 3 2 3.73 1.40 2.46 114 21
[S/5/0.006/500] 2.88 8.12 15.68 207 0.88 0.94 0.82 0.52 2 2 1 3.73 1.40 3.38 70 14
[S/5/0.048/200] 2.02 5.15 9.48 249 0.86 0.96 0.78 0.54 7 7 10 5.71 1.40 2.10 19 3
[S/5/0.048/500] 4.84 9.48 17.74 326 0.84 0.94 0.80 0.53 4 4 10 5.71 1.40 2.74 12 2
[S/10/0.006/200] 0.24 1.64 3.18 85 0.89 0.93 0.81 0.52 –1 –1 –2 3.22 1.39 3.31 72 14
[S/10/0.006/500] 0.73 3.55 6.96 117 0.89 0.91 0.84 0.51 –2 –2 –3 3.22 1.39 4.84 43 9
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Fig. 8. Scaled shapes of steady-state glaciers for Z = 600m
(solid curves) and Z = 200m (dotted curves) and for mass-
balance gradients between 0.006 (uppermost curves) and 0.06 a−1
(lowermost curves). Dots indicate the location of the equilibrium
line (β = 5◦).

of length, volume and mean ice thickness as a function
of oscillation frequency. For very slow climate oscillations,
the glacier can adapt to the forcing and the phase lags are
small. The amplitude amounts to the differences between the
steady-state glaciers at the corresponding ELAs. The phase
lag increases with increasing oscillation frequency while
the corresponding oscillation amplitudes decrease. At ELA
oscillation periods shorter than the volume timescale, glacier
volume lags by roughly 90◦ and glacier length is out of phase
(>180◦, Fig. 12). These results agree qualitatively with the
responses obtained by Nye (1965) and Hutter (1983) for their
‘special model’.
Figure 12 shows that the ice thickness (and with it, the

flow velocity) has a delayed reaction to a change in climate
along the whole glacier. The amplitude and the phase lag
increase along the glacier flowline and markedly increase
towards the snout, whichmay be a feature of the no-slip basal
boundary condition adopted here. Both amplitude and phase

Fig. 9. Flow velocities for ELAs zELA between 1900 and 1400m
(Z = 100–600m indicated). Dotted curves indicate a quadratic
function (Equation (52)) for comparison [S/5/0.006/*].

v a0

Fig. 10. (a) Phase space limit cycles for the periodic response at
different forcing periods T = 10–1000 years [P/5/0.006/400/100/T].
Model states follow the cycles in a clockwise direction, starting at
the locations indicated with dots. The innermost limit cycle corres-
ponds to a forcing period of 10 years; the outermost to 1000 years.
The dotted line indicates the steady states for [S/5/0.006/300. . . 500].
(b) Ellipses were fitted to the limit cycles for different oscillation
frequencies. The ellipse orientation (solid) and lengths of the long
(dashed) and the short (dotted) axis are plotted. The oscillation
period in years is indicated on the top horizontal axis.

R

v av

L

V

L
V

Fig. 11. (a) Relative oscillation amplitude and (b) phase lag of
volume (solid), length (dash-dotted) and mean thickness (dashed)
as a function of frequency [P/5/0.006/400/100/*]. The oscillation
period in years is indicated on the top horizontal axis.
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v

h

h

v

Fig. 12. (a) Oscillation amplitude and (b) phase shift along the
glacier of ice thickness (solid curve) and flow velocity (dashed curve)
[P/5/0.006/400/100/50].

lag depend on the forcing frequency in a manner similar
to the change in mean thickness in Figure 11. In practice,
this has the consequence that observed changes of glacier
surface elevation are not indicators of present climate, but
are a delayed reaction to past climate variations.

5.3. Transient response
During the transitions from steady state to periodic
oscillations and back, the model glaciers experience large
transient oscillations (Fig. 3). The size and number of initial
transient oscillations depend strongly on the forcing period.
Figure 13 shows that, for short forcing periods (compared
to τv), the trajectory in phase space wanders far away from
the limit cycle of the periodic oscillation and arrives there
only after several loops. In contrast, for long forcing periods
(compared to τv) the transient trajectory is always close
to the limit cycle. Figure 14a shows that the amplitudes
of the initial and final transient oscillations increase with
forcing period. Since the size of the limit cycle increases, the
relative size of the transients decreases. From Figure 14b it
is clear that both the initial and final transients mainly affect
glacier length for forcing periods that are shorter than τv,
whereas variations are approximately constant. The phase
space diagrams (Figs 4 and 13) illustrate this nicely.

6. DISCUSSION
6.1. Scaling relations
Scaling relations of the form V = aLμ relating glacier volume
to length have been derived in Equations (16) and (21). Even
if our assumptions about glacier geometry are different from
those exploited by Bahr and others (1997), the exponents
μ = 1.25 and 1.4 are almost the same. In our approximation,
the glaciers are infinitely wide such that no valley shapes are
taken into account. Our mass balance varies with elevation
and therefore only implicitly over the distance along the
glacier. That these very different approaches yield similar
results can be taken as a confirmation of the universality of
such scaling relations.
A major improvement over previous approaches is that

the dependence of a on mass-balance gradient and mean

T = 20 T = 50

T = 90 T = 120

V
/V

V
/V

L/L L/L

Fig. 13. Phase space diagrams showing relative deviations from
the steady state (solid dot) during forcing at periods of T =
20, 50, 90, 120 years [P/5/0.006/400/100/T ]. The volume timescale
is τv = 79 years. The dotted line indicates the steady states for
[S/5/0.006/300. . . 500].

bed and surface slope is made explicit and is of the form

a ∝ γ
1
4m

− 3
4

s and a ∝ γ
1
5m

− 2
5

b (53)

for flat-bed and inclined glaciers, respectively. Even if our
assumptions about geometry are simplistic, we still suspect
that Equation (53) should be applicable for more realistic
geometries. Figure 7 shows that correction of the FS-model
volumes leads to a very close clustering of values along a
line (solid lines). It is likely that empirical data, corrected
for mean bed slope and mean mass-balance gradient, would
show a similar improvement. Resulting volume–area plots
would then show a smaller spread of the data from which
better scaling parameters could be deduced.

v a0

ΔL
/L

 a
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 Δ
V

/V
 

ΔL
/Δ
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Fig. 14. (a) Relative sizes of the initial and final transients for different
forcing frequencies ω for model runs [P/5/0.006/400/100/10
. . . 1000]. The volume timescale is τv = 79 years. (b) Size of
initial and final transients with respect to the size of the limiting
cycle. Shown are initial transient length (solid) and volume (dash-
dotted) and final transient length (dashed) and volume (dotted). The
oscillation period in years is indicated on the top horizontal axis.
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years

Fig. 15. Reaction of the FS-model glacier [S/5/0.006/400] to a step
disturbance in climate. (a) The ELA is shifted by ±100m. (b) Solid
curves show the reaction of glacier volume [J/5/0.006/400/±100].
Dashed lines show the reaction of the dynamical system (Equa-
tion (40)) for τa calculated with f� = fB and dotted curves for f� = 1.
(c) The length change, as for (b). The grey bar marks the arrival of a
kinematic wave.

6.2. Volume timescale
Equation (29) shows a decrease of τv with increasing ζ (and
therefore L, Equation (38)). This is the essence of Equa-
tion (25): as glacier length increases, the terminus moves to a
lower elevation and the net balance at the terminus becomes
increasingly negative. This is partially compensated by the
simultaneous increase in ice thickness H to provide enough
mass flux from the accumulation area to the ablation area.
Our result agrees qualitatively with Bahr and others (1998)
but with a different functional relation between τv and ζ.
In nature, small glaciers are usually steeper and thinner

than long glaciers. The strong dependence of ζ on mb in
Equation (38) shows that long glaciers have long reaction
times not because of their size, but because of their relative
flatness compared to short glaciers. The geometric quantity
m(7/5)
b L(3/5) in Equation (38) can be written in terms of total

bedrock elevation difference Δzb = mbL as Δz
(7/5)
b L−(4/5).

Thus ζ increases (τv decreases) as the elevation difference
Δzb increases for constant glacier length. Conversely, longer
glaciers have smaller ζ and therefore longer reaction times
for constant total elevation difference Δzb.
As has been pointed out (Harrison and others, 2001), the

volume timescale not only determines how long it takes
to reach a new steady state after a step change in climate
(according to Equation (1)), but is also a scale for the ultimate
volume change ΔV∞ = B′τv, where B′ is the change in net
balance integrated over the initial geometry. This assumption
works very well for the volume timescale calculated with
Equation (29), even for large changes in ELA. An example
of the reaction of the FS-model glacier [S/5/0.006/400] to a
step change in ELA of ±100m is shown in Figure 15.
Glacier volume starts changing immediately due to

balance changes everywhere. In contrast, the length change
is only substantial after a certain delay which is due to glacier
dynamics. For an advancing glacier, the explanation is that
ice thickness close to the terminus has to increase to provide
higher mass flux to the terminus, which is nicely described by
the theory of kinematic waves (e.g. Nye, 1960; Hutter, 1983).
Indeed, a kinematic wave starting at the equilibrium line and

Fig. 16. Minimum stable steady-state glacier lengths plotted against
bedrock slope mb for different mass-balance gradients γ (indicated
next to curve).

moving with a four- to five-fold surface velocity would arrive
at the terminus after 19 years (marked with a bar in Fig. 15).

6.3. Minimum glacier size
Equation (29) predicts that glaciers with the same value of ζ,
and therefore (Equation (38)) the same value of

γ−
1
3m

7
3
b L, (54)

have the same volume timescale. Decreasing the steady-
state glacier length for given mb and γ eventually leads
to a critical length Lcrit corresponding to ζcrit = 1 (from
Equation (29)) for which the volume timescale becomes
infinite. For glaciers that are shorter than Lcrit, the volume
timescale is negative and steady-state configurations are
not stable. Upon a slight change of ELA, the total mass
balance B′ is either positive or negative and the glacier
volume either grows or decays exponentially (as described by
Equation (1)). As a consequence, no steady-state glaciers that
are shorter than Lcrit can exist. Figure 16 shows the minimum
stable glacier lengths on inclined bedrock for different mass-
balance gradients.

6.4. Transient response
The response of simple model glaciers to periodic changes
in ELA has some interesting aspects. During the transition
from a steady-state to a periodically varying climate, glacier
volume and length show large transients for forcing periods
that are shorter than the volume timescale (marked IT in
Figs 3 and 4). These transients eventually fade after several
climate cycles.
The large initial transients are caused by the rapid

initial depletion (or overfilling) of the ice reservoir in
the accumulation area, and are not an effect of the
mass-balance–elevation feedback. FS-model runs with a
position-dependent mass-balance distribution, and with a
comparable variation of the equilibrium line, qualitatively
give the same results as obtained with the elevation-
dependent mass balance (Equation (3)). The evolution of
ice thickness and velocity under the climate scenario of
Figure 17a is shown in Figure 18. The initial rapid thinning
in the accumulation area (Fig. 18a) leads to lower flow
velocities and therefore to slower mass transport (Fig. 18b),
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Fig. 17. Reaction of the FS-model glacier [S/5/0.006/400] to a
short disturbance in climate. (a) The ELA is sinusoidally varied
for 25 years. (b) Solid curves show the reaction of glacier volume
to short disturbances and periodic forcing [P/5/0.006/400/100/50].
Dashed curves show the reaction of the dynamical system
(Equation (41)) for τa calculated with f� = fB and dotted lines for
f� = 1. (c) The length change as for (b).

which in turn is responsible for the increasingly rapid volume
loss in the ablation area. After the perturbation, ice thickness
slowly recovers to the initial state.
The final transient (marked FT in Figs 3 and 4) occurs

during the transition from an oscillating climate to a steady
state. During this phase, volume remains nearly constant but
glacier length shows a pulse which is due to a kinematic
wave originating from the under- or overfull reservoir area.

6.5. Dynamical system
How well the dynamics of the FS-model glaciers can
be reproduced with the dynamical system Equation (40)
or the linearized version Equation (41) (corresponding to
the harmonic oscillator Equation (46)) can be assessed
by comparing the evolution for different forcing scenarios.
The assumption of a relaxation-type length response (Equa-
tion (30)) is ad hoc, and therefore a mismatch will most likely
be visible in the length change.
The dynamical system solution in Figure 15 for a step

change in climate follows the FS-model results closely,
especially for the volume change. Results for both dynamical
systems (Equations (40) and (41)) are almost indistinguish-
able. In the dynamical system, the length change sets in
immediately whereas it is delayed in the FS-model.
To test the response to periodic forcing, the steady-state FS-

model glacier [S/5/0.006/400] is forced with short (nT = 0.5)
and long (nT = 30) periodic ELA variations (Equation (50;
Figs 17a and 3a). Figure 17b shows that the volume is closely
reproduced by the dynamical system with τv = 79 years and
τa = 15 years calculated from Equations (29) and (37). The
corresponding ω0 = 0.029 and λ = 0.030 indicate that this
corresponds to a slightly overdamped harmonic oscillator.
While the dynamical system satisfactorily reproduces the

modelled volume change, the phase of the length changes
differs greatly from the FS-model result. This indicates that
a relaxation-type evolution of glacier length is not useful
to predict the evolution of glacier length at forcing periods
shorter than the volume timescale, and should be replaced
by a better parameterization of glacier terminus dynamics.

a-
1 )

Fig. 18. Transient response of the FS-model glacier [S/5/0.006/400]
to a short sinusoidal disturbance in climate for 25 years (Fig. 17a).
Changes of (a) ice thickness and (b) flow velocity along the glacier
are shown every 10 years for the first 40 years (solid curves). Dashed
curve: 50 years; dotted curvevs: 100, 200 and 300 years.

Such an improved parameterization would likely contain an
inertia term producing a delay in reaction.
The exact value of the parameter f� in the length evolution

equation seems not to be crucial, as f� = fB and f� = 1 give
similar results (Figs 15 and 17). It therefore seems reasonable
to adopt f� = fB or f� = f , the latter of which would lead to
simplified Equation (37) for τa.

6.6. Critically damped harmonic oscillator
From South Cascade Glacier (Washinton, USA) data, Har-
rison and others (2003) assumed that the glacier response can
be described with a critically damped harmonic oscillator
(λ = ω0). Indeed, using values for South Cascade Glacier
(γ = 0.024a−1, mb = 0.14, L = 3km, He = 123m ⇒
H ∼ 100m and Z = 190m) gives ζ ∼ 1.87, ω0 = 0.0517
and λ = 0.0522 which is close to critical damping. With
the above selection of values, we also obtain τv = 48 years
and τa = 7.8 years, in agreement with the values given by
Harrison and others (2003).

7. CONCLUSIONS
A novel low-order model of a simple glacier (called the LV-
model) was developed, consisting of two volumes joined
at the equilibrium line by a flux element. Exact and
approximate analytical expressions were derived, which
include

1. a dynamical system (Equation (40)) in the variables L and
V that describes glacier evolution under variations of the
equilibrium line;

2. volume–length scaling relations (Equations (17) and (21))
of the form V = aLμ, with μ = 1.25 and a ∝
γ (1/4)m−(3/4)s for a flat base (mb = 0), and μ = 1.4
and a ∝ γ (1/5)m−(2/5)b for a mountain glacier geometry
(mb > 0);

3. a correction factor that can be used to improve empirical
volume–area scaling relations by taking mass-balance
gradient γ and mean bedrock slope mb into account;
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930 Lüthi: Transient response of idealized glaciers to climate variations

4. explicit values for the volume and area timescales as a
function of a parameter ζ, the elevation difference of the
ablation area scaled by the effective ice thickness; and

5. a minimum size for stable glaciers, depending on mass-
balance gradient and bedrock slope.

For comparison and further experiments, a transient,
full-Stokes FE flow model for arbitrary flowline bedrock
geometries (FS-model) was developed. Results from this
model on constant bedrock slopes under transient variations
of the ELA show that

1. the transient response of glacier volume to periodic
forcing is delayed by one-quarter of the forcing period
for periods smaller than τv;

2. the transient response of glacier length to periodic forcing
is delayed by one-half of the forcing period for periods
smaller than τv;

3. glacier length and volume show large initial and final
transient responses to periodic forcing, which render the
climatic interpretation of such records difficult; and

4. surface elevation and velocity changes along a glacier
show an important time lag to climate forcing (careful
evaluation is therefore needed when interpreting surface
elevation changes as a climate signal).

Comparison of results of the LV-model and the FS-
model under the same climate variations shows that simple,
low-order or macroscopic glacier models give very good
results for the transient evolution of glacier volume. For the
prediction of glacier length changes on timescales shorter
than τv, the commonly assumed relaxation-type relation
for glacier length (Equation (30)) should be replaced by a
more realistic parameterization including a delay term. The
description of a glacier as a critically damped harmonic
oscillator captures the essential dynamics for the investigated
simple geometries.
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