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In gas evolving electrolysis, bubbles grow at electrodes due to a diffusive influx from
oversaturation generated locally in the electrolyte by the electrode reaction. When
considering electrodes of micrometre size resembling catalytic islands, direct numerical
simulations show that bubbles may approach dynamic equilibrium states at which they
neither grow nor shrink. These are found in under- and saturated bulk electrolytes during
both pinning and expanding wetting regimes of the bubbles. The equilibrium is based
on the balance of local influx near the bubble foot and global outflux. To identify the
parameter regions of bubble growth, dissolution and dynamic equilibrium by analytical
means, we extend the solution of Zhang & Lohse (2023) J. Fluid Mech. 975, R3, by
taking into account modified gas fluxes across the bubble interface, that result from a non-
uniform distribution of dissolved gas. The Damköhler numbers at equilibrium are found to
range from small to intermediate values. Unlike pinned nano-bubbles studied earlier, for
micrometre-sized bubbles the Laplace pressure plays only a minor role. With respect to the
stability of the dynamic equilibrium states, we extend the methodology of Lohse & Zhang
(2015a) Phys. Rev. E 91 (3), 031003(R), by additionally taking into account the electrode
reaction. Under contact line pinning, the equilibrium states are found to be stable for flat
nano-bubbles and for micro-bubbles in general. For unpinned bubbles, the equilibrium
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states are always stable. Finally, we draw conclusions on how to possibly enhance the
efficiency of electrolysis.

Key words: bubble dynamics, contact lines

1. Introduction
Electrochemical processes, such as water electrolysis for hydrogen production, are a focus
of efforts to develop a clean and efficient energy system. Despite progress in advancing the
catalytic properties of electrode materials, the efficiency of water splitting remains affected
by the gas bubbles forming and growing at the electrodes, which reduce the reaction area
and impede mass transfer, causing additional energy losses (Li et al. 2023b).

There is increased interest in structuring electrodes with regular surface elevations
or alternating materials, particularly at the nano- and micrometre scales, as this may
accelerate bubble detachment via reduced adhesion forces or fostered coalescence of
neighbouring bubbles (Li et al. 2023b; Bashkatov et al. 2024). Additionally, small catalytic
islands also reduce the expenditure of noble metal catalysts. However, due to the resolution
limits of optical methods, it is difficult to study the behaviour of small bubbles in
experiments. Nano-bubbles are typically observed indirectly through electrical signals
(Chen et al. 2015) or light scattering (Suvira et al. 2023), and distinguishing them from
other surface adsorbates by atomic force microscopy remains challenging.

Molecular dynamics (MD) simulations have been successfully applied to advance the
understanding of electrochemical nano-bubbles (Gadea et al. 2020; Ma et al. 2021).
Also, the stability theory for surface nano-bubbles developed in the last decade (Lohse
& Zhang 2015b) delivered valuable insights into the bubble evolution at nano-/micro-
electrodes. In particular, it was clarified that contact line pinning in an oversaturated liquid
leads to the stabilisation of surface nano-bubbles in which the Laplace pressure is large
(Liu & Zhang 2014; Lohse & Zhang 2015a). On the contrary, unpinned nano-bubbles,
depending on oversaturation, will either dissolve or grow without limit but not stay stable
(Lohse & Zhang 2015a). For electrochemical bubbles pinned at nano-electrodes, the influx
due to electrochemically generated gas may compensate the outflux due to the Laplace
pressure (Liu et al. 2017), and a dynamic equilibrium state is achieved. Zhang & Lohse
(2023) considered a reaction-controlled growth mode for bubbles that completely cover
the electrode. Here, all the gas produced at the wetted edge of the electrode directly enters
the bubble, and the electrolyte remains at zero oversaturation. On the contrary, also a
diffusion-controlled mode was considered, where the wetted electrode area is relatively
large compared with the bubble size (Lohse & Zhang 2015a; Zhang et al. 2024). Then,
diffusion of dissolved gas produced at the electrode into the bulk becomes important.
Assuming a linear concentration profile, the over-saturation profile in the electrolyte can
be derived from the current density. For bubbles much smaller than the thickness of the
concentration boundary layer at the electrode, such as e.g. nano-bubbles, the mass transfer
into the bubble can be easily calculated from the derived over-saturation (Popov 2005).
For both growth modes mentioned, a minimum current density was deduced, above which
the bubble will grow without limit instead of reaching an equilibrium state.

In addition to nano-electrodes, bubbles evolving at micro-electrodes are interesting for
practical reasons and have been studied intensively in e.g. Bashkatov et al. (2022) and Park
et al. (2023). However, the question of bubble stability still awaits a detailed investigation,
which numerically is beyond the scope of MD. Unlike nano-electrodes where growing
bubbles get pinned early, micro-electrodes may lead to a more complex wetting behaviour,
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Figure 1. Sketch of the unpinned and pinned bubble evolution processes. The contour plot represents the ratio
between the concentration of dissolved gas, c, and the saturation concentration, cs .

including both pinned and unpinned manners (Yang et al. 2015; Demirkır et al. 2024), see
figure 1. The bubble growth regime can be characterised using the Damköhler number,
which represents the ratio between the time scales of chemical reaction to that of advective
or diffusive transport of the dissolved gas produced. In the present case, it can be reduced
to Da = Ae/r2

b , which describes the ratio of the active electrode area Ae to the bubble
surface area ∼ r2

b (Van Der Linde et al. 2017). At micro-electrodes, depending on the
value of Da, the gas produced at the electrode may not completely enter the bubble. Parts
of the produced gas could diffuse into the surrounding liquid, not directly contributing
to bubble growth and creating a local over-saturated region near the bubble foot. This is
different from the reaction-controlled (Da � 1) or diffusion-controlled (Da � 1) modes
considered before at the nano-scale (Zhang & Lohse 2023; Zhang et al. 2024), as also the
thickness of the concentration boundary layer of dissolved gas may become comparable to
the radius of micrometre-sized bubbles. It prevents the application of analytical solutions
for the mass transfer at the bubble surface and requires an extension of the dynamic
equilibrium theory that will be presented below.

Once a dynamic equilibrium between the gas entering and leaving the bubble is reached,
the question of the stability of the equilibrium state with respect to small disturbances of
e.g. current, pressure or temperature arises. Lohse & Zhang (2015a) already studied the
stability of surface nano-bubbles in a homogeneously oversaturated liquid and found that
stable equilibrium states exist for pinned bubbles, whereas unpinned bubbles are always
unstable. However, when additionally an electrode reaction is taking place, a different sta-
bility behaviour of the equilibrium states may result, which has not yet been investigated.

Therefore, this work aims at studying the dynamics and stability of both pinned and
unpinned hydrogen (H2) bubbles at micro-electrodes during water electrolysis, thereby
accurately addressing the complex situation of the spatially inhomogeneous distribution of
dissolved gas. This will be achieved by performing direct numerical simulations, based on
which the existing equilibrium and stability theory will be extended by taking into account
an electrode reaction that causes fluxes into both the bubble and electrolyte. Finally, this
enables us to identify the parameter regions of bubble growth, dissolution and dynamic
equilibrium and to demonstrate the stability of equilibrium states.

2. Numerical modelling
The gas-liquid interface is resolved using a geometric volume-of-fluid method in Basilisk
(Popinet 2013). For an incompressible two-phase flow with phase change, the transport
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equation of the volume fraction of the liquid phase, αl , can be derived from mass
conservation

∂αl

∂t
+ ∇ · (αl U) = − ṁ

ρl
δΣ, (2.1)

with αl = 1 and 0 indicating the liquid (l) and gas (g) phases, respectively. The density ρ

and the viscosity μ can be calculated based on the arithmetic mean of the volume fractions
of the phases

ρ = αlρl + (1 − αl)ρg, μ = αlμl + (1 − αl)μg. (2.2)

The right-hand-side of (2.1) represents the source term due to phase change, with δΣ

denoting the surface Dirac function that has a non-zero value only at the interface Σ . The
mass transfer rate per unit interface surface area, ṁ, is calculated according to Fick’s law
and will be introduced later. In a one-fluid framework, as presented here, U is the mixture
velocity of both phases, that needs to fulfil the Navier–Stokes equation complemented with
the continuity equation

∂(ρU)

∂t
+ ∇ · (ρUU) = −∇ p + ∇ · {μ(∇U + (∇U )T )} + fγ , (2.3)

∇ · U = ṁ

(
1
ρg

− 1
ρl

)
δΣ. (2.4)

Here, p is the pressure and fγ = γ κnΣδΣ is the surface tension force, with γ, κ, nΣ

denoting the surface tension, the interface curvature and the normal unit vector,
respectively. To accurately calculate fγ , a height function method combined with a
balanced-force discretisation scheme (Popinet 2009) is used. The contact angle at the
electrode surface is specified by the height function in the surface mesh cells (Afkhami
& Bussmann 2008).

The species transport equation of the dissolved gas (c) in the liquid is solved with a
source term to account for the mass transfer at the interface

∂c

∂t
+ ∇ · (Uc) = ∇ · (D∇c) − ṁ

Mg
δΣ, (2.5)

with D and Mg representing the diffusion coefficient and the molar mass of the dissolved
gas. Based on the spatial distribution of c, the diffusional mass transfer rate ṁ can be
computed using Fick’s law

ṁ = Mg D
∂c

∂nΣ
. (2.6)

The simulation parameter ranges are selected so as to match with typical micro-electrode
experiments (Van Der Linde et al. 2017; Bashkatov et al. 2022). The electrode radius re
ranges from 5.5 to 100 µm, which might be of practical relevance also for catalytic islands
on larger electrodes in industrial electrolysis. An axisymmetric computational domain
with a side length of 10 rb,ini is used, with initial bubble radii of rb,ini = 5 − 50 µm.
Different constant current densities of j = 2.5 − 1250 A m−2 are applied to the wetted
part of the electrode surface to resemble a potentiostatic operation mode, where a constant
potential difference is applied between the reference and the working electrode. Here,
the cell current will reduce if a growing bubble blocks larger parts of the electrode.
According to Faraday’s law, it yields corresponding Neumann boundary conditions of the
concentration c of dissolved H2 at the wetted electrode part, i.e. ∂c/∂n = j/(zF D), with
z = 2 and F = 96 485 representing the charge number of the hydrogen evolution reaction
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Variables Value Description

P0 1 00 000 Pa External pressure
cs 0.757 mol m−3 Saturation concentration at P0
z 2 Charge number of reaction
D 5 · 10−9 → 2 · 10−5 Diffusion coefficient
Mg 2 g mol−1 Molar mass of the hydrogen gas
ρg0, ρl 0.08, 1000 kg m−3 Density of gas at P0 and of liquid
μg, ρl 8.8 · 10−6, 10−3 pa · s Viscosity of gas and liquid

Table 1. Material properties used in the simulations.

and the Faraday constant, respectively. At the remaining bottom wall, see figure 1, a no-
flux condition (∂c/∂n = 0) is applied to the dissolved gas concentration. For unpinned
bubbles, static water-side contact angles θ ranging from 45◦ to 90◦, as shown in figure 1,
are imposed. As we focus on the initial growth and stability of bubbles, the rapid change of
θ shortly before detachment is not considered. For the pinning cases considered, the bubble
coverage on the electrode varies between 45 % and 90 %. To keep the bubble pinned,
we apply sufficiently large (150◦) and small (30◦) contact angles inside and outside the
pinning point, respectively (Sakakeeny et al. 2021). Considering the slow or no motion of
the contact line, a no-slip condition is used at the bottom boundary, which is validated in
figure 12 in Appendix B. Initially, we set the flow velocity to zero and the concentration to
the bulk value cb. As often the initial hydrogen concentration in the bulk can be neglected
compared with that at the bubble interface (Van Der Linde et al. 2017; Gadea et al.
2020), we consider under-saturated/saturated electrolytes. With cs denoting the saturation
concentration at given external pressure, the over-saturation follows ζ = cb/cs − 1 � 0.
If not stated otherwise, we consider cb = 0, and thus ζ = −1.

The material parameters used in the simulations, see table 1, apply to water electrolysis
in an aqueous electrolyte at standard conditions, except that the diffusion coefficient is
manually increased to accelerate the simulations. By rescaling the time according to the
ratio of the increased to the real diffusion coefficient, the original bubble evolution can be
recovered for the conditions considered in this work (Han et al. 2025), see also figure 12
in the Appendix.

To further ensure accuracy of the simulations, an adaptive mesh refinement technique
available in Basilisk is applied, as a result of which the initial mesh size of ∼0.3 rb,ini
near the gas-liquid interface gets refined down to ∼0.01 rb,ini during the simulations. The
tolerance of the iterative solver is set to be 10−6, and the time step is automatically adjusted
to keep the Courant-Friedrichs-Lewy (CFL) number below 0.5 during the simulations.
Finally, the presented numerical model (equations (2.1)−(2.6)) implemented in Basilisk
has already been successfully validated against the analytical solutions of Epstein–Plesset
and Scriven for the dissolution and growth of bulk bubbles in under- and over-saturated
liquids (Gennari et al. 2022).

3. Results and discussion
Figure 2 shows simulation results of how an unpinned and a pinned bubble develop over
time, and quantifies the mass transfer across the bubble surface. Due to the electrode
reaction, a high-concentration region of dissolved H2 near the wetted electrode part
(red-colour region) is clearly visible. The growth of the unpinned bubble (top) increases
the electrode blockage. This reduces the amount of gas diffusing into the liquid, and the

1011 A23-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

39
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.397


M. Huang, C. Sun, K. Eckert, X. Zhang and G. Mutschke

0

Pinned

Unpinned

r b
 (
µ

m
)

Jin

–Jout

t (s)

F
lu

x

(µ
m

o
l s

–
1
)

F
lu

x

(µ
m

o
l s

–
1
)

t (s)

θ 
(d

eg
.)

θ
0.6

1.0

1.4

1.8

0.6

1.0

1.4

1.8

180
0.5

2

6

10 × 10–6
 

1.5

2.5 × 10–6
 

0 50

60

120

180

60

80

100
c/cs

c/cs

Jin

–Jout

rb

Pinned

Unpinned 1.5 s

1.5 s 15 s 80 s 160 s

7.5 s 30 s 50 s

(a) (b)

Figure 2. (a) Numerical results of the evolution of an unpinned (top) and a pinned (bottom) bubble. The
coloured surface represents the distribution of dissolved gas concentration normalised by the saturation
concentration cs , the green bottom line marks the electrode. (b) Evolution of rb and θ with time. The time
instants shown left are marked by red dots in the right graphs. For the unpinned case: re = 100 µm, j = 125
A m−2, θ = 90◦, rb,ini = 50 µm. For the pinned case: re = 55 µm, j = 250 A m−2, rcl = 50 µm, θini = 90◦.

high-concentration region decreases in size. As shown in figure 1, this reduces the gas
influx Jin , defined as the mole amount of gas per second, into the bubble across the
interface near the bottom, where the liquid is over-saturated. In contrast, the magnitude
of the gas outflux |Jout | ([mol s−1]) across the bubble interface into the under-saturated
bulk liquid increases with the expanding bubble surface area. Note that values of Jout are
negative, as defined later in equation (3.2). As shown in the upper part of sub-figure 2(b),
both fluxes counterbalance at approximately 30 s, at which the bubble reaches a dynamic
equilibrium state, visible by the levelling off of its radius. For the case of a pinned contact
line (bottom), the contact angle reduces with time until an equilibrium is reached after
80s. Although the wetted electrode area remains constant, the high-cH2 region seems to
slightly diminish, as the smaller contact angle also reduces gas transport into the bulk. The
lower part of sub-figure 2(b) shows numerical results of the temporal behaviour of Jin and
Jout . The influx caused by the oversaturation near the bubble foot is computed based on
Faraday’s law (see (3.1) below), and the outflux is computed as the sum of the local molar
gas transfer rates along the interface. As can be seen, the evolution of the bubble leads
to an increase in Jin with time, while |Jout | also rises with the growing bubble surface
area, until both converge. Therefore, a dynamic equilibrium is found for both unpinned
and pinned bubbles at micro-electrodes, which will be further analysed below.

3.1. Theoretical analysis
As can be seen from figure 2, in both cases of pinned and unpinned growth, the bubbles at
equilibrium cover most parts of the electrode. Despite this corresponding to small values
of the Damköhler number (see also Appendix E), diffusion into the surrounding electrolyte
still takes place, as evidenced by the red high-concentration regions near the bubble foot.
This motivates us to start from the reaction-controlled modelling (Zhang & Lohse 2023),
which calculates the gas entering the bubble directly from the current density j , but to
additionally introduce a correction factor 0 < fin � 1 accounting for gas remaining in the
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Figure 3. Values of fin and fout derived from numerical data when unpinned bubbles reach an equilibrium
in a liquid of ζ = −1, i.e. cb = 0. (a) Influence of the applied current density. Here, rb,ini = 50 µm, θ = 90◦,
colour region represents data range obtained by re = 50 − 150 µm. (b) Influence of the contact angle. Here,
j = 250 A m−2, colour region represents data range obtained by rb,ini = 50 µm, re = 150 µm or
rb,ini = 100 µm, re = 125 µm. Solid lines represent fitting functions ((A1), (A2) in Appendix A) used in the
theoretical solutions.

electrolyte, so that only a part of the gas produced at the electrode enters the bubble. The
gas influx Jin across the bubble surface can then be described as follows:

Jin = fin · Je = fin · jπ(r2
e − r2

cl)

zF
, (3.1)

with Je, re, rcl, z, F denoting the gas flux generated at the electrode, the radius of the
electrode and the bubble contact line, the charge number and the Faraday constant. Unlike
Zhang & Lohse (2023), in which the bubble is pinned at the edge of the nano-electrode
and the gas influx is given as a constant value, here the gas influx dynamically depends
on the motion of the bubble contact line and the resulting wetted electrode surface area.
Values of fin are derived from numerical simulations for different reaction conditions by
computing the ratio of the gas flux that actually enters the bubble and that produced at
the electrode. As shown in figure 3, fin increases towards 1 with enhancing j , where the
bubbles grow larger and the gas loss into the bulk reduces. At more hydrophilic surfaces,
the bubble shape will increasingly impede gas transport towards the bulk, figure 2, thus
causing also a higher fin .

When the surrounding liquid is under-/saturated (ζ � 0), at the same time, gas may
diffuse out of the bubble. For the cases considered in this work, the Péclet number
Pe = rb/D · drb/dt � 1, indicating that convective effects are negligibly small compared
with diffusion. When further neglecting initial transients, the gas transport equation,(2.5),
can be simplified for steady states to ∇2c = 0. Combining this with Fick and Henry’s law
(Popov 2005; Lohse & Zhang 2015a), the gas outflux Jout reads

Jout = fout · πrb Dcs

(
ζ − 2γ

rb P0

)
f p sin θ. (3.2)

Here, rb, D, γ denote the bubble radius, the gas diffusion coefficient and the surface
tension. The shape factor f p introduced by Popov (2005), see Appendix (A1), depends
only on the water-side contact angle θ , and monotonically decreases from infinity towards
unity when θ increases from 0◦ to 180◦. In addition to previous work, now the factor
0 < fout � 1 is introduced in (3.2). It accounts for reduced outflux due to a
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high-concentration region appearing near the bubble foot due to the electrode reaction
(figure 2). In more detail, it is defined as the fraction of the bubble surface area where gas
leaves the bubble. For fout = 1, equation (3.2) simplifies to the purely reaction-controlled
case treated earlier (Zhang & Lohse 2023), where all dissolved gas produced at the
electrode immediately enters the bubble, and no region of enhanced concentration near
the bubble foot is arising. The behaviour of fout determined from numerical simulations
is shown in figure 3, where the coloured regions mark the results obtained for various
configurations given in the caption. Similarly to fin , fout increases with j as the bubbles
become larger. The contact angle seems to have only a minor influence. Note that,
for the different configurations, only small variations in fin and fout are observed,
which motivates us to approximate both by fitting functions (solid lines), as detailed in
Appendix (A1).

Mass transfer at the gas–liquid interface determines how the bubble geometry evolves
with time. The change rate of the bubble mass can be expressed as

dm

dt
= Mg (Jin + Jout ) , (3.3)

with Mg denoting the molar mass of the gas. For bubbles of nano- and micrometre size,
we take into account also the possible change of the gas density ρg with pressure

dm

dt
= d(ρgV )

dt
= ρg

dV

dt
+ V

dρg

dt
, (3.4)

with

ρg = ρg0

(
1 + 2γ

rb P0

)
(P0b + kB T )

P0b

(
1 + 2γ

rb P0

)
+ kB T

, (3.5)

where ρg0, b, kB, T represent the gas density at pressure P0, the volume per atom
with an effective atomic radius of 0.2 nm, the Boltzmann constant and the temperature,
respectively (Zhang & Lohse 2023).

Depending on the reaction parameters, the bubble could grow (Jin + Jout > 0) or shrink
(Jin + Jout < 0) with time. When assuming bubble caps of spherical shape, the relation
between volume, contact angle and radius is

V = πr3
b (2 + 3 cos θ − cos3 θ)

3
, rcl = rb sin θ. (3.6)

Now, combining equations (3.3)–(3.5), a relation for the evolution of an unpinned bubble
with constant contact angle can be derived

drb

dt
=

Mg

[
fin · j (r2

e − r2
cl)

zF
+ fout · rb Dcs

(
ζ − 2γ

rb P0

)
f p sin θ

]

ρgr2
b (2 + 3 cos θ − cos3 θ)C1

, (3.7)

with C1 describing the influence of a variable gas density

C1 = 1 − 2kB T P0γρgrb

3ρg0(P0b + kB T ) (P0rb + 2γ )2 . (3.8)
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For the case of a pinned bubble, the temporal change of the contact angle is derived
similarly as

dθ

dt
=

−(1 − cos θ)2 Mg

[
fin · j (r2

e − r2
cl)

zF
+ fout · rcl Dcs

(
ζ − 2γ sin θ

rcl P0

)
f p

]

ρgr3
clC2

,

(3.9)
with C2 given as

C2 = 1 − 2kB T P0γρgrcl(2 − cos θ) sin θ cos θ

3ρg0(P0b + kB T ) (P0rcl + 2γ sin θ)2 . (3.10)

We remark that our expression (3.9) is equivalent to (3.5) in Zhang & Lohse (2023) if
fin = fout = 1. Under the conditions considered in this study, the varying gas density is
found to influence the initial dynamics of bubbles smaller than 5 µm, corresponding to
a relative density change �ρg/ρg0 larger than ∼29 %, or C1, C2 smaller than ∼0.9. For
sufficiently large bubbles, ρg approaches ρg0, and C1, C2 approach 1, which allows us
to simplify equations (3.7), (3.9) for a constant gas density. For more details we refer the
reader to Appendix (A2).

If during the evolution of the bubble, a counterbalance between Jin and Jout is reached,
as shown in figure 2, a dynamic equilibrium is found. From (3.1), 3.2, it can be derived
that [

fin
j (r2

e − r2
cl)

zF
+ foutrb Dcs

(
ζ − 2γ

rb P0

)
f p sin θ

]
eq

= 0. (3.11)

Subscript eq denotes equilibrium. Equation (3.11) allows us to determine rb,eq or θeq for
unpinned or pinned bubbles, respectively. If no root can be found for the given conditions,
an equilibrium will not occur, and the bubble either grows without limit or completely
dissolves.

Once a dynamic equilibrium is reached, minor fluctuations in the system parameters
such as current, pressure or temperature may disturb the balance between the in- and out-
fluxes, causing the bubble to start growing, dissolving or reshaping. In the case of a stable
equilibrium, the resulting modified fluxes will bring the bubble back to the equilibrium
state. For example, if an unpinned bubble becomes temporarily larger than rb,eq , Jin will
decrease due to the reduced wetted electrode area, whereas the bubble surface area and
therefore |Jout | increase. Thus, both changes tend to bring the bubble back to rb,eq . Other
factors influencing the stability are analysed in table 2. As it is difficult to decide which is
the determining factor, we apply the methodology of Lohse & Zhang (2015a) for studying
the stability of surface nano-bubbles and extend it by additionally taking into account the
gas production at the electrode. The stability of unpinned and pinned bubbles requires[

∂

∂rb

drb

dt

]
eq

< 0,

[
∂

∂θ

dθ

dt

]
eq

< 0. (3.12)

For unpinned surface bubbles, combining (3.7) and (3.11), we obtain (derivation in
Appendix (A3))[

∂

∂rb

drb

dt

]
eq

= Mg

ρg(2 + 3 cos θ − cos3 θ)r2
b,eqC1,eq

[
ζ P0K2 − 4K1rb,eq sin2 θ

r2
e

]
,

(3.13)

1011 A23-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

39
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.397


M. Huang, C. Sun, K. Eckert, X. Zhang and G. Mutschke

Influence factors Unpinned bubbles Pinned bubbles

Bubble surface area Stabilising Stabilising
Wetted electrode area Stabilising No change
Laplace pressure Destabilising θ > 90◦: Stabilising; θ < 90◦: Destabilising
Contact angle No change Destabilising

Table 2. Stabilising and destabilising factors for bubbles in an under-/saturated liquid.

with K1, K2 being positive constants at given values of j, re and θ

K1 = fin jr2
e

2zF
, K2 = fout Dcs f p sin θ

P0
. (3.14)

Because (2 + 3 cos θ − cos3 θ) > 0, the sign of expression (3.13) is determined by the sign
of the part in the square brackets on the right-hand side. For the case of ζ � 0, this sign is
always negative, indicating a stable equilibrium for unpinned bubbles in under-/saturated
liquids. However, for larger ζ , the sign is likely to become positive, in agreement with the
statement in Lohse & Zhang (2015a) that unpinned bubbles are unstable in over-saturated
liquids.

For pinned surface bubbles, combining (3.9) and (3.11) leads to (derivation in Appendix
(A3))[

∂

∂θ

dθ

dt

]
eq

= Mg

ρgr2
clC2,eq

(1 − cos θeq)2
[

2K4γ

rcl
f p cos θ + K3

(
fin

f p

d f p

dθ
− ∂ fin

∂θ

)]
eq

,

(3.15)
with K3, K4 being positive constants at given values of j, re and rcl

K3 = j (r2
e − r2

cl)

zFrcl
, K4 = fout Dcs

P0
. (3.16)

The sign of expression (3.15) is determined by the sign of the part in the square brackets on
the right-hand side. As will be discussed below (figure 6), for small bubbles (rcl ∼ 1 µm),
the sign is negative when θ > 90◦ and positive when θ < 90◦, indicating that the sign is
mainly determined by the first term inside the bracket. Thus, only pinned small bubbles of
flat shape tend to be stable, while taller caps become unstable by the change of the Laplace
pressure (table 2). This generalises the finding in Lohse & Zhang (2015a) that pinned
nanobubbles, which are typically flat, are stable. For larger bubbles, the second term in
the bracket may become dominant. Although both d f p/dθ and ∂ fin/∂θ are negative,
our calculations reveal that the sign is generally negative for bubbles ∼ 50 µm in size.
This corresponds to the fact that the shape factor f p changes faster than fin with θ , as can
be seen in Appendix (A1). Therefore, we conclude here that, in under-saturated/saturated
bulk electrolytes, bubbles evolving on micro-electrodes in either pinned or unpinned mode
may reach a stable equilibrium state. But we remark that under certain conditions, e.g. at
large current (Zhang & Lohse 2023), an equilibrium state (Jin + Jout = 0) may not be
achieved at all.

3.2. Numerical simulations
In the following, we investigate the conditions of equilibrium and stability in more detail
by combining numerical simulations and theoretical reasoning. Figure 4 shows numerical
and theoretical results of the bubble evolution with (dashed lines) and without (dotted
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Figure 4. (a) Evolution of the radius of an unpinned bubble, θ = 90◦, re = 100 µm, rb,ini = 50 µm.
(b) Evolution of the contact angle of a pinned bubble, rcl = 44 µm, re = 55 µm, θini = 90◦. Regime I: bubble
dissolves completely. Regime II: bubble reaches a dynamic equilibrium. Solid lines: simulation. Dashed lines:
theoretical solution with fin/out . Dotted lines: theoretical solution without fin/out . Note that the simulations
are stopped when θ > 150◦ or θ < 30◦ to avoid numerical difficulties in interface reconstruction.

lines) the consideration of gas loss into the electrolyte ( fin, fout ), (3.7) and 3.9. When
the applied current density increases, the bubble evolution tends to change from complete
dissolution (regime I) towards dynamic equilibrium states (regime II). Unlimited growth
until detachment is expected to occur at larger rb and smaller θ , which is outside of
the scope of our simulations. We remark that the bubble end state is not influenced
by the initial state, see Appendix C. This indicates that convection is not important
(Pe = rb/D · drb/dt � 1), and that bubbles temporarily at different states all tend to
converge to the equilibrium state, i.e. the stability condition (3.12) is fulfilled. Because fin
is in general smaller than fout (figure 3), adding them to the original theoretical solution of
Zhang & Lohse (2023) causes slower bubble growth and faster dissolution. This improves
the agreement with the numerical simulations, especially at smaller currents.

Next, by using the adapted theoretical solution, (3.11), we provide a systematic view of
how the final bubble state is influenced by current density, electrode size and wettability.
The coloured surface in figure 5(a) represents the contact line radius for unpinned bubbles
with a contact angle of 90◦ when a dynamic equilibrium is reached (regime II). In the white
space below the coloured region, no positive root of equation (3.11) exists, i.e. the bubble
completely dissolves (regime I). The bubble end states obtained by numerical simulations
are added and are found to qualitatively reproduce the theoretical results. As can be seen,
the equilibrium bubble size decreases when lowering re and j . For each current density,
there exists a critical electrode size below which bubbles become unstable on the electrode,
which decreases at larger j . This is because the limited gas influx at the small electrode
cannot balance the outflux due to a large Laplace pressure anymore, i.e. it dissolves. The
critical re obtained from the simulations is only slightly larger than for the theoretical
solutions. For more hydrophilic electrodes, as shown in figure 5(b) for the case of θ = 10◦,
rcl,eq becomes smaller, and the dissolution region extends. Note that the results shown
here are for the case ζ = −1. However, a similar behaviour of the bubble evolution was
found also for ζ = 0, see Appendix D.

Figure 6 shows the final contact angle of pinned bubbles with pinning radii of 50 µm
(a) and 1 µm (b). The white space below the coloured region represents the cases of
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Figure 5. Influence of electrode radius re and current density j on the equilibrium contact line radius req
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of unpinned bubbles when the contact angle is (a) 90◦ and (b) 10◦. Coloured surface: theoretical solution.
White area represents complete dissolution. Numerical results of bubble end states (I: complete dissolution; II:
dynamic equilibrium) are added in (a).
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Figure 6. Influence of electrode radius re and current density j on the equilibrium contact angle θeq of
pinned bubbles with (a) rcl = 50 µm or (b) rcl = 1 µm. Coloured surface: theoretical solution. White or grey
areas represent complete dissolution or unlimited growth. Numerical results of bubble end states (I: complete
dissolution; II: dynamic equilibrium) are added in (a). The black curve in (b) marks [∂(dθ/dt)/∂θ ]eq = 0,
which is not visible in (a) where the expression is always negative.

complete dissolution (θ → 180◦), and the upper grey area represents unlimited growth
(θ → 0◦). As can further be seen, smaller re and lower j lead to more flat bubbles.
Such a change in bubble shape reduces the surface available for Jout , thus maintaining
the equilibrium at higher Laplace pressure and slower gas production. For each current
density, also there exists here a critical re below which bubbles always dissolve, which
decreases with increasing j . We remark that such a critical electrode size only exists for
under-saturated liquids (ζ < 0), where the influx due to gas production then becomes
lower than the outflux. This is not the case for saturated liquids (ζ = 0), where Jout
becomes independent of the size of the bubble (see (3.2)). Here, for smaller electrodes, the
bubble can always flatten its shape towards θ = 180◦ to reduce Jout in order to balance a
smaller Jin .
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Figure 7. (a) Electrode coverage and (b) current density averaged over the whole electrode surface area for
unpinned bubbles at equilibrium for micro-electrodes of different size and wettability, rb,ini = 50 µm.

A bubble does not necessarily stay stable after an equilibrium state has temporarily
been reached. As mentioned above, unpinned bubbles are always stable in liquids of ζ � 0
(3.13). For pinned bubbles of rcl = 50 µm, the sign of [(∂/∂θ)(dθ/dt]eq (equation (3.15))
is found to be negative, i.e. the bubbles have a stable equilibrium. For smaller bubbles of
rcl = 1 µm, we plot the isoline [(∂/∂θ)(dθ/dt)]eq = 0 as a black solid line in figure 6(b).
We find that the sign of this expression is negative for θ > 90◦ and positive for θ < 90◦
in general. This confirms the analysis below (3.16). More details on the distribution of the
sign can be found in Appendix (A3).

We further note that, for all the simulations performed in this work, the stable bubble
equilibra found correspond to Damköhler numbers ranging mainly between 0.1 and 1,
which a posteriori justifies our approach of extending the theory of the reaction-controlled
growth. For more details please see Appendix E.

3.3. Impact on reaction efficiency
Finally, we discuss how to design the electrode to effectively regulate the bubble
equilibrium, aiming to reduce electrode blockage and thus related energy losses. For an
unpinned bubble, its contact radius determines the active area of the electrode for reaction.
Figure 7(a) shows how the fraction of the electrode surface covered by the bubble
changes with the current density applied ( japp). In general, lower japp, smaller and more
hydrophilic electrodes could reduce the bubble coverage. Figure 7(b) shows the current
density averaged over the whole electrode area, javg , as a function of japp, which sheds
insight onto the experimentally measurable current − potential curve (Bard et al. 2022):
an indicator of the energy transfer efficiency of the electrolysis. When japp increases,
javg first increases then levels off, and even slightly decreases. Smaller and hydrophilic
electrodes are beneficial for enhancing the efficiency. These trends correlate with lower
bubble coverage on the electrode. Further, when the electrode is increasingly blocked
by the bubble, the electric current lines will concentrate near the electrode edge. This
may lead to a temperature hotspot, causing a thermal Marangoni force that retards the
bubble detachment (Hossain et al. 2020). If a bubble is pinned by geometrical or chemical
surface heterogeneities, the bubble coverage of the electrode is pre-defined, and the
reaction efficiency can only be influenced by the bubble shape. For smaller θ , the electric
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current lines will be more distorted near the bubble, resulting in a stronger shielding
effect and larger ohmic loss. As can be seen in figure 5, θeq increases when re, rcl and
japp decrease. This again indicates the advantage of using electrodes of smaller size or
electrodes structured with an array of nano-/micrometre-sized catalytic spots.

4. Conclusions and outlook
We studied the equilibrium and stability of gas bubbles evolving at micro-electrodes using
direct numerical simulations and theoretical analysis by adapting an existing theoretical
model for the reaction-controlled mode. At micro-electrodes, both pinned and unpinned
bubbles may reach a dynamic equilibrium state, at which the in- and outfluxes of gas across
the bubble surface counterbalance each other. The equilibrium states are characterised by
Damköhler numbers smaller than or around 1. In under- and saturated bulk electrolytes,
this equilibrium is always stable for unpinned bubbles. Under contact line pinning, it is
stable for flat nano-bubbles with a contact angle larger than 90◦ and for micro-bubbles in
general. Both numerical and theoretical solutions suggest a critical electrode size, below
which bubbles in undersaturated (pinned/unpinned) or saturated (unpinned) liquids will
eventually dissolve.

We note that our investigation is limited to the axisymmetric cases where the initial
bubble nucleus resides at the centre of the microelectrode. Therefore, asymmetric
nucleation and disturbances have to be studied in future work. We further remark that
there could be situations that the pinned and unpinned cases considered in this work
cannot cover. The modes we considered are idealisations, as we neglect small movements
of the contact line during pinning and small changes of the contact angle during unpinned
growth. Further, the bubble may also evolve in both regimes, with a short transitional
period in between, where both the contact angle and contact line are changing in time
(Li et al. 2023a). The instant of the transition from the pinned to the unpinned mode
on a specific surface depends on its wetting properties. In general, de-pinning occurs
earlier on more hydrophobic surfaces. If de-pinning occurs before the bubble has reached
an equilibrium, stable pinned states will not be achieved. Besides, on rough surfaces,
expanding bubbles may also become re-pinned again at surface tips before having reached
an equilibrium contact line radius. Therefore, what stable bubble states can be observed on
micro-electrodes beside the process parameters may also depend on the dynamic wetting
property of the surface, and awaits a further clarification in future studies.

The specifics of the bubble dynamics at micro-electrodes unveiled in this work give
support to recent experimental observations of stationary bubbles and bubble dissolution
(Suvira et al. 2023). We hope that the present findings will stimulate work towards further
validation. Our findings may also contribute to future efficiency enhancements of water
electrolysis by using hydrophilic electrodes of smaller size or electrodes structured with
an array of nano-/micrometre-sized catalytic spots at moderate current densities.
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Appendix A. Details of expressions and derivations

A.1 The variables fin, fout , f p

According to figure 3, only small variations can be observed when the electrode size
changes. The dependence of fout on the contact angle is also negligibly small. Therefore,
we simplify the theoretical solutions by using fitting functions for fin and fout . These
read

fin( j, θ) = 1.378(−0.0037θ + 1.066) · (0.184ln( j) − 0.296), (A1)
fout ( j) = 1.027(0.075ln( j) + 0.441). (A2)

Here, a simple linear fitting of fin and fout vs. θ and ln( j) was chosen, which already
gives a coefficient of determination (R2) of ∼0.95. The shape factor f p used to compute
Jout is defined as follows (Popov 2005):

f p(θ) = sinθ

1 − cosθ
+ 4

∫ ∞

0

1 + cosh[2(π − θ)τ ]
sinh(2πτ)

tanh(θτ ) dτ, (A3)

with θ denoting the water-side contact angle. It can be numerically approximated by
the fitting function f p(θ) = 112.55θ−0.884. Figure 8 compares the behaviours of fin and
f p, calculated either by (A3) or the fitting function, versus θ . We remark that (A3) has
asymptotic solutions for θ = 90◦ and 180◦, which equal to 2 and 4/π , respectively (Wilson
& D’Ambrosio 2023). This gives a difference of 5 % − 10 % compared with the result
based on the fitting function.

In general, all factors decrease with increased θ , among which the Popov factor f p
changes fastest. The influence of θ on fout is only minor and is neglected in the derivation
of bubble stability.

A.2 Influence of varying gas density
As mentioned in § 3.1, the dependence of gas density on the pressure may influence the
bubble dynamics, especially at nano- and micro-scales. Here, we present results of (3.7)
and (3.9) for unpinned (figure 9) and pinned (figure 10) bubbles. As can be seen, the
enhanced actual gas density (equation (3.5)) may slow down the initial growth speed
for bubbles smaller than 5 µm, which corresponds to a maximal relative density change
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Figure 8. Comparison of fin ( j = 250 A m−2) and f p depending on the water-side contact angle.
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Figure 9. Influence of variable gas density on the evolution of the radius of unpinned bubbles with θ = 90◦
and j = 250 A m−2. Panels show (a) rb,ini = 1 µm, re = 5 µm, [�ρg/ρg0]max = 146 %, [C1]min = 0.8 and
(b) rb,ini = 5 µm, re = 10 µm, [�ρg/ρg0]max = 29 %, [C1]min = 0.92.

t (s) t (s)

Constant ρg

Variable ρg

Constant ρg

Variable ρg

30

40

50

60

70

80

90

30

40

50

60

70

80

90

0 0.05 0.10 0.15 0.20 0 1 2 3 4 5

θ 
(d

eg
.)

θ 
(d

eg
.)

(a) (b)

Figure 10. Influence of variable gas density on the evolution of the contact angle of pinned bubbles with
θini = 90◦ and j = 250 A m−2. Panels show (a) rcl,ini = 1 µm, re = 5 µm, [�ρg/ρg0]max = 146 %,
[C2]min = 0.85 and (b) rcl,ini = 5 µm, re = 10 µm, [�ρg/ρg0]max = 29 %, [C2]min = 0.95.

�ρg/ρg0 of 29 %, and a minimal compressibility term (C1 or C2) of ∼0.9. We remark that
the equilibrium bubble state is not influenced, as evidenced also by (3.11). For most cases
considered in this work, the influence of varying gas density can be safely neglected.

A.3 Derivations of bubble stability
In the following, we derive the stability conditions (Lohse & Zhang 2015a)[

∂

∂rb

drb

dt

]
eq

< 0,

[
∂

∂θ

dθ

dt

]
eq

< 0, (A4)

for the bubbles that have reached an equilibrium.

1011 A23-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

39
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.397


Journal of Fluid Mechanics

For the unpinned bubbles, based on (3.7), the temporal change of the bubble radius can
be expressed as

drb

dt
= Mg

ρg(2 + 3 cos θ − cos3 θ)C1

[
1
r2

b

(
fin jr2

e

zF
− 2 foutγ Dcs sin θ f p

P0

)]
(A5)

+ Mg

ρg(2 + 3 cos θ − cos3 θ)C1

[
1
rb

fout Dcsζ sin θ f p − fin j sin2 θ

zF

]
. (A6)

To ease the derivation, we define variables K1, K2 that are positive constant values
during each bubble evolution event with constant j, re and θ

K1 = fin jr2
e

2zF
, K2 = fout Dcs sin θ f p

P0
. (A7)

At equilibrium, combining (3.11) and A7, we obtain

γ K2 − K1 = 1
2

(
ζ P0K2rb,eq − 2K1r2

b,eq sin2 θ

r2
e

)
. (A8)

Applying the quotient rule and the equilibrium condition (A8), the partial derivative of
(A6) can be expressed as follows:

[
∂

∂rb

drb

dt

]
eq

=
Mg

∂

∂rb

[
1
r2

b

(2K1 − 2γ K2) + 1
rb

(ζ P0K2)

]
eq

ρg0(2 + 3 cos θ − cos3 θ)C1,eq

(
1+ 2γ

rb,eq P0

)
(P0b + kB T )

P0b

(
1+ 2γ

rb,eq P0

)
+kB T

= Mg

ρg(2 + 3 cos θ − cos3 θ)r2
b,eqC1,eq

[
4(γ K2 − K1) − ζ P0K2rb,eq

rb,eq

]
.

(A9)

which can be further simplified using (A8) again[
∂

∂rb

drb

dt

]
eq

= Mg

ρg(2 + 3 cos θ − cos3 θ)r2
b,eqC1,eq

[
ζ P0K2 − 4K1rb,eq sin2 θ

r2
e

]
.

(A10)

Because (2 + 3 cos θ − cos3 θ) > 0, C1,eq > 0, the sign of [(∂/∂rb)(drb/dt)]eq is
determined by the sign of the square bracket on the right-hand side of (A10)

ζ P0K2 − 4K1rb,eq sin2 θ

r2
e

, (A11)

which is negative if ζ � 0. We remark that this expression can also be readily applied to
bubbles on non-reactive surfaces by setting K1 = 0, fout = 1.
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For a pinned bubble, based on (3.9), we express the temporal change of the water-side
contact angle as follows:

dθ

dt
= Mg

ρgr2
clC2

[(
2 fout Dcsγ sin θ

rcl P0
− fout Dcsζ

)
f p(1 − cos θ)2

]

− Mg

ρgr2
clC2

[
j (r2

e − r2
cl)

zFrcl
fin(1 − cos θ)2

]
. (A12)

Defining variables that are positive constants during each bubble evolution event with
constant j, re and rcl

K3 = j (r2
e − r2

cl)

zFrcl
, K4 = fout Dcs

P0
. (A13)

At equilibrium, combining (3.11) and (A13), we obtain(
2K4γ sin θeq − K4 P0ζrcl

)
f p = K3rcl fin. (A14)

The partial derivative of (A12) then becomes

[
∂

∂θ

dθ

dt

]
eq

=
Mg

∂

∂θ
(1 − cos θ)2

[(
2K4γ sin θ

rcl
− K4 P0ζ

)
f p − K3 fin

]
eq

ρg0r2
clC2,eq

(
1 + 2γ sin θeq

rcl P0

)
(P0b + kB T )

P0b

(
1 + 2γ sin θeq

rcl P0

)
+ kB T

. (A15)

This can be further simplified as[
∂

∂θ

dθ

dt

]
eq

= Mg

ρgr2
clC2,eq

(1 − cos θeq)2 ∂

∂θ

[(
2K4γ sin θ

rcl
− K4 P0ζ

)
f p − K3 fin

]
eq

= Mg

ρgr2
clC2,eq

(1 − cos θeq)2
[

2K4γ

rcl
f p cos θ + K3

(
fin

f p

d f p

dθ
− ∂ fin

∂θ

)]
eq

.

(A16)

The sign of [(∂/∂θ)(dθ/dt)]eq is determined by the sign of the square bracket on the
right-hand side of (A16)

2K4γ

rcl
f p(θeq) cos θeq + K3

[
fin

f p

d f p

dθ
− ∂ fin

∂θ

]
eq

. (A17)

Unlike the unpinned case, where the sign of [∂(drb/dt)/∂rb]eq is clearly negative if ζ � 0
(expression (A11)), in the pinned case the stability behaviour is more complex. As shown
in figure 11, for a relatively large contact radius (50 µm), the sign of expression (A17) and
thus of (A16) is negative in the parameter range considered. Thus, larger pinned bubbles
at dynamic equilibrium are stable. For a smaller pinned bubble of 1 µm, the sign of
expression (A17) is found to be positive in the upper equilibrium area where θeq > 90◦
according to figure 6, and is found to be negative in the lower equilibrium area where
θeq < 90◦. Thus, only in the latter part the dynamic equilibrium is stable. Considering
expression (A17), we note that its first term is positive and negative when θ is smaller
and larger than 90◦, respectively. Its second term can be assumed to be negative, because
f p decreases faster with θ than fin (see figure 8). Therefore, the sign of [∂(dθ/dt)/∂θ ]eq
for small bubbles is determined by the first term of expression (A17) originating from the
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Figure 11. Value of expression (A17) for two pinned bubbles of different contact radius at dynamic
equilibrium. The white and grey areas indicate bubble dissolution and unlimited growth.
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Figure 12. Influence of no-slip/free-slip condition at substrate, and manually enhancing the diffusion
coefficient on the evolution of an unpinned bubble. The horizontal axis is the time after rescaling according to
the ratio of the increased to the real diffusion coefficient. Here, rb,ini = 50 µm. re = 75 µm, j = 250 A m−2,
θ = 90◦.

Laplace pressure, and for larger bubbles it is determined by the second term originating
from the bubble shape. Note that, for bubbles on non-reactive surfaces, j = 0, K3 = 0,
so that this expression is only determined by the first term. All results of the theoretical
solution shown in the figures were computed by using Matlab.

Appendix B. Variation of surface slip and diffusion coefficient
As can be seen in figure 12, changing the boundary condition at the substrate from no slip
to free slip does not change the bubble evolution process. Besides, using different values
of manually increased diffusion coefficients does not affect the results. This requires us
to re-scale time according to the ratio of the increased to real diffusion coefficient. The
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Figure 13. Temporal evolution of unpinned bubbles of different initial size rb,ini ranging from 20 to 80 µm
and represented by different colours, where red, black, blue, magenta, orange and green represent rb,ini =
20, 30, 40, 50, 60 and 80 µm, respectively. All evolve towards the same dynamic equilibrium state. Here,
j = 250 A m−2, re = 75 µm, θ = 90◦.
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Figure 14. Theoretical solution of the equilibrium contact line radius rcl,eq (coloured surface) for unpinned
bubbles versus electrode radius re and applied current density j when cb = cs , i.e. ζ = 0. Panels show
(a) θ = 90◦ and (b) θ = 10◦. The bottom white area marks complete dissolution.

enlarged diffusion coefficient must not impair the dominance of surface tension during
bubble growth (Han et al. 2025).

Appendix C. Influence of initial radius for unpinned bubbles
As can be seen in figure 13, unpinned bubbles of different initial radius start either to grow
or to dissolve, but eventually are all approaching the same state of dynamic equilibrium.
This gives numerical support to the theoretical stability condition (3.12) derived above. It
also indicates that, in the cases considered here, convection is not important (Pe = rb/D ·
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Figure 15. Theoretical solution of the equilibrium contact angle θeq (coloured surface) for pinned bubbles
versus electrode radius re and applied current density j when cb = cs , i.e. ζ = 0. Panels show (a) rcl = 50 µm
and (b) rcl = 1 µm. The grey top area represents unlimited growth. Note that, for the pinned bubbles in saturated
liquid, there is theoretically no dissolution area. The white space at the bottom represents the region when θeq
reaches 175◦. At this point we stop the calculation and regard the bubble as having been reduced to a sufficiently
flat surface to be considered as dissolved.
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Da

Figure 16. A summary of the Damköhler numbers of the stability states of the bubbles in the simulations.
Each circle represents the result of one simulation.

drb/dt � 1), as otherwise the final bubble state could be influenced by the different impact
of growth or shrinkage on the convective mass transfer.

Appendix D. Influence of bulk concentration
Here, we show theoretical results of the bubble end states obtained for zero over-saturation,
i.e. cb = cs and ζ = 0. For the unpinned cases, figure 14, the current density becomes less
important compared with the case of zero bulk concentration (ζ = −1) shown in figure 6.
The equilibrium bubble contact radius approaches the electrode radius in most situations.
But for small j and small re, a dissolution region also appears (white space). As in the
case of ζ = −1, the critical electrode radius decreases with increasing j .

For the pinned bubbles, figure 15, a dissolution region (white space below the coloured
surface) and an unlimited growth region (grey space above the coloured surface) could
be observed. The equilibrium contact angle decreases with increasing re and j . This is
qualitatively also similar to the case of ζ = −1 (figure 6), but the dissolution and growth
regions have become smaller and larger, respectively, at the increased bulk concentration.

Appendix E. Damköhler numbers
For the conditions considered in the simulations, the corresponding Damköhler numbers
(Van Der Linde et al. 2017) at equilibrium range from 0.04 to 30, but are mostly located
between 0.1 and 1, as can be seen in figure 16.
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