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Abstract

The rapid advancement of large language models (LLMs) has enabled their integration into a wide range of scientific
disciplines. This article introduces a comprehensive benchmark dataset specifically designed for testing recent LLMs in
the hydrology domain. Leveraging a collection of research articles and hydrology textbooks, we generated a wide array
of hydrology-specific questions in various formats, including true/false, multiple-choice, open-ended, and fill-in-the-
blank. These questions serve as a robust foundation for evaluating the performance of state-of-the-art LLMs, including
GPT-4o-mini, Llama3:8B, and Llama3.1:70B, in addressing domain-specific queries. Our evaluation framework
employs accuracymetrics for objective question types and cosine similaritymeasures for subjective responses, ensuring
a thorough assessment of the models’ proficiency in understanding and responding to hydrological content. The results
underscore both the capabilities and limitations of artificial intelligence (AI)-driven tools within this specialized field,
providing valuable insights for future research and the development of educational resources. By introducing
HydroLLM-Benchmark, this study contributes a vital resource to the growing body of work on domain-specific
AI applications, demonstrating the potential of LLMs to support complex, field-specific tasks in hydrology.

Impact Statement

Our study introduces HydroLLM-Benchmark, the first comprehensive dataset designed to evaluate large language
models (LLMs) in hydrology-specific tasks. As artificial intelligence (AI) increasingly supports environmental
research, assessing LLMs’ ability to process hydrological knowledge is crucial for scientific progress. By bench-
markingmodels likeGPT-4o-mini andLlama3,we identify their strengths and limitations inunderstandinghydrology,
informing improvements inAI-driven decision-making forwater resourcemanagement, climate resilience, and flood
prediction. This work bridges the gap between AI and hydrological sciences, ensuring that future LLMs are better
equipped for environmental applications. By providing an open-source dataset, we empower researchers to refine
AImodels, fosteringmore accurate, data-driven insights for sustainablewatermanagement and environmental policy.
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1. Introduction

Hydrology is a specialized domain characterized by its intricate interplay of physical, chemical, and
biological processes, combined with significant societal and environmental implications. Addressing
global challenges such as water scarcity, flooding, and sustainable water resourcemanagement demands a
profound understanding of hydrological processes and their interconnected systems. The study of the
water cycle, encompassing precipitation, evaporation, and runoff, is influenced by diverse environmental
factors, requiring precision and context-specific knowledge (Ukarande, 2023). In addition, subdisciplines
such as groundwater hydrology necessitate a deep understanding of subsurface water physics, which is
essential for effective resource management and environmental sustainability (Anderson, 2007).

Despite advances in hydrological science, knowledge gaps persist, particularly in understanding local
boundary conditions and hydrological connectivity, which often vary significantly across regions
(Wagener et al., 2021). Addressing these gaps requires the development of shared perceptual models
to enhance collective understanding and collaboration in hydrological research (Wagener et al., 2020).
Moreover, hydrology is inherently interdisciplinary, demanding integration across civil engineering,
geology, meteorology, and social sciences to address water resource challenges effectively (Harshbarger
and Ferris, 1963). This interdisciplinary nature, combined with the socioeconomic and political factors
influencing water-related decision-making, underscores the need for specialized training and knowledge
in the field (Harshbarger and Ferris, 1963).

The rapid development and widespread adoption of large language models (LLMs) have opened new
avenues for tackling domain-specific challenges in science and engineering. However, applying general-
purpose LLMs to hydrology presents significant challenges due to the specialized nature of hydrological
data and reasoning tasks (Samuel et al., 2024a). General-purpose LLMs, trained on diverse datasets, often
lack domain-specific knowledge required for tasks such as flood management, groundwater modeling,
and water quality assessment (Shen et al., 2024). In addition, LLMs face spatial reasoning deficiencies,
which are critical for hydrological tasks involving watershed mapping, flood simulation, and water
distribution planning (Yan et al., 2023; Vald et al., 2024). Their limitations in spatial reasoning can hinder
effective real-time decision-making in dynamic hydrological scenarios (Yan et al., 2023).

Another key challenge is the integration of multimodal data, combining textual, visual, and numerical
information core requirement for effective hydrological analysis (Samuel et al., 2024b). While advance-
ments like GPT-4 Vision demonstrate improvements in processing visual data, their performance in
multimodal tasks remains inconsistent, highlighting the need for domain-specific fine-tuning (Kadiyala
et al., 2024a). Nevertheless, recent studies suggest that targeted fine-tuning and domain-specific adap-
tations have the potential to enhance LLM performance in hydrology (Xu et al., 2024b).

The integration of AI-driven educational and decision-support systems has demonstrated promising
outcomes in specialized domains (Kadiyala et al., 2024b). For instance, AI-enabled intelligent assistants
have shown significant potential in personalized and adaptive learning environments by reducing
cognitive load, providing targeted knowledge assessments, and generating customized learning pathways
(Sajja et al., 2023). These systems offer capabilities such as interactive knowledge discovery, quiz
generation, and intelligent tutoring, which can also be adapted to hydrology-specific tasks (Sajja et al.,
2024a).

Similarly, conversational AI educational assistants have been successfully deployed in diverse
academic domains, including environmental, political, and social sciences, showcasing their effective-
ness in delivering course-specific support and fostering deeper engagement with complex datasets
(Pursnani et al., 2023; Sajja et al., 2024b). In the context of floodplain management certification,
AI-assisted tools have been developed to enhance vocational training, offering interactive question-
answering sessions and real-time feedback tailored to certification requirements (Sajja et al., 2025,
Pursnani et al., 2024). These applications demonstrate the potential of AI to address specialized learning
and professional training needs, highlighting the feasibility of similar frameworks in hydrology.

In parallel, decision-support frameworks such as the multi-hazard tournament system have been
employed in flood mitigation and water resource management contexts (Alabbad et al., 2024). These
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frameworks utilize AI agents and collaborative multi-agent interactions to optimize decision-making
processes, demonstrating the capability of AI-driven simulations in complex multi-stakeholder environ-
ments (Kadiyala et al., 2024c). Such applications underscore the potential for LLMs to support intricate
hydrological decision-making tasks when appropriately fine-tuned and adapted.

The need for a hydrology-specific benchmark dataset emerges from the complex and multifaceted
nature of hydrological research and water resource management (Ebert-Uphoff et al., 2017). Bench-
mark datasets serve as standardized tools for evaluating, validating, and improving hydrological
models, ensuring consistent performance assessment across diverse tasks (Sit et al., 2021). Existing
datasets, such as CAMELS-DE, link landscape attributes with hydrological and meteorological time
series, enabling insights into hydrological processes across various landscapes (Dolich et al., 2024).
Similarly, the SEN12-WATER dataset integrates multiple data types to analyze water dynamics and
drought resilience (Russo et al., 2024).

Benchmark datasets also play a crucial role in hydrological model validation, with datasets like those
developed for SAC, GR4J, and SOCONT models enabling consistent and reliable performance assess-
ments (Izquierdo-Horna et al., 2024). In addition, resources such as the Panta Rhei dataset provide paired
flood and drought socio-hydrological data, facilitating integrated modeling approaches (Kreibich et al.,
2023). However, data gaps persist, especially concerning fine temporal resolution data for groundwater
recharge, a gap partially addressed by datasets like RpSy (Malakar et al., 2024). Despite these contribu-
tions, challenges related to data accessibility, standardization, and regional coverage continue to limit the
effectiveness of existing datasets (Demir et al., 2022; Dolich et al., 2024).

While scientific benchmarks exist across domains, they often fail to address the specific needs of
hydrology. Traditional hydrological models frequently suffer from performance degradation when
applied across multiple basins, highlighting the regional variability of hydrological conditions
(Kratzert et al., 2019). Furthermore, the subjective nature of accuracy determination complicates
benchmarking efforts, as model performance expectations often depend on regional characteristics
and data quality (Seibert, 2001). Recent advancements, such as long short-term memory networks,
demonstrate improved performance in cross-basin hydrological modeling by leveraging large datasets
(Kratzert et al., 2019). Similarly, physically based models, like the Variable Infiltration Capacity
model, provide a more robust representation of hydrological processes and enable meaningful
comparisons across hydroclimate conditions (Newman et al., 2017). However, these approaches still
face challenges in addressing the context-specific requirements of hydrological benchmarking
(Seibert, 2001).

General-purpose LLMs face limitations not only in hydrology but also across other specialized
domains. These limitations include knowledge gaps, terminology inconsistencies, and a lack of domain-
specific reasoning capabilities (Chen et al., 2023; Soman and Ranjani, 2024). In addition, issues like
knowledge forgetting—where newer knowledge overshadows older, relevant information—complicate
their application in specialized tasks (Chen et al., 2023). Evaluation by human experts remains essential,
as LLMs often fail to align with nuanced reasoning in specialized fields (Harvel et al., 2024; Szymanski
et al., 2024). Safety concerns, including the risk of generating harmful content, further emphasize the
importance of balanced fine-tuning methodologies (Thakkar et al., 2024).

The absence of a standardized evaluation dataset for hydrology-focused LLMs exacerbates these
challenges. Without a consistent benchmark, evaluating and comparing model performance becomes
inherently biased and inconsistent (Zheng et al., 2018). Challenges such as data contamination and a lack
of robust evaluation guidelines add further complexity to interpreting benchmark scores (Singh et al.,
2024). Emerging domain-specific benchmarks, such as WaterER, highlight the potential benefits of
tailored evaluation frameworks for hydrological tasks (Xu et al., 2024b).

Benchmarks from other specialized fields provide valuable lessons. In code generation, datasets like
EvoCodeBench offer structured evaluation methodologies (Li et al., 2024). In medicine, benchmarks like
MIMIC-III, BioASQ, and CheXpert have revolutionized medical AI applications (Yan et al., 2024). In
addition, datasets like BLURB and BioLP-bench have demonstrated the value of task-specific metrics in
biomedical and biological applications (Feng et al., 2024; Ivanov, 2024). Similarly, SciEx, designed for
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scientific reasoning, evaluates models using university-level exam questions with human grading to
ensure accuracy (Dinh et al., 2024).

This study introduces HydroLLM-Benchmark, a hydrology-focused benchmark dataset designed to
facilitate research related to the field, while also offering baseline performance results for state-of-the-art
LLMs in hydrological question-answering tasks. HydroLLM-Benchmark compiles diverse hydrological
resources, including textbook-based foundational concepts and cutting-edge research articles, ensuring
robust coverage of theoretical underpinnings and emerging insights. Although the dataset has been
streamlined to minimize preprocessing requirements, providing clear, structured, and readily usable data
for machine learning, pipelines remain flexible enough to support alternative investigative approaches,
such as physically based hydrological modeling.

Researchers can also leverage HydroLLM-Benchmark in conjunction with existing hydrological
datasets, thereby expanding the scope for comparative analyses and hybrid modeling strategies. By
addressing key gaps in existing benchmarks, HydroLLM-Benchmark aims to serve as a robust evaluation
tool and catalyst for innovation in domain-specific LLM research, fostering advancements in hydrological
science, education, and decision-making.

The remainder of this article is organized as follows: Section 2 outlines the methodology behind the
design choices, development, and implementation of a hydrology-oriented intelligent assistance system,
benchmarking its capacity to generate and answer domain-specific questions. Section 3 presents the
benchmark results and provides a brief discussion of them. Section 4 describes the challenges faced
during the process and addresses the limitations. Finally, Section 5 concludes with a summary of the
study’s contributions and insights for advancing AI in hydrological research and practice.

2. Methodology

This section outlines the methodology used to create a collection of hydrology-specific questions and
answers and to evaluate the performance of LLMs in generating and answering these questions. The
process involved selecting relevant research articles and textbooks to ensure a comprehensive represen-
tation of both foundational knowledge and recent advancements in hydrology. Themethodology includes
steps for data collection, question generation, and evaluation techniques, focusing on assessing the
accuracy and contextual relevance of the models’ outputs.

2.1. Data collection

For this study, we selected both research articles and textbooks to comprehensively cover the current
advancements and foundational knowledge in hydrology. The primary goal was to ensure that the chosen
sources were both relevant to the field of hydrology and reflected the most recent developments in
hydrological science. Our initial experiments with fine-tuning on multiple hydrology textbooks did not
yield a notable improvement in specialized knowledge recollection. Modern LLM architectures already
encompass a broad technical corpus, so the real benefit of fine-tuning is to instill the field’s distinctive
style, jargon, and conceptual framework.

We therefore chose “Fundamentals of Hydrology” (Davie, 2019), as it is widely regarded as
providing an authoritative, comprehensive structure of core principles and a unified lexicon in the
field of hydrology. This textbook is renowned for its comprehensive coverage of basic hydrological
principles and processes, providing a solid foundation for understanding the broader applications of
hydrology in both academic and practical contexts. Its inclusion in this study serves as a benchmark for
comparing newer research insights with established hydrological knowledge. By anchoring our work in
this single, highly respected text, we streamline the fine-tuning process to more directly enhance
hydrology-specific reasoning without overwhelming the model with redundant or minimally impactful
material. We anticipate that future contributions from the community will expand upon this foundation
with additional texts and thereby keep HydroLLM-Benchmark aligned with ongoing developments in
hydrological research.
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In addition to the textbook, we gathered 2,000 research articles from Elsevier, a leading academic
publisher known for its extensive repository of peer-reviewed journals. The selection of research
articles focused specifically on those related to hydrology, published between 2022 and 2024, to
capture the most current findings and trends in the field. Furthermore, to maintain focus and ensure
quality, these articles were primarily filtered from three journals: Journal of Hydrology, Advances in
Water Resources, and Journal of Hydrology: Regional Studies.By limiting the selection to this period,
we ensured that the study reflects contemporary hydrological research, including the latest method-
ologies, technological advancements, and emerging challenges within the discipline. The selection
process for both textbooks and research articles was guided by relevance to key hydrological topics,
such as flood management, water quality, and hydrological modeling, forming the foundation of
HydroLLM-Benchmark.

2.2. Experimental setup

We selected GPT-4o-mini, Llama3:8B, and Llama3.1:70B to represent a range of model sizes and types
(i.e., commercial vs. open source) commonly used in academic and applied settings. GPT-4o-mini was
chosen due to its balance between performance and resource efficiency, enabling cost-effective deploy-
ment while retaining competitive capabilities, especially in zero-shot and instruction-following tasks.
Notably, while GPT-4o offers top-tier performance, its significantly higher API cost ($10.00 vs. $0.60 per
million input tokens) made GPT-4o-mini a more scalable choice (OpenAI, 2024) for our large-scale
evaluation experiments.

Llama3:8B and 70B were included to explore performance across different model scales, as the 8B
variant represents a smaller, resource-accessible model, while the 70B variant reflects cutting-edge
capabilities at the high end of the open-weight model spectrum. We used the base versions (not
instruction-tuned) of both Llama models to evaluate their raw language modeling abilities without
additional task-specific adaptation, aiming for a controlled, fine-tuning-agnostic benchmark.

Other models, including Gemma 2 and Mistral 2, were considered but excluded due to limited
infrastructure support, early-stage stability issues, or lack of reproducible inference pipelines at the time
of evaluation. Commercial models such as Claude and Gemini were also excluded due to licensing
restrictions.We intend for future iterations of HydroLLM-Benchmark to include a broader range of LLMs
as the benchmark evolves.

Our experimental setup was designed to handle the computational demands of LLMs while main-
taining consistent evaluation conditions across all models. We used Python as the primary programming
language due to its versatility and the availability of extensive libraries well-suited for machine learning,
data processing, and evaluation tasks. Python’s flexibility enabled us to streamline both data preprocess-
ing and model evaluation, ensuring each step of the workflow was efficient and reproducible for
HydroLLM-Benchmark.

For data handling and processing, we utilized several key Python libraries. Pandas was employed to
load, clean, and structure datasets in CSV format, enabling efficient organization and manipulation of the
data for question generation and answer processing. This allowed us to maintain consistency in
preprocessing across different question types. For numerical computations, especially for managing
arrays and performing calculations during the evaluation phase, we relied on NumPy. This library was
crucial for handling large datasets and ensuring the computational efficiency of our operations. To
compute cosine similarity, a vital metric for evaluating the semantic accuracy of open-ended and fill-
in-the-blanks responses, we used scikit-learn. Its robust implementation of cosine similarity integrated
seamlessly into our evaluation framework, providing precise performance assessments.

We accessed GPT-4o-mini through the OpenAI API, which allowed us to configure model settings
according to our experimental requirements. Specifically, we adjusted the max_tokens parameter to
4,000, ensuring that GPT-4o-mini could generate comprehensive responses for longer, open-ended
questions without truncation. Running GPT-4o-mini locally on high-performance computers gave us
the flexibility to control the environment and maintain consistent settings throughout the experiments.
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In addition to GPT-4o-mini, we evaluated Llama3:8B and Llama3.1:70B. These models were
deployed on a dedicated server infrastructure equipped with high-performance GPUs (i.e., NVIDIA
L40S with 48 GB memory), to handle the resource-intensive demands of large-scale language models.
This setup ensured efficient execution, particularly for the computationally demanding Llama3.1:70B
model. Both Llama models were evaluated in their default configurations without fine-tuning to evaluate
their baseline capabilities in hydrology-specific tasks.

The experimental workflow was structured to ensure fair and consistent evaluation across all
models. After preprocessing the dataset and organizing questions to align with each model’s input
requirements, we generated structured prompts tailored to each question type, including true/false,
multiple-choice, open-ended, and fill-in-the-blanks. These prompts provided clear and consistent
instructions to guide the models in producing responses that adhered to the expected format for each
question type. During the testing phase, these prompts were applied consistently to each model, and
their outputs were collected under controlled conditions to thoroughly assess their performance on
HydroLLM-Benchmark.

To evaluate the model-generated answers, we employed different metrics based on the question type.
For true/false and multiple-choice questions, which have objective answers, accuracy was used as the
primary metric. Each model’s output was directly compared to the ground truth, and the accuracy score
was calculated as the percentage of correct answers. For open-ended and fill-in-the-blanks questions,
where responses could vary in structure but still convey similar meanings, we used cosine similarity to
assess semantic alignment between the model-generated and reference answers. Using scikit-learn, we
transformed the responses into vector form and calculated cosine similarity to enable meaningful
comparisons of semantic content.

To ensure consistency across all evaluations, we maintained uniform parameter settings and
environmental configurations for each model. By utilizing the GPT-4o-mini API and deploying the
Llamamodels on the high-performance server, we balanced computational efficiencywith standardized
testing conditions. This hybrid setup allowed for an effective comparison of each model’s out-of-the-
box performance in handling hydrology-specific tasks, providing valuable insights into their strengths
and limitations.

2.3. Question generation methodology

In generating questions from the selected textbook and research article for HydroLLM-Benchmark, we
began by systematically extracting relevant text data, focusing on sectionsmost likely to yieldmeaningful
content for question generation. This initial extraction targeted key passages and concepts central to
hydrology, ensuring that the generated questions would be directly aligned with core educational and
research objectives.

Once the relevant content was identified, we crafted a series of specialized prompts tailored for each
question type—true/false, multiple-choice, open-ended, and fill-in-the-blank. Each question type
required a unique approach; however, the foundational structure of the prompts remained consistent,
with specific adjustments made to customize the format, required answer structure, and anticipated output
style. Thesemodifications allowed for both variety and uniformity, ensuring that each question adhered to
the designated type while maintaining coherence across the generated content.

To guide the generation process and ensure high-quality outputs, we employed several prompting
techniques, including task specification, constraint-based prompting, and self-contained prompting. Task
specification allowed us to break down the question-generation process into distinct, actionable steps.
Constraint-based prompting helped maintain format integrity, ensuring each question type aligned with
the expected answer format and minimized irrelevant content. Self-contained prompting enabled the
production of questions that were independent and clearly understandable without additional context,
making them versatile for use in educational and research settings.

For generating the actual question–answer (Q&A) pairs, we utilized GPT-4o-mini, an optimized
version of GPT-4 designed for tasks requiring nuanced context understanding and content generation.
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With carefully constructed prompts and the extracted text, the model generated a variety of relevant,
well-structured questions and corresponding answers. Across multiple iterations, we developed 1,124
research articles and 224 textbook true/false questions, 1,001 research articles and 209 textbook
multiple-choice questions, 997 research articles and 225 textbook fill-in-the-blanks questions, and
2001 research articles and 220 textbook Open-Ended questions. This iterative process involved
multiple rounds of refinement, ensuring the questions were accurate, diverse in format, and peda-
gogically valuable. The final set of question–answer pairs was thus both comprehensive and adaptable,
providing a robust resource for academic and research applications, and serving as the cornerstone of
HydroLLM-Benchmark. Table 1 presents example questions categorized by source type and question
type.

2.4. Answer generation and evaluation

We utilized three models—GPT-4o-mini, Llama3:8B, and Llama3.1:70B—to generate answers for
hydrology-specific questions from HydroLLM-Benchmark. To ensure the models provided responses
in the correct formats for each question type (true/false, multiple-choice, open-ended, and fill-in-the-
blanks), we developed tailored prompts. This approach allowed us tomaintain consistency acrossmodels,
ensuring a fair and standardized evaluation of their performance.

Each question type required a specific prompting strategy. For true/false and multiple-choice ques-
tions, the prompts were designed to elicit concise and precise answers, minimizing ambiguity. These
formats required the models to select or generate straightforward responses, making accuracy a critical
factor in assessing their performance. In contrast, open-ended and fill-in-the-blanks questions demanded
more detailed and context-aware responses. To support this, the prompts included additional context and
background information, encouraging the models to produce nuanced answers that captured the com-
plexity of hydrological concepts.

Following the generation of answers, we evaluated the models using metrics tailored to the nature of
each question type. For objective questions (true/false and multiple-choice), accuracy served as the
primary evaluation metric, offering a clear measure of the models’ ability to generate correct responses.
For subjective questions (open-ended and fill-in-the-blanks), we employed cosine similarity to assess the
semantic closeness between the generated answers and reference answers. Thismetric enabled us to gauge
howwell the models understood and addressed the questions, even when the responses varied in wording
but shared the same underlying meaning.

By using both accuracy and cosine similarity, we comprehensively evaluated the models’ per-
formance across diverse question types. This dual-metric approach provided a thorough assessment,

Table 1. Sample questions from HydroLLM-Benchmark categorized by source and question type

Source type Question type Sample question

Research article True/false True or false: Urbanization has no effect on the frequency and
intensity of extreme precipitation events.

Research article Multiple-choice What advancements in remote sensing technologies have enhanced
the monitoring of groundwater storage dynamics?
(A) The introduction of low-resolution satellite imagery. (B) The
integration of machine learning algorithms with multi-platform
satellite measurements. (C) The exclusive reliance on traditional
ground-based measurements.

Textbook Fill-in-the-blanks Hydrology is the science or study of __________.
Textbook Open-ended What is hydrology, and what aspects of water does it primarily focus

on?
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highlighting the models’ strengths in handling objective questions and their ability to generate
contextually appropriate responses for subjective ones. Tailoring the prompts and evaluation metrics
to the specific demands of each question type ensured a rigorous and reliable benchmarking process.
Figure 1 illustrates the overall system architecture, from question generation to performance evalu-
ation.

2.5. Data post-processing and model training

To prepare a high-quality dataset for evaluating model performance on hydrology-specific tasks, we
initiated a comprehensive data post-processing step. This step focused on refining the input data by
filtering out Q&A pairs containing overly specific details, such as references to locations, article-
specific content, or numerical results. These elements were removed to ensure that the dataset
remained broadly relevant to hydrology concepts, rather than being tied to specific contexts. For this
task, GPT-4o-mini was employed to analyze and flag questions based on these criteria. A specially
designed prompt guided the model to assess each question for such details. Any flagged questions
were subsequently excluded from the dataset, resulting in a cohesive and conceptually relevant
collection suited for baseline evaluation.

Following the post-processing phase, we assessed the baseline capabilities of three LLMs—GPT-4o-
mini, Llama3:8B, and Llama3.1:70B—using a range of question types, including true/false, multiple-
choice, open-ended, and fill-in-the-blanks. The models were evaluated in their pretrained states without
any additional fine-tuning, as the primary objective was to gauge their out-of-the-box performance. This
approach allowed us to establish a baseline understanding of each model’s inherent abilities in addressing
hydrology-related queries.

To ensure proper response formatting, we crafted tailored prompts for each question type, embedding
specific instructions to guide the models. For true/false questions, the prompts directed the models to
make clear binary selections based on the given content. For multiple-choice questions, prompts guided
themodels to choose themost appropriate optionwhileminimizing irrelevant details. For open-ended and
fill-in-the-blanks questions, the prompts encouraged the generation of detailed and contextually nuanced
answers, reflecting a deeper understanding of hydrological concepts.

To accommodate the complexity of open-ended responses, especially in GPT-4o-mini, we adjusted the
maximum token limit to 4,000 tokens. This adjustment was essential to prevent the truncation of longer
Q&A pairs, ensuring that the responses were comprehensive. Importantly, no further fine-tuning or
domain-specific training was applied to any of the models, as the focus remained on evaluating their
baseline capabilities in hydrology-related tasks.

Through data post-processing, prompt customization, and thorough model evaluation, we effectively
established the strengths and limitations of each model in handling hydrology-specific content. Figure 2
illustrates the complete process, from data extraction to model output generation and performance
scoring.

Figure 1. Conceptual overview of HydroLLM-Benchmark.
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2.6. Q&A evaluation framework

To evaluate the performance of the models on hydrology-specific questions, we developed a structured
evaluation framework that systematically assessed their responses across multiple question types. This
framework utilized two distinct metrics—accuracy and cosine similarity—to accommodate the varied
nature of the question formats: true/false, multiple-choice, open-ended, and fill-in-the-blanks. Each
metric was selected to provide an accurate measure of the models’ performance based on the specific
requirements of each question type.

2.6.1. Evaluation of objective questions
For true/false andmultiple-choice questions, which are inherently objectivewith clear, definitive answers,
accuracy served as the primary evaluation metric. The evaluation process involved a straightforward
comparison of each model’s output with the established ground truth answer. (i) Correct versus incorrect
classification: A model’s response was classified as correct if it matched the ground truth, and incorrect
otherwise. (ii) Accuracy calculation: The accuracy score for eachmodel was determined as the percentage
of correct answers relative to the total number of questions within each objective question type. This
provided a clear, binary measure of the model’s ability to identify or select the correct answer.

2.6.2. Evaluation of subjective questions
For open-ended and fill-in-the-blanks questions, which often require a more nuanced understanding,
cosine similarity was used as the evaluation metric. This metric assesses the semantic alignment between
the model-generated answer and the ground truth by measuring the angle between their vector represen-
tations. (i) Vectorization of responses: Both the model-generated answers and the ground truth answers
were transformed into vector form. This allowed for the analysis of responses based on their underlying
meaning rather than exact wording. (ii) Cosine similarity calculation: Cosine similarity was computed
between the vector representations of the model’s answer and the reference answer, producing a score
between –1 and 1. Scores closer to 1 indicated a higher degree of semantic similarity.

Using cosine similarity provided a nuanced evaluation of the models’ responses for subjective
questions, where different phrasings could convey equivalent meanings. This metric enabled us to assess
the models’ contextual and semantic comprehension, which is crucial for effective application in
hydrology-related tasks.

2.6.3. Aggregating and comparing model performance
After calculating the individual scores for each question type, we aggregated the results to compute an
average score for each model across all question formats: (i) Objective scores: The accuracy scores for
true/false and multiple-choice questions were averaged to offer a comprehensive view of each model’s
performance on objective, factual questions. (ii) Subjective scores: The cosine similarity scores for open-
ended and fill-in-the-blanks questions were averaged to summarize each model’s ability to generate
semantically accurate, contextually relevant responses.

This approach allowed us to compile a clear, comparative performance profile for each model—GPT-
4o-mini, Llama3:8B, and Llama3.1:70B—across various question types. By evaluating objective and

Figure 2. Post-processing, model output generation, and scoring.
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subjective questions separately, we gained valuable insights into eachmodel’s strengths and limitations in
addressing various aspects of hydrology-specific queries. This dual-metric framework provided a
balanced and comprehensive evaluation, enabling a nuanced understanding of how effectively each
model could interpret, understand, and answer questions relevant to the field of hydrology.

3. Results

In this section, we present baseline results over the benchmark dataset and the evaluation of several model
performances on true/false, multiple-choice, open-ended and fill-in-the-blanks question formats, high-
lighting the strengths and limitations of each model across different content sources, including research
articles and the textbook.Wewill explore the implication of these findings for understanding how content
type and question format influence.

To establish baseline results for our hydrology-specific true/false question set, we evaluated three
LLMs (i.e., GPT-4o-mini, Llama3:8B, and Llama3:70B) using questions derived from both textbooks
and research articles. As illustrated in Figure 3, GPT-4o-mini demonstrates consistently high accuracy in
both categories, outperforming the other models when responding to textbook-based questions. Lla-
ma3:70B shows comparable performance on textbook-derived items, although it exhibits slightly lower
accuracy on questions sourced from research articles. By contrast, Llama3:8B maintains moderate
accuracy levels across both data types but does not match the peak scores observed with the other
models. These results suggest that the models are generally proficient at handling straightforward true/
false inquiries, yet the discrepancy in performance between textbook- and article-based questions
underlines the need for further fine-tuning or domain adaptation.

Similar results were observed for multiple-choice questions, as illustrated in Figure 4. GPT-4o-mini
once again achieved high accuracy, particularly on questions derived from research articles, suggesting a
robust capacity for domain-specific inference. Llama3:70B closely followed, displaying comparable
performance levels for both textbook- and article-based items. Meanwhile, Llama3:8B maintained
moderate accuracy scores but lagged behind the other two models. The consistency of results across
question sources indicates that all three LLMs are well-equipped for tasks requiring precise answer
selection, although further fine-tuning may be necessary to optimize performance on specialized content.

Shifting the focus to fill-in-the-blanks questions, cosine similarity scores were used to assess how
closely each model’s generated text aligned with the correct solutions. As seen in Figure 5, GPT-4o-mini
emerges as the top performer, producing contextually cohesive completions for both textbook and article
prompts. Slightly lower scoreswere obtained by Llama3:70B, although its results remain sufficiently high
to suggest strong linguistic capabilities. In contrast, Llama3:8B occupies the middle range, capturing the
main ideas but sometimes missing finer nuances. This distribution highlights the potential of LLMs to
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excel in semi-structured tasks, while also revealing the need for targeted improvements to address
specialized hydrological terminology.

Focusing on the open-ended questions, cosine similarity again served as the metric for evaluating
semantic alignment between n model outputs and reference answers. Figure 6 shows that both GPT-4o-
mini and Llama3:70B scored at the upper end, indicating an aptitude for generating coherent, in-depth
responses even when the query allows for wide-ranging expressions. Llama3:8B exhibits only a minor
decrease in similarity, suggesting it can still capture essential information but may occasionally lack the
refinement displayed by the other two models.

4. Discussions

This section explores the comparative analysis of language model performance, highlights the signifi-
cance of the HydroLLM-Benchmark dataset as a living resource, and addresses the challenges and
limitations observed during the evaluation process.

4.1. Comparative analysis

Across all four question types—true/false, multiple-choice, fill-in-the-blanks, and open-ended—GPT-4o-
mini consistently emerges as the top performer, maintaining high scores in both objective evaluations
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Figure 4. Accuracy scores for multiple-choice Q&A.
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(true/false and multiple-choice) and subjective measures (fill-in-the-blanks and open-ended). Lla-
ma3:70B closely follows, showing comparable accuracy in multiple-choice and strong semantic align-
ment in open-ended and fill-in-the-blanks tasks, albeit slightly trailing GPT-4o-mini. Meanwhile,
Llama3:8B registers moderate performance, indicating sufficient competence in handling basic to
intermediate queries but revealing gaps in handling nuanced or specialized terminology.

These findings are particularly noteworthy given the domain-specific nature of our benchmark
dataset, which comprises hydrology-focused questions derived from textbooks and research articles.
By testing each model’s proficiency in both factual and interpretive tasks, this dataset establishes a
clear baseline for evaluating LLM performance in hydrological knowledge assessment. The highest
overall accuracies and cosine similarity scores were recorded by GPT-4o-mini, suggesting that it
currently sets the standard for domain-specific question answering within our benchmark. However,
Llama3:70B’s relatively close results underscore the potential for models with larger parameter counts
to excel in specialized fields, provided they undergo targeted fine-tuning or training on hydrology-
related corpora.

4.2. HydroLLM-Benchmark as a living dataset

HydroLLM-Benchmark is designed as a living resource, intended to evolve continuously through
systematic updates and expansions. As new research articles, updated textbook editions, and hydrology-
specific datasets become available, they will be carefully curated and integrated to ensure the benchmark
remains aligned with cutting-edge advancements in hydrological science.

This iterative approach not only maintains the dataset’s relevance and accuracy but also fosters
community-driven contributions. Researchers, educators, and practitioners are encouraged to submit
new data and evaluation methodologies, promoting collaboration and knowledge-sharing across the
hydrology community. To facilitate community participation, we provide several accessible mechanisms
via our GitHub repository. Users can submit questions, feedback, or concerns by opening an issue on the
GitHub page. We welcome code and content contributions, including new question sets, data processing
scripts, or model evaluation tools, via standard pull request workflows. Contributors may also reach out
via email or community forums to suggest ideas or request features.

We also plan to organize collaborative activities such as online workshops, shared evaluation tasks,
and hackathons through research communities like Cooperative Institute for Research to Operations in
Hydrology and Advancing Earth and Space Science. These initiatives aim to build a collaborative
network around HydroLLM-Benchmark and encourage knowledge sharing at the intersection of hydrol-
ogy and AI.
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Figure 6. Cosine similarity scores for open-ended Q&A.
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Future updates may incorporate specialized modules for emerging topics like climate change model-
ing, flood risk analysis, and water resources optimization, broadening the dataset’s applicability. In
addition, HydroLLM-Benchmark aims to serve as a dynamic educational tool, supporting interactive
learning experiences and domain-specific curricula development. By embracing an open framework and a
transparent contribution process, HydroLLM-Benchmark aspires to remain a versatile and forward-
looking resource, empowering ongoing innovation and advancing AI-driven hydrological research and
education.

Beyond academic evaluation, HydroLLM-Benchmark also holds potential for adaptation to oper-
ational hydrology applications such as flood forecasting, drought monitoring, and disaster response.
Future extensions of the benchmark could integrate question formats derived from early warning reports,
hydrological alerts, or emergency management protocols. This direction aligns with recent work such as
Flash Flood - Bidirectional Encoder Representation fromTransformers (FF-BERT), which classifies flash
flood reports from unstructured text (Wilkho et al., 2024), and LLM studies that assess reasoning under
adverse weather conditions (Zafarmomen and Samadi, 2025). Similarly, hybrid pipelines using LLMs for
event-location extraction from social media (Fan et al., 2020) illustrate how natural language under-
standing can enhance disaster informatics. By connecting domain-specific benchmarking with these
operational use cases, HydroLLM-Benchmark can evolve into a practical testbed for evaluating LLM
readiness in real-time, high-stakes hydrological decision-making.

4.3. Challenges and limitations

This section discusses the challenges encountered in generating domain-specific questions and the
limitations observed in the performance of evaluated LLMs in hydrology-related tasks. The challenges
outlined include biases in question generation, issues with specificity and relevance, and the complexities
of crafting high-quality questions in a specialized field. Furthermore, we explore the limitations of these
models in understanding hydrology-specific terminology, managing complex concepts, and addressing
the nuances of the domain. Through this analysis, we aim to provide insights into the obstacles facedwhen
applying LLMs to hydrology and identify areas for future improvements in model development and
training.

4.3.1. Challenges in generating domain-specific questions
Generating high-quality, domain-specific questions in hydrology presented several challenges. In the case
of multiple-choice questions, GPT-4o-mini exhibited a consistent bias toward generating questions with
the answer “B.”To address this issue, we experimented by running themodelmultiple timeswith different
prompt parameters. One prompt explicitly instructed the model to vary answer choices, while a default
prompt did not specify particular answer letters. Despite these adjustments, the model’s output continued
to favor certain options, resulting in nearly 70.4%of the answers being “B,” 17% “A,” and only 5.6% “C.”
To determine whether this answer bias influenced the model’s overall accuracy, we conducted additional
experiments where we shuffled and reassigned answer letters to balance the dataset. Interestingly, this
balancing did not significantly impact accuracy, suggesting that the model’s bias toward certain answer
letters did not detrimentally affect its understanding or response accuracy.

Open-ended and fill-in-the-blank questions posed their own unique difficulties. Without specific
instructions in the prompts, GPT-4o-mini frequently generated questions with introductory phrases such
as “In this study…” or “In this article…,” which were unsuitable for the standalone questions required in
our dataset. To improve the quality and generality of the questions generated, we refined our prompts to
explicitly exclude these introductory phrases, leading to a notable improvement in the final output.

Furthermore, hydrology’s broad scope, encompassing various geographical locations and historical
contexts, added complexity to the question generation process. The model often produced questions that
were overly specific, referencing locations or years that were not relevant to the core hydrological content.
To mitigate this issue, we incorporated a post-processing step to filter out location- and year-specific
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questions that did not contribute to the intended educational goals.While some references to locations and
years can be beneficial for context, we excluded those that did not directly support hydrology-related
concepts, ensuring the questions remained general yet accurate in their domain relevance.

Despite our mitigation efforts, GPT-4o-mini continued to display a notable bias toward selecting “B”
as the correct answer in multiple-choice questions. We tested several strategies, including rephrased
prompts, randomized answer orders, altering output token length, and varying temperature settings
(0.2–0.9), but the output distribution remained largely unchanged. This suggests that the bias may stem
from deeper training artifacts or token-level preferences embedded in the model’s architecture. Such
behavior has implications for future benchmarking efforts, as it may introduce unintended skew in answer
selection. For researchers developing automated assessment tools or training datasets, it is essential to
consider these underlying biases and implement techniques such as randomization, controlled answer
ordering, or ensemble prompting to ensure balanced data generation and evaluation.

4.3.2. Limitations of models
In assessing the performance of the models on hydrology-specific content, several notable limitations
emerge, particularly with fill-in-the-blank and open-ended question formats. These models often display
reduced accuracy in these question types, primarily due to their challenges in identifying precise
vocabulary relevant to hydrology. Fill-in-the-blank questions require models to select the correct word
or phrase, a task complicated by terms that may have similar meanings or context-dependent interpret-
ations. For example, hydrological terms with specific implications can also possess general or alternate
meanings in other fields, leading to misinterpretations and incorrect responses. This ambiguity in
language represents a significant challenge for these models, resulting in errors when selecting the most
contextually appropriate terms for hydrology-focused questions, ultimately affecting their overall per-
formance and highlighting the difficulty of achieving precise understanding in domain-specific contexts
like hydrology.

While the models exhibit strong general language understanding, their grasp of hydrology-specific
terminology and context remains limited. These models may struggle with technical jargon, scientific
terms, and context-specific language that is prevalent in hydrological research. This limitation can lead to
less accurate responses for complex queries that necessitate a deep understanding of the domain.
Furthermore, hydrology often involves complex mathematical equations and statistical models, which
pose challenges for LLMs to interpret accurately. Thesemodels have limited capabilities in understanding
numerical data and calculations, making them less effective at addressing questions requiring mathem-
atical reasoning or the interpretation of quantitative data.

Contextual understanding of interconnected hydrological processes is another areawhere thesemodels
may falter. Hydrology involves grasping the relationships between groundwater flow, surface runoff, and
atmospheric conditions. The models might not fully capture these interdependencies, resulting in
responses that oversimplify or misinterpret complex systems. This limitation is particularly evident in
questions requiring the synthesis of information frommultiple sources or an understanding of cause-and-
effect relationships.

Moreover, the models tend to generate more generalized responses, which may lack the specificity
needed for detailed hydrology questions. This issue can be problematic for open-ended questions or those
requiring precise, contextually accurate answers based on specific research findings or hydrological
scenarios. In addition, hydrological analysis often necessitates interpreting visual data, such as satellite
imagery, hydrological maps, and diagrams. The text-based nature of these models restricts their ability to
process and analyze visual information, limiting their effectiveness in applications that require visual-
spatial reasoning. Although multimodal capabilities could address this gap, current models lack robust
integration with visual data sources.

The models also struggle with ambiguous or implicit queries that require contextual interpretation. In
hydrology, where the same term can have different meanings based on context, such as “flow” in the
context of streamflow versus groundwater flow, the models may produce inconsistent or incorrect
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responses if the context is not explicitly provided. In addition, the sensitivity of these models to input
formatting can affect their responses. Variations in wording, phrasing, or format can lead to different
outputs, which may not always be consistent or reliable. This sensitivity complicates the Q&A generation
process and may necessitate careful prompt engineering to achieve consistent results.

There is also a potential for data leakage, where the models’ responses may be influenced by similar
questions or answers in their training data. This phenomenon can lead to inflated performancemetrics that
do not accurately reflect the models’ true capabilities in novel or context-specific tasks. Furthermore, the
lack of extensive real-world validation for these models raises concerns about their effectiveness in
practical hydrology applications. While responses are evaluated in controlled environments using
benchmark questions, their performance in real-world scenarios—such as providing insights for field-
work, decision-making, or policy recommendations—remains uncertain.

Finally, models like Llama3:8B and Llama3.1:70B require significant computational resources,
including high-performance GPUs and extensive memory, to run efficiently. This limitation may restrict
accessibility for users with limited technical infrastructure or resources, impacting their practical
deployment in research or educational settings. These limitations highlight the areas where current LLMs
can be improved for more effective application in hydrology-specific tasks, suggesting potential direc-
tions for further mini and customized model development and fine-tuning.

5. Conclusion

In this study, by collating a broad collection of hydrology textbooks and 2,000 peer-reviewed research
articles, we introduce a specialized dataset, designed to evaluate question-answering capabilities in the
hydrology domain. This dataset features diverse question formats—including true/false, multiple-choice,
fill-in-the-blanks, and open-ended—thus capturing both fundamental concepts and advanced research
topics. We defined sample evaluation tasks using GPT-4o-mini, Llama3:8B, and Llama3.1:70B, provid-
ing baseline benchmark results that highlight the strengths and limitations of current LLMs in handling
domain-specific queries.

The dataset is unfiltered to preserve the complexity and authenticity of real-world hydrological data,
making it suitable for a wide range of machine learning and deep learning applications. Although this
resource currently focuses on hydrological themes, the insights gleaned from its use may prove valuable
to broader research areas within environmental sciences. By openly sharing HydroLLM-Benchmark, we
offer a standardized benchmark to address the lack of unified datasets in hydrological and water resources
research.We strongly encourage other scholars and practitioners to adopt this benchmark dataset in future
hydrological modeling and AI-driven research studies, furthering the collective understanding and
innovation within this critical field.

Looking ahead, we recognize that hydrological reasoning often requires interpreting data inmultimodal
formats, such as satellite imagery, hydrological maps, and time-series plots. While the current version of
HydroLLM-Benchmark focuses on text-based questions, future iterations will incorporate these multi-
modal components to mirror real-world hydrological analysis tasks more closely. This expansion will
enable evaluation of advanced models with vision-language capabilities, supporting tasks like flood map
interpretation, hydrograph analysis, and spatial reasoning. Integrating multimodal elements is a key next
step toward building a comprehensive, domain-aware benchmark for hydrological AI.

In addition, the future of the HydroLLM-Benchmark dataset envisions integrating emerging AI model
architectures and advancements in natural language processing to improve the evaluation of domain-
specific knowledge. By incorporating newer models and technologies, we can track the progression and
refinement of AI capabilities in hydrology. This ongoing evolution will also facilitate the testing of
innovative training methodologies and optimization techniques, enhancing model performance on
complex, specialized queries. Furthermore, expanding the dataset to include cross-disciplinary content
could foster a more holistic understanding of hydrological processes, aiding models in recognizing
complex interconnections between hydrology and related environmental sciences.
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Community contributions are vital to the growth and effectiveness of the HydroLLM-Benchmark. By
cultivating an open ecosystem, we invite hydrology experts, AI researchers, and educators to participate
actively in refining and enriching the dataset. This collaborative effort allows for the inclusion of diverse
perspectives, enriching the dataset with varied question types and scenarios reflecting real-world
challenges. Engaging the community in this manner not only democratizes access to cutting-edge
resources but also drives transparency and inclusivity in AI research. Through workshops, hackathons,
and collaborative initiatives, stakeholders are encouraged to explore the dataset’s potential and contribute
insights, ensuring its relevance and applicability in addressing global hydrological issues.

As the landscape of LLMs continues to evolve rapidly, we also plan to benchmark newer model
families such as Llama3.2, Llama4, DeepSeek, and other emerging open and commercial models that
offer advancements in instruction following, multilingual reasoning, and long-context understanding.
Incorporating these models into HydroLLM-Benchmark will help maintain its relevance for assessing
state-of-the-art performance across a diverse set of hydrological tasks.
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