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Abstract We prove that every incidence graph of a finite projective plane allows a partitioning into
incident point-line pairs. This is used to determine the order of the identity in the K0-group of so-called
polygonal algebras associated with cocompact group actions on Ã2-buildings with three orbits. These
C∗-algebras are classified by the K0-group and the class 1 of the identity in K0. To be more precise,
we show that 2(q − 1)1 = 0, where q is the order of the links of the building. Furthermore, if q = 22l−1

with l ∈ Z, then the order of 1 is q − 1.
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1. Introduction

The class of the identity in K0 of different families of crossed product C∗-algebras
has been of interest because it is a classifying invariant for these algebras (see, for
instance, [1, 7–10, 13]). We will concentrate on a case associated with the universal
covering building B of a polyhedron on three vertices such that the links are incidence
graphs of finite projective planes. To these Euclidean buildings we associate a rank 2
Cuntz–Krieger algebra OM̂ that we call a polygonal algebra (where the subscript M̂

reflects the dependence of the algebra on two matrices M̂1, M2 that are defined in terms
of incidence relations in the building). In the first section we give a brief exposition of
the classification of these polygonal algebras. The key point of the second section is the
following theorem in incidence geometry, which might be considered interesting in its
own right.

Theorem. Every incidence graph of a finite projective plane allows a partitioning into
incident point-line pairs.

This theorem gives rise to a so-called semi-basic subset in the K0-group of OM̂ . Using
this semi-basic subset, we prove the following new results in the classification of polygonal
algebras.
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Theorem. The identity 1 in K0(OM̂ ) satisfies 2(q − 1)1 = 0, where q is the order of
the links of the building.

Theorem. If q = 22l−1 with l ∈ Z, then the order of 1 is q − 1.

It is worth emphasizing that we allow the finite projective planes that form the links
of B to be non-Desarguesian and that the results are independent of the structure of the
group acting on the building; we only require that the action on B has three orbits.

2. Background

We start with a general polygonal presentation but we will restrict ourselves to n = 3
shortly afterwards.

Definition 2.1 (Cartwight et al . [4, 5]; Vdovina [15]). For i = 1, . . . , n, let Gi

denote distinct connected bipartite graphs. For each i, we fix two sets Bi and Wi of
‘black’, respectively ‘white’, vertices in Gi that give a bipartition. The unions of these
sets will be denoted by B =

⋃
Bi and W =

⋃
Wi. A set K of k-tuples (x1, x2, . . . , xk)

with all xj ∈ B will be called a polygonal presentation over B compatible with a bijection
λ : B → W if the following properties are satisfied.

(1) If (x1, x2, . . . , xk) ∈ K, then all cyclic permutations of (x1, x2, . . . , xk) are elements
of K.

(2) Given x1, x2 ∈ B, there are x3, . . . xk ∈ B such that (x1, x2, . . . , xk) ∈ K if and only
if λ(x1) and x2 share an edge in some Gi.

(3) Given x1, x2 ∈ B, there is at most one set {x3, . . . , xk} ⊂ B such that
(x1, x2, . . . , xk) ∈ K.

If a polygonal presentation exists with respect to λ, we will call λ a basic bijection.

Furthermore, we can associate a polyhedron K with every polygonal presentation
K. For the set of cyclic permutations of the k-tuple (x1, . . . , xk), we build a k-gon with
labels x1, . . . , xk on its directed edges. The polyhedron K is obtained by gluing all k-gons
together by identifying the edges with the same label, preserving orientation. The links
of the vertices of this polyhedron become exactly the graphs Gi. This allows one to
construct polyhedra with specified properties, as is done in [16].

On the other hand, if one starts with a suitable polyhedron there is a natural way to
construct a polygonal presentation. Write down the cycles of edges that correspond to
faces and take the links as Gi. For the basic bijection we take the map sending a vertex in
one link to the vertex in another link corresponding to the same edge in the polyhedron.

Definition 2.2. For the remainder of this paper, X is a polyhedron on three vertices,
v0, v1 and v2, with triangular faces such that all faces have three different vertices.
We demand that the links, say G0, G1, G2, respectively, are incidence graphs of finite
projective planes, but they need not be isomorphic. The building B is defined as the
universal covering of X. Let Γ denote the fundamental group, acting on B (from the
left).
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Because Γ\B � X, we get a labelling of the vertices of B as types 0, 1 and 2 which
we let correspond to the labels of the vertices of X. So vertices of type i have Gi as link.
The edges are directed and labelled with small roman letters with subscripts in such a
manner that xi denotes an edge with an origin of type i+1 and a terminal vertex of type
i − 1 modulo 3. The subsets Bi and Wi of Gi correspond to the outgoing edges and the
incoming edges, respectively. Two vertices b ∈ Bi and w ∈ Wi are connected in Gi if there
is a face of X that has b and w as edges. Suppose the order of the projective plane Gi

is q. Then the properties of finite projective planes dictate that |Bi| = |Wi| = q2 + q + 1.
Furthermore, we can count that the number of triangles equals (q +1)(q2 + q +1). Hence
the order of every link is q. Another noteworthy remark is the fact that the incidence
graph of a finite projective plane is a generalized 3-gon.

The universal covering B is a building of type Ã2. The fundamental group Γ acts
simply transitively on the three separate sets of vertices of type 0, 1 or 2.

Definition 2.3. We pick an origin O in B. Let T denote the set of ordered triples
(a0, a1, a2), (a1, a2, a0) and (a2, a0, a1) in B such that a0, a1 and a2 are the labels of the
sides of a triangle that has O as one of its vertices. The set of triples starting with an
edge of type 0, the set of triples starting with an edge of type 1 and the set of triples
starting with an edge of type 2 will be denoted by T0, T1 and T2, respectively.

Theorem 2.4. The set T forms a polygonal presentation whose associated polygon
is isomorphic to X.

Proof. We start with the polyhedron X and apply the proposed construction: write
down the cycles of edges that correspond to faces of X and we define λ as the map sending
a vertex in one link to the vertex in another link corresponding to the same edge in X.
Conditions 1 and 2 are immediately satisfied and condition 3 follows from the fact that
the links Gi are incidence graphs of finite projective planes. This polygonal presentation
is indeed T , since T has exactly three triples representing every triangle in X. �

We proceed with the set-up for polygonal algebras.

Definition 2.5. We define two matrices, M̂1 and M̂2, acting on the free Z-module
spanned by T . Pick two elements a = (ai−1, ai, ai+1) ∈ Ti−1 and b = (bi, bi+1, bi−1) ∈ Ti.
Then M̂1(b, a) = 1 if and only if there exists a ci−1 �= ai−1 such that (ai+1, ci−1, bi)
is an element of T , and M̂2(b, a) = 1 if and only if there exists a ci−1 �= ai−1 such
that (bi+1, ci−1, ai) is an element of T (see figure 1). For all other combinations the
corresponding entries of M̂1 and M̂2 are zero.

The size of these matrices is |T | = 3(q + 1)(q2 + q + 1), three times the number of
triangles of X.

Theorem 2.6. Each row and column of the {0, 1}-matrices, M̂1 and M̂2, has exactly
q2 entries that are 1.

Proof. We fix a = (ai−1, ai, ai+1) ∈ Ti−1 and count how many b = (bi, bi+1, bi−1) ∈ Ti

satisfy M̂1(b, a) = 1. By definition this is the case if and only if there exists a ci−1 �= ai−1
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Figure 1. Showing M̂1(b, a) = 1 and M̂2(b, a) = 1.

such that (ai+1, ci−1, bi) is an element of T . Because the link of O is the incidence graph
of a finite projective plane, we have (q + 1) − 1 = q choices for bi �= ai and subsequently
q choices for bi+1 �= ai+1. The proof for M̂2 is similar. �

Definition 2.7. For m = (m1, m2) ∈ N
2 we let [0, m] denote {0, . . . , m1}×{0, . . . , m2}

and let ej denote the jth standard unit basis vector. For every m ∈ N
2 we define the set

of words of length m as

Wm = {w : [0, m] → T ; M̂j(w(l + ej), w(l)) = 1 whenever l, l + ej ∈ [0, m]}.

Let W =
⋃

m∈N2Wm denote the total set of words. We define the shape σ(w) of a word
w ∈ Wm as σ(w) = m. We also define the origin and the terminus of a word via the
maps o : Wm → T and t : Wm → T given by o(w) = w(0) and t(w) = w(m).

Theorem 2.8. The matrices M̂1 and M̂2 satisfy the following conditions.

(H1) M̂1M̂2 = M̂2M̂1 and this product is a {0, 1}-matrix.

(H2) The directed graph with vertices a ∈ T and directed edges (a, b) whenever
Mi(b, a) = 1 for some i is irreducible.

(H3) For any p ∈ N
2 there exists an m ∈ N

2 and a w ∈ Wm that is not p-periodic,
i.e. there exists an l such that w(l) and w(l+p) are both defined, but not the same.

Proof. Condition (H1) follows from the fact that the links are generalized 3-gons.
If we take a, d ∈ Ti and b ∈ Ti+1 with M̂1(b, a) = 1 and M̂2(d, b) = 1, then there is
precisely one c ∈ Ti−1 such that M̂2(c, a) = 1, because the representatives of a, b, c in
the link Gi are alternating sides of a 6-cycle that is fixed by two out of the three. Looking
at the link Gi−1 we find that M1(d, c) = 1 for this c (see figure 2). We conclude that
M̂1M̂2 = M̂2M̂1. And the fact that there is precisely one such c ∈ Ti−1 implies that the
product is a {0, 1}-matrix.

For (H2) we prove that for every a, b ∈ T there exists an r ∈ N such that M̂r
1(b, a) > 0.

Suppose that a ∈ Ti. By Theorem 2.6 it is obvious that either b ∈ Ti or there exists an
a′ ∈ T such that M̂s

1(b, a
′) > 0, where s is 1 or 2. Because the proof of Theorem 1.3 in [14]
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Figure 2. Property (H1) holds.

only uses that the link of every vertex of the building is an incidence graph of a finite
projective plane, this theorem tells us that M̂ t

1(a
′, a) > 0 for some natural number t.

For (H3) the proof of Proposition 7.9 in [12] carries over. �

Conditions (H1)–(H3) are the ones necessary to define a rank two Cuntz–Krieger alge-
bra in accordance with the definition of such an algebra given in [12]. Condition (H1)
implies that we can define a product in the following way. Let u ∈ Wm and v ∈ Wn with
t(u) = o(v). There is then a unique w ∈ Wm+n such that

w|[0,m] = u and w|[m,m+n] = v,

where w|[0,m] is the restriction of the map w to [0, m]. We define this w to be the product
of u and v. Condition (H2) says that we can always find a word with a given origin and
terminus. The more technical condition (H3) is used to show that the algebra that we
will construct now is simple (see Theorem 5.9 of [12]).

Definition 2.9. We define the polygonal algebra OM̂ as the universal C∗-algebra
generated by a family of partial isometries {su,v; u, v ∈ W and t(u) = t(v)} with relations

s∗
u,v = sv,u, (2.1)

su,v =
∑

w∈W ;σ(w)=ej ,
o(w)=t(u)=t(v)

suw,vw for 1 � j � r, (2.2)

su,vsv,w = su,w, (2.3)

su,usv,v = 0 for u, v ∈ W0, u �= v. (2.4)

Theorem 2.10. Morita equivalence and stable isomorphism provide the same notion
of equivalence for polygonal algebras. Furthermore, OM̂ is classified up to isomorphism
by its K0-group, its K1-group and the class of the identity in K0(OM̂ ).
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Proof. By Remark 6.15 of [12] the C∗-algebra OM̂ is a separable nuclear unital
purely infinite simple algebra that satisfies the universal coefficient theorem. It is well
known that a separable C∗-algebra contains countable approximate identities, so by
Theorem 1.2 of [3], Morita equivalence and stable isomorphism provide the same notion
of equivalence. Because it is separable, nuclear, purely infinite, simple and satisfies the
universal coefficient theorem, OM̂ is classified up to isomorphism by its K-groups and
the class of the identity in K0(OM̂ ), according to Theorem 4.2.4 of [11]. �

Let us recall two theorems which give us some handle on the K0- and K1-groups.

Theorem 2.11. Let r be the rank of coker(I − M̂1, I − M̂2) and let T be the torsion
part of coker(I − M̂1, I − M̂2). Then

K0(OM̂ ) � K1(OM̂ ) � Z
2r ⊕ T.

Proof. Because Γ acts freely and with finitely many orbits on the vertex set, this is
a direct consequence of Proposition 4.13, Lemma 5.1 and Lemma 6.1 of [13]. �

The calculation of the order of the identity in K0(OM̂ ) turns out to be quite difficult,
but we are able to give some estimates. To find these bounds, we need one more tool
for which we look at the boundary of B. For any x ∈ ∂B there is a unique sector in
the class x with base point O, which we will denote [O, x) (Lemma VI.9.2 in [2]). The
collection of sets of the form

∂By = {x ∈ ∂B : y ∈ [O, x)}

with y running through B gives a base for a topology for ∂B, with respect to which it is a
totally disconnected compact Hausdorff space (§ 7 of [12]). This topology is independent
of the base point O (see Lemma 2.5 of [6]). The action of Γ on B induces an action
on ∂B.

Definition 2.12. The boundary operator algebra is the full crossed product algebra
C(∂B) � Γ , the universal C∗-algebra generated by the algebra of continuous functions
C(∂B) and a fixed unitary representation π of Γ satisfying the covariant defining relation

f(γ−1ω) = π(γ)fπ(γ)−1(ω)

for all f ∈ C(∂B), γ ∈ Γ and ω ∈ ∂B.

It was shown in § 7 of [12] that the polygonal algebra OM̂ and the boundary algebra
C(∂B) � Γ are isomorphic. The interplay of the two algebras becomes visible in the next
series of very useful lemmas.

Definition 2.13. We pick a chamber t ∈ B, called the model triangle, that has O as
one of its vertices. Let A denote the set of non-degenerate simplicial maps t → B and
Â = Γ\A. For such a map ι : t → B we define ∂B(ι) as the subset of ∂B consisting of
those boundary points that may be represented by sectors that originate at ι(O) and
contain ι(t). Let 1ι denote the characteristic function of ∂B(ι).
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Lemma 2.14. There is a bijection between Â and T . This bijection sends an element
of Â to a triple in Ti if it has a representative that sends O to a vertex of type i.

Proof. Every element of Â contains exactly one representative ι : t → B such that it
has O as one of its vertices. This yields that it may be represented by an ordered triple,
(a0, a1, a2), (a1, a2, a0) or (a2, a0, a1), depending on the type of ι(O). It is straightforward
to check that this map is a bijection. �

Lemma 2.15. Let ι1, ι2 : t → B be two representatives of some t ∈ T � Â. Then
[1ι1 ] = [1ι2 ] in K0(C(∂B) � Γ ), which makes the assignment of [1t] ∈ K0(C(∂B) � Γ ) to
every element t ∈ T a well defined notion.

Proof. This is an analogue of Lemma 8.1 of [13]. Because Γι1 = Γι2, we can find
a γ ∈ Γ such that ι2 = γι1. We compute that γ1ι1γ

−1(∂B) = γ1ι1(∂B) = ∂B(γι1), so
γ1ι1γ

−1 = 1γι1 = 1ι2 . Equivalent idempotents belong to the same class in K0, hence
we get [1ι1 ] = [1ι2 ]. Because all elements of T correspond to an equivalence class of
injections of t in B, this proves the lemma. �

Lemma 2.16. For the function 1 in C(∂B) � Γ , we have [1] =
∑

a∈T0
[1a] =∑

b∈T1
[1b] =

∑
c∈T2

[1c]. For b ∈ Ti, we have [1b] =
∑

a∈Ti−1
M̂1(b, a)[1a] and [1b] =∑

c∈Ti+1
M̂2(b, c)[1c].

Proof. Fix a point O0 ∈ B of type 0. Every element a ∈ T0 contains a representative
ιa ∈ A that sends O ∈ t to O0. The statement [1] =

∑
a∈T0

[1a] is a result from the
previous lemma and the fact that the set {ιa(t) : a ∈ T0} contains all the triangles with
vertex O0 exactly once. Of course, the same can be done for points O1 and O2 with the
sets {ιb(t) : b ∈ T1} and {ιc(t) : c ∈ T2}.

Take b ∈ Ti and pick a triangle in B with vertex Oi−1 that represents b. Then [1b] is
given by

∑
[1a], where we sum over all the a having a representative in the sector spanned

by the fixed triangle such that ιa(O) = Oi−1 (see figure 3). This is equivalent to saying
a ∈ Ti−1 and M̂1(b, a) = 1. Hence, [1b] =

∑
a∈Ti−1

M̂1(b, a)[1a]. Similar considerations
apply to M̂2. �

Definition 2.17. We let 1 denote the equivalence class of the identity in both
K0(C(∂B) � Γ ) and K0(OM̂ ).

Since the algebras OM̂ and C(∂B)�Γ are isomorphic (by § 7 of [12] and Theorem 2.11),
this abuse of notation will not cause any problems; the order of 1 is the same regardless of
the group. The two counting Lemmas 2.15 and 2.16 may be used to find an upper and a
lower bound for the order of 1 by employing similar methodology to that in Theorems 8.2
and 8.3 of [13].

Theorem 2.18. The order of 1 in the K0-groups divides q2 − 1.
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Figure 3. Showing [1b] =
∑

a∈T0
M̂1(b, a)[1a] for the example i = 1.

Proof. Lemma 2.16 states that for b ∈ Ti we have

[1b] =
∑

a∈Ti−1

M̂1(b, a)[1a],

and therefore the lemma implies that

1 = [1] =
∑
b∈Ti

[1b] =
∑
b∈Ti

∑
a∈Ti−1

M̂1(b, a)[1a].

So, using Theorem 2.6, this yields

1 =
∑
b∈Ti

∑
a∈Ti−1

M̂1(b, a)[1a] =
∑

a∈Ti−1

∑
b∈Ti

M̂1(b, a)[1a] =
∑

a∈Ti−1

q2[1a] = q21 .

We conclude that (q2 − 1)1 = 0, so ord 1 |(q2 − 1). �

Theorem 2.19. The order of the identity in the K0-groups is divisible by (q − 1) for
q �≡ 1 mod 3 and by 1

3 (q − 1) for q ≡ 1 mod 3.

Proof. Because of the isomorphism between C(∂B) � Γ and OM̂ , the order of 1 =∑
b∈Ti

[1b] in K0(C(∂B) � Γ ) is equal to the order of
∑

b∈Ti
[1b] when interpreted as an

element of coker(I −M̂1, I −M̂2). By Theorem 2.6, the only relations between generators
of coker(I − M̂1, I − M̂2) are the ones we also found in Lemma 2.16, which expressed a
generator [1b] in precisely q2 generators. This implies that we can define a homomorphism
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ϕ : coker(I − M̂1, I − M̂2) → Z/(q2 − 1) by sending every generator to 1. We also know
that the sum

∑
b∈Ti

[1b] has exactly (q + 1)(q2 + q + 1) terms. Thus

ϕ

( ∑
b∈Ti

[1b]
)

≡ (q + 1)(q2 + q + 1) ≡ 3(q + 1) mod (q2 − 1)

and ord(3(q + 1)) = ord(ϕ(1))|ord 1. For the order of 3(q + 1) in Z/(q2 − 1), we find

q2 − 1
gcd(q2 − 1, 3(q + 1))

=
q2 − 1

(q + 1) gcd(q − 1, 3)

=
q − 1

gcd(q − 1, 3)

=

{
q − 1 if q �≡ 1 mod 3
1
3 (q − 1) if q ≡ 1 mod 3.

We conclude that ord 1 is a multiple of (q−1) for q �≡ 1 mod 3, and a multiple of 1
3 (q−1)

for q ≡ 1 mod 3. �

3. The semi-basic subset

Theorem 2.18 gives an upper bound on the order of 1 that is quadratic in q. The goal of
this section is to give a bound linear in q. At the end we will also combine both upper
bounds in a special case.

Definition 3.1. A subset Ri ⊂ Ti, for some fixed i ∈ {0, 1, 2}, is called a semi-basic
subset if Ri consists of q2 + q +1 triples (bi, bi+1, bi−1) such that all bi and all bi+1 occur
exactly once.

For our purpose, the existence of such a semi-basic subset will be vital.

Lemma 3.2. Giving a semi-basic subset Ri is equivalent to giving a partitioning of
Gi+1 into incident point-line pairs.

Proof. Because T is a polygonal presentation, there is a basic bijection λ that sends bi

to wi := λ(bi) in the link Gi+1. By definition of a polygonal presentation, we know that
wi and bi+1 are incident in Gi+1. Because |Wi+1| = |Bi+1| = q2 + q + 1, the q2 + q + 1
pairs (wi, bi+1) form a partitioning of Gi+1 into incident point-line pairs if and only if
{wi} = Wi+1 and {bi+1} = Bi+1. �

Theorem 3.3. Every incidence graph of a finite projective plane allows a partitioning
into incident point-line pairs.

Proof. We fix an incidence graph G of a finite projective plane of order q. Let P

denote the set of points, let L denote the set of lines and let V = P ∪ L denote the set
of vertices of G.

Let m denote the maximal possible number of disjoint incident point-line pairs. We
choose such a maximal collection C = {(pi, li) : 1 � i � m} of disjoint incident point-line
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pairs. We call a point or a line married if it is an element of a pair in C, and specifically
it is married to the other element of that pair. We call a vertex of G lonely if it is not
married. Furthermore, we define a pairing 〈·, ·〉 : P × L → {0, 1, 2} by

〈p, l〉 =

⎧⎪⎨
⎪⎩

2 if p and l are married,

1 if p and l are only incident,

0 otherwise.

(3.1)

If m = q2 + q + 1 we are done, so suppose that m < q2 + q + 1 and choose a lonely point
p0 and a lonely line l0. The set

X = {p : 〈p, l0〉 = 1}

of points incident to l0 is of cardinality |X| = q+1 by the properties of a finite projective
plane. If there were a lonely point p in X, then we could add the incident point-line pair
(p, l0) to C thus contradicting the maximality of C. Hence, all points in X are married
and the cardinality of the set X ′ = {l : ∃p1 such that 〈p1, l〉 = 2, 〈p1, l0〉 = 1} of lines
married to a point in X is given by |X ′| = |X| = q + 1. We take it one step further with
the set

Y = {p : ∃l1, p1 such that 〈p, l1〉 = 1, 〈p1, l1〉 = 2, 〈p1, l0〉 = 1}

of points incident to lines of X ′, with the exception of those that are married to lines of X ′.
Suppose that Y contains a lonely point p. We could then replace the pair (p1, l1) ∈ C as
in the definition of Y by the pairs (p, l1) and (p1, l0), hence contradicting the maximality
of C. We conclude that all points in Y are married. As a multiset, the cardinality of Y

is given by q · |X ′| = q(q + 1): for every line in X ′ we get (q + 1) − 1 = q points that
are incident to it but not married to it. However, because G is a generalized 3-gon, the
cardinality of Y as a set is less. To estimate |Y |, we randomly order the lines of X ′ and
we count sequentially how many points each line adds to Y . When we count the points
on the jth line, we already counted all the points on j −1 lines, so maybe j −1 points on
the jth line are already counted. But at least q−(j−1) of the points are not yet counted.
Because X ′ consists of q + 1 lines, summing over all lines in X ′ gives the estimate

|Y | � q + (q − 1) + · · · + 1 + 0 = 1
2q(q + 1).

Now we approach from p0 by defining

Y ′ = {l : ∃p2, l2 such that 〈p0, l2〉 = 1, 〈p2, l2〉 = 2, 〈p2, l〉 = 1}.

By analogous arguments to those we used for Y , all lines in Y ′ are married and |Y ′| �
1
2q(q + 1). Finally, we also consider the set

Z = {p : ∃l3, p2, l2 such that 〈p0, l2〉 = 1, 〈p2, l2〉 = 2, 〈p2, l3〉 = 1, 〈p, l3〉 = 2}

of points married to lines in Y ′ and we remark that |Z| = |Y ′|.
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We note that X ∩ Y = ∅, for the existence of an element in this intersection would
imply a 4-cycle in G, while G is a generalized 3-gon. By the inclusion–exclusion principle,
we get

|X ∪ Y | = |X| + |Y | − |X ∩ Y | = |X| + |Y | � (q + 1) + 1
2q(q + 1).

We compute that

|X∪Y |+|Z| � (q+1)+ 1
2q(q+1)+ 1

2q(q+1) = q2+2q+1 > q2+q+1 = |P | � |X∪Y ∪Z|.

Again by the inclusion–exclusion principle, we find that the intersection of X ∪ Y and Z

is non-empty. Suppose that there is an element p3 in the intersection X ∩ Z. By the
definitions of X and Z, there exist l3, p2 and l2 such that 〈p0, l2〉 = 1, 〈p2, l2〉 = 2,
〈p2, l3〉 = 1, 〈p3, l3〉 = 2 and 〈p3, l0〉 = 1. Now we may replace the married pairs (p2, l2)
and (p3, l3) in C by the newly-weds (p0, l2), (p2, l3) and (p3, l0). This contradicts the
maximality of C. Suppose on the other hand that there is an element p3 in the intersection
Y ∩Z. Then there exist l3, p2, l2, p1, and l1 such that 〈p0, l1〉 = 1, 〈p1, l1〉 = 2, 〈p2, l1〉 = 1,
〈p2, l2〉 = 2, 〈p2, l3〉 = 1, 〈p3, l3〉 = 2 and 〈p3, l0〉 = 1. Now we replace the married pairs
(p1, l1), (p2, l2) and (p3, l3) in C by the newly-weds (p0, l1), (p1, l2), (p2, l3) and (p3, l0),
again contradicting the maximality of C.

We conclude that the condition that C is a maximal collection of distinct incident
point-line pairs is not unifiable with |C| < q2 + q + 1. Hence, the maximal possible
number of distinct incident point-line pairs is q2 + q + 1 and a collection of q2 + q + 1 of
these pairs gives the desired partitioning. �

Combining Lemma 3.2 and Theorem 3.3, we have proven that every polygonal pre-
sentation admits a semi-basic subset. Fix a semi-basic subset Ri of T . By cyclically
reordering T0, T1 and T2, we may assume without loss of generality that i = 1. We also
define R0 = {(b0, b1, b2) : (b1, b2, b0) ∈ R1}.

Theorem 3.4. The multiset M̂1(R1) := {a : M̂1(b, a) = 1, b ∈ R1} consists of
q − 1 copies of every element of T0 and one extra copy of R0. The multiset M̂2(R0) :=
{a : M̂2(c, a) = 1, c ∈ R0} consists of q − 1 copies of every element of T1 and one extra
copy of R1.

Proof. For every a ∈ T0, we will count how often a occurs in the image of M̂1. Notice
that a choice of a fixes a0, a1 and a2. (See figure 4 for the structure of M̂1.)

We have (q + 1) − 1 = q options for b1 �= a1 such that b1 and a2 are incident in the
link of O. Because R1 is a semi-basic subset, b1 fixes b ∈ R1. So we have q options for b

such that M̂1(b, a) = 1. Now we consider two cases.

• If a = (a0, a1, a2) ∈ R0, then (b1, a2, c0) �∈ R1 for every couple of b1 and c0, since
b1 �= a1 and (a1, a2, a0) is the only triple of R1 having a2 as an element. So a is in
the image of all the b such that b1 �= a1 and such that b1 and a2 are incident in the
link of O. Hence a occurs precisely q times in M̂1(R1).

• If a ∈ T0 − R0, then there exists a couple b1 and c0 such that (b1, a2, c0) ∈ R1,
because the semi-basic subset R1 must contain a triple that contains a2. Hence, a

occurs strictly less than q times in M̂1(R1).
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O

b2

a1

a0

b0

c0

b1

a2

Figure 4. Showing M̂1((b1, b2, b0), (a0, a1, a2)) = 1.

By definition, we find that |Ri| = q2 + q + 1. We also know that M̂1 has q2 entries
that are equal to 1 per column and per row by Theorem 2.6. Hence the number of
elements of M̂1(Ri) as a multiset is |M̂1(Ri)| = q2(q2 + q + 1). We also easily count
that |T0| = (q + 1)(q2 + q + 1). Combining these observations, we find the equality
|M̂1(R1)| = q|R0| + (q − 1)(|T0| − |R0|). This implies that a ∈ T0 − R0 has to occur
precisely q − 1 times.

We conclude that the multiset M̂1(R1) := {a : M̂1(b, a) = 1, b ∈ R1} consists of q

copies of R0 and q − 1 copies of T0 −R0, which is equivalent to the first statement of the
theorem. The multiset M̂2(R0) may be handled in the same way. �

We improve the upper bound for the order of identity, which was quadratic in q, to
one that is linear in q.

Theorem 3.5. The identity 1 in the K0-group satisfies 2(q − 1)1 = 0.

Proof. We recall that, for b ∈ Ti, we have [1b] =
∑

a∈Ti−1
M̂1(b, a)[1a]. By the first

statement of the above theorem, we find that∑
b∈R1

[1b] =
∑

b∈R1

∑
a∈T0

M̂1(b, a)[1a] = (q−1)
∑
a∈T0

[1a]+
∑

a∈R0

[1a] = (q−1)1+
∑

a∈R0

[1a]. (3.2)

On the other hand, for a ∈ Ti−1, we also have [1a] =
∑

b∈Ti
M̂2(a, b)[1b], in particular for

i = 1. The second statement of the above theorem gives a description of how M̂2 acts
on R0. We use this on equation (3.2), and we find that∑

b∈R1

[1b] = (q − 1)1 +
∑

a∈R0

∑
b∈T1

M̂2(a, b)[1b] = 2(q − 1)1 +
∑

b∈R1

[1b]. (3.3)

We conclude that 2(q − 1)1 = 0. �

In one particular family of values for q, the above theorems fit together very nicely. In
this case, they precisely fix the order of the identity in the K0-groups.

Theorem 3.6. If q = 22l−1, l ∈ Z, then the order of 1 is q − 1.
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Proof. Because q + 1 ≡ 1 mod 2, Theorem 2.18 and Theorem 3.5 together imply
that (q −1)1 = 0, and hence ord 1 |q −1. On the other hand, we know that q �≡ 1 mod 3,
so Theorem 2.19 implies that q − 1|ord 1. �
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