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The settling velocity of frozen hydrometeors in the atmospheric surface layer depends on
their inertial and drag properties, and on the intensity of ambient turbulence. Thin, solid
and perforated circular disks have been investigated through high-speed imaging, under
laboratory conditions, to reproduce the settling of snow plates and dendrites in quiescent
and turbulent flows. Different perforations made it possible to test the parameterisation of
the fall speed in quiescent air, based on the geometric description of the solidity of the disk
cross-sectional area. Interestingly, different falling styles, ranging from stable horizontal
to fluttering and tumbling, were observed to depend significantly on the perforation
geometry, which resulted in the stabilisation of the particle rotation and in a modulation of
the drag coefficient. Ambient turbulence is observed to primarily induce cross-flow drag
on the disks settling in the nonlinear regime, causing a reduction of the settling velocity in
all cases investigated. Turbulence also manifests a secondary effect on the disk rotational
dynamics, in particular when tumbling and stable falling styles co-exist, based on the
phase space defined by the Reynolds number Re and the inertia ratio I ∗. The interaction
between ambient turbulence, particle anisotropy and permeability and the likelihood of
tumbling is inferred to be the main reason for the observed settling velocity variability of
snow dendrites in nature.

Key words: atmospheric flows, homogeneous turbulence

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1010 A34-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-3121-3183
https://orcid.org/0000-0002-9788-8119
https://orcid.org/0000-0001-5344-2476
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.321&domain=pdf
https://doi.org/10.1017/jfm.2025.321


A. Tinklenberg, M. Guala and F. Coletti

1. Introduction
In the study of frozen hydrometeors, disk-like particles can be used to reproduce the
settling dynamics of ice plates and dendrite crystals at laboratory scale (Willmarth et al.
1964; Locatelli & Hobbs 1974; Kajikawa 1992; Garrett & Yuter 2014; Li et al. 2023;
Singh et al. 2023; Li et al. 2024; Tinklenberg et al. 2023, 2024). The terminal velocity of
hydrometeors is reached when the drag and the weight forces acting on the particles are
balanced. The drag force on disk-like settling particles is defined by Fd = (1/2)ρCD As V 2

t ,
based on the terminal velocity Vt , the fluid density ρ, the projected solid drag area
As (determined by its orientation with respect to the vertical direction coincident with
the settling velocity) and the drag coefficient CD . The latter accounts for the viscous
shear stress between the fluid and the particle, which dominates at low Reynolds number
Re = Vt D/ν, (where ν is the kinematic viscosity) and the pressure gradient established
between the leading and trailing surfaces of the particle, which represents a form drag
contribution. This depends on the particle orientation and wake, and thus on Re. In the
study of the drag of disk-like or nearly spherical frozen hydrometeors, such as plates or
graupels, it is typically assumed that the nominal frontal area for a particle of diameter D is
A = π D2/4. However, this is not always a correct assumption. When assuming a nominal
frontal area, CD should include effects of preferential orientation of settling hydrometeors
and unsteadiness due to fluttering and/or tumbling motions, both contributing to temporal
fluctuations of the frontal area. This implies a strong coupling between the snow’s
rotational and translational dynamics, especially for anisotropic particles that tend to be
rotationally unstable. In the limit of a thin disk, the diameter to thickness aspect ratio
χ = D/h and the solid-to-fluid density ratio ρ̃ = ρs/ρ, are the two parameters controlling
the inertia ratio I ∗ = (π/64)ρ̃/χ . Here, I ∗ represents the moment of inertia of the disk
normalised by a term ρD5, proportional to the moment of inertial of a circumscribed
sphere of surrounding fluid (Willmarth et al. 1964); I ∗ plays a key role in the falling
style and rotational dynamics of a settling disk. In particular, in the non-Stokesian, fully
nonlinear drag regime relevant to frozen hydrometeors, that often settle at the terminal
velocity Vt . This leads to Re > 100 (Tinklenberg et al. 2023), under which the Jefferey
solution for the viscous torque does not apply (Jeffery 1922). The stabilising effect induced
by increasing rotational inertia, I ∗, has been correlated with the decrease of the rotational
Strouhal number, Str = f D/Vt , which is a dimensionless form of the disk tumbling
frequency, f , and is proportional to the tip speed ratio of the rotating disk (Willmarth
et al. 1964; Auguste et al. 2013; Tinklenberg et al. 2023).On the other hand, inertia can also
trigger oscillatory motions in falling particles. Frozen hydrometeors are usually associated
with values of I ∗ orders of magnitude larger than in typical laboratory experiments in
water, due to the much higher solid-to-fluid density ratio (Stout et al. 2024). This has been
indicated as the cause of oscillations of non-spherical particles falling in air at Re as low
as 5 (Bhowmick et al. 2024), which contrasts with observations in water.

When approaching realistic snow morphologies during natural snowfall, an additional
complication must be accounted for. Due to riming, the snow crystal morphology can vary
widely not only in the overall shape of the drag area, but also in how the internal structure
evolves. This affects the particle density and porosity (Locatelli & Hobbs 1974; Garrett &
Yuter 2014; Li et al. 2023). The presence of pores (and in general openings) within the
hydrometeor structure allows the flow to penetrate it during its descent. This permeability
has not been directly considered in studies of frozen hydrometeors, but was systematically
investigated in recent studies of rising and falling thin plates, indicating a profound
influence on the falling style (Vagnoli et al. 2023; Sánchez-Rodríguez & Gallaire 2025).

Frozen hydrometeor density has been observed to widely vary depending on
morphological types, wind, air temperature and humidity conditions, and still represents
1010 A34-2
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an area of active research (Magono & Lee 1966; Locatelli & Hobbs 1974; Brandes et al.
2008; Li et al. 2023; Singh et al. 2023). Irregularities in the nominal area and solidity
of snow plates and dendrites have been accounted by List & Schemenauer (1971) and
Böhm (1989) in the formulation of a modified drag coefficient curve CD = f (Re, AR),
which incorporates the ratio AR of the crystal cross-sectional solid area As to that of
a circumscribed disk A. The Böhm (1989) drag model incorporates the development of
shear layers from the particle edges, assuming a flat, horizontal falling style, i.e. with the
largest nominal area exposed to the relative flow.

More recently, a variety of laboratory studies aimed to analyse the area ratio effect
more systematically. Vincent et al. (2016) considered annular disks settling, i.e. disks with
a singular centred hole, and compared their laboratory findings with solid equivalents.
As the central hole size is increased, they find strengthening stabilisation due to the
development of an additional counter-rotating vortex ring at the hole edge, which acts
in opposition to the vortex ring shed at the outer edge. This was confirmed in the recent
laboratory experiments of Zhang et al. (2023). The stabilising effect forces the tumbling
behaviour of the corresponding solid disk to be dampened into a fluttering motion, in
particular for di/do ≈ 0.3 ± 0.1, where di is the inner hole diameter and do is the outer
diameter of the disk, corresponding to an area ratio of � 0.9. Even if the single hole
shape is not representative of dendrites, the physical connection between disk permeability
and rotational stability is of interest. Westbrook & Sephton (2017) and McCorquodale &
Westbrook (2021a) approach this problem with direct relevance to frozen hydrometeors
through the use of 3D-printed analogues of complex ice particles. Their laboratory
experiments confirm the robustness of the model proposed by Böhm (1989), and later
modified by Heymsfield & Westbrook (2010), except in the case of very thin and flat
particles. While these experiments were able to match the particle Reynolds number,
the settling dynamics in liquids did not preserve I ∗, thus limiting the range of falling
styles and the coupled rotation–translation that frozen hydrometeors may experience in
air (Kajikawa & Okuhara 1997). At the field scale, Auer & Veal (1970) and Vázquez-
Martín et al. (2021) suggested that ice plates are among the shape groups with the
lowest area ratios, and in turn exhibit reduced velocities, highlighting the importance of
this parameter, along with particle anisotropy, in drag force predictive models. Li et al.
(2024) measured the shape and density of natural snow particles and identified events
with dominant morphological types: dendrites and plates were again observed to have a
higher drag coefficient with respect to the Böhm (1989) model. Both results indicate that
plates and dendrites experience higher drag than approximately round particles, such as
graupel, with the same nominal diameter. This suggests that a flat preferential orientation
characteristic of fluttering, as opposed to tumbling, is more likely to occur.

Measurements during natural snow fall defines the parameter space of interest, but faces
another additional complication represented by the effect of ambient turbulence. Particle–
turbulence interactions cover a range of ubiquitous and intricate mechanisms that depend
on particle size, (an)isotropy, inertial properties and on the ambient turbulent scales (Voth
& Soldati 2017; Brandt & Coletti 2022). Preferential sweeping induces high velocity paths
along the downward side of vortical motions where (usually spherical sub-Kolmogorov)
particles tend to settle faster than in quiescent flows (Wang & Maxey 1993; Aliseda et al.
2002; Garrett et al. 2012; Ferrante & Elghobashi 2003; Li et al. 2021b). Loitering, cross-
flow-induced drag or other nonlinear drag effects drive particles along convoluted or
high flow resistance paths, reducing their average settling velocity (Singh et al. 2023;
Bagheri & Bonadonna 2016; Tinklenberg et al. 2024). In addition, particle rotational
instabilities, governing the statistical occurrence of tumbling and fluttering, were observed
to be amplified by the fluctuating velocities of ambient turbulent flows, even if the tumbling
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frequency was primarily controlled by the disk inertial properties I ∗ (Tinklenberg et al.
2024). Both preferential orientation and the particle angular velocity are inferred to
modulate the particle wake and the drag coefficient. Therefore, experimental studies of
plate crystals and dendrites settling in a laboratory set-up should include (i) a large number
of realisations in ambient turbulence, so that the cumulative effect of different falling styles
can be statistically captured in the settling velocity ensemble averages, and (ii) a similarly
large sample in quiescent flow, so that the effect of turbulence can be disentangled from
the variability of falling styles and orientations.

We call attention to the lack of studies of complex particle geometries performed in
air turbulence. Besides field data collected in the atmospheric surface layer, there is little
focus on realistic particle geometries, including permeability and anisotropic features as
both area and aspect ratios, and the interaction with ambient turbulence and wind of
varying intensity. This is particularly relevant for the prediction of the terminal velocities
of snow plates and dendrites in atmospheric turbulence, which present the challenges of
being thin, perforated and prone to tumbling. In our current laboratory study, we control
the disk material properties and geometries, thus limiting the uncertainty associated with
the particle density, size and weight, which are challenging to measure during natural
snowfalls, along with their direct effect on the terminal velocity. Our set-up allows us
to explore particles with size, density and fall speed comparable to differently rimed
snow dendrites and plates (Locatelli & Hobbs 1974) in turbulent air flows comparable to
low–moderate wind conditions during snowfalls in the atmospheric surface layer (Nemes
et al. 2017; Li et al. 2024). The main questions we address in this work are on the
stabilising effect of disk perforations under quiescent and ambient turbulent flows, and
on the relevance of the area ratio in the prediction of the particle drag and terminal
velocity. We eventually hope to shed some light on the coupling between tumbling and
falling motions for solid and perforated disks, and better assess the snow particle drag
modelling approach proposed by Böhm (1989) and Heymsfield & Westbrook (2010) under
well controlled laboratory conditions.

In our ad hoc designed laboratory facility, we cover the relevant region in the
I ∗ − Re parameter space (Kajikawa & Okuhara 1997) and generate root mean square
(r.m.s.) velocity fluctuations u′ consistent with atmospheric flows, reaching a Reynolds
number Reλ = u′λ/ν � 400, where λ is the Taylor micro-scale (Carter et al. 2016). We
vary the disk thickness, area ratios and perforation geometry, and quantify their effect
on the fall speed, drag coefficient and rotational kinematics, extending the dimensionless
parameter space investigated by Tinklenberg et al. (2023, 2024).

The paper is organised as follows. In the following section (§ 2) we describe the disk
inertial properties along with snow plate and dendrite drag models, and we provide an
overview of the experimental set-up. Section 3 is devoted to the experimental results on
the disk translational dynamics (average settling velocity, drag coefficient and trajectory
angle) and rotational dynamics (orientation and tumbling) in quiescent and turbulent
conditions. Our experimental observations are compared with field-scale results in the
discussion (§ 4). Conclusions follow.

2. Methodology

2.1. Disk properties and fabrication
The particles utilised in the laboratory experiments are thin disks of both solid and
perforated geometries. Figure 1(a) shows images of every disk type considered. All
of the solid disks are made of polyethylene terephthalate (PET), with a density of
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1 mm

100 µm 100 µm

(a)

(b) (c)

Figure 1. Images of all disks studied. (a) From left to right, D increasing from 0.3 to 3 mm◦. (b) Microscope
images of 0.3 mm and of (c) 0.5 mm disks.

ρd = 1380 kg m−3. Disks with nominal diameters of 0.3 mm, 0.5 mm, 1 mm, 2 mm and
3 mm (as referenced in table 1) are manufactured for use as commercial glitter, all with a
thickness of h = 50 µm. Their settling dynamics is described in Tinklenberg et al. (2024).
Thicker disks of h ≈ 100 µm, are manufactured with a commercial laser cutter out of PET
sheets. Two classes of such disks are produced: a solid geometry shown in figure 2(a)
and a four-quadrant, perforated geometry shown in figure 2(b). Both are approximately
3 mm in diameter; we refer to them as 3 mm∗ and 3 mm×, respectively. The single hole
(3 mm◦) disks were selected to match the open area of the four quadrant (3 mm×) disks.
The laser cutting method which produced the 3 mm× did not warrant sufficient precision
in the case of the 3 mm◦, in particular with respect to the centre location of the single hole.
The 3 mm◦ were thus commercially manufactured as sequins, with a measured density of
2454 kg m-3, and chosen for the similar diameter and open area ratio of the 3 mm×.

Dimensions of a subset of 30 disks per diameter are directly measured and yield the
mean and standard deviations listed in table 1, along with the key physical parameters for
each disk type. The diameters are obtained by imaging disks lying on a tray, while the
thicknesses are obtained by tightening calliper teeth on stacks of various numbers of disks
and calculating the average thickness in each stack, confirming the specification from the
vendor. The 0.3 mm and 0.5 mm disks are hexagonal in shape (see figure 1(b, c)) and we
take D as the diameter of the circumscribing circle, as is common in the hydrometeor
literature (Böhm 1989; Heymsfield & Westbrook 2010).

The area ratio is defined as AR = As/A, where As is the actual solid area of each disk
geometry and A = π D2/4 is the solid disk area of the minimum circumscribing circle
of As (see figure 3). As the disk orientation is unknown and often rapidly varying during
tumbling or fluttering motions, we consider all projected areas always corresponding to the
maximum drag area of a flat (or horizontal) falling disk. For the sake of notation clarity,
we recall that the solid area As is defined as Ae in Böhm (1989) and as A in Heymsfield &
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Nominal
diameter

D [mm] h [mu m] χ ρ̃ AR Ug

[m s−1]
Ga I ∗ SvL (w) SvL (s)

0.3 mm 0.28 ± 0.01 50.0 ± 7.5 5.5 1150 1 1.06 14.0 14.11 1.14 0.76
0.5 mm 0.50 ± 0.02 50.0 ± 7.5 10.0 1150 1 1.06 28.1 7.06 2.14 1.43
1 mm 1.27 ± 0.07 50.0 ± 7.5 25.4 1150 1 1.06 89.4 2.22 2.29 1.43
2 mm 2.02 ± 0.03 50.0 ± 7.5 40.4 1150 1 1.06 142.2 1.40 2.46 1.64
3 mm 3.03 ± 0.02 50.0 ± 7.5 60.6 1150 1 1.06 213.3 0.93 3.59 2.39
3 mm∗ 2.80 ± 0.07 101.6 ± 5.1 28.3 1150 1 1.51 234.1 2.06 4.62 3.08
3 mm× 3.03 ± 0.05 101.6 ± 5.1 29.8 1150 0.73 ± 0.06 1.51 253.4 1.57 4.56 3.04
3 mm◦ 3.17 ± 0.01 110.0 ± 6.4 28.8 2045 0.76 ± 0.03 2.10 367.8 2.84 6.32 4.21

Table 1. Disk properties including the measured mean disk diameter D, the measured mean disk thickness
h, both listed with ± one standard deviation (σ ). Also included are the diameter to thickness aspect ratio
χ = D/h, the density ratio ρ̃ = ρd/ρ f , the disk area ratio AR = As/A, the Galileo number Ga = Ug D/ν,
where Ug = {2|ρ̃ − 1|gh}1/2 is the gravitational velocity, and the inertia ratio I ∗ = (π/64)ρ̃/χ . To calculate
I ∗ of the perforated disk, we use the geometry on which the laser-cutter manufacturing is based. The settling
velocity number, SvL = Vt,0/u′, is listed for the both turbulence conditions tested as SvL (w) and SvL (s),
referring to weaker and stronger turbulence, respectively (see table 2 for the flow statistics).

1 mm

(a) (b) (c)

Figure 2. Image groupings of laser cut and perforated disks showing the variation within the populations of
the (a) 3 mm∗, (b) 3 mm× and (c) 3 mm◦.

Westbrook (2010). Here, AR is measured for a subset of 100 disks for 3 mm∗, 3 mm× and
3 mm◦ by imaging the individual disks with a calibration length in the frame. Binarisation
of the image allows the solid disk pixels to be identified and compared with the area of the
minimum encompassing circle of each. These values are also summarised in table 1. Note
that AR = 1 for all the solid disk types. Disk geometric and kinematic variables, along
with a basic schematics of the experimental apparatus and reference system, are illustrated
in figure 3.

2.2. Disk kinematics phase space
The pioneering laboratory work of Willmarth, Hawk & Harvey (1964) established the
use of the inertia ratio I ∗ = I/(ρ f D5), normalising the disk moment of inertia I (around
the central axis parallel to its diameter) with a scaling quantity ρ f D5 proportional to the
moment of inertia of a surrounding fluid sphere. This formula is used to calculate the
inertia ratio for the perforated geometries. For a solid thin disk of thickness h, the inertia
is derived as I ∗ = (π/64)ρ̃/χ , with the aspect ratio χ = D/h assumed much larger than
unity (Field et al. 1997; Auguste, Magnaudet & Fabre 2013; Lau, Huang & Xu 2018).
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Figure 3. (a) Turbulence facility diagram including global coordinate system and basic dimensions. (b)
Definition of the disk trajectory angle φ. (c) Representation of the disk orientation vector p̂ and its vertical
component py . (d) Definition of the disk solid area As , nominal diameter D, and thickness h.
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Tumble

FlutterSteady

100

10–1
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10–2

10–3
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Ga
300

Figure 4. Falling style parameter space of I ∗ versus Ga with disks in the current study placed among data from
the literature. Solid black lines show the falling mode boundaries identified by Auguste et al. (2013). Dashed
black lines indicate upper and lower boundaries of the region of bistability found by Lau et al. (2018).

The parameter I ∗ has been used to predict the different falling styles in a parameter space
along with the Galileo number Ga = Ug D/ν (Chrust, Bouchet & Dušek 2013; Moriche,
Uhlmann & Dušek 2021; Moriche et al. 2023; Tinklenberg et al. 2023). The convenience
of using Ga rather than Re stems from the a priori definition of the gravitational velocity
Ug = {2|ρ̃ − 1|gh}1/2 (where g is the gravitational acceleration) which is a reasonable
approximation of Vt if the drag coefficient CD is of order unity (and Re independent).
Figure 4 depicts the I ∗ − Ga regime map based on several of the above mentioned studies,
with values summarised in table 1. Also indicated are the cases considered in the present
paper, which are designed to be representative of plate crystals falling in the atmosphere.
However, Vincent et al. (2016) noted that the falling mode transitions of solid disks do not
predict the behaviour transitions of perforated geometry disks.
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Forcing uη

[m s−1]
η

[mm]
τη

[ms]
λ

[mm]
u′

[m s−1]
L

[cm]
TL
[s]

ε

[m2 s−3]
Reλ
[−]

ReL
[−]

LSA
[−]

Weaker 0.056 0.28 4.9 9.6 0.50 10.0 0.20 0.6 311 3200 1.69
Stronger 0.068 0.24 3.7 10.3 0.75 12.8 0.16 1.1 473 6400 1.67

Table 2. Turbulent flow statistics for the forcing conditions investigated. Kolmogorov scales of velocity uη,
length η and time τη; Taylor microscale λ; integral scales of (r.m.s.) velocity u′, length L and time τL ;
dissipation ε; and Reynolds numbers Reλ = u′λ/ν and ReL = u′L/ν. Weaker turbulence corresponds to G6
forcing, with grids in place to diffuse the jets, while stronger turbulence corresponds to B6 forcing, as described
in Carter et al. (2016).

2.3. Experimental apparatus and turbulence properties
Turbulence is generated via two vertical panels facing each other at 1.81 m apart in an
enclosed chamber. Each panel has 128 nozzles distributed in a planar array of 8 x 16 (see
figure 3a). All the nozzles are connected to a pressurised air line at 700 kPa and attached
to computer-controlled solenoid valves. These are actuated independently to induce each
jet in a randomised sequence following the sun-bathing algorithm proposed by Variano
& Cowen (2008). A region of approximately homogeneous turbulence with negligible
mean flow is formed in the central section of the facility of size O(1 m3). The intensity
of the turbulence fluctuations is varied by controlling the mean actuation time of the
jets, and reduced by adding square-mesh grids in front of the jet arrays. The random-jet
forcing is run for sufficient time to allow the homogeneous region of turbulence to reach
a statistically stationary state and is sustained throughout the duration of each experiment.
The flow characterisation of the facility is described in detail in Carter et al. (2016) and
Carter & Coletti (2017, 2018). It has been used extensively to study particle turbulence
interaction for the cases of small spherical particles (Petersen et al. 2019; Berk & Coletti
2021; Hassaini & Coletti 2022; Hassaini et al. 2023) and for the settling of solid disks in
quiescent and turbulent flows (Tinklenberg et al. 2023, 2024).

We operated the turbulent chamber with and without the square-mesh grids,
corresponding to the nominal definitions of ‘weaker turbulence’ and ‘stronger turbulence’,
as summarised in table 2, and consistent with the solid disk experiments by Tinklenberg
et al. (2024). The dissipation rate ε is higher than typical levels in clouds (Grabowski
& Wang 2013), but η is comparable to that encountered in the atmospheric surface layer
through which hydrometeors precipitate (see, e.g. the field studies by Li et al. 2021a, where
η ∼ 0.5 mm, or values of η = O(1 mm) reported by Nemes et al. 2017 and Shaw 2003).
The r.m.s. velocity fluctuations u′ yield realistic values of the settling velocity number
SvL (see, e.g. Nemes et al. 2017 and Li et al. 2021a, where SvL = 0.60 − 10.7), which
is expected to be influential for the settling dynamics (Wang & Maxey 1993; Good et al.
2014; Byron et al. 2015; Fornari et al. 2016a,b; Petersen et al. 2019; Brandt & Coletti
2022).

2.4. Experimental methods and disk image analysis
The facility operation, imaging techniques and post-processing methods were described in
Petersen et al. (2019) and Tinklenberg et al. (2023, 2024). Those are briefly summarised
here. With the homogeneous region of turbulence in a statistically stationary state, a sieve
shaker positioned above the 3 m long chute leading into the chamber releases disks at a
chosen volume fraction of ΦV = O(10−5). The disks fall for approximately 1 m inside the
chamber before reaching the camera field of view.
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The imaging plane is positioned vertically in the centre of the chamber, illuminated by
a 3 mm thick laser sheet. Images are captured via a high-speed CMOS camera (Phantom
VEO 640) operated at 4300 Hz. A 105 mm Nikon lens collects images at 11.4 pixels mm−1

in a 11.2 cm × 8.4 cm field of view. To account for any run-to-run variability and
increase statistical convergence, five experimental runs each lasting approximately 10 s
are performed at minimum for each disk type and flow condition. This number of runs
captures statistics of O(103 − 104) individual disk trajectories for each case, with typical
trajectory lengths of O(102) frames.

Binarising the images allows for the disks to be identified and filtered based on
their intensity, size and sharpness. The image intensity gradient obtained by Sobel
approximation identifies blurry objects to be removed. Disks are individually fit with an
ellipse, resulting in sub-pixel-accurate centroid location and major axis orientation. The
ellipse fits are used to reconstruct disk orientations in three dimensions. An orientation
vector, p̂, along the axis of rotational symmetry of the disk, can then be obtained following
Baker & Coletti (2022). Finally, the centroid trajectories and orientation progressions are
convolved with a Gaussian kernel in time to reach the smoothed translational and rotational
disk motions.

2.5. Thin disk drag models
A semi-empirical formula has been proposed by Böhm (1989) and Heymsfield &
Westbrook (2010), among others, to predict the settling velocity of frozen hydrometeors.
The model is inspired by the early work of Abraham (1970) on the drag of a spherical
particle based on an inviscid term C0 and a Re-dependent contribution representing
the boundary layer developing from the edge of the sphere, namely Csph

D = C0(1 +
(δ0/Re1/2))2, where δ0 is a fitting constant.

Böhm (1989) and Heymsfield & Westbrook (2010) extended the model of Abraham
(1970) to generic snow particles, in fact assuming a master drag equation for frozen
hydrometeors CDM = Csph

D with a new set of fitting parameters. They introduced the
Best, or Davies, number X = CDM Re2 to eliminate the settling velocity from the equation,
imposing the equilibrium of drag and weight forces and only accounting for inertial and
geometrical snow properties in the estimate of X (see step 1 in table 3). The area ratio AR
was introduced to include different snowflake geometries while maintaining the ability
of the formulation and parameters of the master drag model CDM to describe specific
snow particle drag coefficients precisely as CD = A−n

R CDM = A−n
R C0(1 + (δ0/Re1/2))2.

Ongoing efforts are still devoted to fitting or altering the model parameters C0, δ0 and
n > 0 to achieve a universal dependency of the area ratio for a variety of complex snow
morphologies (needles, dendrites, stellars and aggregates) and to collapse all the re-scaled,
particle-specific drag coefficients on the master curve (McCorquodale & Westbrook
2021a, b). With all disk properties measured, the step 1 equation in table 3 can be inverted
to obtain the settling Reynolds number (step 2), and eventually the settling velocity
Vt (step 3). Note that Böhm (1989) and Heymsfield & Westbrook (2010) use different
coefficients C0 and δ0 and a different power-law exponent n = 0.75 − 0.5 to account for the
area ratio, but share the same master drag equation. The differences in the formulation and
in the fitting parameters are attributed primarily to different types of data sets considered in
the validation, including snowflakes in air and artificial snow particles settling in liquids
(see also Böhm 1992; Mitchell 1996; Khvorostyanov & Curry 2002, 2005; Mitchell &
Heymsfield 2005, among many others).

It is, however, important to stress that the effect of air turbulence has never been
explicitly included – in terms of loitering, cross-flow-induced drag, preferential sweeping
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Step 1 X = CDM Re2 = (ρ f /μ
2)(8mg/π A1−n

R ) Parameters

Step 2 Re = (δ2
0/4)[(1 + ((4

√
X)/(δ2

0
√

C0)
1/2)) − 1]2 Böhm (1989)

C0 = 0.6, δ0 = 5.83 and n = 3/4
Step 3 Vt = μRe/ρ f D Heymsfield & Westbrook (2010)

C0 = 0.35, δ0 = 8.0, n = 1/2

Table 3. Step by step procedure for the estimate of the terminal velocity Vt of a solid or perforated disk,
given μ, ρ f , m, AR and D, as originally proposed by Böhm (1989). The parameters C0 and δ0 are defined in
the master drag equation CDM = C0(1 + (δ0/Re1/2))2. Updated C0, δ0 coefficients and area ratio power-law
dependency A1−n

R provided by Heymsfield & Westbrook (2010) are listed for comparison.

Method 0.3 mm
[m s−1]

0.5 mm
[m s−1]

1 mm
[m s−1]

2 mm
[m s−1]

3 mm
[m s−1]

3 mm∗
[m s−1]

3 mm×
[m s−1]

3 mm◦
[m s−1]

Quiescent Vt 0.57 ±
0.06

1.07 ±
0.12

1.14 ± 0.17 1.23 ±
0.31

1.79 ±
0.44

2.31 ±
0.47

2.28 ±
0.25

3.16 ±
0.33

Böhm (1989) 0.46
(−19.9 %)

0.59
(−44.7 %)

0.80
(−29.6 %)

0.89
(−27.3 %)

0.97
(−46.0 %)

1.44
(−37.5 %)

1.26
(−44.6 %)

1.75
(−44.4 %)

Mitchell (1996) 0.46
(−19.9 %)

0.59
(−44.7 %)

0.80
(−29.6 %)

0.89
(−27.3 %)

0.97
(−46.0 %)

1.44
(−37.5 %)

1.52
(−33.1 %)

2.03
(−35.6 %)

Heymsfield &
Westbrook
(2010)

0.49
(−13.6 %)

0.66
(−38.0 %)

0.95
(−16.9 %)

1.08
(−12.4 %)

1.18
(−34.0 %)

1.88
(−18.4 %)

1.90
(−16.7 %)

2.87
(−9.1 %)

Table 4. Empirically derived velocity estimation method results from Böhm (1989), Mitchell (1996) and
Heymsfield & Westbrook (2010). The terminal velocities are listed with ± one standard deviation. Errors shown
in parentheses below each velocity estimate are computed in comparison with the measured Vt in quiescent air
in the current study.

or induced variability in falling styles. Therefore, the resulting Vt estimates from
all formulations summarised in table 3 are generally associated with quiescent flow
conditions (Nemes et al. 2017; Li et al. 2021b; Singh et al. 2023; Li et al. 2024). Our
apparatus provides the opportunity to compare these models under controlled quiescent
and turbulent flow conditions, reasonably consistent density ratios and without the
uncertainties in particle size and mass associated with natural snowfalls.

3. Results

3.1. Mean settling velocity and drag coefficient
We first apply the models of Böhm (1989) and Heymsfield & Westbrook (2010) to the
current disks and compare with the velocities measured in quiescent air. Summarised in
table 4, we find that applying the model and coefficients of Böhm (1989) using the area
ratio for each disk geometry yields an average error compared with the measured velocities
of −36.7 % (the model underestimates the measured velocities in quiescent conditions). If
we use the same C0 and δ0 coefficients estimated by Böhm (1989) but ignore the area ratio
of the perforated disks, thus treating them as solid disks (As = A), we are in fact adopting
the approach by Mitchell (1996), still leading to a significant -34.2 % underestimation
of the settling velocity. The adjusted coefficients and dependency on the area ratio of
Heymsfield & Westbrook (2010) improves the average estimated velocity error to -19.9 %.

1010 A34-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.321


Journal of Fluid Mechanics

102

101

100

10–1

100 101

300
0.4

0.6

0.8

1.0

400 500 600 700

Willmarth et al. (1964)

Jayaweera (1965)

Jayaweera & Cottis (1969)

McCorquodale & Westbrook (2021a)

Quiescent measured

Weaker measured

Stronger measured

CD, AR = 1 (HW 2010)

CD, AR = 0.75 (HW 2010)

102

Re

Re

CD

CD

103

Figure 5. Drag coefficient versus Reynolds number curves plotted from measurements in quiescent air, weaker
turbulence and stronger turbulence. Data included in grey symbols from Willmarth et al. (1964), Jayaweera &
Mason (1965), Jayaweera & Cottis (1969) and McCorquodale & Westbrook (2021a). The empirically derived
drag curve from Heymsfield & Westbrook (2010) is shown by the solid black line and the dashed black line
is re-scaled for the area ratio of our perforated disks. The inset focuses on an axis range around the data
points from the perforated disk measurements. Data from other publications digitised using WebPlotDigitizer
(Rohatgi 2021).

The latter model seems to better capture the drag of larger disks falling at higher Re and
the effect of permeability for the perforated disk geometries.

The disk drag coefficients CD = 2mg/ρ f As V 2
t were estimated from the projected,

solid disk area As assuming flat falling and the averaged measured settling velocity Vt .
The latter is defined as the average of the vertical component of the particle velocity.
The area ratio has a unitary value AR = 1 for the solid disks, whose drag coefficient
can be directly compared with the master drag curve, but the perforated geometries
require rescaling. To compare the experimental results and the theoretical predictions,
we plot the particle-specific drag coefficients CD as the function of Reynolds number
in figure 5, and scale the predictive curve(s) from the master equation. Inset in figure 5 is
a zoomed in view on the perforated disks. The grey symbols are from low-density-ratio
laboratory studies of disks, summarised by McCorquodale & Westbrook (2021a). The
solid black curve following Heymsfield & Westbrook (2010) for the solid disks is given
by CD = CDM = C0(1 + (δ0/Re1/2))2. The dashed curve is the re-scaled prediction for
perforated geometries (CD = CDM A−1/2

R ) using the power-law dependency of the area
ratio proposed by Heymsfield & Westbrook (2010), which best reproduced the average
settling velocity.

Our disk data, including those of the 3 mm× and 3 mm◦ perforated geometries, align
quite well with Heymsfield & Westbrook (2010). At low Re, non-tumbling solid disks are
well captured by the master curve. With increasing Re and emerging variability in the
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Figure 6. Mean vertical velocity Vt plotted by disk geometry in each flow condition.

disk falling styles, deviations are observed. Overestimated drag coefficients are associated
with the above underestimated settling velocities. There are two possible reasons for this:
(i) the orientation of a disk in our analysis is assumed flat in the definition of the projected
drag area As , implying that any change in orientation, e.g. due to fluttering, contributes
to reducing the drag force and increasing the settling velocity; (ii) when tumbling occurs,
depending on both Re and I ∗, the near wake, form drag and CD are affected, generally
resulting in a decrease in drag, as seen, e.g. when comparing the drag of a flat disk
(CD ∼ 1) with the one of a sphere (CD ∼ 0.5) resembling a tumbling disk along with
a tumbling mass of entrapped fluid. This follows what was found in the quiescent
experiments of Tinklenberg et al. (2023): low-density-ratio experiments, even when
matching Re of frozen hydrometeors in the atmosphere, may be slightly biased towards
stable flat falling due to relatively lower I ∗ values. Rotationally unstable disks in air
flows are expected to exhibit a more random orientation and a reduced drag area,
on average, resulting in a higher settling velocity, as observed here. This difference
is especially apparent starting at Re ≈ 100 in figure 5, above which unsteady wakes,
fluttering and tumbling are much more likely to occur, in particular for the higher-density-
ratio cases (Willmarth et al. 1964; List & Schemenauer 1971; Bréon & Dubrulle 2004;
Noel & Chepfer 2004). We thus infer that the more chaotic falling styles affecting frozen
hydrometeors in the atmosphere must be incorporated into the calibration of predictive
models. The model by Heymsfield & Westbrook (2010) incorporates both laboratory and
field data of rimed and unrimed plates and dendrites into the calibration, which can be
assumed to include some ambient turbulence, in addition to various falling styles. The
formulation of Böhm (1989) compares with previous models and measurements from
Locatelli & Hobbs (1974) for aggregates, but seems to include only laboratory data in
a liquid tank, hence at low density ratio, for plate crystals up to Re = 100. The above
differences may partially explain the better agreement between measured and predicted
settling velocities using the Heymsfield & Westbrook (2010) model for quiescent flow
conditions.

3.2. Phenomenology of perforated versus solid disk settling in turbulent flows
Figure 6 shows the mean vertical velocity plotted by disk geometry and forcing condition.
Both the solid disks (3 mm∗) and perforated disks (3 mm× and 3 mm◦) experience a
velocity reduction on average due to ambient turbulence. This was also observed for
smaller diameter disks compiled in Tinklenberg et al. (2024). The higher settling velocity
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Figure 7. The PDFs of the modulus of the instantaneous disk orientation vector with respect to the vertical,
|py |. Plotted at each forcing level for the (a) 3 mm∗, (b) 3 mm× and (c) 3 mm◦ disks. Here, |py | ∼ 0 indicates
an edge-on orientation and |py | ∼ 1 indicates a flat-falling orientation.

observed for the 3mm◦ disk is primarily due to the increased material density, as predicted
by all models in table 4. Particle settling variability is illustrated in the form of error bars
and quantified by the standard deviation of all instantaneous points from all experimental
runs, divided by the number of experimental runs. This method yields marginally smaller
errors for both of the perforated geometries as compared with the solid particle, indicating
that the perforated disks experience less variability in vertical velocity, in particular in
quiescent flow. As discussed in Tinklenberg et al. (2024), the observed fluctuation of
settling velocity results from the spatio-temporal variability of the disk orientations and
the associated drag and wake. Thus, we infer that such a reduced variability could be
associated with a more consistent falling dynamics.

Falling style, including preferential orientation and tumbling, has been shown to greatly
influence the drag on plates at high density ratios (McCorquodale & Westbrook 2021b;
Tinklenberg et al. 2023) and may explain the reduced variability in vertical velocity. In
particular, the transition from tumbling to fluttering, discussed in Vincent et al. (2016) for
the single hole coin, is inferred to increase the disk rotational stability and decrease the
variability in orientation of our perforated disks.

Evidence of the effect of disk permeability and turbulence on preferential settling
orientation is shown in figure 7, with the probability density functions PDFs of
instantaneous |py | (see figure 3c for the local orientation-dependent reference system).
Plate geometries, if rotationally stable, are expected to settle predominantly with their
maximum frontal area perpendicular to the fall speed direction (py = 1) in the limit of an
infinitely thin disk – a limit which may not hold in the current scenario (Willmarth et al.
1964; Sassen 1980; Matrosov et al. 2001; Chrust et al. 2013; Wang 2021). This is observed
in all experiments, in particular for the solid disk under quiescent conditions.

Increasing turbulence intensity tends to homogenise the orientation of disks that are
prone to tumbling: the high-probability peak associated with steady falling of the solid
disks in quiescent air is less pronounced, and resembles the distributions of perforated
geometries with a broader hump (0.75 < py < 1), pointing at increased fluttering. The
lesser variation in the perforated trends between the different turbulent conditions indicates
that turbulence does not significantly change the orientation of perforated disks. This
suggests that the observed appreciable variation in drag coefficients is due to the disks’
rotational dynamics and their horizontal slip velocity, rather than to their variability in the
projected area.
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Figure 8. Average two-dimensional projected trajectory angles plotted for each forcing case with lines for
each disk type.
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Figure 9. Distributions of two-dimensional projected trajectory angles off the vertical, |φ|, plotted for each
disk type in (a) quiescent air, (b) weaker turbulence and (c) stronger turbulence. Colours correspond to those
assigned by disk type as in figure 8.

3.3. Trajectory angles and lateral motions
We focus here on the turbulence effects on the disk drag in a broad perspective by
quantifying how much the disks move laterally under a variety of falling styles. The
underlying mechanisms include the rotational-induced lift discussed in Tinklenberg et al.
(2023) and the cross-flow-induced drag effect discussed in Bagheri & Bonadonna (2016)
and Tinklenberg et al. (2024). The trajectory angle φ within the Particle Tracking
Velocimetry observation plane, as defined in figure 3(b), is chosen as the key metric
for disk lateral dispersion. The average φ values are plotted in figure 8 for each flow
condition, while the corresponding PDFs are included in figure 9. The stabilising effect of
permeability is first observed in quiescent flow, with the solid disk exhibiting the largest
angles, and the single hole disks falling more vertically. Overall, turbulence enhances the
lateral dispersion of the disks, with the 3 mm× following a similar trend in the mean as
the 3 mm∗. The 3 mm◦ disks, on the other hand, appear to be swept laterally much less by
turbulence, especially under the strong forcing.

This behaviour is likely due to multiple concurring factors. Firstly, the single hole allows
for greater permeability of the flow through the single perforation as compared with the
smaller perforations of the four quadrant geometry. This is despite the same open area
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ratio between the two perforated geometries, suggesting that the single parameter of AR
cannot fully encapsulate the overall dynamics of perforated plates (this may contribute
to the settling velocity variability of snow dendrites). Secondly, the larger density of
the 3 mm◦ results in greater rotational inertia I and thus increased I ∗ for the same
nominal area, also leading to increased stabilisation of rotational motions. A disk which
is tumbling less and more horizontally oriented is, in fact, reducing the exposed area to
horizontal turbulent gusts, thus limiting the lateral motion of the disk. Hence, rotationally
stabilised disks are expected to experience less cross-flow-induced drag and fall more
vertically in turbulent flows. We infer that competing mechanisms contribute to explain
the reduced CD of the perforated disks: more stably falling, perforated disks offer a larger
frontal area to the settling motion and experience a reduced lateral dispersion, while solid
disks are more inclined to tumble, which reduces the projected area and makes them
more susceptible to lateral wind gusts. With increasing turbulence, the drag coefficient
increases, suggesting that cross-flow-induced drag becomes dominant. In fact, the 3 mm∗
and 3 mm× disks under strong turbulence have a similar CD and distribution of φ. It
remains to be understood what controls the disks’tumbling rate and what are the specific
roles played by turbulence, moment of inertia and perforation geometry.

3.4. Falling styles and rotation rates
The method adopted in Tinklenberg et al. (2023, 2024) to determine falling style was
based on the angular excursion along the trajectory (py), and as such relied on having
long enough trajectories captured within the field of view to detect an entire 360◦ rotation
for tumbling disks. Due to the faster descent of the thicker 3 mm disks of current focus,
less instantaneous frames are captured along a single trajectory. Hence, there is a strong
likelihood that even if a disk is tumbling, the entire 360◦ progression will not be sampled.
This will cause an under-detection of tumbling trajectories, biasing the sample towards
fluttering and oscillating disk motions. Using the instantaneous values of py , the sign
change is sufficient to detect the overturning of a disk, indicating tumbling. Comparatively,
a fluttering disk will have oscillating values of py , but the sign will not change. This
method is applied to the disks of focus in this work to obtain falling style percentages
shown in figure 10. The 1 mm and 2 mm disks tumble naturally in the quiescent case.
Their tumbling is slightly hindered under weak turbulence, and more significantly in the
stronger turbulence case. This is due to intermittent air gusts disrupting the regular rotation
and the wake shedding, leading to more intense fluttering. The 3 mm and 3 mm∗ disks
see the opposite effect, where the tumbling is enhanced by the turbulence. The different
behaviour between the 1 and 2 mm disks and the 3 and 3 mm∗ disks is due to the different
range of Ga and I ∗. The 3 mm disks tumble more intermittently in quiescent air, and the
turbulence enhances the existing instabilities, causing tumbling to occur more frequently
for otherwise fluttering or stable falling disks. As the perforations significantly stabilise
the 3 mm× and 3 mm◦, the turbulence has a minimal effect on the falling style in these
cases, with more persistent fluttering as opposed to tumbling.

For solid disks, it has been shown that the angular velocity and falling style are
correlated (Tinklenberg et al. 2023). The presence of a strongly bimodal distribution of
the trajectory-averaged angular velocity ωt in the case of the 3 mm∗ shown in figure 11(a)
confirms previous results, with the fluttering mode characterised by a lower ωt . This,
however, is no longer the case for either of the perforated geometries. Despite a residual
bimodality for the 3 mm◦, figure 11(b, c) show that the angular velocity for the tumbling
solid disks, with a peak above 200 rad s-1 is significantly reduced by the perforation. We
utilise the identification methods used for figure 11 to quantify the conditional tumbling
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Figure 10. Histograms of trajectory falling style percentages, separated by disk size. Red bars represent non-
tumbling and blue represents tumbling. Dark to light shading indicates flow conditions going from quiescent
air, to weaker turbulence and stronger turbulence, respectively. Percentage values are listed in white text for
both the non-tumbling and tumbling populations on their respective bars.

and non-tumbling angular velocities averages, yielding figure 12. The distinct bimodality
of the solid geometries is clear in this view. The near halving of the peak angular velocity
measured for tumbling 3mm× and 3mm◦ disks provides direct evidence of the combined
stabilising effect of the perforation, reducing the rotational inertia, and of the permeability
stabilising the wake, in both quiescent and turbulent air.

Overall, turbulence has a stronger impact on the angular velocities of non-tumbling
particles, while tumbling particles possess sufficient angular momentum to maintain their
rotational motion. The 3 mm∗ disks are somewhat of a transition point between the distinct
separation of tumbling versus non-tumbling for the thinner 1 mm, 2 mm and 3 mm disks,
and the more stable perforated geometries. Fluttering of the 3 mm∗ disks becomes less
distinguishable from the tumbling as the turbulence is strengthened, resulting in amplified
oscillations without always reaching a full rotation. Indeed, according to the classification
by Lau et al. (2018), the 3 mm∗ disks fall in the bistable region of the parameter space
where steady falling and tumbling coexist.

In order to better quantify the stabilising effects of disk perforation, which are
marginally reducing drag and more significantly reducing the angular velocity as
compared with the solid disks, we estimate the rotational Strouhal number Str = f D/Vt .
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Figure 11. Trajectory-averaged angular velocity distributions for all flow conditions for the (a) 3 mm∗,
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Here, this is based on the peak frequency of the velocity signal, corresponding to twice the
frequency of a full tumbling motion ( f = ωp/π , with ωp representing the mode of the ωt
distribution). The Strouhal number is plotted as a function of the inertia ratio in figure 13.
As the terminal velocities of the perforated disks are comparable to their solid equivalent,
the dampened angular velocity contributes to reduce Str by ∼ 50 %. This results in a
deviation from the relation Str ∼ I ∗−0.5, which was proposed by Fernandes et al. (2007)
and observed to fit well to our solid disks. Surprisingly, the 3mm× disks, which most
closely resemble snow crystals, exhibit a much stronger deviation, as compared with the
single hole disks, which are predominantly stabilised by their density, mass and moment
of inertia. This again means that disks with comparable area ratio AR may still manifest
very distinct settling kinematics that are not fully described by the inertia ratio I ∗, even
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Figure 13. Strouhal number Str plotted as a function of I ∗, with respective disk geometry shown along the
abscissa. Light coloured disks represent those with h = 50 µm and darker represent h ≈ 100 µm.

when the perforation is included in the estimate of the disk moment of inertia. This
suggests that turbulence plays a significant role in the bistable regime, but with a more
marginal effect when the disk falling style is well defined by the material properties and
I ∗. The perforation geometry, however, when associated with a different permeability and
regardless of AR , manifests a significant effect in the dampening of ωt and in the deviation
from the Str − I ∗ dependency.

4. Discussion
The parameter space to study the coupled settling and rotational kinematics of snow plates
and dendrites is multidimensional and expected to include the additional effects of the
ambient flow. Figure 14 is inspired by the early work of Kajikawa & Okuhara (1997),
where a limited number of more or less rimed snow plates have been mapped in the
inertia ratio (I ∗) and Reynolds number (Re) phase space. In their original contribution,
the authors investigated how increased riming, affecting the particle density and aspect
ratio, leads to different falling style, classified as (i) rotation or spiral (R-S), affine to
our tumbling definition and quantification, and (ii) swing or non-rotation (S-N), which
includes fluttering and flat falling. As opposed to the predictable Galileo number, which
is based on the gravitational velocity Ug , Re = Vt D/ν features the actual average settling
velocity and thus incorporates the correct particle drag and turbulence effects. Our solid
(D � 1 mm) and perforated disks in figure 14 are coloured based on the observed
tumbling percentage, and can thus be compared with the R-S classification. Laboratory
and field data exhibit fairly consistent settling kinematics and, to a lesser extent, tumbling
characteristics in a range of 100 < Re < 500 and I ∗ > 0.7. With increasing mass (along
with terminal velocity, and Re) and permeability, the disks are more rotationally stable,
while with increasing ambient turbulence and drag, disks are more keen to tumble. Based
on this scattered laboratory and field data, we cannot develop a predictive model, but
only speculate about natural conditions favouring snow particle tumbling. Thin and light
disks are likely to feel small eddies in turbulent air flows and develop a wake able to
sustain autorotation, providing they are large or dense enough to reach Re > 100. Natural
candidates in such a phase space are relatively large, unrimed plates, and to a lesser
extent, snow dendrites, which may, however, be stabilised by their own permeability.
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dendrites as classified by Kajikawa (1992) into R-S (spiral or rotation) and S-N (swing and non-rotation).

The snow dendrite and plate density (Locatelli & Hobbs 1974; Li et al. 2023) is somewhat
smaller than the solid disks tested here, and their typical size, ranging from 0.1 to 1 mm,
is only partially overlapping with our disks in a range where tumbling quantification is
challenging even at laboratory scale (Tinklenberg et al. 2024). Results from McCorquodale
& Westbrook (2021b) with snow analogues in quiescent liquids reproduce the range
of Re, but are limited to a low range of I ∗ up to 0.01. It thus appears that the phase
space 0.2 < I ∗ < 0.7 and 50 < Re < 300 is meteorologically relevant and worth exploring
statistically in future experiments. Transition between regimes may occur around Re � 100
and I ∗ � 0.5, bordering the chaotic regime as suggested by Field et al. (1997) and
Jayaweera & Mason (1965), which may explain the overlap between rotational (R-S) and
swing/flat (S-N) crystals falling in Kajikawa & Okuhara (1997). In addition, with different
levels of turbulent forcing in the above regimes, the associated marginal stability curves
may need to be redefined, which again emphasises the importance of controlled laboratory
experiments with correct particle shapes, fluid density ratios and a range of quiescent
to turbulent forcing conditions. Finally, we stress that the observed scatter in figure 14,
can be interpreted in view of the Str and I ∗ deviation exhibited by the 3mm× disks in
figure 13 and the 3 mm disks in figure 10. Accordingly, when the disk falling style is
in a bistable transitioning regime, turbulence intensity has a significant effect; however,
when the disks are tumbling, the permeability, rather than the size of the perforation or the
turbulence, plays a key role. Since turbulence and permeability are not explicitly accounted
for, both the tumbling frequencies in figure 14 and the drag coefficients in figure 5 exhibit
significant variability that propagates to the settling velocity.

5. Conclusion
We have reported on an experimental study of thin, mm-sized solid and perforated disks
falling in air. The considered range of non-dimensional parameters, χ = 5 − 60, Re =
10 − 663 and I ∗ ≈ O(1), is relevant to the settling of snow plate crystals and dendrites in
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the atmosphere. Still, to our knowledge, it has only been recently investigated in laboratory
experiments by Tinklenberg et al. (2024). Therein, we did not attempt to broadly scan
the parameter space, but rather expanded the number of realisations for each considered
case in order to achieve the statistical description of a settling process characterised by
coexisting falling styles and high variability, even in quiescent flows (Lau et al. 2018;
Tinklenberg et al. 2023). The dynamics of solid disks is compared here with those with
perforated geometries in both quiescent air and in two homogeneous turbulence flows with
different Reλ. Two types of perforated disks, characterised by four quadrant and single
hole geometries with matching area ratios and solidity, were investigated to assess the
specific influence of the perforation shape and size on the settling kinematics, as well as the
predictive ability of currently available models to estimate the terminal velocity Vt . Using
laser illumination and high-speed imaging, we have gathered and analysed the objects
translational and rotational kinematics based on thousands of trajectories obtained in
repeated runs with volumetric concentration of O(10−6) comparable to natural snowfalls
(Li et al. 2021a).

The main results of our investigation can be summarised as follows:

(i) When Re � 100, turbulence consistently reduces the fall speed of perforated disks,
as compared with quiescent flow results, confirming the results of Tinklenberg
et al. (2024) on solid disks and supporting the statistical predominance of cross-
flow-induced drag enhancement over preferential sweeping in all the conditions
investigated.

(ii) Perforated disks are stabilised in their descent motion, and therefore tumble less
frequently and at a reduced angular velocity. This result is robust in both quiescent
air and homogeneous turbulence. For the solid disk, we see a strongly bimodal
distribution of the angular velocity, which directly correlates with the falling style
of the disks. For example, the peak tumbling angular velocity for the solid disks
is reduced by 50 % for the perforated geometries, even when comparing disks with
the same diameter and thicknesses (3mm× perforated disk versus the solid 3mm∗).
However, different perforation geometries lead to specific reductions in the Strouhal
number, as highlighted by observed deviations from the functional dependency on
the rotational inertial properties, I ∗, characteristic of solid disks (figure 13). This
points again at the key role of permeability, rather than the area ratio or turbulence,
in settling the tumbling dynamics of perforated disks in the conditions investigated.

(iii) The area ratio AR is an important parameter in determining the fall speed, and needs
to be appropriately taken into account in settling velocity models as inspired by Böhm
(1989). However, AR cannot entirely describe the disk drag and settling dynamics.
This is because the disk permeability may vary for the same AR and the associated
rotational effects may contribute to the observed differences in the CD(Re) curves in
figure 5 and in the average settling velocity.

(iv) Heymsfield & Westbrook (2010) reasonably reproduces the fall speed of model
hydrometeors in quiescent air, although it shows a systematic under-prediction. The
latter is even more marked in Böhm (1989) and Mitchell (1996), which mostly rely
on laboratory experiments in liquids. In this respect, previous laboratory studies of
Re-analogous plate settling in viscous liquids yield a distinctly different CD plateau,
which deviates from the present data at Re ≈ 100. In the extension to atmospheric
precipitation, this again highlights the importance of high-density-ratio experiments
under varying turbulence intensities to reproduce the variability in falling styles and
tumbling rate of high inertia ratio particles such as snow plates and dendrites.
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(v) The good agreement between our results under turbulence and the Heymsfield &
Westbrook (2010) model confirms that ambient turbulence, which clearly modulates
the field data and impacts their fitting constant, should be explicitly parameterised in
hydrometeor fall speed and drag models.

In summary, the disk settling velocity and tumbling behaviour reveal a strong coupling
between falling styles, particle inertial properties, turbulence levels and flow permeability.
It is inferred that ambient turbulence increases the disk drag coefficient mostly through
cross-flow-induced (nonlinear) drag. Perforation effects are partially captured by the
area ratio parameterisation of the terminal velocity in Böhm (1989), Heymsfield &
Westbrook (2010) and McCorquodale & Westbrook (2021a); however, permeability
strongly influences the disk tumbling rate, which has a secondary, although non-negligible,
effect on the drag coefficient.

An improved definition of the surface porosity and permeability of frozen hydrometeors,
or generally falling objects, would be of great interest in a modelling study to develop a
more comprehensive understanding of hole placement and the correlation to stabilising
wake structures developed. For instance, in the case of fluffy snow flake aggregates,
the many small perforations may not only reduce the effective density but perhaps
randomise the wake and the associated vortex shedding, with an increased stabilising
effect. Other applications in literature with similar implications include the flight of
dandelions (Cummins et al. 2018; Qiu et al. 2020), leakiness of bristled insect wings
(Ford et al. 2019; Lee et al. 2020; O’Callaghan & Lehmann 2023) and pipe flow through
a perforated plate or screen (Bayazit et al. 2014).

The effects of turbulence and permeability could potentially be decoupled when the disk
falling style is robustly predicted. Unfortunately, when disks lay in the bistable I ∗ − Ga (or
I ∗ − Re) phase space, all the above variables are intertwined, settling velocity prediction
remains very challenging, and large variability is expected in the field measurements. This
is amplified when a range of snow morphologies and sizes characterise the same snowfall
event, as observed by Li et al. (2023, 2024). The variability in snow morphology may lead
to the simultaneous occurrence of various particle–turbulence interaction mechanisms,
featuring e.g. graupel-like particles experiencing preferential sweeping, clustering and
settling velocity enhancement (Nemes et al. 2017; Li et al. 2021a,b), along with plate-
like crystals affected by loitering, cross-flow-induced drag and settling velocity reduction
(Garrett & Yuter 2014; Singh et al. 2023). We thus infer that the thick tails, skewness
and other non-Gaussian features observed in settling velocity distributions from field
data may be caused not only by a range in size and snow morphologies, but also by the
different effects that turbulence exerts on specific subsets of particles according to various
interaction mechanisms.
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