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Abstract

DLV2 is an AI tool for knowledge representation and reasoning that supports answer set pro-
gramming (ASP) – a logic-based declarative formalism, successfully used in both academic and
industrial applications. Given a logic program modeling a computational problem, an execu-
tion of DLV2 produces the so-called answer sets that correspond one-to-one to the solutions
to the problem at hand. The computational process of DLV2 relies on the typical ground &
solve approach, where the grounding step transforms the input program into a new, equivalent
ground program, and the subsequent solving step applies propositional algorithms to search
for the answer sets. Recently, emerging applications in contexts such as stream reasoning and
event processing created a demand for multi-shot reasoning: here, the system is expected to be
reactive while repeatedly executed over rapidly changing data. In this work, we present a new
incremental reasoner obtained from the evolution of DLV2 toward iterated reasoning. Rather
than restarting the computation from scratch, the system remains alive across repeated shots,
and it incrementally handles the internal grounding process. At each shot, the system reuses
previous computations for building and maintaining a large, more general ground program,
from which a smaller yet equivalent portion is determined and used for computing answer sets.
Notably, the incremental process is performed in a completely transparent fashion for the user.
We describe the system, its usage, its applicability, and performance in some practically relevant
domains.
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1 Introduction

Answer set programming (ASP) is a declarative problem-solving formalism that emerged

in the area of logic programming and nonmonotonic reasoning (Gelfond and Lifschitz

(1991); Eiter et al. (2009); Brewka et al. (2011)). Thanks to its solid theoretical foun-

dations and the availability of efficient implementations (see Gebser et al. (2018) for a

survey), ASP is recognized as a powerful tool for knowledge representation and reasoning

(KRR) and has become widely used in AI.

Rules represent the basic linguistic construct in ASP. A rule has the form Head←
Body, where the Body is a logic conjunction in which negation may appear, and Head

can be either an atomic formula or a logic disjunction; a rule is interpreted according to

common sense principles: roughly, its intuitive semantics corresponds to an implication.

Rules featuring an atomic formula in the head and an empty body are used to represent

information known to be certainly true and are indeed called facts. In ASP, a compu-

tational problem is typically solved by modeling it via a logic program consisting of a

collection of rules along with a set of facts representing the instance at hand and then

by making use of an ASP system that determines existing solutions by computing the

intended models, called answer sets . The latter are computed according to the so-called

answer set semantics . Answer sets correspond one-to-one to the solutions of the given

instance of the modeled problem; if a program has no answer sets, the corresponding

problem instance has no solutions.

The majority of currently available ASP systems relies on the traditional “ground &

solve” workflow, which is based on two consecutive steps. First, a grounding step (also

called an instantiation step) transforms the input program into a semantically equivalent

“ground” program, that is, a propositional program without first-order variables. Then,

in a subsequent solving step, algorithms are applied on this ground program to compute

the corresponding answer sets. There are other systems, which, instead, are based on

approaches that interleave grounding and solving or rely on intermediate translations

like the ones presented in Bomanson et al. (2019), Dal Palù et al. (2009), and Lefèvre

et al. (2017).

In the latest years, emerging application contexts, such as real-time motion tracking

(Suchan et al. (2018)), content distribution (Beck et al. (2017)), robotics (Saribatur et al.

(2019)), artificial players in videogames (Calimeri et al. (2018)), and sensor network

configuration (Dodaro et al. (2020)), have been posing new challenges for ASP systems.

Most of the above applications require to show high reactivity while performing the

repeated execution of reasoning tasks over rapidly changing input data. Each repeated

execution is commonly called “shot,” hence the terminology “multi-shot” reasoning. In

the context of multi-shot reasoning, the näıve approach of starting ASP systems at hand

from scratch at each execution significantly impacts on performance and is impracticable

when shots are needed at a very high pace and/or over a high volume of input data.

Lately, many efforts have been spent by the scientific community to define proper

incremental evaluation techniques that save and reuse knowledge built across shots,

thus making ASP systems and general rule-based systems evolve toward more efficient

multi-shot solutions, such as the works of Motik et al. (2019), Gebser et al. (2019),
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Dell’Aglio et al. (2017), Valle et al. (2008), Mileo et al. (2013), Gebser et al. (2019),

Calimeri et al. (2019), Ianni et al. (2020), and Beck et al. (2017).

In this work, we present Incremental-DLV2 , a new incremental ASP reasoner that rep-

resents the evolution of DLV2 of Alviano et al. (2017) toward multi-shot reasoning. DLV2

is a novel version of one of the first and more widespread ASP systems, namely, DLV

(Leone et al. (2006)); the new system has been re-implemented from scratch and encom-

passes the outcome of the latest research effort on both grounding and solving areas.

Just as DLV and DLV2 , Incremental-DLV2 entirely embraces the declarative nature

of ASP; furthermore, it contributes to research in multi-shot solving with the introduc-

tion and management of a form of incremental grounding, which is fully transparent

to users of the system. This is achieved via the overgrounding techniques presented in

Calimeri et al. (2019) and Ianni et al. (2020). The overgrounding approach makes, at

each shot, the instantiation effort directly proportional to the number of unseen facts,

up to the point that the grounding computational effort might be close to none when all

input facts have been already seen in previous shots. Notably, overgrounded programs

are increasingly larger across shots: as this could negatively impact on the solving step,

Incremental-DLV2 properly selects only a smaller yet equivalent portion of the current

overgrounded program to be considered during solving.

In the remainder of the manuscript, we first provide an overview of the incremental

grounding techniques, which the system relies on, in Section 2; then, we illustrate the

system architecture and its computational workflow in Section 3; furthermore, we describe

its usage and its applicability in Section 4, while we assess the performance of the system

in some practically relevant domains in Section 5. Eventually, we discuss related work in

Section 6, and we conclude by commenting about future work in Section 7.

2 Overview of overgrounding techniques

In the following, we give an overview of the approach adopted by the system to efficiently

manage the grounding task in multi-shot contexts. We assume that the reader is famil-

iar with the basic logic programming terminology, including the notions of predicate,

atom, literal, rule, head, body, and refer to the literature for a detailed and systematic

description of the ASP language and semantics (Calimeri et al. (2020)).

As mentioned, ASP solvers generally deal with a non-ground ASP program P , made of

a set of universally quantified rules, and a set of input facts F . A traditional ASP system

performs two separate steps to determine the corresponding models, that is, the answer

sets of P and F , denoted AS(P ∪ F ). The first step is called instantiation (or grounding)

and consists of the generation of a logic program gr(P, F ), obtained by properly replacing

first-order variables with constants. Second, the solving step is responsible for computing

the answer sets AS(gr(P, F )). Grounding modules are typically geared toward building

gr(P, F ) as a smaller and optimized version of the theoretical instantiation grnd(P, F ),

which is classically defined via the Herbrand base.

When building gr(P, F ), it is implicitly assumed a “one-shot” context: the instantia-

tion procedure is performed once and for all. Hence, state-of-the-art grounders adopt

ad hoc strategies in order to heavily reduce the size of gr(P, F ). In other words,
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gr(P, F ) is shaped on the basis of the problem instance at hand, still keeping its seman-

tics. Basic equivalence is guaranteed as gr is built in a way such that AS(P ∪ F ) =

AS(grnd(P, F )) =AS(gr(P, F )).

Based on the information about the structure of the program and the given input

facts, the generation of a significant number of useless ground rules can be avoided: for

instance, rules having a definitely false literal in the body can be eliminated. Moreover,

while producing a ground rule, on-the-fly simplification strategies can be applied; for

example, certainly true literals can be removed from rule bodies. For an overview of

grounding optimizations, the reader can refer to Gebser et al. (2011), Calimeri et al.

(2017), and Calimeri et al. (2019).

However, this optimization process makes gr(P, F ) “tailored” for the P ∪ F input only.

Assuming that P is kept fixed, it is not guaranteed that, for a future different input F ′, we
will have gr(P, F ) =AS(P ∪ F ′). Nonetheless, it might be desirable to maintain gr(P, F )

and incrementally modify it, with as little effort as possible, in order to regain equivalence

for a subsequent shot with input set of facts F ′.
In this scenario it is crucial to limit as much as possible the regeneration of parts of

the ground programs which were already evaluated at the previous step; at the same

time, given that the set of input facts is possibly different from any other shot, shaping

the produced ground program cannot be strongly optimized and tailored to F ′ as in the

“one-shot” scenario. As a consequence, it is desirable that the instantiation process takes

into account facts from both the current and the previous shots. In this respect, Calimeri

et al. (2019) and Ianni et al. (2020) proposed overgrounding techniques to efficiently

perform incremental instantiations.

The basic idea of the technique, originally introduced by Calimeri et al. (2019), is

to maintain an overgrounded program G. G is monotonically enlarged across shots, in

order to be semantics-preserving with respect to new input facts. Interestingly, the over-

grounded version of G resulting at a given iteration i is semantics-preserving for all

the set of input facts at a previous iteration i′ (1≤ i′ ≤ i), still producing the correct

answer sets. More formally, for each i′, (1≤ i′ ≤ i), we have AS(G∪ Fi′) =AS(P ∪ Fi′)

After some iterations, G converges to a propositional theory that is general enough to be

reused together with large families of possible future inputs, without requiring further

updates. In order to achieve the above property, G is adjusted from one shot to another

by adding new ground rules and avoiding specific input-dependent simplifications. This

virtually eliminates the need for grounding activities in later iterations, at the price of

potentially increasing the burden of the solver (sub)systems, which are supposed to deal

with larger ground programs.

Overgrounding with tailoring, proposed by Ianni et al. (2020), has been introduced with

the aim of overcoming such limitations by keeping the principle that G grows monoton-

ically from one shot to another, yet adopting fine-tuned techniques that allow to reduce

the number of additions to G at each step. More in detail, in the overgrounding with

tailoring approach, new rules added to G are subject to simplifications, which cause the

length of individual rules and the overall size of the overgrounded program to be reduced,

but desimplifications are applied whenever necessary in order to maintain compatibility

with input facts.
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In the following, we illustrate how the two techniques behave across subsequent shots

with the help of a proper example.

Example 2.1.

Let us consider the program Pex:

a : r(X, Y ) :− e(X, Y ), not q(X).

b : r(X, Z) | s(X, Z) :− e(X, Y ), r(Y, Z).

Let us assume at shot 1 to have the input facts F1 = {e(3, 1), e(1, 2), q(3)}. In the

standard overgrounding approach, we start from F1 and generate, in a bottom-up way, new

rules by iterating through positive body-head dependencies, obtaining the ground program

G1:

a1 : r(1, 2) :− e(1, 2), not q(1).

b1 : r(3, 2) | s(3, 2) :− e(3, 1), r(1, 2).

a2 : r(3, 1) :− e(3, 1), not q(3).

In the overgrounding with tailoring, rules that have no chance of firing along with

definitely true atoms are simplified, thus obtaining a simplified program G′
1:

a′
1 : r(1, 2) :− e(1, 2), not q(1).

b′1 : r(3, 2) | s(3, 2) :− e(3, 1), r(1, 2).
a′
2 : r(3, 1) :− e(3, 1), not q(3).

G′
1 can be seen as less general and “re-usable” than G1: a

′
1 is simplified on the assump-

tion that e(1, 2) will be always true, and a′2 is deleted on the assumption that q(3) is

always true.

One might want to adapt G′
1 to be compatible with different sets of input facts, but

this requires the additional effort of retracting no longer valid simplifications. In turn,

enabling simplifications could improve solving performance since a smaller overgrounded

program is built.

Let us now assume that the shot 2 requires Pex to be evaluated over a different set

of input facts F2 = {e(3, 1), e(1, 4), q(1)}. Note that, with respect to F1, F2 features

the additions F+ = {e(1, 4), q(1)} and the deletions F− = {e(1, 2), q(3)}. In the standard

overgrounding approach, since no simplification is done, G1 can be easily adapted to the

new input F2 by incrementally augmenting it according to F+; this turns into adding the

following rules ΔG1 = {b2, a3}, thus obtaining G2:

a1 : r(1, 2) :− e(1, 2), not q(1).

b1 : r(3, 2) | s(3, 2) :− e(3, 1), r(1, 2).

a2 : r(3, 1) :− e(3, 1), not q(3).

b2 : r(3, 4) | s(3, 4) :− e(3, 1), r(1, 4).

a3 : r(1, 4) :− e(1, 4), not q(1).

G2 is equivalent to P , when evaluated over F1 or F2. Furthermore, G2 enjoys the

property of being compatible as it is, with every possible subset of F1 ∪ F2. In the case
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of overgrounding with tailoring, G′
1 needs to be re-adapted by undoing no longer valid

simplifications. In particular, rule a2, previously deleted since q(3)∈ F1, is now restored,

given that q(3) �∈ F2; moreover, rule a′1 is reverted to its un-simplified version a1, since

e(1, 2) �∈ F2. b
′
1 is left unchanged, as reasons that led to simplify b1 into b′1 are still valid

(i.e., e(3, 1), featured in F1, still appears in F2).

The so-called desimplification step applied to G′
1 thus produces the following ground

program:

a1 : r(1, 2) :− e(1, 2), not q(1).
b′1 : r(3, 2) | s(3, 2) :− e(3, 1), r(1, 2).
a2 : r(3, 1) :− e(3, 1), not q(3).

A further incremental step then generates new ground rules b2 and a3, based on the

presence of new facts F+.Only newly generated rules are subject to simplifications accord-

ing to F2. In particular, e(3, 1) is simplified from the body of b2, obtaining b′2; a3 is

eliminated (i.e., an empty version a′3 is generated) since not q(1) is false; The resulting

program G′
2 is as follows:

a1 : r(1, 2) :− e(1, 2), not q(1).
b′1 : r(3, 2) | s(3, 2) :− e(3, 1), r(1, 2).
a′
2 : r(3, 1) :− e(3, 1), not q(3).

b′
2 : r(3,4) | s(3,4) :− e(3,1), r(1,4).

a′
3 : r(1,4) : e(1,4), not q(1).

It is worth noting that G′
2 maintains the same semantics of Pex, when either F1 or F2

are given as input facts, but the semantics is not preserved with all possible subsets of

F1 ∪ F2.

If a third shot is requested over the input facts F3 = {e(1, 4), e(3, 1), e(1, 2)}, we

observe that G2 does not need any further incremental update, as all facts in F3 already

appeared at previous steps; hence, G3 =G2.

Concerning G′
2, the desimplification step reinstates a′3 while no additional rules are

generated in the incremental step. This leads to the ground program G′
3:

a′
1 : r(1, 2) :− e(1, 2), not q(1).

b′1 : r(3, 2) | s(3, 2) :− e(3, 1), r(1, 2).
a′
2 : r(3, 1) :− e(3, 1), not q(3).

b′2 : r(3, 4) | s(3, 4) :− e(3, 1), r(1, 4).
a3 : r(1, 4) :− e(1, 4), not q(1).

3 The Incremental-DLV2 system

In this section, we present the Incremental-DLV2 system, an incremental ASP reasoner

stemming as a natural evolution of DLV2 of Alviano et al. (2017) toward multi-shot

incremental reasoning. We first provide the reader with a general overview of the com-

putational workflow and then discuss some insights about the main computational

stages.
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Fig 1. Incremental-DLV2 architecture.

3.1 Computational workflow

Incremental-DLV2 is built upon a proper integration of the overgrounding-based incre-

mental grounder I2-DLV , presented by Ianni et al. (2020), into DLV2 . Coherently with

its roots, Incremental-DLV2 fully complies with the declarative nature of ASP; among all

the requirements, an important feature is that all means for enabling efficient multi-shot

incremental reasoning are mostly transparent to the user. Incremental-DLV2 adapts the

traditional ground & solve pipeline that we briefly recalled in Section 2 to the new incre-

mental context. The grounding step of Incremental-DLV2 is based on overgrounding with

tailoring; furthermore, in order to reduce the impact of a ground program that grows

across steps, the solving phase selectively processes only a smaller, equivalent subset of

the current overgrounded program.

Figure 1 provides a high-level picture of the internal workflow of the system. When

Incremental-DLV2 is started, it keeps itself alive in a listening state waiting for com-

mands. Commands refer to high-level operations to be executed on demand, as detailed

in Section 4. I2-DLV acts as OverGrounder module and enables incrementality in the

computation on the grounding side, while the integrated Solver sub-system currently

relies on the same non-incremental solving algorithms adopted in DLV2 . Differently from

DLV2 , in Incremental-DLV2 , both the grounding and the solving sub-systems are kept

alive across the shots; while I2-DLV was already designed to this extent, the Solver

module has been modified to remain alive as well. The updates in the solver and the

tighter coupling of the two sub-systems pave the way to further steps toward a fully

integrated incremental solving.

Multi-shot reasoning is performed by loading a fixed program P at first and then a

set of facts Fi for each shot i. According to the techniques described in Section 2, the

OverGrounder module maintains across all shots a monotonically growing proposi-

tional program G. Such program is updated at each shot i with the new ground rules

generated on the basis of facts in Fi that were never seen in previous shots; then, an
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Input: Non-ground program P , ground program G, input facts Fi for shot i
Output: A desimplified and enlarged ground program G’ = DG ∪ NR
Updates: the set of deleted rules D, collection of set AF and PF
1: function IncrInst(P, G, F )
2: DG = G,
3: NR = ∅, NF = Fi \ AF , OF = PF \ Fi

4: AF = AF ∪ Fi, PF = PF ∩ Fi

5: while NR ∪ NF or OF have new additions do
6: // Desimpl step
7: Undoes simplifications in DG;
8: Might move rules from D to NR, and
9: add previously deleted atoms from rules in DG;

10: // ΔInst step
11: do
12: for all r ∈ P do
13: Ir = getInstances(r, DG, NR)
14: I ′

r = simplify(Ir)
15: NR = NR ∪ I ′

r

16: end for
17: while there are additions to NR
18: end while
19: return G′ = DG ∪ NR
20: end function

Fig 2. Simplified version of the incremental algorithm IncrInst.

internal component efficiently manages ad hoc internal data structures, updated from

shot to shot, that allow to keep track and select a relevant, yet smaller, portion of G to

be passed to the Solver module. On the basis of such “relevant” portion, the Solver

module is then able to compute the answer sets of AS(P ∪ Fi) for the shot i. Note

that “relevant” is here used in the sense of “sufficient to keep equivalence with P ∪ Fi.”

Eventually, once the answer sets are provided as output, the internal data structures of

the Solver module are cleaned up from shot-dependent information, so to be ready for

the subsequent evaluations.

3.2 Implementation details

The evaluation order taking place in the OverGrounder module is carried out by con-

sidering direct and indirect dependencies among predicates in P . Connected components

in the obtained dependency graph are identified once and for all before at the beginning

of the first shot: then, the incremental grounding process takes place on a per component

basis, following a chosen order. We report an abstract version of our IncrInst algorithm

in Figure 2, where, for the sake of simplicity, we assume the input program P forms a

single component.

At shot i, a new overgrounded programG′ =DG∪NR is obtained fromG by iteratively

repeating, until fixed point, a Desimpl step, followed by an Instantiate and Simplify step,

which we call ΔINST . A set AF of accumulated atoms keeps track of possibly true

ground atoms found across shots; the set NR keeps track of newly added rules whose

heads can be used to build additional ground rules at the current shot, while DG is a

“desimplified” version of G.

The Desimpl step properly undoes all simplifications applied on G at previous shots

that are no longer valid according to Fi. This step relies on the meta-data collected during
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the previous simplifications: intuitively, meta-data keep record of the “reasons” that led

to simplifications, such as deleted rules and/or literals. As a result of this phase, deleted

rules might be reinstated, simplified rules might be lengthened, and new additions to NR

could be triggered.

The following ΔINST step incrementally processes each rule r ∈ P , possibly producing

new additions to NR. The getInstances function generates all the new ground instances

Ir of a rule r by finding substitutions for the variables of r obtained by properly combining

head atoms of DG and of NR.

The instantiation of a rule relies on a version of the classic semi-näıve strategy of

Ullman (1988). The reader may see the work Faber et al. (2012) for details about a

specialized implementation for ASP. The rules of P are processed according to an order

induced by predicate dependencies.

Then we simplify Ir to I ′r. In particular, this step processes rules in Ir to check if

some can be simplified or even eliminated (see Section 2), still guaranteeing semantics.

On the grounding side, all ground rules in Ir are stored in their complete and non-

simplified version along with information (i.e., meta-data) regarding body literals that

were simplified and regarding deleted rules, for example, those rules containing a certainly

false literal in their body. Then I ′r is added to NR.

It must be noted that DG is subject only to additions and desimplifications, while

simplifications are allowed only on the newly added rules NR. Further details on the

tailored overgrounding process can be found in Ianni et al. (2020).

Once these two phases are over, the obtained ground rules are used to update the over-

grounded program G; meta-data related to the occurred simplifications are maintained

in order to undo no longer valid simplifications in later shots.

Note that G is cumulatively computed across the shots and kept in memory, ready

to be re-adapted and possibly enlarged, yet becoming more generally applicable to a

wider class of sets of input facts; this comes at the price of a generally larger memory

footprint. Moreover, when fed to the Solver module, the size of G can highly influence

performance. In order to mitigate the latter issue, Incremental-DLV2 makes use of the

aforementioned meta-data for identifying a smaller yet equivalent ground program, which

is in turn given as input to the Solver module in place of the whole G.

Furthermore, to mitigate memory consumption, the system has been endowed with a

simple forgetting strategy that, upon request, removes all rules accumulated in G so far,

while still keeping atoms stored; this will cause the overgrounded program to be computed

from scratch from the next shot on, but allows one to instantly reduce the memory foot-

print of the system. Other finer-grained forgetting strategies for overgrounded programs

are presented in Calimeri et al. (2024).

4 System usage

Incremental-DLV2 can be executed either remotely or locally. In case of a remote execu-

tion, clients can request for a connection specified via an IP address and a port number,

corresponding to the connection coordinates at which the system is reachable. Once a

connection is established, the system creates a working session and waits for incoming

XML statements specifying which tasks have to be accomplished. The system manages
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the given commands in the order they are provided. The possible commands are Load ,

Run, Forget , Reset , and Exit .

The system works on the assumption that a fixed program P can be loaded once at

the beginning of the system’s life-cycle; multiple set of facts, each representing a specific

shot, can be repeatedly loaded; a shot k composed of facts Fk can be run – that is, one

can ask the system to compute AS(P ∪ Fk). Of course, P can possibly also contain facts,

which will be assumed to be fixed across shots, in contrast with the set Fk, which can

vary from shot to shot.

The available commands are detailed next:

Load. A load tag can be formed in order to request to load a program or a set of facts

from a file. The attribute path can be used to specify a string, representing a file path

containing what has to be loaded. Multiple load commands can be provided: rules files

are accumulated to form a unique program, and similarly, facts are also accumulated.

For instance, with the following commands, the system is asked to load four files:

<load path="my rule1.asp"/>

<load path="my rule2.asp"/>

<load path="my facts1.asp"/>

<load path="my facts2.asp"/>

Assuming the first two loaded files contain rules while the latter two contain facts, the

system composes a fixed program P consisting of all rule files and stores all loaded facts,

which together compose the first shot’s input F1. Note that the set of rules can be loaded

only at the beginning of the system’s activity, while input facts can be loaded at any

time.

Run. The <run/> command requests to compute the answer sets of the loaded program

together with the collected facts. As a side effect, incremental grounding takes place,

thus updating the current overgrounded program GP .

After a run command is executed, all so far loaded facts are assumed to be no longer

true. Future loading of rule files after the first run is discarded, as P is assumed to be

fixed; conversely, one expects further loading of facts forming subsequent shots’ inputs.

Forget. Since GP tends to be continuously enlarged, forgetting can be used to save

memory by dropping off parts of the accumulated ground program. Incremental-DLV2

features a form of forgetting, which is accessible either as a command or using program

annotations.

With the command <forget type="mode"/>, it is possible to request the

“forgetting” (i.e., removal) of accumulated atoms or rules along the shots. More in detail,

mode can be either r or p to enable the so-called “rule-based forgetting” or “predicate-

based forgetting,” respectively (see Calimeri et al. (2024)). The rule-based forgetting

removes all ground rules composing the so far accumulated overgrounded program GP ,
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whereas the predicate-based forgetting removes all ground rules and accumulated atoms

of all predicates appearing either in rule bodies or heads. Overgrounding is started from

scratch at the next shot. Note that the forget command allows to choose in which shot

forgetting happens, but one cannot select which parts of GP must be removed.

Alternatively, forgetting can be managed by adding annotations within P . Annotations

consist of meta-data embedded in comments (see Calimeri et al. (2017)) and allow to

specify which predicates or rules have to be forgotten at each shot. Syntactically, all

annotations start with the prefix “%@” and end with a dot (“.”). The idea is borrowed

from Java and Python annotations, having no direct effect on the code they annotate,

yet allowing the programmer to inspect the annotated code at runtime, thus changing

the code behavior at will. In order to apply the predicate-based forgetting type after each

shot over some specific predicates, the user can include in the loaded logic program an

annotation of the following form:

%@global forget predicate(p/n).

forcing the system to forget all the atoms featuring the predicate p of arity n. To forget

more than one predicate, the user can simply specify more than one annotation of this

type. Furthermore, an annotation in the form:

%@rule forget().

can be used in the logic program before a rule to express that all ground instances of

such a rule have to be dropped at each shot. The user can annotate more than one rule;

each one needs to be preceded by the annotation.

Service commands. Further appropriate service commands allow managing the behavior

of the system. The <reset/> command requests to hard reset all internal data structures,

including P and GP , and restarts the computation from scratch, while the <exit/>

command requests to close the working session and to stop the system.

The default reasoning task of Incremental-DLV2 is the search for just one answer set;

it is possible to compute all the existing answer sets with a dedicated switch (option

-n0). Alternatively, the system can perform grounding only and output just the cur-

rent overgrounded program, which can be piped to a solver module of choice (option

--mode=idlv -t).

We illustrate next how the system works when properly executed for a multi-shot rea-

soning task; to this aim, we make use of an example over dynamic graphs, that is, graphs

whose shape changes over time. Dynamic graphs have practical relevance in many real-

world scenarios, for example, communication networks, VLSI design, graphics, assembly

planning, IoT, etc. (see Demetrescu et al. (2004); He et al. (2014); Wang et al. (2019);

Adi et al. (2021)); for the sake of presentation, we will consider here a simple setting

based on the classical NP-hard 3-coloring problem (Lawler (1976)) in a dynamic setting.

Given a graph G(V, E), the problem is to assign each node v ∈ V with exactly one color

out of a set of 3 (say, red, green, and blue), so that any pair of adjacent nodes never gets

the same color. If the structure of a given graph instance G is specified by means of facts

https://doi.org/10.1017/S1471068425000067 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425000067


F. Calimeri et al.12

2211

33

21

3

2211

33

44 55

21

3

4 5

2211

33

44 55

21

3

4 5

Shot 1 - Optimal answer set
based on initial configura-
tion (input at shot 1): F1

= {node(1..3), edge(1,2),
edge(2,3), edge(1,3)}.

Shot 2 - Optimal answer set
based on updated facts:
F2 = F1 ∪ {node(4..5),
col(4,red), edge(4,5),
edge(1,5), edge(1,4)}.

Shot 3 - Optimal answer set
based on updated facts:
F3 = F2 \ {edge(1,4)}.

Fig 3. An example of multi-shot reasoning task based on Incremental-DLV2 : compute
3-coloring for graphs featuring a structure that changes over time.

over predicates node and edge, then the following program P3col encodes the problem in

ASP:

r1 : col(X, red) | col(X, green) | col(X, blue) :− node(X).

r2 : :− edge(X, Y ), col(X, C), col(Y, C).

Here, r1 is a “guessing” rule, expressing that each node must be assigned with one of

the three available colors, whereas r2 is a strong constraint that filters out all candidate

solutions that assign two adjacent nodes with the same color. We refer here to an opti-

mization version of the problem, in which some preferences over admissible solutions are

given; this can be easily expressed via the following weak constraints (see Calimeri et al.

(2020) for details on the linguistic features of ASP):

r3 : :∼ not col(1, red). [1@1]

r4 : :∼ not col(2, green). [1@1]

In this case, rules r3 and r4 express preferences for colors to be assigned to nodes 1

and 2: more in detail, color red is preferred for node 1, while color green is preferred for

node 2.

Let us consider the setting in which it is needed to reason on a graph whose structure

changes over time, that is, at each shot, nodes and edges can be added or removed.

We show the behavior of the system across three possible shots where input facts

change (see Figure 3). Assuming that rules r1, r2, r3, r4 are contained in a file 3-col.asp,

the command <load path="3-col.asp"/> has issued to Incremental-DLV2 to load the

program. Let f1.asp be a file containing the input facts for the first shot:

node(1..3). edge(1, 2). edge(2, 3). edge(1, 3).

By issuing the commands <load path="f1.asp"/> and <run/>, the system finds the

unique optimum answer set that assigns nodes 1, 2, 3 with colors red, green, and blue,
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respectively, and internally stores the overgrounded program G3col reported below, in

which barred atoms represent occurred simplifications:

r1. col(1, red) | col(1, green) | col(1, blue):−node(1).
r2. col(2, red) | col(2, green) | col(2, blue):−node(2).
r3. col(3, red) | col(3, green) | col(3, blue):−node(3).
r4. :− edge(1, 2), col(1, red), col(2, red).
r5. :− edge(1, 2), col(1, green), col(2, green).
r6. :− edge(1, 2), col(1, blue), col(2, blue).
r7. :− edge(2, 3), col(2, red), col(3, red).
r8. :− edge(2, 3), col(2, green), col(3, green).
r9. :− edge(2, 3), col(2, blue), col(3, blue).
r10. :− edge(1, 3), col(1, red), col(3, red).
r11. :− edge(1, 3), col(1, green), col(3, green).
r12. :− edge(1, 3), col(1, blue), col(3, blue).
r13. :∼ not col(1, red). [1@1]
r14. :∼ not col(2, green). [1@1]

At this point, facts in f1.asp are no longer assumed to be true, and the system is ready

for a further shot. Suppose that now a further file f2.asp containing the facts for the

second shot is loaded (Figure 3, middle column):

node(1..3). edge(1, 2). edge(1, 3). edge(2, 3).

node(4..5). col(4, red). edge(4, 5). edge(1, 5). edge(1, 4).

two new nodes connected to each other are added and connected also to node 1, while

coloring for node 4 is already known to be red. If now another <run/> command is

issued, thanks to the overgrounding-based instantiation strategy, the system only gen-

erates further ground rules due to newly added nodes and edges and adds them to

G3col:

r15. col(4, red) | col(4, green) | col(4, blue):−node(4).
r16. col(5, red) | col(5, green) | col(5, blue):−node(5).
r17. :− edge(1, 4), col(1, red), col(4, red).
r18. :− edge(1, 4), col(1, green), col(4, green).
r19. :− edge(1, 4), col(1, blue), col(4, blue).
r20. :− edge(1, 5), col(1, red), col(5, red).
r21. :− edge(1, 5), col(1, green), col(5, green).
r22. :− edge(1, 5), col(1, blue), col(5, blue).
r23. :− edge(4, 5), col(4, red), col(5, red).
r24. :− edge(4, 5), col(4, green), col(5, green).
r25. :− edge(4, 5), col(4, blue), col(5, blue).

Notably, simplifications made at shot 1 remain valid since all facts in shot 1 are also

facts of shot 2. Finally, suppose that in the third shot, the system loads a file f3.asp

containing the facts (Figure 3, right column):
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node(1..3). edge(1, 2). edge(2, 3). edge(1, 3).

node(4..5). col(4, red). edge(1, 5). edge(4, 5).

The input graph is updated by removing the edge between nodes 1 and 4. Now, no new

fact results as unseen in previous shots: hence, no additional ground rules are generated,

and no grounding effort is needed; the only update in G3col consists of the desimplification

of edge(1, 4) in rules r17, r18, and r19:

r15. col(4, red) | col(4, green) | col(4, blue):−node(4).
r16. col(5, red) | col(5, green) | col(5, blue):−node(5).
r17. :− edge(1, 4), col(1, red), col(4, red).
r18. :− edge(1, 4), col(1, green), col(4, green).
r19. :− edge(1, 4), col(1, blue), col(4, blue).
r20. :− edge(1, 5), col(1, red), col(5, red).
r21. :− edge(1, 5), col(1, green), col(5, green).
r22. :− edge(1, 5), col(1, blue), col(5, blue).
r23. :− edge(4, 5), col(4, red), col(5, red).
r24. :− edge(4, 5), col(4, green), col(5, green).
r25. :− edge(4, 5), col(4, blue), col(5, blue).

The unique optimum answer set now consists of coloring nodes 1, 2, 3, 4, 5 in red, green,

blue, red, green, respectively. It is worth noting that the savings in computational time,

obtained by properly reusing ground rules generated at previous shots, occur with no

particular assumption made in advance about possible incoming input facts. Moreover,

the management of the incremental computation is completely automated and trans-

parent to the user, who is not required to define a priori what is fixed and what might

change.

5 Experimental analysis

In this section, we discuss the performance of Incremental-DLV2 when executing multi-

shot reasoning tasks in real-world scenarios.

5.1 Benchmarks

We considered a collection of real-world problems that have been already used

for testing incremental reasoners. A brief description of each benchmark follows.

The full logic programs, instances, and experimental settings can be found at

https://dlv.demacs.unical.it/incremental.

5.1.1 Pac-Man (Calimeri et al. (2018))

This domain models the well-known real-time game Pac-Man. Here, a logic program

Ppac describes the decision-making process of an artificial player guiding the Pac-Man

in a real implementation. The logic program Ppac is repeatedly executed together with

different inputs describing the current status of the game board. The game map is of

size 30× 30 and includes the current position of enemy ghosts, the position of pellets,
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of walls, and any other relevant game information. Several parts of Ppac are “grounding-

intensive,” like the ones describing the distances between different positions in the game

map. These make use of a predicate distance(X1, Y1, X2, Y2, D), where D represents the

distance between points (X1, Y1) and (X2, Y2), obtained by taking into account the shape

of the labyrinth in the game map.

5.1.2 Content caching (Ianni et al. (2020))

This domain is obtained from the multimedia video streaming context (see Beck et al.

(2017)). In this scenario, one of the common problems is to decide the caching policy

of a given video content, depending on variables like the number and the current geo-

graphic distribution of viewers. The caching policy is managed via a logic program Pcc.

In particular, policy rules are encoded in the answer sets AS(Pcc ∪E), where E encodes

a continuous stream of events describing the evolving popularity level of the content at

hand. This application has been originally designed in the LARS framework of Beck et al.

(2018), using time window operators in order to quantify over past events. We adapted

the available LARS specification according to the conversion method presented by Beck

et al. (2017) to obtain Pcc as a plain logic program under answer set semantics; events

over 30 000 time points were converted to corresponding sets of input facts. This cate-

gory of stream-reasoning applications can be quite challenging, depending on the pace

of events and the size of time windows.

5.1.3 Photo-voltaic system (Calimeri et al. (2021))

We consider here a stream-reasoning scenario in which an intelligent monitoring system

(IMS) for a photo-voltaic system (PVS) is used to promptly detect major grid malfunc-

tions. We consider a PVS composed of a grid of 60× 60 solar panels interconnected via

cables; each panel continuously produces a certain amount of energy to be transferred to

a central energy accumulator directly or via a path between neighbor panels across the

grid. The amount of energy produced is tracked and sent to the IMS. An ASP program is

repeatedly executed over streamed data readings with the aim of identifying situations to

be alerted for and thus prompting the necessity of maintenance interventions. Notably,

this domain causes a more intensive computational effort on the grounding side with

respect to the solving side as the logic program at hand does not feature disjunction and

is stratified.

5.2 Setting

We compared the herein presented Incremental-DLV2 system against the DLV2 system.

Both systems were run in single-threaded mode. Experiments have been performed on a

NUMA machine equipped with two 2.8GHz AMD Opteron 6320 CPUs, with 16 cores and

128GB of RAM. Differently from Incremental-DLV2 , DLV2 is restarted, that is, executed

from scratch, at each shot in order to evaluate the given program on the current facts.

For each domain, we choose two different measures: we track the total accumulated time

and the maximum memory peak per shot. Figure 4 plots the chosen measures against

the number of shots for all benchmarks; the X axis diagrams data in the shot execution

order.
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Fig 4. Incremental-DLV2 against DLV2 : performance in multi-shot contexts.

5.3 Execution times

When observing execution times, a clear advantage is experienced by Incremental-DLV2

over all considered domains.

The Pac-Man benchmark is characterized by the need for computing all distances

between all positions (30× 30) in the game map, which is fixed, and hence Incremental-

DLV2 is able to compute them only once at the first shot, which is the most time

expensive. At each shot after the first, there is a net gain in grounding times stabilizing

at an approximate speedup factor of 4.6; furthermore, given the nature of the available

instances, which encode a real game, it turns out that, for a large part of the over-

grounded program, the simplifications performed are preserved when moving toward the

next shots. Hence, Incremental-DLV2 gains from the low need for desimplifications, while

still avoiding to burden the Solver module too much as it is fed with highly simplified

versions of the ground program.

In the Content Caching scenario, reasoning is performed on a time window spanning

over the last 1000 time ticks. Thus, instances are so that for the first 1000 shots, the

input facts span over a time window of less than 1000 ticks, and consequently, they are

a superset of inputs coming from previous shots; then, from shot 1000 on, possible input

facts do not change anymore. This implies that, basically, from shot to shot the whole
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overgrounded program is just monotonically enriched with new ground rules, yet keeping

the simplifications performed in previous shots, up to the point that nothing new has to

be instantiated after shot 1000. While Incremental-DLV2 cumulative time performance

exhibits a linear growth, the DLV2 behavior worsens as instances become larger. Indeed,

early shots require a little computational effort, and thus DLV2 takes advantage of the

lack of the multi-shot machinery overhead, although the computing times of the two

systems are very close. However, in later shots, the picture overturns: the growth of

DLV2 times starts accelerating after a few hundred shots, up to the point that, from

shot 1000 on, as the task to be executed is almost the same across all shots, Incremental-

DLV2 significantly outperforms DLV2 , as it basically saves the whole grounding time

thanks to the overgrounding technique. It is also worth noting that Incremental-DLV2

scales definitely better, as the growth of the execution time is always almost linear; on

the other hand, the DLV2 cumulative execution time has a quadratic like trend at the

very start and becomes linear only when the effort for requested tasks stabilizes after

shot 1000, converging to a speedup factor in favor of Incremental-DLV2 of around 1.6.

In the case of the PVS benchmark, both systems show a linear growth in cumu-

lated time; still, Incremental-DLV2 clearly outperforms DLV2 , with a speedup factor

of slightly less than 2. The corresponding logic program is stratified and features a

recursive component that is “activated” at each shot; hence, the hard part of the com-

putation is carried out during the grounding phase, which, also given the nature of

the available instances, still remains significant in later shots, differently from the other

domains.

5.4 Memory usage

Some additional considerations deserve to be done about memory usage. Indeed, as it

is expected because of the incremental grounding strategy herein adopted, the memory

footprint is definitely higher for Incremental-DLV2 , in all considered domains. However,

interestingly, it can be noted that in all cases the memory usage trend shows an asymp-

totic “saturation” behavior: after a certain number of shots the memory usage basically

stays constant; hence, the price to pay in terms of memory footprint is not only coun-

terbalanced by the gain in terms of performance, but it also happens to not “explode.”

We also observe that in the Content Caching and PVS benchmarks the memory usage

increases along the shots, while it reaches a sort of plateau in the Pac-Man bench-

mark. Indeed, in this latter domain, a large amount of information, useful in all shots,

is inferred only at the first shot and then kept in memory, but with some redundancy.

As a result, the memory usage in this benchmark domain is high at the beginning of

the shot series, but it stays almost unchanged later. On the other hand, DLV2 makes a

good job in generating, from scratch, a compact ground program for each shot. Although

the results show a fairly reasonable memory usage, as mentioned before, memory-limiting

and rule-forgetting policies added on top of existing algorithms can help in mitigating the

memory footprint of Incremental-DLV2 , especially in scenarios where memory caps are

imposed.
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6 Related work

6.1 Theoretical foundations of incremental grounding in ASP

The theoretical foundations and algorithms at the basis of Incremental-DLV2 were laid

out by Calimeri et al. (2019) and Ianni et al. (2020). The two contributions propose,

respectively, a notion of embedding and tailored embedding . Embeddings are families of

ground programs, which enjoy a number of desired properties. Given P ∪ F , an embed-

ding E is such that AS(P ∪ F ) =AS(E); E must be such that it embeds (E � r) all

r ∈ ground(P ∪ F ).

The � operator is similar to the operator |= that is applied to interpretations and

enjoys similar model theoretical properties. Intuitively, given interpretation I and rule r

with head hr and positive body br, it is known that I |= r whenever I |= hr or I �|= br, thus

enforcing an implicative dependency between br and hr. A similar implicative dependency

is enforced on the structure of ground programs qualified as embeddings: E � r whenever

r ∈E or whenever, for some atom b∈ br, E does not embed any rule having b in its head.

Embeddings are closed under intersection, and the unique minimal embedding can be

computed in a bottom-up fashion by an iterated fixed-point algorithm. An overgrounded

program G of P ∪ F is such that G∪ F is an embedding of P ∪ F .

Ianni et al. (2020) extend the notion of embedding to tailored embeddings . Tailored

embeddings are families of ground programs, equivalent to some P ∪ F , which allow

the possibility of including in the ground program itself a simplified version r′ of

a rule r ∈ ground(P ). A tailored embedding is such that T � r for each r ∈ ground
(P ∪ F ). The operator � takes into account the possibility of simplifications and deletion

of rules. The presence of simplified rules might lead to ground programs, which are not

comparable under plain set containment; however, tailored embeddings are closed under

a generalized notion of containment, and the least tailored embedding can be computed

using a bottom-up fixed-point algorithm. Importantly, an overgrounded program with

tailoring G obtained by the IncrInst algorithm at shot i with input facts Fi, is such that

G∪ Fi is a tailored embedding of P ∪ Fi, and thus AS(G∪ Fi) =AS(P ∪ Fi).

It is worth highlighting that embeddings and tailored embeddings can be seen as

families of relativized hyperequivalent logic programs in the sense of Truszczynski and

Woltran (2009). Indeed, given logic programs P and Q, these are said to be hyper-

equivalent relatively to a finite family of programs F iff AS(P ∪ F ) =AS(Q∪ F ) for

each F ∈F . A member G of a sequence of overgrounded programs is characterized by

being equivalent to a program P relative to (part of) a finite set of inputs F1, . . . , Fn,

similarly to hyperequivalent programs relative to finite sets of inputs. Conditions in

which a form of equivalence is preserved under simplifications, possibly changing the

simplified program signature w.r.t. the original program, were studied by Saribatur and

Woltran (2023).

6.2 Other ASP systems with incremental features

The ASP system clingo (Gebser et al. (2019)) represents the main contribution related to

multi-shot reasoning in ASP. clingo allows to procedurally control which and how parts

of the logic program have to be incremented, updated and taken into account among
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consecutive shots. This grants designers of logic programs a great flexibility; however,

the approach requires specific knowledge about how the system internally holds its com-

putation and about how the domain at hand is structured. It must in fact be noted

that the notion of “incrementality” in clingo is intended in a constructive manner as

the management of parts of the logic program that can be built in incremental layers.

Conversely, in the approach proposed in this paper, the ability of using procedural direc-

tives is purposely avoided, in favor of a purely declarative approach. Incrementality is

herein intended as an internal process to the ASP system, which works on a fixed input

program.

The Stream Reasoning system Ticker of Beck et al. (2017) represents an explicit effort

toward a more general approach to ASP incremental reasoning. Ticker implements the

LARS stream-reasoning formal framework of Beck et al. (2018). The input language

of LARS allows window operators, which enable reasoning on streams of data under

ASP semantics. Ticker implements a fragment of LARS, with no disjunction and no

constraints/odd-cycle negation loops, by using back-end incremental truth maintenance

techniques.

Among approaches that integrate tightly grounding and solving, it is worth mentioning

lazy grounding (see Dal Palù et al. (2009); Lefèvre et al . (2017); Bomanson et al. (2019)).

Note that overgrounding is essentially orthogonal to lazy grounding techniques, since

these latter aim at blending grounding tasks within the solving step for reducing memory

consumption; rather, our focus is on making grounding times negligible on repeated

evaluations by explicitly allowing the usage of more memory, while still keeping a loose

coupling between the two evaluation steps.

6.3 Incrementality in datalog

The issue of incremental reasoning on ASP logic programs is clearly related to the problem

of maintaining views expressed in Datalog. In this respect, Motik et al. (2019) proposed

the so-called delete/rederive techniques, which aim at updating materialized views. In

this approach, no redundancy is allowed, that is, updated views reflect only currently

true logical assertions: this differs from the overgrounding idea, which aims to materialize

bigger portions of logic programs, which can possibly support true logic assertions. Hu

et al. (2022) extended further the idea, by proposing a general method in which modular

parts of a Datalog view can be attached to ad hoc incremental maintenance algorithms.

For instance, one can plug in the general framework a special incremental algorithm for

updating transitive closure patterns, etc.

7 Future work and conclusions

As future work is concerned, we plan to further extend the incremental evaluation capa-

bilities of Incremental-DLV2 , by making the solving phase connected in a tighter way

with grounding, in the multi-shot setting. Moreover, in order to limit the impact of mem-

ory consumption, we intend to study new forgetting strategies to be automatic, carefully

timed, and more fine-grained than the basic ones currently implemented. Besides helping

at properly managing the memory footprint, such strategies can have a positive impact
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also on performance; think, for instance, of scenarios where input highly varies across

different shots: from a certain point in time on, it is very likely that only a small subset

of the whole amount of accumulated rules will actually play a role in computing answer

sets. As a consequence, accumulating rules and atoms may easily lead to a worsening in

both time and memory performance: here, proper forgetting techniques can help at selec-

tively dropping the part of the overgrounded program that constitutes a useless burden,

thus allowing to enjoy the advantages of overgrounding at a much lower cost. A variant

of this approach has been proposed by Calimeri et al. (2024). Investigating the relation-

ship between overgrounded programs and the notion of relativized hyperequivalence of

Truszczynski and Woltran (2009), possibly under semantics other than the answer set

one, deserves further research.
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