Database, featuring high-resolution multi-contrast MRIs, and a comprehensive clinical, behavioral, and demographic dataset, we are developing a hierarchical learning-based software tool to compute maps correlating brain structure-function and individual cognitive function. Our MRI analysis employs a three-compartment model (NNLS>0.96). Functional scores are defined by individualized accuracy during the modified information processing speed task (e.g., m-SDMT). We utilize a Bayesian classifier with explicit Pearson's correlation for tissue classification (BF10>100) to compute an index of the likelihood of correlation with cognitive impairment throughout brain tissue. RESULTS/ANTICIPATED RESULTS: This approach allows us to reveal subtle cognitive changes and their potential links to myelin integrity, offering vital insights into disease progression and management. The m-SDMT strongly correlates with the standard SDMT (r=0.79, p<0.001), confirming reliability as a cognitive assessment tool in clinical and research contexts. Analysis of the COMS dataset emphasized insights into the role of fine myelin structure in MS patients' cognitive functionality. Our findings heightened the pivotal significance of myelin integrity in preserving cognitive abilities and identify disruptions in myelin synthesis and homeostasis as primary contributors to cognitive decline. This discovery stresses the critical role that specialized brain pathways, influenced by myelin integrity, play in the pathology of MS. DISCUSSION/SIGNIFICANCE: This development bridges advanced neuroimaging techniques with practical clinical applications, emphasizing the nuanced role of myelin integrity in MS-related cognitive deficits. Our findings advocate for a multidisciplinary approach to MS management, demanding collaborative workforce development and education in translational science.

424

Deciphering the Immune Landscape in Benign Breast Disease: Implications for Risk Stratification and Breast Cancer Prevention

Matilde Rossi¹, Nicole Cruz-Reyes², Rob Vierkant³, Amy Degnim⁴, Mark Sherman² and Derek Radisky^{2,5}

¹Mayo Clinic; ²Mayo Clinic Florida; ³Mayo Clinic Rochester; ⁴Mayo Clinic Rochester and ⁵Department of Cancer Biology

OBJECTIVES/GOALS: The objective of our research is to define unique molecular and immune markers in benign breast tissue to better identify women at risk of node-positive breast cancer (BC). The goal of the work is to improve individualized risk assessment, to guide targeted prevention and screening recommendations, and to reduce disease incidence and mortality. METHODS/STUDY POPULATION: From the Mayo Clinic's Benign Breast Disease (BBD) cohort, we matched women who developed node-positive breast cancer after a BBD biopsy (cases; n=42) with women who remained cancer-free (controls; n=37), considering patient age and biopsy date. We used NanoString gene expression profiling to identify differentially expressed genes (DEGs) between cases and controls. We optimized a multiplex immunofluorescence (mIF) approach to simultaneously detect multiple markers within single FFPE tissue slides to correlate cells expressing DEGs in relation to innate and adaptive immune effectors. We used tissue segmentation, cell phenotyping, and spatial relationships to define molecular and immune differences between cases and controls. RESULTS/ ANTICIPATED RESULTS: We discovered higher gene expression levels of IRF8 (interferon regulatory factor 8, a factor involved in immune cell differentiation) in controls as compared to cases (p = 0.0024) and found that IRF8 expression is also associated with longer cancer onset times among cases (p = 0.0012). Our pilot mIF experiments revealed higher frequencies of CD4+, CD8+, CD68+, CD20+ and CD11c+ cells in controls compared to cases. We predict that higher IRF8 expression and increased frequencies of immune cells in BBD biopsies indicate a proactive immune environment that may act to prevent cancer development. Furthermore, we predict that our analyses of the spatial localization of these markers by mIF may offer further predictive insight. DISCUSSION/SIGNIFICANCE: Deciphering the relationship between immune alterations in BBD and risk of node positive BC has the potential to improve individualized risk prediction. These insights will foster improved surveillance and informed screening and prevention, ultimately reducing BC incidence and mortality.

425

Anifrolumab for the treatment of refractory cutaneous lupus erythematosus in patients: interim analysis of real-world outcomes

Oluwadamilola Oke¹, Rochelle L. Castillo², Kimberly B. Hashemi², Ahmad Rajeh³, Laura I. Ortiz-López², Karla M. Santiago-Soltero², Neda Shahriari², Avery H. LaChance², Katharina S. Shaw⁴ and Ruth Ann Vleugels²

¹Tufts University; ²Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; ³Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA and ⁴Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA MA

OBJECTIVES/GOALS: * Patients with skin of color (SOC) are disproportionately affected by systemic lupus erythematosus (SLE) and cutaneous lupus erythematosus (CLE). In this study, we aim to address this disparity and characterize the real-world efficacy and tolerability of anifrolumab in CLE patients using validated disease activity instruments. METHODS/STUDY POPULATION: This single-center, prospective observational cohort study includes SLE patients with severe or refractory CLE who have received ≥ 1 dose of anifrolumab. Cutaneous disease activity is assessed periodically at 2, 6, 9, 12, and 18 months using the Cutaneous Lupus Disease Area and Severity Index (CLASI). Adverse events and concurrent treatments are also routinely evaluated. To date, 22 patients have been enrolled, with 6-month follow-up data available for 15. At the time of anifrolumab initiation, 95% of participants had discoid LE (DLE), 60% had mucosal DLE, and 13% had subacute CLE. Nine patients identified as SOC, two as White, and four did not report race/ethnicity. RESULTS/ANTICIPATED RESULTS: A Friedman test showed statistically significant changes over time in CLASI activity score (CLASI-A) ($\chi^2(2) = 20$, p<0.0001) (Figure 1) and CLASI damage score (CLASI-D) ($\chi^2(2)$ =9.5789, p=0.0083) (Figure. To estimate effect sizes, we employed linear mixed models, which demonstrated statistically significant reductions in the CLASI-A score from baseline by an average of 14 points at 2 months (p<0.001) and 18 points at 6 months (p<0.001); notably, a reduction in CLASI-A of 4 is considered clinically meaningful. At 2 months, 20% of patients experienced a 50% or more reduction in CLASI, which increased to 60% of patients at 6 months. Patients on systemic corticosteroids could taper off. Adverse events were minimal and did not lead to treatment discontinuation. Fig. 1:[blob:https://acts.slayte.com/045319b4-7272-4351-a771-78ba9ee57f5c] Fig. 2:[blob:https://acts.slayte.com/