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Abstract

Rating procedure is crucial in many applied fields (e.g., educational, clinical, emergency). In these contexts,
a rater (e.g., teacher, doctor) scores a subject (e.g., student, doctor) on a rating scale. Given raters’ variability,
several statistical methods have been proposed for assessing and improving the quality of ratings. The
analysis and the estimate of the Intraclass Correlation Coefficient (ICC) are major concerns in such cases.
As evidenced by the literature, ICC might differ across different subgroups of raters and might be affected
by contextual factors and subject heterogeneity. Model estimation in the presence of heterogeneity has
been one of the recent challenges in this research line. Consequently, several methods have been proposed
to address this issue under a parametric multilevel modelling framework, in which strong distributional
assumptions are made. We propose a more flexible model under the Bayesian nonparametric (BNP) frame-
work, in which most of those assumptions are relaxed. By eliciting hierarchical discrete nonparametric
priors, the model accommodates clusters among raters and subjects, naturally accounts for heterogeneity,
and improves estimates’ accuracy. We propose a general BNP heteroscedastic framework to analyze
continuous and coarse rating data and possible latent differences among subjects and raters. The estimated
densities are used to make inferences about the rating process and the quality of the ratings. By exploiting
a stick-breaking representation of the discrete nonparametric priors, a general class of ICC indices might
be derived for these models. Our method allows us to independently identify latent similarities between
subjects and raters and can be applied in precise education to improve personalized teaching programs
or interventions. Theoretical results about the ICC are provided together with computational strategies.
Simulations and a real-world application are presented, and possible future directions are discussed.

Keywords: Bayesian hierarchical models; Bayesian mixture models; Bayesian nonparametric models; intraclass correlation
coefficient; rating models

1. Introduction

Rating procedure is crucial in several applied scientific fields, such as educational assessment (Childs &
Wooten, 2023; Chin et al., 2020), psychological and medical diagnoses (D’lima et al., 2024; Królikowska
et al., 2023; Li et al., 2022), emergency rescue (Albrecht et al., 2024; Lo et al., 2021) or grant review
process (Cao et al., 2010; Sattler et al., 2015). It implies that an observer, commonly called a rater
(e.g., teacher, doctor), assesses some subject attribute or latent ability (e.g., student proficiency, patient
severity) on a rating scale. Raters’ variability might pose reliability concerns and uncertainty about the
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quality of ratings (Bartoš & Martinková, 2024; Mignemi et al., 2024; Ten Hove et al., 2021). Several
statistical methods have been proposed to address these issues, they aim to assess or improve the
accuracy of ratings (Casabianca et al., 2015; Gwet, 2008; Martinková et al., 2023; McGraw & Wong,
1996; Nelson & Edwards, 2015). Multilevel modelling serves as a natural statistical framework for rating
data since subjects are either nested within raters or crossed with them (Ten Hove et al., 2021). These
models (e.g., one-way or two-way ANOVA, hierarchical linear or generalized linear models) decompose
the total variance of observed ratings according to different sources of variability, i.e., subjects and raters
(see Martinková & Hladká, 2023, chapter 4, for an overview). The observed rating is commonly broken
down into different effects, for instance, the effect of the subject (i.e., true score, latent ability; Lord &
Novick, 1968), the effect of the rater (i.e., rater’s systematic bias) and a residual part (McGraw & Wong,
1996; Shrout & Fleiss, 1979). This allows us to jointly estimate the subject true score and the reliability of
ratings, which is generally referred to as the proportion of total variance due to the subjects’ variability
(McGraw & Wong, 1996; Werts et al., 1974).

Several methods have been proposed to analyze rating data under the Item Response Theory (IRT)
framework, such as the Generalized Many Facet Rasch Models (GMFRMs; Linacre, 1989; Uto et al.,
2024; Uto & Ueno, 2020), the Hierarchical Raters Models (HRMs; DeCarlo et al., 2011; Molenaar
et al., 2021; Nieto & Casabianca, 2019; Patz et al., 2002) or the Generalized Hierarchical Raters Models
(GHRMs; Muckle & Karabatsos, 2009). These models jointly estimate the subject’s latent ability, rater
effects (e.g., systematic bias and reliability), and item features (i.e., difficulty, discrimination). They
typically rely on the assumption that subjects’ latent abilities are independent and identically distributed
(i.i.d.) from a normal distribution. Other recent research lines concentrate on modeling and estimation
issues in the presence of subjects’ and raters’ heterogeneity (Martinková et al., 2023; Mutz et al., 2012;
Sattler et al., 2015; Ten Hove et al., 2022). These works model systematic differences among subjects
or raters are to allow more accurate estimates and detailed information about the rating procedure.
Individual subjects’ or raters’ characteristics may affect rating reliability, so that more flexible models
result in separate reliability estimates (Martinková et al., 2023). Recent models have been proposed to
address this issue under a parametric multilevel modeling framework (Erosheva et al., 2021; Martinková
et al., 2023; Martinkova et al., 2018; Mutz et al., 2012) in which heterogeneity is addressed as a covariate-
dependent difference among subjects and subject- and rater-specific effects are assumed to be i.i.d
from a normal distribution. The normality assumption made under all the aforementioned models
might be unrealistic under a highly heterogeneous scenario in which possible clusters among subjects
or raters might be reasonably expected and the conditional density of the respective effects might be
multimodal (Paganin et al., 2023; Verbeke & Lesaffre, 1996; Yang & Dunson, 2010). Such patterns have
emerged from real data, showing that both the conditional densities of subjects’ latent ability (e.g., Uto
et al., 2024) and raters’ systematic bias (e.g., Muckle & Karabatsos, 2009) might be multimodal and the
normality assumption violated. In these cases, the data exhibit two levels of heterogeneity. The first,
known as individual heterogeneity, captures the differences between individuals; the second, referred to
as population heterogeneity, pertains to the differences between clusters. Although parametric mixture
models might represent a suitable solution, the number of mixture components needs to be fixed.
Models with different numbers of components have to be fitted and model selection techniques are
required to identify the optimal number of clusters (Bartholomew et al., 2011).

1.1. Our contributions
Our proposal aims to overcome these restrictions under a Bayesian nonparametric (BNP) model, which
naturally accommodates subgroups among students and raters and allows less restrictive distributional
assumptions on the respective effects (Ferguson, 1973; Ghosal & van der Vaart, 2017; Hjort et al., 2010).
BNP inference has led to new developments and advances during the last decades in psychometrics
(Cremaschi et al., 2021; Karabatsos & Walker, 2009; Paganin et al., 2023; Roy et al., 2024; San Martín
et al., 2011; Tang et al., 2017; Wang & Kingston, 2020; Yang & Dunson, 2010), but few contributions have
been proposed for the analysis of rating data (DeYoreo & Kottas, 2018; Kottas et al., 2005; Mignemi et al.,
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2024; Savitsky & Dalal, 2014). We provide a flexible statistical framework for rating models in which
latent heterogeneity among subjects and raters is captured with the stochastic clustering induced by the
Dirichlet Process Mixture (DPM) placed over their respective effects. Modelling subjects’ and raters’
effect parameters as an infinite mixture of some distribution family (e.g., Normal, Gamma) enables the
model to account for possible multimodality without specifying the number of mixture components
(De Iorio et al., 2023; Yang & Dunson, 2010). Although previous works have raised questions about the
identifiability of the parameters in BNP IRT models San Martín et al. (2011), theoretical results by (Pan
et al., 2024) have recently shown that BNP IRT models (e.g., 1PL) are identifiable.

Under the general case of a two-way design (McGraw & Wong, 1996), we specify a measurement
model for the subject latent ability (e.g., student proficiency) in which the rater’s systematic bias (i.e.,
severity) and reliability are consistently estimated. This makes our method more relevant for subject
scoring purposes than the other BNP models proposed for the analysis of rating data (DeYoreo & Kottas,
2018; Kottas et al., 2005; Savitsky & Dalal, 2014). Our proposal may be suitable both for balanced (i.e.,
when all raters score each subject; Nelson & Edwards, 2010, 2015) and unbalanced designs (i.e., when
a subset of raters scores each subject; Martinková et al., 2023; Ten Hove et al., 2022). Furthermore, we
propose a Semiparametric model as a nested version of the BNP in which raters’ effects are i.i.d. from a
unimodal distribution. Very small rater sample sizes may not reasonably be considered representative of
the overall rater population, making the semiparametric specification a potentially more suitable choice.

The advantages of the proposed method are manyfold. First, it relies on more relaxed distributional
assumptions for the subjects’ and raters’ effects, allowing for density estimation using mixtures (Escobar
& West, 1994; Ghosal et al., 1999) and preventing model misspecification issues (Antonelli et al., 2016;
Walker & Gutiérrez-Peña, 2007). As recently argued by Tang et al. (2017), BNP priors might be helpful
in assessing the appropriateness of common parametric assumptions for psychometrics models and
represent a solution under their violation (Antoniak, 1974; Ferguson, 1973). Second, it naturally enables
independent clustering of subjects and raters, bringing more detailed information about their latent
differences (De Iorio et al., 2023; Mignemi et al., 2024). This allows the joint analysis of individual
and population heterogeneity of both subjects and raters. This aspect might be beneficial in the context
of precise education (Coates, 2025; Cook et al., 2018), where information about individual and cluster
differences might be used for implementing more personalized educational programs or interventions
(Hart, 2016; Henderson et al., 2020). Third, exploiting a stick-breaking representation of the Dirichlet
Process(DP) (Ghosal & van der Vaart, 2017; Ishwaran & James, 2001), a general class of ICC indices
might be derived, and different indices might be computed according to distinct clusters of subjects
or raters. Fourth, it is readily extended to account for coarse or ordinal ratings (Goel & Thakor, 2015;
Lockwood et al., 2018). Fifth, the general hierarchical formulation of our model allows comparisons with
other methods and further extensions under unifying modelling frameworks (e.g., generalized linear
latent and mixed model, GLLAMM Rabe-Hesketh & Skrondal, 2016). This facilitates a straightforward
communication between different statistical fields and a wider application of the BNP method.

Model parameters are learned through full posterior sampling. Since most of the parameters in the
model have conjugate prior distributions, full conditional Gibbs sampling is possible for most of the
parameters (Ishwaran & James, 2001). Nonetheless, few parameters do not have conjugate priors and a
derivatives matching technique is involved to approximate the full conditional (Miller, 2019).

1.2. Outline of the article
The outline of the article is as follows: we present the general framework and introduce the model in
Sections 2.1–2.3, respectively; different approximate ICC indices are derived in Section 3 and a reduced
model for one-way designs is detailed in Section 4; prior elicitation and posterior sampling are discussed
and presented in Section 5; simulations and real-world applications are illustrated, respectively, in
Section 6 and Section 7; the model extension for coarse ratings and is presented in Section 8, along
with some numerical results from real and generated data. Advantages and limitations of the proposal
are discussed in Section 9. Further BNP extensions, proofs for ICCs indices, and additional plots are
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given in the Appendices. Additional results on balanced design in small sample sizes, technical details
on out-of-sample predictive performance assessment and posterior computation for this class of models
are presented in the Supplementary Material. We provide an R package RatersBNP to facilitate direct
usage by researchers and practitioners of our method. Code and Supplementary Material are available
online through the link: https://osf.io/3yx4j/?view_only=98c600198a6b4807878989765118f97e.

2. BNP rating model

2.1. General framework
Several model specifications have been proposed for different data structures and designs(Gwet, 2008;
Shrout & Fleiss, 1979; Ten Hove et al., 2022). One-way designs are preferred when rater differences are
typically considered as noise (Martinková et al., 2023), whereas two-way designs are usually involved if
the rater’s effect needs to be identified (Casabianca et al., 2015; Mignemi et al., 2024). Balanced designs
require each subject to be rated by all the raters, while in an unbalanced design each subject is only rated
by a generally small subset of them (Ten Hove et al., 2021). Raters might be considered either fixed or
random (i.e., drawn from the population) depending on the inference the researcher might be interested
in (Koo & Li, 2016).

The unbalanced two-way design with random raters is considered a general case to present our
model. The reasons for this choice are both theoretical and practical. We aim to provide a comprehensive
statistical framework for modeling the dependency of ratings on different categorical predictors (i.e.,
subjects’ and raters’ identities). This setting is a neat compromise between the one-way design, which
implies only one categorical predictor (i.e., subject identity), and more complex dependency structures
that involve more than two identities (i.e., several categorical predictors). However, an example of these
extensions is given in Appendix A.2. Indeed, our proposal might be alternatively reduced or extended
to be suitable for these different levels of complexity. The unbalanced design implies some sparsity
in the co-occurrence between subjects and raters and each subject is rated only by a small subset of
raters (Papaspiliopoulos et al., 2019; Papaspiliopoulos et al., 2023), as a consequence each rater might
score a different number of subjects. This makes the framework general and flexible, it might be seen
as an extension of cross-classified models in which uncertainty is modeled also hierarchically. From a
practical perspective, our choice is reasonable since many large studies and applications use unbalanced
designs to distribute the workload across different raters (Ten Hove et al., 2022).

2.2. Preliminaries on Bayesian nonparametric inference
In this subsection, we briefly review some basic preliminaries on BNP inference providing here a very
general framework which is detailed in Sections below (refer to Ghosal & van der Vaart, 2017 and Hjort
et al., 2010 for exhaustive treatments).

Suppose Y1, . . . ,Yn, are observations (e.g., ratings), with each Yi taking values in a complete and
separable metric space Y. Let Π denote a prior probability distribution on the set of all probability
measures PY such that

Yi∣p iid∼ p, p ∼Π, (1)

for i = 1, . . . ,n. Here p is a random probability measure on Y and Π is its probability distribution
and might be interpreted as the prior distribution for Bayesian inference (De Blasi et al., 2015). The
inferential problem is called parametric when Π degenerates on a finite-dimensional subspace of PY,
and nonparametric when the support of Π is infinite-dimensional (Hjort et al., 2010, chapter 3).
To the best of our knowledge, the vast majority of the contributions present in rating models literature
(Bartoš & Martinková, 2024; Casabianca et al., 2015; Martinková et al., 2023; Martinkova et al., 2018;
Nelson & Edwards, 2010, 2015; Ten Hove et al., 2021, 2022; Zupanc & Štrumbelj, 2018) are developed
within a parametric framework making use of a prior that assigns probability one to a small subset
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of PY. Although Mignemi et al. (2024) recently proposed a Bayesian semi-parametric (BSP) model for
analyzing rating data. Even if they relax the normality assumption for the rater effect (i.e., the systematic
bias), normality is still assumed for the subject true score distribution. This strong prior assumption is
overcome through a BNP approach (Ghosal & van der Vaart, 2017) in the present work.

Dirichlet processes. For the present proposal, we assume Π to be a discrete nonparametric prior and
correspond to a DP which has been widely used in BNP psychometric research (Cremaschi et al.,
2021; Karabatsos & Walker, 2009; Paganin et al., 2023; Yang & Dunson, 2010). Given Π = DP(αP0),
p is a random measure on Y following a DP with concentration parameter α > 0 and base measure
P0. This implies that for every finite measurable partition {B1, . . . ,Bk} of Y, the joint distribution
(p(B1), . . . ,p(Bk)) follows a k-variate Dirichlet distribution with parameters αP0(B1), . . . ,αP0(Bk):

(p(B1), . . . ,p(Bk)) ∼Dir(αP0(B1), . . . ,αP0(Bk)). (2)

The base measure P0 is our prior guess at p as it is the prior expectation of the DP, i.e., E[p] = P0. The
parameter α (also termed precision parameter) controls the concentration of the prior for p about P0.
In the limit of α→∞, the probability mass is spread out and p gets closer to P0; on the contrary, as α→ 0,
p is less close to P0 and concentrates at a point mass.

Dirichlet process mixtures. Given the discrete nature of the DP, whenever Y = R it is not a reasonable
prior for the real-valued random variable Y. Nonetheless, it might be involved in density estimation
through hierarchical mixture modeling (Ghosal & van der Vaart, 2017). Let f (⋅; θ̃) denote a probability
density function for θ̃ ∈Θ ⊆R, we modify (1) such that for i = 1, . . . ,n:

Yi∣θ̃i
ind∼ f (⋅; θ̃i), θ̃i∣p iid∼ p, p ∼DP(αP0). (3)

The realizations of the DP are almost surely (a.s.) discrete which implies a positive probability that
θ̃i = θ̃i′ , for i ≠ i′. Indeed, a random sample (θ̃1, . . . ,θ̃n) from p features 1 ≤Kn ≤ n different unique values
(θ̃∗1 , . . . ,θ̃∗Kn) and leads to a random partition of {1, . . . ,n} into Kn blocks such that θ̃i ∈ (θ̃∗1 , . . . ,θ̃∗Kn) for
i = 1, . . . ,n. This naturally induces a mixture distribution for the observations Y1, . . . ,Yn with probability
density:

f (Y) = ∫ f (Y ; θ̃)p(dθ̃). (4)

To provide some intuition, by using a DP as a prior for an unknown mixture distribution we mix
parametric families nonparametrically (Gelman et al., 2014). This model specification introduced by
Lo (1984) and termed DPM provides a BNP framework to model rating data.

2.3. Proposed model
Consider a subject i = 1, . . . ,I, whose attribute is independently scored by a finite random subset of
ratersRi ⊆ {1, . . . ,J} on a continuous rating scale. We assume that the observed rating Yij ∈R depends
independently on subject i and rater j ∈ Ri. The effect of the former is interpreted as i’s true score and
is the rating procedure’s focus. We let the residual part, that is the difference between the true and the
observed score, depend on rater j’s effects, i.e., systematic bias and reliability.

Modelling ratingYij. We specify the following decomposition of rating Yij:

Yij = θi+τj+ εij, i = 1, . . . ,I; j ∈ Ri. (5)

Here θi captures the subject i’s latent “true” score and τj+ εij is the difference between the observed and
the true score, representing the error of rater j. The true score θi might be regarded as the latent consensus
across the ratersRi on the attribute of subject i.We assume these terms to be mutually independent.

https://doi.org/10.1017/psy.2025.10035 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10035


1450 Giuseppe Mignemi and Ioanna Manolopoulou

Yij

(τj,σj
-2)

ϑi(μi,ωi
-2)

(ηj,ϕj
-2,γj, βj

-1)

I
J

G0

H0

α1

α2

G

H

Figure 1. Graphical representation of the dependencies implied by the model. The boxes indicate replicates, the four outer plates

represent, respectively, subjects and raters, and the inner grey plate indicates the observed rating.

Modelling subject’s true score. For each subject i = 1, . . . ,I we assume that the true score θi is indepen-
dently distributed following a normal distribution with mean μi and variance ω2

i :

θi∣μi,ω2
i

ind∼ N(μi,ω2
i ). (6)

Here μi is the mean of subject i’s true score, ω2
i is its variability and we assume them to be independent.

Conditional on the rater’s error, higher values of θi imply higher levels of the subjects’ attribute
(e.g., higher student proficiency); on the contrary lower values indicate poor levels of their attribute
(e.g., poor student proficiency).

We specify a DP prior with precision parameter α1 and base measure G0 for the pair (μi,ω2
i ),

i = 1, . . . ,I:

(μi,1/ω2
i )∣G iid∼ G, G ∼DP(α1G0). (7)

We choose G0 =N(μ0,S0)×Ga(w0,w0/W0), where μ0 and S0 are the mean and variance of the normal
distribution and w0 and W0 are, respectively, the shape and the mean parameters of the gamma. We
note that G is a.s. discrete with a non-zero probability of ties, such that different subjects will share
the same values of (μi,1/ω2

i ) with a probability greater than zero, that is P[(μi,1/ω2
i ) = (μi′,1/ω2

i′)] > 0,
for i ≠ i′. This discreteness property naturally induces clustering across subjects and leads to a location-
scale DPM prior for θi. That is, this formulation can capture clusters of subject abilities. Figure 1 shows
the hierarchical dependence of subjects’ true scores.

Modelling rater’s bias and reliability. For each rater j = 1, . . . ,J, who scores a subset of subjects
Sj ⊆ {1, . . . ,I} ∶ j ∈ Ri, the difference between the observed rating Yij and the subject’s true score θi,
i ∈ Sj, is decomposed into the rater effects τj and εij (5), assuming τj⊥⊥εij. We model τj to be normally
distributed with mean ηj and variance ω2

j :

τj∣ηj,ϕ2
j

ind∼ N(ηj,ϕ2
j ), j = 1, . . . ,J. (8)

Here ηj and ϕ2
j are the mean and the variance of the rater j’s effect τj. It captures j’s specific systematic

bias, i.e., the mean difference between the observed rating Yij and the subject’s true score θi, i ∈ Sj. Given
two raters such that τj < τj′ , j is said to be more strict and expected to give systematically smaller ratings
than j on average.
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The residual term εij is assumed to be i.i.d. for i ∈ Sj following a normal distribution with zero mean
and variance σ2

j . We let this parameter vary across raters and assume 1/σ2
j follows a gamma distribution

with shape and rate parameters γj,γj/βj, respectively:

εij∣σ2
j

iid∼ N(0,σ2
j ), i ∈ Sj, (9)

1/σ2
j ∣γj,βj

ind∼ Ga(γj,γj/βj), j = 1, . . . ,J. (10)

Under this parametrization, 1/σ2
j is the rater j’s specific reliability with mean βj and γj is the shape

parameter. We prefer this parametrization for interpretability purposes, which implies a simpler
notation below. Conditional on subjects’ true score θi, i ∈ Sj, larger values of σ2

j imply more variability
across the ratings given by j and might be interpreted as a poorly consistent rating behaviour. On the
contrary, smaller values of σ2

j indicate less variability and higher consistency for j across subjects. As a
consequence, the parameter 1/σ2

j might be equivalently referred to as the rater-specific precision.
We specify a DP prior with concentration parameter α2 and base measure H0 for the four-

dimensional vector (ηj,1/ϕ2
j ,γj,1/βj), j = 1, . . . ,J:

(ηj,1/ϕ2
j ,γj,1/βj)∣H iid∼ H, H ∼DP(α2H0). (11)

We assume mutual independence for the elements of the vector and choose H0 = N(η0,D0) ×
Ga(a0,a0/A0) ×Ga(b0,b0/B0) ×Ga(m0,m0/M0), where η0 and D0 are mean and scale parameters,
respectively; a0,b0,m0 are shape parameters and A0,B0,M0 are mean parameters. This formulation
induces a DPM prior for raters’ bias and reliability τj and 1/σ2

j . Figure 1 gives a graphical representation
of the model. The independence assumption might be relaxed by employing a suitable multivariate base
measure accounting for possible dependencies among the four elements of the vector. However, this
implies a more complex specification, which is beyond the purpose of this work. Further constraints on
raters’ systematic bias τ are needed for identifiability purposes which are discussed in Section 2.5, after
presenting the stick-breaking representation.

2.4. Stick-breaking representation
The random probability measures G and H are assigned discrete priors, as a consequence they might be
represented as a weighted sum of point masses:

G =∑
n≥1

π1nδξn, (12)

H =∑
k≥1

π2kδζk, (13)

where the weights {π1n}∞n=1 and {π2k}∞k=1 take values on the infinite probability simplex and δx(⋅) stands
for the Dirac measure and denotes a point mass at x. Note that, we index the components of the infinite
mixture (12) corresponding to the subjects with n = 1, . . . ,∞, whereas k = 1, . . . ,∞ is used for that
corresponding to the raters (13). The random vectors ξn = (μn,ω2

n), n = 1, . . . ,∞ are i.i.d. from the base
measure G0, ζk = (ηk,ϕ2

k,γk,βk), k = 1, . . . ,∞ are i.i.d. from the base measure H0, and both vectors are
assumed to be independent of the corresponding weights. This makes clear why the expectations of
the DPs are G0 and H0, respectively, and are said to be our prior guess at G and H (see Section 2.2).

This discreteness property of the DP allows us to define G and H through the stick-breaking
representation introduced by Sethuraman (1994):

G =∑
n≥1

π1nδξn, π1n =V1n∏
l<n
(1−V1l), V1n

iid∼ Beta(1,α1), ξn
iid∼ G0, (14)

and

H =∑
k≥1

π2kδζk, π2k =V2k∏
l<k
(1−V2l), V2k

iid∼ Beta(1,α2), ζk
iid∼ H0. (15)
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This construction of the DP implies that, for each subject i = 1, . . . ,I, (μi,ω2
i ) = ξn with probability

π1n = V1n∏l<n(1−V1l). Equivalently, for each rater j = 1, . . . ,J, the probability that (ηj,ϕ2
j ,γj,βj) = ζk

is given by π2k =V2k∏l<k(1−V2l).
Moments of student latent true score θi. The mean and the variance of the subject’s true score θi, i= 1, . . . ,I,
under a DP(α1G0) prior are:

E[θi∣G] = μG =∑
n≥1

π1nμn, Var[θi∣G] = ω2
G =∑

n≥1
π1n(μ2

n+ω2
n)−μ2

G, (16)

where μn and ω2
n are the mean and the variance of θi for the nth component of the mixture. Here μG is the

weighted average across components and captures the mean true score across subjects. The parameter
ω2

G is the conditional variance of the infinite mixture and indicates the variability of true scores across
subjects.

Moments of raters’ bias τj. The mean and the variance of the rater’s bias τj, j = 1, . . . ,J, under a DP(α2H0)
prior are:

E[τj∣H] = ηH =∑
k≥1

π2kηk, Var[τj∣H] = ϕ2
H =∑

k≥1
π2k(η2

k+ϕ2
k)−η2

H, (17)

where ηk and ϕ2
k are the mean and the variance of τj for the kth component of the mixture. Here ηH and

ϕ2
H capture the mean and the variance of the systematic bias within the general population of raters.

Moments of raters’ reliability 1/σ2
j . Raters’ residual mean is fixed to zero by the model (9), that is E[ε] = 0;

mean and variance of raters reliability 1/σ2
j under a DP(α2H0) prior are:

E[1/σ2
j ∣H] = βH =∑

k≥1
π2kβk Var[1/σ2

j ∣H] = ψ2
H =∑

k≥1
π2k(β2

k+ψk)−β2
H, (18)

where βH captures raters’ weighted average reliability and ψ2
H indicates the total reliability variance

across them. Here βk and ψk = β2
k/γk are, respectively, the mean and the variance of 1/σ2

j for the kth
component of the mixture.

Note that we model the independent rater’s features, i.e., bias and reliability, by placing the same
DP(α2H0) prior. In other terms, τj and 1/σj are two independent elements of the same vector drawn
from H.

Finite stick-breaking approximation. The recursive generation defined in (14) and (15) implies a decreas-
ing stochastic order of the weights {π1n}∞n=1 and {π2k}∞k=1 as the indices n and k grow. Considering
the expectations E[V1n] = 1/(1+ α1) and E[V2k] = 1/(1+ α2) it is clear that the rates of decreasing
depend on the concentration parameters α1 and α2, respectively. Values of these parameters close to
zero imply a mass concentration on the first couple of atoms, with the remaining atoms being assigned
small probabilities; which is consistent with the general formulation of the DP discussed in Section 2.2.
Given this property of the weights, in practical applications the infinite sequences (12) and (13), are
truncated at enough large values of R ∈N:

G =
R
∑
n=1

π1nδξn, H =
R
∑
k=1

π2kδζk . (19)

We use this finite stick-breaking approximation proposed by Ishwaran & James (2001) to let V1R =V2R =
1, and discard the terms R+1, . . . ,∞, for G and H.

The moment formulas (16), (17), and (18) are readily modified accordingly to the truncation and
computed as finite mixture moments.

Nested versions. Semiparametric nested versions of the BNP model might be specified in which
alternatively G or H are degenerate on a single component and R = 1 for one of them in the finite
approximation. That is, subjects or raters are all clustered together. For instance, for very small values
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of J (i.e., raters’ sample size), raters might not be reasonably considered a representative sample of their
population and limited information is available for drawing inference about it. Under these scenarios,
raters’ effects might be assumed to be i.i.d. from a normal distribution.

2.5. Semi-centered DPM
Hierarchical models (e.g., GLMM, Linear Latent Factor models), might suffer from identifiability
issues, and constraints on the latent variable distributions are needed for consistently identify and
interpret model parameters (Bartholomew et al., 2011; Gelman & Hill, 2006; Yang & Dunson, 2010).
More specifically, under the linear random effects models a standard procedure to achieve model
identifiability is to constrain the mean of the random effects to be zero (Agresti, 2015). We aim
to consistently involve the same mean constraint for our proposal and allow straightforward and
interpretable comparisons between the parametric and the nonparametric models. Similar to Yang &
Dunson (2010), we encompass a DPM-centered prior such that the expected value of the rater systematic
bias is fixed to zero, E[τj] = 0, for j = 1, . . . ,J.

Since the rating process focuses on the subjects’ true scores, it might be more reasonable to centre the
DPM for the raters’ effects and let the model estimate the mean of the true scores μG. Given that the mean
of the raters’ residual is fixed to zero in (9), the mean raters’ bias needs to be fixed. We adapt the centering
procedure based on a parameter-expanded approach proposed by Yang et al., 2010 and Yang & Dunson,
2010 to our proposal. We specify a semi-centered DPM (SC-DPM) involving an expansion in raters’
systematic bias {τ∗j }J

1, such that their mean η∗H = 0 a.s. The expanded-parameters (8) can be expressed as

τ∗j = τj−ηH, τj∣ηj,ϕ2
j

ind∼ N(ηj,ϕ2
j ), j = 1, . . . ,J, (20)

and the decomposition of rating Yij (5) becomes

Yij = θi+τ∗j + εij, i = 1, . . . ,I; j ∈ Ri. (21)

Given the location transformation in (20) the expectation of the expanded parameters is zero:

E[τ∗j ∣H] = 0. (22)

It is worth noting that the centering needs only to concern the location of the systematic bias and not
its scale as it is in the centered-DPM introduced by Yang & Dunson (2010), which explains the term
“semi-centring” adopted here to avoid confusion. Accordingly, under the semiparametric specifications,
the only location of the parametric distribution needs to be fixed; a zero mean normal distribution might
be a suitable solution.

3. BNP intra-class correlation coefficient

Intra-class correlation coefficient (ICC) is widely used in applied statistics to quantify the degree
of association between nested observations (Agresti, 2015; Gelman et al., 2014) and to get relevant
information about the level of heterogeneity across different groups (Mulder & Fox, 2019). Indeed,
it is commonly applied in psychometrics to assess the consistency of ratings given by different raters
to the same subject (Erosheva et al., 2021; Martinková et al., 2023; Nelson & Edwards, 2010, 2015;
Ten Hove et al., 2021, 2022). We provide a within-subject correlation structure (for any subject and
a given raters pair) ICCj,j′ based on the BNP model presented in Section 2.3. This formulation relates
to those proposed in psychometric literature regarding the ICC1 (e.g., Bradlow et al., 1999; De Boeck,
2008; Erosheva et al., 2021; Fox & Glas, 2001; Shrout & Fleiss, 1979; Werts et al., 1974), but doesn’t
rely on strong distributional assumptions and naturally accommodates for both subjects and raters
sub-populations. We also propose a lower bound ICCA for the expected ICC which might be used for
inference purposes about the general population of raters. An exact formula for the ICC suitable for
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the reduced one-way designs is proposed in Section 4.1. We propose a BNP class of ICCs which are
a generalization of those recently proposed by (Lin et al., 2025) and Ten Hove et al. (2021) under the
generalizability theory.

The paragraphs below provide preliminary information on computing the ICC under a parametric
framework necessary to detail the BNP extension.

Parametric ICC. Under a parametric standard framework, i.e., equipping the parameters with finite-
dimensional priors, the ICC is defined as the proportion of variance of the ratings due to the subjects’
true score:

ICC = ω2
i

ω2
i +ϕ2

j +σ2
j
= ω2

ω2+ϕ2+σ2 , (23)

assuming ω2
i = ω2, for i = 1, . . . ,I; ϕ2

j = ϕ2 and σ2
j = σ2, for j = 1, . . . ,J. Given two raters j,j′ ∈ Ri, j ≠ j′

who rate the same subject i, the ICC is the correlation between the ratings Yij and Yij′ . Note that under
this formulation ICC ∈ [0,1], it can not capture any negative correlations. This index is also interpreted
as the inter-rater reliability of a single rating and is also indicated by IRR1 (see Erosheva et al., 2021 for
further details). The homoscedastic assumption may be relaxed and raters’ residual variance might be
let to vary across raters according to (9) and (10), given γj = γ and βj = β for j = 1, . . . ,J.

Given that σ2
j ≠ σ2

j′ for j ≠ j′, it is possible to compute as many ICCs indices as possible pairs of raters,
i.e., J(J −1)/2. In such cases the resulting ICCj,j′ is the conditional correlation between the the ratings
given to a random subject by raters j and j′, given the other parameters:

ICCj,j′ =
ω2

√
ω2+ϕ2+σ2

j

√
ω2+ϕ2+σ2

j′
. (24)

A more general index accounting for all raters’ residual variance might be more useful in applications.
Despite the expected ICC, i.e., E[ICC∣ω2,ϕ2], might represent a neat solution, it is not available in a close
form and the posterior mean taken over the MCMC might be prohibitive in large scale assessments
since there are J(J−1)/2 ICCs indices to compute for each iteration. An alternative index that might be
readily computed is the ICC between two raters with average reliability. That is, we replace σ2

j with its
expectation, i.e., E[σ2]:

ICCA =
ω2

ω2+ϕ2+E[σ2] . (25)

It gives the correlation between the ratings given to the same random subject i = 1, . . . ,I by two random
raters j,j′ ∈ Ri, j ≠ j′, satisfying σ2

j = σ2
j′ = E[σ2]. That is the correlation between two ratings given

to the same random student by two raters having an average reliability level. We note that they are
different quantities: the expected pairwise ICC and the pairwise ICC between two mean reliable raters.
Nonetheless, relying on a theoretical result that is given below, we can use the ICCA to have information
about the other.

Given that the rater’s reliability is assumed to follow a gamma distribution (9), the inverse follows an
inverse gamma distribution σ2

j ∣γ,β
ind∼ IGa(γ,γ/β) for j = 1, . . . ,J, whose expected value is only defined

for γ > 1. In such cases we reparametrize (9):

1/σ2
j ∣γ,β iid∼ Ga(1+γ, 1+γ

β
), j = 1, . . . ,J. (26)

This specification ensures the expectation of raters’ residual variance to be defined for any γ > 0 and
implies

E[σ2
j ∣γ,β] = σ̃ = 1+γ

βγ
. (27)
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Figure 2. Illustrative examples of empirical ICCA and E[ICC] across independent datasets and under different reliability scenarios. The

grey balls indicate the mean pairwise ICC between each rater and the others; the black triangles represent the computed ICCA.

It is the mean raters’ residual variance and its derivation is given in the Supplementary Material. The
ICCA under the new parametrization is

ICCA =
ω2

ω2+ϕ2+ σ̃
. (28)

Figure 2 shows the difference between the empirical mean pairwise ICC between each rater (red solid
line) and the others and the computed ICCA (blue solid line) across independent datasets and different
reliability scenarios. The mean difference between these two indices is consistently tight, and it seems
to be narrower at increasing reliability levels.

BNP ICC. The moments defined in (16), (17), and (18) account for heterogeneous populations of
subjects and raters and can be used to compute a flexible ICC.

Proposition 1. Given a random subject i = 1, . . . ,I, independently scored by two random raters
j,j′ ∈ Ri,j ≠ j′, the conditional correlation between the scores Yij and Yij′ is

ICCj,j′ = Corr(Yij,Yij′ ∣G,H,σ2
j ,σ2

j′) =
ω2

G√
ω2

G+ϕ2
H +σ2

j

√
ω2

G+ϕ2
H +σ2

j′
. (29)

The proof is reported in Appendix B. However, a more general index, unconditioned on specific
raters’ parameters, might be more useful in practice. For this reason, we propose a ICCA index for this
BNP class of models. To this aim, the variance of subjects’ true score ω∗G and the variance of raters’
systematic bias ϕ2

H can be directly plugged into the ICC formula. Since we have heteroscedasticity across
raters, we need to take the expectation of raters’ residual variance E[σ2∣H] = σ̃∗H . Similarly to the above
parametric case, we reparametrize (10) with:

1/σ2
j ∣γ,β ind∼ Ga(1+γj,

1+γj

βj
), j = 1, . . . ,J, (30)
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and define:

E[σ2
j ∣G,H] = E[σ2

j ∣H] = σ̃H =∑
k≥1

π2kσ̃k, (31)

where σ̃k = (1+γk)/(βkγk) is the mean residual variance for the kth component of the infinite mixture.
As a result, the ICCA for the BNP models might be computed as reported below.

Proposition 2. Given a random subject i = 1, . . . ,I, independently scored by two random raters
j,j′ ∈ Ri, j ≠ j′, satisfying σ2

j = σ2
j′ = σ̃H:

(i) the conditional correlation between the ratings Yij and Yij′ is

ICCA = Corr(Yij,Yij′ ∣G,H,σ2
j = σ2

j′ = σ̃H) =
ω2

G
ω2

G+ϕ2
H + σ̃H

; (32)

(ii) the ICCA is the lower bound of the conditional expectation of the correlation between the ratings
Yij and Yij′ (ICC):

ICCA ≤ E[Corr(Yij,Yij′ ∣G,H)] = E[ICC∣G,H]. (33)

The proofs are reported in Appendix B. The index therefore accounts for the heterogeneity of
the two populations (subjects and raters). It reduces to the parametric ICCA (23) whenever ω2

n = ω2,
for n = 1, . . . ,∞; ϕ2

k = ϕ2 and σ̃k = σ̃, for k = 1, . . . ,∞; ICCA (32) is a generalization of its parametric
version (23). The ICCA might reveal valuable information in inter-rater reliability or agreement analysis.
For instance, when the ICC is used as an inter-rater reliability index (Erosheva et al., 2021; Martinková
et al., 2023; Ten Hove et al., 2022), the ICCA is the lower bound of the expected inter-rater reliability of
a single rating.

In this work, we mainly focus on the population level ICCA, but different ICC indices can be
computed and compared under this framework by conditioning on different subjects or raters’ clusters.

We note that this class of ICCs generalizes those proposed by Lin et al. (2025) for multilevel data.
As a consequence, propositions (1) and (2) hold for standard parametric multilevel models (Ten Hove
et al., 2021, 2022). The BNP ICCs we propose account for heteroskedasticity across raters and naturally
accommodate multiple clusters of both subjects and raters, whereas the standard ICCs commonly do
not encompass these heterogeneous aspects.More details on these aspects are given in Appendix A.2.

4. Reduced model for one-way designs

One-way designs are common when raters’ identity is unknown and the systematic biases {τj}J
1 can not

be identifiable. It might be seen as a limiting case in which each rater only scores one subject, i.e., ∣Sj∣ = 1.
Some blocks of the model in Section 2.3 reduce as briefly presented below. Note that we model

subjects’ true score θi as in the main model (6) and (7).

Modelling ratingYij. We decompose the observed rating Yi as

Yij = θi+ εij, i = 1, . . . ,I; j ∈ Ri, (34)

Here εij is the error of rater j in rating the subject i and it is the difference between the observed score
Yij and the subject true score θi.

Modelling raters’ errorεn For each rating Yij we assume that the rater’s error εij is drawn independently
from a normal distribution with mean ηij and variance ϕ2

ij:

εij∣ηij,ϕ2
ij

ind∼ N(ηij,ϕ2
ij), i = 1, . . . ,I; j ∈ Ri. (35)
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We specify a DP prior with concentration parameter α2 and base measure H0 for the two-dimensional
vector (ηij,ϕ2

ij), for i = 1. . . ,I and j ∈ Ri:

(ηij,ϕ2
ij)∣H iid∼ H, H ∼DP(α2H0). (36)

We assume ηij,ϕ2
ij to be independent and choose H0 = N(η0,D0) × IGa(a0,A0), where η0 and D0 are

mean and scale parameters, respectively. This formulation induces a DPM prior for raters’ error εij.

4.1. Identifiability and ICC
The moments of the error εij, i = 1. . . ,I and j ∈ Ri, are, respectively:

E[εij∣H] = ηH =∑
k≥1

π2kηk, Var[εij∣H] = ϕ2
H =∑

k≥1
π2k(η2

k+ϕ2
k)−η2

H. (37)

The centering strategy detailed in Section 2.5 is here used and a SC-DPM is here placed over εij:

ε∗ij = εij−ηH, εij∣ηij,ϕ2
ij

ind∼ N(ηij,ϕ2
ij), i = 1, . . . ,I; j ∈ Ri. (38)

Under this parameter-expanded specification, the decomposition of rating Yij (34) becomes

Yij = θi+ ε∗ij , i = 1, . . . ,I; j ∈ Ri. (39)

Given the location transformation in (38), the expectation of the residuals is zero:

E[ε∗ij ∣H] = 0. (40)

For the one-way designs, the exact general ICC might be consistently estimated.

Proposition 3. Given a random subject i, i = 1, . . . ,I, independently scored by two random raters j,j′ ∈Ri,
j ≠ j′, the conditional correlation between the ratings Yij and Yij′ is

Corr(Yij,Yij′ ∣G,H) = ICC = ω2
G

ω2
G+ϕ2

H
. (41)

The proof is given in Appendix B. Conditioning on different clusters of subjects or raters and different
ICC formulations lead to possible comparisons among clusters similar to the main model.

5. Posterior inference

The parameters of the DPs’ base measures (i.e., G0, H0) and the respective concentration parameters
α1 and α2 have to be assigned either a value or a hyperprior to complete the model specification and
conduct posterior inference. This section outlines our choices about the hyperprior and the posterior
computation. Several parameter specifications may be considered for the DP parameters (Ghosal & van
der Vaart, 2017; Hjort et al., 2010) as they may be assigned a prior or fixed in advance. We placed a
hyperprior on those parameters and let the data inform their parameters.

Under this model specification, the most natural choices to compute the posterior are conditional
sampling schemes, such as Blocked Gibbs Sampling, which rely upon the approximate stick-breaking
construction of the DP. They directly involve the prior in the sampling scheme avoiding its marginaliza-
tion and accommodating hyperprior for the base measures (Ishwaran & James, 2001). They also come
with further advantages, such as an improved mixing property, better interpretability of the mixture
parameters (Gelman et al., 2014; Hjort et al., 2010) and the direct computation of the ICC. Indeed,
avoiding the prior marginalization, the moments (16), (17), and (18) can be readily computed and
plugged in the ICC formula (32).

However, tailored considerations have to be made in practical applications based on specific data
features.
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5.1. Hyperprior specification
Eliciting the concentrations ‘and base measures’ parameters has a role in controlling the posterior
distribution over clustering (Gelman et al., 2014). Small values of the variance parameters of the base
measures G0, and H0 favor the clustering of subjects and raters, respectively, to different clusters. On
the contrary, larger values of G0 and H0 variances favor the allocation of different subjects and raters,
respectively, to the same cluster.

We improve model flexibility by placing a prior on the base measures G0 and H0, and the concen-
tration parameters α1 and α2 letting them be informed by the data. For the subjects’ true score base
measure G0 =N(μ0,S0)×Ga(w0,wo/W0) the following hyperpriors are specified:

μ0 ∼N(λμ0,κ
2
μ0), S0 ∼ IGa(qS0,QS0), w0 ∼Ga(qw0,Qw0), W0 ∼ IGa(qW0,QW0).

We let λμ0 be the rating scale’s center value (e.g., λμ0 = 50 on a 1-100 rating scale), κ2
μ0 = 100 and the param-

eters qw0,Qw0,qW0,QW0 equal to 0.005. For the raters’ base measure H0 = N(η0,D0)×Ga(a0,a0/A0)×
Ga(b0,b0/B0)×Ga(m0,m0/M0), the following hyperpriors are specified:

η0 ∼N(λη0,κ
2
η0), D0 ∼ IGa(qD0,QD0), a0 ∼Ga(qa0,Qa0), A0 ∼ IGa(qA0,QA0),

b0 ∼Ga(qb0,Qb0), B0 ∼ IGa(qB0,QB0), m0 ∼Ga(qm0,Qm0), M0 ∼ IGa(qM0,QM0).

Where λη0 = 0, κ2
η0 = 100, and the other hyperparameters are fixed to 0.005. The concentration parameters

α1 and α2 are assumed to follow, respectively, a gamma distribution:

α1 ∼Ga(a1,A1) α2 ∼Ga(a2,A2).

where a1,A1,a2,A2 are fixed to 1. The values we fix for the hyperprior’s parameters are very common
in literature and they are consistent with those proposed by many other studies on BNP models (e.g.,
Gelman et al., 2014; Heinzl et al., 2012; Mignemi et al., 2024; Paganin et al., 2023; Yang & Dunson, 2010).

5.2. Posterior computation
Since most of the parameters in the model have conjugate prior distributions, a Blocked Gibbs sampling
algorithm was used for the posterior sampling (Ishwaran & James, 2001). No conjugate priors are
available for the gamma’s shape parameters (e.g., γk, k = 1, . . . ,R, a0, b0), thus we approximate the
full conditionals using a derivatives-matching procedure (D-M) which is involved as an additional
sampling step within the MCMC. This method has several advantages over other sampling schemes (e.g.,
adaptive rejection sampling or Metropolis-Hasting) in terms of efficiency, flexibility, and convergence
property (Miller, 2019). We use the same D-M algorithm introduced by Miller, 2019 to approximate the
posterior of the gamma shape parameters of the base measures, i.e., w0,a0,b0,m0 and a modified version
for the parameters γk, k = 1, . . . ,R, since the parametrization (30) is adopted. We detail this adapted
version of the D-M algorithm in the paragraph below and provide the complete Gibbs sampling in the
Supplementary Material.

The notation on the independent allocation of subjects and rater to the corresponding clusters is
introduced here. Let c1i denote the cluster allocation of subject i = 1, . . . ,I, with c1i = n whenever ξi = ξn,
n = 1, . . . ,R. Given the finite stick-breaking approximation detailed in Section 2.4, R is the maximum
number of clusters. We indicate the set of all the subjects assigned to the nth cluster with C1n and with
N1n = ∣C1n∣ its cardinality. Accordingly, let c2j denote the cluster allocation of rater j = 1, . . . ,J, such that
c2j = k whenever ζ∗j = ζ∗k , k = 1, . . . ,R. The set of all the raters assigned to the kth cluster is denoted by
C2k with N2k = ∣C2k∣ being its cardinality.

Derivatives-matching procedure. Since no conjugate priors are available for the gamma’s shape parame-
ters {γk}R

1 , we involve, for each of these parameters, a D-M procedure to find a gamma distribution that
approximates the full conditional distribution of these parameters, when their prior is also a gamma
distribution (Miller, 2019).
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We aim to approximate p(γk∣⋅), i.e., the true full conditional density of γk, k = 1, . . . ,R, by finding U1k
and U2k such that

p(γk∣⋅) ≈ g(γk∣U1k,U2k), k = 1, . . . ,R, (42)

where g(⋅) is a gamma density, U1k and U2k are shape and rate parameters, respectively. The algorithm
aims to find U1k and U2k such that the first and the second derivatives of the corresponding log densities
of p(γj∣⋅) and g(γk∣U1k,U2k) match at a point γk. Miller (2019) suggest to choose γk to be near the
mean of p(γk∣⋅) for computational convenience. The approximation is iteratively refined by matching
derivatives at the current g(⋅)mean as shown by Algorithm 1. We adapt the algorithm to our proposal,
more specifically we consider the model involving the shape constraint introduced in equation (30).
When this constraint is not imposed, the original algorithm by Miller (2019) may be directly used.

We denote with X1k and X2k the sufficient statistics for γk corresponding to the kth raters’ mixture
component. For the implementation of the Algorithm 1 we set the convergence tolerance ε0 = 10−8

and the maximum number of iterations M = 10. Here ψ(⋅) and ψ′(⋅) are the digamma and trigamma
functions, respectively.

The parameters U1k and U2k, returned by the algorithm, are used to update
γk ∼ Ga(U1k,U2k), k = 1, . . . ,R, through the MCMC sampling. The derivation of the algorithm is given
in the Supplementary Material.

Algorithm 1 D-M Algorithm

X1k←∑j∈C2k
log(1/σ2

j )
X2k←∑j∈C2k

1/σ2
j

Tk← X2k/βk−X1k+N2k log(βk)−N2k
U1k← b0+N2k/2
U2k← B0+Tk
for m = 1, . . . ,M do

γk =U1k/U2k
U1k← b0+N2k γ2

k ψ′(1+γk)−N2k γ2
k/(1+γk)

U2k← B0+(U1k−b0)/γk N2k log(1+γk)+N2k ψ(1+γk)+Tk
if ∣γk/(U1k/U2k)∣ < ε0 then

return U1k,U2k
end if

end for

5.3. Post-processing procedures
Semi-centered DPM processes. The sampling scheme detailed in the Supplementary Material provides
draws under the noncentered DPM model. However, as discussed in Section 2.5, it is not identifiable,
and we need to post-process the MCMC samples to make inferences under the SC-DPM parameter-
expanded model Yang & Dunson (2010). Since it is a semi-centered model that naturally constrains
the raters’ systematic bias {τj}J

1 to have zero mean, a few location transformations are needed. After
computing ηH according to 17 for each iteration, the samples of μ0,μG,{θi}I

1, and {τj}J
1 are computed:

μ∗0 = μ0+ηH,

μ∗G = μG+ηH,

θ∗i = θi+ηH, for i = 1, . . . ,I;
τ∗j = τj−ηH, for j = 1, . . . ,J.
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The first three are due to the location transformation of τj and have to be considered for inference
purposes under the SC-DPM model.

Posterior densities and clusters point estimates. Each density equipped with a BNP prior might be
monitored along the MCMC by a dense grid of equally spaced points (Gelman et al., 2014; Mignemi
et al., 2024; Yang & Dunson, 2010). Each point of the grid is evaluated according to the mixture resulting
from the finite stick-breaking approximation at each iteration. At the end of the MCMC, for each point
of the grid posterior mean and credible interval might be computed, and as a by-product, the pointwise
posterior distribution of the density might be represented.

The BNP model provides a posterior over the entire space of subjects’ and raters’ partitions,
respectively. However, we can summarize these posteriors and determine the point estimates of these
clustering structures by minimizing the respective variation of information (VI) loss functions. We
refer to Wade & Ghahramani (2018) and Meilă (2007) for further details on VI and point estimates
of probabilistic clustering.

As for every parameter of the model, we use the posterior distribution of the subjects’ specific
parameters for inference purposes. Point estimates of the subjects’ true scores{θi}I

1, such as the posterior
mean (i.e., expected a posteriori, EAP) or the maximum a posteriori (i.e., MAP), might be used as official
evaluations (i.e., final grades), and the posterior credible intervals as uncertainty quantification around
those values. The ICCA index (32) can be computed at each iteration of the MCMC to get its posterior
distribution, which might be used for inference purposes.

Computational details. In the present work, both for the simulations and the real data analysis, similarly
to previous works (e.g., Heinzl et al., 2012; Paganin et al., 2023), the number of iterations is fixed to
80,000 (with a thin factor of 60 due to memory constraints), discarding the first 20,000 as burn-in. We fix
the maximum number of clusters to be R= 25, respectively, for subjects’ and raters’ DPM priors (Gelman
et al., 2014). The package mcclust.ext (Wade, 2015) is used for the point estimate of the clustering
structures based on the VI loss functions. We graphically check out trace plots for convergence and
use the package coda for model diagnostics (De Iorio et al., 2023; Plummer et al., 2006). Convergence
is also confirmed through multiple runs of the MCMC with different starting values1.

6. Simulation study

We perform a simulation study to compare the performance of the proposed models (BNP and a nested
version) over the standard parametric one, highlighting the strength of our method. Concerning the
individual-specific level, the three models are evaluated on the accuracy of the estimates of the individual-
specific parameters they provide (i.e., how close θi, τj, σ2

j are to the respective true values). Regarding the
population level, we compare the estimated population distribution of the subjects’ and raters’ features
and evaluate the predictive performance of the three methods across different scenarios.

BP model. The first model is the Bayesian parametric one (BP model), which can be considered a
reduction of the BNP model in which all the subjects and the raters are allocated to the same cluster,
respectively, such that μi = μ and ω2

i =ω2, for i= 1, . . . ,I, and ηj = η, ϕ2
i =ϕ2, γj = γ and βj = β for j= 1, . . . ,J.

This model might be obtained by fixing the maximum number of clusters R = 1.

BSP model. The second model is the BSP one (BSP model), in which the normality assumption is relaxed
for the subjects’ true score such that we model {θi}I

i as detailed in Section 2.3, but we model the raters’
effects {τj,1/σ2

j }J
1 as in the parametric model (i.e., they are all assigned to the same cluster). This implies

R = 1 only for the rater-related DPM. Since in this model both G and H are degenerate on a mixture of
only one component, we refer to the structural parameter as μG = μ, ω2

G = ω2 and ϕ2
H = ϕ2.

1CPU configuration: 12th Gen Intel(R) Core(TM) i9 12900H.
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BNP model. The third model is the BNP model presented in Section 2.3 in which the normality
assumption is relaxed both for subjects and raters. Under this model, subjects and raters are allowed
to be, respectively, assigned to different clusters.

Three data-generative processes are set up with different clustering structures for subjects and raters.
The densities of the subject’s true score and the rater’s effects are either unimodal, bimodal or multi-
modal. This allows us to assess the extent to which BNP priors might mitigate model misspecification
and the BNP model reduces to the parametric one when the latter is properly specified; this setup is
consistent with other works on BNP modeling in psychometrics (Paganin et al., 2023).

We keep some features of the generated data similar to the real data set analyzed in Section 7 (e.g.,
sample size, rating scale, ratings per subject), they are also comparable with those of other works on
rating models (Bartoš & Martinková, 2024; Martinková et al., 2023). Additional simulation results on
small sample size applications of our proposal are presented in the Supplementary Material.

6.1. Setting
We generate subjects’ ratings on a continuous scale, Yij ∈ (1,100), the number of subjects I = 500 and
raters J = 100 are fixed, whereas the number of ratings per subject and the true generative model vary
across scenarios.

Generative scenarios. We manipulate the number of ratings per subject to be ∣Ri∣ ∈ {2,4} for i = 1, . . . ,I,
since in many real contexts (e.g., education, peer review) it is common for the subjects to be rated only
by two or few more independent raters (Zupanc & Štrumbelj, 2018).

Data are generated as specified by equations 5, 9, and one of the schemes below, according to the
three different scenarios:

Unimodal: Under this scenario, subjects’ true score and raters’ effects densities are unimodal:

θi
iid∼ N(50,50), (τj,1/σ2

j ) iid∼ N(0,25)Ga(10,10/0.15),

for i = 1, . . . ,I and j = 1, . . . ,J. This corresponds to the standard BP model in which subjects’
true scores are assumed to be i.i.d across subjects and raters’ effects are drawn jointly i.i.d.
across raters.

Bimodal: In this scenario, both subjects’ and raters’ populations are composed, respectively, of two
different clusters:

θi
iid∼ 0.7 ⋅N(39,50)+0.3 ⋅N(75.6,30),

(τj,1/σ2
j ) iid∼ 0.5 ⋅N(−5,10)Ga(10,10/0.1)+0.5 ⋅N(5,5) Ga(10,10/0.2),

for i = 1, . . . ,I and j = 1, . . . ,J.
Multimodal: Under this scenario, both subjects and raters are assigned, respectively, to three

clusters:

θi
iid∼ 0.2 ⋅N(35,50)+0.2 ⋅N(45,20)+0.6 ⋅N(56.6,20),

(τj,1/σ2
j ) iid∼ 0.4 ⋅SN(−5,3.162, −5)Ga(10,10/0.15)
+0.4 ⋅N(0,10)Ga(10,10/0.10)
+0.2 ⋅N(10,10)Ga(10,10/0.20),

for i = 1, . . . ,I and j = 1, . . . ,J. Here SN(ξ,ω,α) stands for the skew-normal distribution with
location, scale and slant parameters, ξ, ω and α, respectively.
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Figure 3. Average estimated density across 10 independent datasets under different scenarios. The columns indicate the cardinality

of ∣Ri ∣ = {2,4}: left and right, respectively; the rows indicate bimodal or multimodal scenario: first and second row, respectively. The

solid red lines indicate the true densities; the solid black line and the shaded grey area indicate, respectively, the point-wise mean

and 95% quantile-based credible intervals; the density implied by the BP model (black dotted lines).

These scenarios mimic three different levels of heterogeneity. From an interpretative point of view,
in the first scenario, all the subjects’ true scores are concentrated around the center of the rating scale,
and the raters are quite homogeneous in their severity and reliability. The heterogeneity of the subjects
and the raters is only at the individual level since they are not nested with clusters. Under the second
scenario, we introduce heterogeneity at the population level as both subjects and raters are assigned
to different clusters, respectively. Here, we mimic the case in which subjects are clustered within two
different levels of true score (e.g., low versus high proficiency level), and raters are either systematically
slightly more lenient and reliable or more severe and less reliable. Under the third scenario, subjects and
raters are assigned, respectively, to three poorly separated clusters. This results in a highly negatively
skewed distribution for the subjects’ true score and a multimodal distribution for the raters’ systematic
bias. Figures 3 and 4, Figure C.1 in Appendix C, and Figures 1, 2, and 3 in the Supplementary Material
show the respective true densities and the empirical distributions of the generated ratings.

Ten independent data sets are generated under the six scenarios resulting from the 2×3 design, for
each data set, the standard parametric (BP), the semi-parametric (BSP), and the nonparametric (BNP)
models are fitted.

Model recovery assessment. Parameter recovery performance is assessed through the Root Mean Square
Error (RMSE) and the Mean Absolute Error (MAE) computed, respectively, as the root mean square
difference and the mean absolute difference between the posterior mean and the true value of the param-
eters across data sets. For the subject and raters specific parameters, i.e., {θi}I

1, {τj,1/σ2
j }J

1, RMSE, and
MAE are average both across individuals and data sets.

For the sake of comparison across different scenarios, we report the standardized version of both
indices (S-RMSE, S-MAE) for the structural parameters. More precisely, those related to μ and μG are
divided by the mean value of the rating scale, i.e., 50; those regarding ω2, ω2

G, ϕ2, ϕ2, σ̃, σ̃H , and the ICCA
are divided by their true value.

The models’ performance in recovering the density distributions of individuals’ specific parameters
is evaluated through visual inspection. We give an example of how different densities might lead
to very different conclusions on the data generative process (Gelman et al., 2013; Paganin & de
Valpine, 2024; Steinbakk & Storvik, 2009). Specifically, we draw new replications from the respective
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Figure 4. Top row: empirical distribution of the data (red solid line) and empirical distribution of replicated data (black solid lines)

from the respective BNP and BP posterior distributions (left and right columns, respectively). Middle and bottom row: Test statistics

computed on the data (red solid line) and histograms of those computed on replicated data.

posterior predictive distributions and compare these samples to the original data. If the models
capture relevant aspects of the data, they should look similar, and replications should not deviate
systematically from the data. We measure discrepancy in central asymmetry through the statistic
T1(y,μG) = ∣y.25−μG∣− ∣y.75−μG∣, where y.25 and y,75 are the first and the third quartile, and in the
left tail weight by the statistics T2(y) =min(y).

6.2. Results
Results from the simulation study suggest that our proposals (i.e., BSP and BNP) systematically improve
the estimates of the individual-specific parameters across scenarios. However, the accuracy of these
estimates is comparable under the unimodal scenarios across the three models. Meanwhile, the BSP
and BNP models overcome, on average, the BP under the bimodal and multimodal scenarios in both
conditions ∣Ri∣ = 2 and ∣Ri∣ = 4. As expected, the accuracy of subjects’ and raters’ specific parameters
is higher in the conditions with a larger number of raters per subject ∣Ri∣ = 4 (Table 1). As indicated by
RMSE and MAE indices, on average, the estimates of subjects’ and raters’ specific parameters provided
by all the models degrade from the unimodal to the multimodal scenario.

Regarding the population parameter estimates, all the models provide overall similar estimates
(Table 2). We observe the largest improvement of the BSP and BNP over the parametric model under the
bimodal scenarios concerning subjects’ true score variance ω2

G and raters’ systematic bias variance ϕ2
H .

However, in these cases, the BP model provides better estimates of the expected residual variance σ̃H .
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Table 1. RMSE and MAE of individuals parameters corresponding to BP, BSP and BNP

models.

Generative model

Unimodal Bimodal Multimodal

RMSE MAE RMSE MAE RMSE MAE

∣Ri∣ = 2 θ BP 2.123 1.686 2.346 1.846 2.497 2.009

BSP 2.127 1.689 2.308 1.822 2.347 1.889

BNP 2.123 1.683 2.327 1.841 2.439 1.961

τ BP 1.404 1.102 1.575 1.208 1.892 1.566

BSP 1.407 1.104 1.554 1.206 1.700 1.387

BNP 1.401 1.101 1.553 1.212 1.774 1.460

1/σ2 BP 0.070 0.060 0.092 0.076 0.085 0.070

BSP 0.069 0.059 0.071 0.054 0.066 0.050

BNP 0.071 0.059 0.071 0.052 0.066 0.050

∣Ri∣ = 4 θ BP 1.442 1.154 1.512 1.192 1.817 1.471

BSP 1.441 1.155 1.474 1.164 1.593 1.275

BNP 1.439 1.151 1.466 1.157 1.527 1.217

τ BP 0.860 0.688 0.920 0.726 1.384 1.157

BSP 0.860 0.686 0.886 0.711 1.088 0.885

BNP 0.849 0.680 0.878 0.707 0.996 0.798

1/σ2 BP 0.037 0.029 0.054 0.042 0.046 0.036

BSP 0.037 0.029 0.054 0.041 0.048 0.037

BNP 0.037 0.029 0.047 0.035 0.047 0.035

Note: The bold text indicates the average, most accurate estimates.

As a result, these differences are not detectable in the ICCA estimates and we observe equal accuracy for
this index across the three models.

Figure 3 gives some examples of the estimated true score densities under the bimodal and multimodal
scenarios; those under the unimodal scenario are reported in the Appendix C. The raters’ features density
plots are shown in the Supplementary Material. The BNP model consistently estimates the respective
densities under all the considered scenarios. The most prominent improvement of our proposals over
the parametric model is observed under the heterogeneous scenarios. Accurate estimates of the densities
are also provided under the extreme case of ∣Ri∣ = 2, that is, when each subject is rated by only two
independent raters. Nonetheless, we note that the uncertainty about the densities is reduced when
subjects are rated by a larger number of raters (i.e., ∣Ri∣ = 4). This reduction mostly regards the subjects’
true score densities across all the scenarios. Our proposals capture the latent clustering structures of
both subjects and raters as displayed by the posterior similarity matrices in Figure C.2 in Appendix C.
The entries of these matrices are the pairwise probability that two entries (e.g., subjects or raters) are
clustered together. The clustering structure implied by the generative process under the bimodal scenario
is readily recognized by the graphical inspection.

The BNP model effectively captures relevant latent aspects of the data, such as deviations from
normality both in the center and in the tails of the distributions across all the scenarios. As a by-product,
the replications drawn from the posterior predictive distribution of the BNP model are remarkably more
plausible than those generated under the BP model. As shown in Figure 4, the normality assumptions
made in the latter model restrict the shapes of the distributions for subjects’ and raters’ features. As a
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Table 2. Standardized RMSE and standardized MAE of structural parameters corresponding to BP,

BSP and BNP models.

Generative model

Unimodal Bimodal Multimodal

S-RMSE S-MAE S-RMSE S-MAE S-RMSE S-MAE

∣Ri∣ = 2 μ BP 0.015 0.014 0.020 0.017 0.029 0.028

μG BSP 0.015 0.012 0.014 0.010 0.022 0.021

μG BNP 0.015 0.013 0.016 0.010 0.025 0.026

ω2 BP 0.080 0.066 0.284 0.284 0.064 0.052

ω2
G BSP 0.113 0.102 0.040 0.036 0.080 0.072

ω2
G BNP 0.094 0.080 0.065 0.045 0.110 0.094

ϕ2 BP 0.979 0.110 2.343 2.341 0.273 0.239

ϕ2 BSP 0.152 0.111 0.161 0.142 0.261 0.229

ϕ2
H BNP 0.134 0.103 0.112 0.084 0.195 0.173

σ̃ BP 0.244 0.242 0.169 0.154 0.225 0.221

σ̃ BSP 0.226 0.213 0.206 0.186 0.097 0.081

σ̃H BNP 0.223 0.209 0.253 0.228 0.108 0.091

ICCA BP 0.002 0.002 0.001 0.001 0.023 0.023

BSP 0.002 0.002 0.001 0.001 0.023 0.023

BNP 0.002 0.002 0.001 0.001 0.023 0.23

∣Ri∣ = 4 μ BP 0.013 0.011 0.022 0.019 0.027 0.022

μG BSP 0.012 0.011 0.017 0.014 0.018 0.015

μG BNP 0.012 0.011 0.018 0.014 0.019 0.015

ω2 BP 0.055 0.046 0.281 0.281 0.049 0.042

ω2
G BSP 0.108 0.092 0.046 0.043 0.066 0.052

ω2
G BNP 0.088 0.073 0.054 0.051 0.119 0.101

ϕ2 BP 0.994 0.110 2.319 2.317 0.275 0.258

ϕ2 BSP 0.124 0.109 0.180 0.146 0.279 0.262

ϕ2
H BNP 0.119 0.105 0.132 0.095 0.209 0.188

σ̃ BP 0.042 0.034 0.140 0.130 0.053 0.041

σ̃ BSP 0.054 0.036 0.146 0.123 0.076 0.066

σ̃H BNP 0.043 0.038 0.141 0.114 0.074 0.063

ICCA BP 0.002 0.002 0.001 0.001 0.023 0.023

BSP 0.002 0.002 0.001 0.001 0.023 0.023

BNP 0.002 0.002 0.001 0.001 0.023 0.022

Note: The bold text indicates the average, most accurate estimates.

result, when these assumptions are violated, any inferences about the data-generating process might be
misleading and unreliable. Replications under the BP model are far from the data both in the centre and
on the tails of the distribution, as suggested by the statistics T1(y,μ) and T2(y) in Figure 4.

The improvement of our method over the parametric one is more prominent when the design is
balanced (e.g., fully crossed designs) and the samples of subjects and raters are smaller. We present
these results in the Supplementary Material.
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7. Application on large-scale essay assessment

We analyze the Matura data set from Zupanc & Štrumbelj (2018) as an illustrative example. The data
come from a large-scale essay assessment conducted by the National Examination Centre in upper
secondary schools in Slovenia during the nationwide external examination. Each student received a
holistic grade on a 1-50 rating scale by two independent teachers. We considered a random sample of
I = 700 students out of the 6995 who were examined during the spring term argumentative essays for
the year 2014. A sample of J = 152 teachers were involved who graded, on average, 9.21 students, with
a minimum of 2 and a maximum of 21 (see Figure 5). The observed ratings ranged from 0 to 50, with
a mean of 29.35, a skewness of −0.051, and a kurtosis of 3.148 (see Figure 5). More details about the
assessment procedure might be found in Zupanc & Štrumbelj (2018).

Model comparison. The three different models detailed in Section 6, i.e., the parametric (BP) model,
the semiparametric (BSP) model, and the nonparametric (BNP) model, were fitted to these data and
compared on their out-of-sample prediction accuracy. The Watanabe–Akaike information criterion
(WAIC) was used for this purpose.

This is a fully Bayesian approach for estimating the out-of-sample expectation, which relies on the
computed log pointwise posterior predictive density and on a penalty term correction for the effective
number of parameters to prevent overfitting (Gelman et al., 2014). The respective WAIC formulas are
provided in the Supplementary Material.

7.1. Results
The total computational elapsed time for the BP, BSP, and BNP models was 180, 300, and 355 minutes,
respectively. No convergence or mixing issues emerged from the graphical inspections of the MCMCs
and diagnostics from CODA package (Plummer et al., 2006); further details and examples of trace plots
are given in the Supplementary Material. Table 3 shows the WAIC indices for each fitted model and
shows that the selection procedure indicates that the BNP model best fits the data and overcomes
the others in predicting out-of-sample ratings. These results are consistent with the additional hold-
out validation procedure presented in the Supplementary Material. Based on the model comparison
procedure, we focus on the results from the BNP model.

0
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Figure 5. The empirical distribution of ratings and the frequency of students per teacher are reported at left and right, respectively.

Table 3. The WAIC is reported for each of the fitted

models: BNP, BP, and BSP; the pairwise WAIC dif-

ference (ΔWAIC) between the model with the best

fit and each other is reported

Fitted model WAIC ΔWAIC

BNP model 56267.43 −

BSP model 67159.21 −10891.78

BP model 168701.8 −112434.4
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Table 4. Posterior mean and 95% quantile-based credible intervals of the esti-

mated structural parameters of the BNP model are reported

Posterior mean 95% Credible interval

Subjects’ parameters μG 29.126 (27.886,29.837)

ω2
G 32.702 (28.198,37.702)

α1 4.053 (0.915,9.218)

Raters’ parameters ϕ2
H 5.465 (4.085,7.476)

σ̃H 13.913 (12.424,15.583)

α2 1.839 (0.194,5.206)

ICCA 0.627 (0.577,0.672)
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Figure 6. The estimated densities of the subject’s true score θ, rater’s systematic bias τ and the residual term ε are reported; the black

solid lines and the shade grey areas indicate the pointwise posterior mean and 95% quantile-based credible intervals of the respective

densities. Bottom-right figure shows the posterior distribution of the ICCA, the black solid and dotted lines indicate, respectively, the

95% credible interval and the posterior mean. The rugs at the margins of the first three figures indicate the clustering of individuals.

The posterior expectation of student ability mean μG and variance ω2
G population parameters are

29.126, and 32.702, respectively (Table 4). The respective narrow credible intervals suggest low uncer-
tainty about these values. As expected from Antoniak (1974), the posterior values of the concentration
parameters α1 and α2 are proportional to the respective sample sizes and larger for the former. Details
of the posterior values of base measures’ parameters are reported in the Supplementary Material. The
posterior expectation of raters’ systematic bias variance ϕ2

H and reliability σ̃H are, respectively, 5.465 and
13.913. The corresponding credible intervals suggest low uncertainty around these values (Table 4).

Figure 6 gives the graphical representation of the respective estimated densities. The multimodal
distribution of student ability θ implies heterogeneity among student abilities and points to the presence
of multiple sub-populations. The variance in ratings is broadly due to students’ ability, despite the
variability of raters’ systematic bias and reliability. Regarding the clustering structure of subjects and
raters, the posterior similarity matrix, reported in Figure C.2 in Appendix C, suggests the presence of
some latent partition of subjects, whereas no evidence of raters’ clusters emerged from the posterior. This
is coherent with the clusters’ point estimate based on the variation of information (VI) loss function,
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which indicates four clusters for the subjects and one cluster for the raters. We render this result
in Figure 6 through rugs of different colors at the margin of the density plots; these values indicate
the posterior mean of each subject and rater specific parameter. It is worth noting that we observe a
cluster of subjects whose proficiency level is remarkably lower than the others, and another cluster in
which subjects’ performance is slightly superior than the others (Figure 6, upper-left; blue and brown
rugs, respectively). These subjects might benefit from more personalized and specialized educational
pathways. The posterior distribution of the ICCA with mean and credible intervals, respectively, equal
to 0.627 and (0.577,0.672), suggests a moderate inter-rater reliability; Figure 6 shows the posterior
distribution of this index. Since ICCA might be interpreted as the lower bound of the expected inter-
rater reliability of a single rating, poor levels of reliability can be excluded (Koo & Li, 2016). However,
this result is coherent with the findings of the original study by Zupanc & Štrumbelj (2018), where raters’
variability and reliability have a substantial effect on ratings. Aggregate or average ratings over different
teachers might mitigate inter-rater reliability issues (Erosheva et al., 2021).

8. Coarsened ratings extension

Ratings data might be arbitrarily coarsened into a small number of ordered categories (Goel & Thakor,
2015; Harbaugh & Rasmusen, 2018; Peeters, 2015; van Praag et al., 2025). As a result, continuous ratings
that fall between two consecutive cut-offs are collapsed into the same ordered category, and fine-grained
distinctions between individual scores are missing (Ho & Reardon, 2012; Reardon et al., 2017). The
available ratings are ordinal in these cases, and the rating model proposed in Section 2.3 has to be
modified accordingly.

We leverage the underlying response variable formulation to extend the model to the ordinal case
and consider the data coarsening mechanism (Agresti, 2015; Albert & Chib, 1993; Bartholomew et al.,
2011; Cao et al., 2010; Nelson & Edwards, 2015). Our proposal might be seen as a BNP extension of
the heteroscedastic ordered probit (HETOP; Lockwood et al., 2018). We specify the cumulative density
function of the standard normal Φ(⋅) as a link function, which implies that we only need to modify the
equation (5). This extension might readily adapt to the One-Way designs presented in Section 4.

We note that coarse and ordinal ratings might be rather different. In the first case, the categories
are consecutive intervals of a continuous rating scale, which is not the case for ordinal ratings. Here,
we propose the HETOP specification as a possible straightforward extension of the main model for
coarsened ratings and leave more advantageous formulations for ordinal data for future investigations.

8.1. Categorical modeling
Modeling ratingYij We assume that the observed ordinal rating Yij ∈ {1, . . . ,K} ⊂ N is generated by
an underlying unobserved normally distributed variable Y∗ij (Jöreskog & Moustaki, 2001) and that
we observe Yij = k if δk−1 < Y∗ij ≤ δk; δ0 = −∞ < δ1 < . . . , < δK = +∞ are ordered thresholds over the
underlying response variable distribution and are equal across raters. The underlying variable Y∗ij might
be interpreted as a latent rating or the original continuous rating before the coarsening procedure. The
conditional probability that Yij = k is

P[Yij = k∣θi,τj,σj,δk,δk+1] =Φ(δk+1−θi−τj

σj
)−Φ(δk−θi−τj

σj
), (43)

for i = 1, . . . ,I; j ∈ Ri. Additional considerations on the interpretation of σj under this formulation are
given in the Supplementary Material.

Identifiability issues. Under this parametrization, we need to put additional constraints for identifiability
purposes since the underlying response variables’ mean and variance are freely estimated (DeYoreo &
Kottas, 2018; Kottas et al., 2005). Two thresholds (e.g., δ1, δK−1 as proposed by Song et al., 2013) have to
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be fixed in advance, as it is common in multi-group analysis (Lockwood et al., 2018). From a statistical
perspective, we note that each rater might be seen as a group of observations (Papaspiliopoulos et al.,
2023). Moreover, an SC-DPM prior has to be placed on the subject’s true score {θi}I

1 to fix their mean
and resolve identifiability issues (Gelman et al., 2014), as a by-product under the parameter-expanded
specification, equation (43) becomes

P[Yij = k∣θ∗i ,τ∗j ,σj,δk,δk+1] =Φ(
δk+1−θ∗i −τ∗j

σj
)−Φ(

δk−θ∗i −τ∗j
σj

), (44)

for i = 1, . . . ,I; j ∈ Ri. Whenever K = 2, i.e., dichotomous rating scale, {σj}J
1 can not be identified and

need to be fixed in advance, e.g., σj = 1, j = 1, . . . ,J, which implies assuming raters to be equally reliable
(Lockwood et al., 2018).

Generalized ICCs. Under this model specification, the ICCs computed according to propositions 1 and 2
are generalized ICCs that indicate the polychoric correlation between two latent ratings (Jöreskog, 1994;
Uebersax, 1993). For instance, proposition 1 implies here:

ICC∗j,j′ = Corr(Y∗ij ,Y∗ij′ ∣G,H,σ2
j ,σ2

j′) =
ω2

G√
ω2

G+ϕ2
H +σ2

j

√
ω2

G+ϕ2
H +σ2

j′
, (45)

where ICC∗j,j′ indicates the conditional pairwise polychoric correlation between the latent ratings given
by raters j ≠ j′ to subject i. Similar considerations might be extended to propositions 2 and 3. As a by-
product, the ICC∗A is the lower bound of the expected polychoric correlation between the latent ratings
Y∗ij and Y∗ij′ , with j ≠ j′:

ICC∗A ≤ E[Corr(Y∗ij ,Y∗ij′ ∣G,H)] = E[ICC∗∣G,H]. (46)

8.2. Posterior computation
A data augmentation procedure may simulate the underlying response variables (Albert & Chib, 1993).
The underlying continuous ratings Y∗ij , i = 1, . . . ,I, j ∈ Ri are sampled:

Y∗ij ∣⋅ ind∼ N(θ∗i −τj,σ2
j )× I(δk−1 < Y∗ij ≤ δk), k = 1, . . . ,K.

Here I(⋅) is an indicator function. Following Albert & Chib (1993) the conditional posterior distribution
of the K −3 freely estimated thresholds,e.g., δ2, . . . ,δK−2 might be seen to be uniform on the respective
intervals:

δk∣⋅ ind∼ U(max{max{Y∗ij ∶ Yij = k},δk−1},min{min{Y∗ij ∶ Yij = k+1},δk+1}),

here U(⋅) stands for uniform distribution.
All the other parameters are updated according to the posterior sampling scheme detailed in Section

3.1 of Supplementary Material and the post-process transformation outlined in Section 5.3 needs to
take into account the double-centering. After computing μG and ηH according to 16 and 17 for each
iteration, the samples of μ0,μG,{θi}I

1, and {τj}J
1 are computed as follows:

μ∗0 = μ0−μG+ηH,

θ∗i = θi−μG+ηH, for i = 1, . . . ,I;
τ∗j = τj−ηH +μG, for j = 1, . . . ,J.

8.3. Generated and real coarsened ratings analysis
In this section, we present the analysis of real and generated coarsened ratings and compare the results
with those presented in Sections 6 and 7. For the real data, we deliberately coarsened the original
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Table 5. RMSE and MAE of individuals parameters across

bimodal scenarios with coarsened ratings

∣Ri∣ = 2 ∣Ri∣ = 4

RMSE MAE RMSE MAE

θ BP 6.333 5.151 4.995 4.016

BNP 4.846 3.802 3.677 2.883

τ BP 3.197 2.532 2.002 1.586

BNP 2.896 2.278 1.832 1.437

1/σ2 BP 0.195 0.184 0.065 0.054

BNP 0.104 0.080 0.097 0.074

Note: The bold text indicates the average, most accurate estimates.

Table 6. The WAIC is reported for each of the fitted models:

BNP, BP, and BSP; the pairwise WAIC difference (ΔWAIC)

between the model with the best fit and each other is

reported

Fitted model WAIC ΔWAIC

BNP model 3798.11 −

BP model 3815.65 −17.54

BSP model 3897.22 −99.11

continuous ratings analyzed in Section 7 into K = 4 ordered categories according to the following cutoffs:
δ1 = 20, δ2 = 30, δ3 = 40. The fit of the BP, BSP, and BNP models to the data are compared according to
the WAIC for ordered data discussed in the Supplementary Material.

We performed a simulation study to assess the accuracy of the BNP and the BP versions for ordered
ratings. More specifically, the same data sets generated under the bimodal scenarios in Section 6 are
coarsened and considered for this study. We coarse these ratings into K = 4 ordered categories according
to three consecutive cutoffs: δ1 = 35, δ2 = 50, δ3 = 75. The same parameter recovery assessment procedure
detailed in Section 6 is consistently used here.

In real context, the cutoffs of the coarsening procedure are generally known since the continuous
rating scale is deliberately broken down into a small number of consecutive intervals and raters are
explicitly asked to coarse their ratings accordingly (Peeters, 2015; van Praag et al., 2025). For example, on
a 1–100 continuous scale, they might be asked to indicate which of the following intervals each subject’s
score falls into: (1–25), (25–50), (50,75) or (75,100). On the contrary, when ratings are directly given on
an ordinal scale, the categories’ labels are not necessarily associated with any continuous scale intervals
(e.g., “poor”, “acceptable”, “good”, “very good”). In these scenarios, we consider the observed ordered
ratings as coarsened representations of underlying continuous values according to some unknown
consecutive cutoffs. In the first case, this coarsening process is factual; in the second, it is merely
assumed. However, since in both cases at least two cutoffs need to be fixed for identification purposes,
we decide to fix δ1 and δ3 to the true values and let the model estimate δ2, both for real and generated
data.

Results. The total computational elapsed times for the BP, BSP, and BNP models were roughly similar
to those of previous Sections. Upon graphical inspections of the MCMC chains and diagnostics, no
convergence or mixing issues emerged for both generated and real data. Table 6 gives the WAIC indices
for each fitted model and suggests that the BNP model provides the best fit to the data. Based on this
model comparison procedure, we focus on the results from the BNP model. As shown in Table 7, the
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Table 7. Posterior mean and 95% quantile-based credible intervals of the esti-

mated structural parameters of the BNP model are reported

Posterior mean 95% credible interval

δ2 29.671 (28.932,30.291)

Subjects’ parameters μG 29.678 (28.970,30.384)

ω2
G 30.513 (25.577,36.228)

α1 4.174 (1.148,8.847)

Raters’ parameters ϕ2
H 5.958 (4.133,9.395)

σ̃H 13.1080 (11.191,15.351)

α2 1.911 (0.237,5.249)

ICCA 0.627 (0.577,0.672)
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Figure 7. The estimated densities of the subject’s true score θ, rater’s systematic bias τ and the residual term ε are reported; the black

solid lines and the shade grey areas indicate the pointwise posterior mean and 95% quantile-based credible intervals of the respective

densities. Bottom-right figure shows the posterior distribution of the ICCA, the black solid and dotted lines indicate, respectively, the

95% credible interval and the posterior mean. The rugs at the margins of the first three figures indicate the clustering of individuals.

estimates are equivalent to those obtained under the continuous BNP model presented in Section 7. We
note that the only notable difference concerns the point estimate of the subjects’ clustering structure
(Figure 7). In this case, they are clustered into two (instead of four) subjects’ groups.

Results from generated data suggest that the BNP model provides more accurate estimates of subjects’
and raters’ specific parameters and overcomes the BP model. The only exception is observed for the
rater-specific reliability parameter 1/σ2 under the scenario ∣Ri∣ = 4; here, the BP model overcomes our
proposal. Under the standard parametric model, we only have two population parameters γ and β (i.e.,
(γj,βj) = (γ,β), for j = 1, . . . ,J) and, as a consequence, more information is available for their estimation.
This might result in a faster accuracy improvement of this model for this set of parameters as the ratio of
students per rater increases. The comparison between the RMSE and the MAE of Tables 1 and 5 suggests
that the estimates of both the BP and BNP models degrade with coarse data. The same trend emerged
regarding the structural parameters and the densities; we report these results in the Supplementary
Material.
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9. Concluding remarks

A flexible BNP framework is proposed for the analysis of holistic rating data. We adopt the two-way
unbalanced design as a general setting (McGraw & Wong, 1996) which allows us to relate our proposal
to other existing models (e.g., cross-classified or crossed random effects models, multilevel models, IRT-
based rating models). We specify a measurement model to jointly estimate the subject’s latent quality
(e.g., student’s proficiency) and the rater’s features (i.e., severity and consistency). Our proposal may
be suitable both for balanced (i.e., when all raters score each subject; Nelson & Edwards, 2010, 2015)
and unbalanced designs (i.e., when a subset of raters scores each subject; Martinková et al., 2023; Ten
Hove et al., 2022). This method aims to capture latent heterogeneity among subjects and raters with
the stochastic clustering induced by the DPM placed over their effects. This allows us to relax the
common distributional assumptions on the respective parameters, preventing model misspecification
issues (Antonelli et al., 2016; Walker & Gutiérrez-Peña, 2007).

Results from the simulation study highlight the flexibility of our proposal, which provides accurate
estimates across different scenarios. Exploiting the DPM prior, the respective densities of the students’
and raters’ effects are consistently estimated both when the normality assumption holds and when
it is violated. Our method provides a more prominent improvement in small sample sizes and with
coarse data. Our proposal provides the best fit to the real data, both for continuous and coarse ratings,
compared to the parametric competitor. Nonetheless, the accuracy of the estimates with coarse ratings
might be a concern when subjects are only rated by a very small number of raters and the estimated true
scores are used, for instance, for selection purposes or as official grades. The theoretical results presented
in Section 3 are employed to make inferences about the inter-rater reliability of the single ratings.

The relatively long computational times of the MCMC chains might be prohibitive if used for
repeated or massive scoring procedures. In such cases, if one is interested in capturing systematic het-
erogeneity among subjects or raters, any formulation of a mixture model (parametric or nonparametric)
might be computationally cumbersome. In contrast, if this is not the focus of the analysis, the parametric
model might be a computationally faster solution.

Under our model, rater’s systematic bias and reliability are assumed to be independent conditional
on the parameters of the cluster; additionally, the reliability of the raters is assumed to be independent of
their specific workload ∣Sj∣ (i.e., the cardinality of the subset of subjects the rater has to evaluate). These
assumptions might be unrealistic in some real contexts, and they might be relaxed under more general
model specifications. For example, a multivariate distribution might be specified as a base measure H0
to account for the correlation between the rater’s features, and the rater-specific workload ∣Sj∣might be
modeled as a random variable correlated to the rater’s features. Furthermore, because the measurement
model includes raters’ effects only as an additive component, all raters are assumed to have the same
ability to discriminate between subjects with different latent true scores. This assumption might be
relaxed by specifying an additional rater-specific multiplicative effect for the subject’s true score, similar
to the GMFRMs (Uto & Ueno, 2016).

The model detailed in Section 2.3 might be further extended to account for multidimensional ratings,
i.e., when subjects are rated on multiple items. Under this three-way design, item parameters might
be identified under some general conditions, and the model might extend Paganin et al., 2023, or
Karabatsos & Walker, 2009 to account for raters’ characteristics. Further BNP generalizations of the
existing rating models, e.g., GMFRMs, (e.g., Uto & Ueno, 2016; Uto et al., 2024) HRMs (e.g., Casabianca
et al., 2015; DeCarlo et al., 2011; Molenaar et al., 2021) or Trifactor Models (e.g., Shin et al., 2019; Soland
& Kuhfeld, 2022) are left for future investigations.

The effect of covariate and contextual factors might be incorporated in the structural models 6, 8,
or 9 if additional information on subjects or raters is available. This extension might relate our model
to Explanatory Response Models (Kim & Wilson, 2020; Wilson & De Boeck, 2004) and be a BNP
generalization of those methods. According to the data structure, more complex hierarchical priors
might be placed over the subjects’ true scores, such as hierarchical (Paisley et al., 2014; Teh et al., 2006),
nested DPMs (Gelman et al., 2014; Hjort et al., 2010; Rodriguez et al., 2008) or hidden hierarchical
DPMs recently introduced by (Lijoi et al., 2023) which overcomes some flaws of the previous ones.
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Stochastic Approximations of the DPM might be further considered for the stick-breaking constructions
avoiding a maximum number of clusters (Arbel et al., 2019).

Our method might provide practitioners with valuable insights about the subjects’ and raters’
specific features along with the respective clustering structures. This information might be used to
great advantage of individualized teaching programs (Coates, 2025) and might improve the matching
procedure between subjects in peer teaching activities (Stigmar, 2016). Our theoretical finding and
computational solution might enhance the analysis of rating data and contribute novel knowledge about
the rating process.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2025.10035.
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Appendices

A. Further extensions

In this section, we present some model extensions for more flexible clustering and complex hierarchical structures. We briefly
detail alternative discrete priors that generalize the Dirichlet Process, and provide a more general framework accounting for
multiple source of variability.

A.1. DP generalizations
Following the notation in Section 2.2, given Π = DP(αP0) the number of different unique values Kn generated by p increase
asymptotically at a logarithmic rate, with Kn ∼ α log(n) a.s. for n→∞. Alternative priors might be specified over p which
overcome this issue and allow for a more flexible prior specification on the number of clusters. More general specifications of
Π are briefly presented below.

Our proposal might readily encompass these priors, and since they all share the stick-breaking representation presented
in Section 14, the ICCs estimation and the Semi-centered identifiability procedure still hold for these cases.

A.1.1. Mixture of Pitman–Yor process
One of the most common generalizations of the Dirichlet Process is the Pitman–Yor Process PY(d,α,P0), indexed by a
discount parameter 0 < d < 1, a concentration parameter α > −d, and a base measure P0. This is also termed the two-parameter
Poisson DP. For instance, we can place the PY as a prior over the subject random measure G ∼ PY(d,α,H0), which might be
represented as

G =∑
n≥1

π1nδξn, π1n = V1n∏
l<n
(1−V1l), V1n

iid∼ Beta(1−d,α1+nd). ξn
iid∼ G0,

Under this specification, the number of observed clusters KI out of a sample of I subjects increase asymptotically at a rate Id ,
with KI ∼ Sd,αId as I→∞. Here Sd,α is a limiting random variable with a probability distribution depending on d and α and a
positive density on R

+. For d→ 0, we recover the DP(α,G0), whereas for larger values of d, the rate of increase of KI is faster.
The discount parameter d might be interpreted as the proportion of small clusters that will be observed out of a sample of I
subjects. Indeed, this parameter plays a double role in the clustering behavior of the model. The higher values of d imply a
reinforcement mechanism that favors the allocation of a subject to the larger clusters (the “rich-get-richer” property) and, at the
same time, a higher probability of being assigned to a new cluster. This is clear from E[π1n] = O(n−1/d), for 0 < d < 1, which
suggests that the decay of the cluster sizes is governed by a power law.

A.1.2. Mixture of Normalized Generalized Gamma process
We can alternatively specify a Normalized Generalized Gamma (NGG) process as a prior for p ∼ NGG(α,d,P0) (Brix, 1999;
Lijoi et al., 2007). This distribution is characterized by τ > 0, d ∈ (0,1), and a base measure P0. Following the previous
example, we can consider the subject random measure to be distributed according to an NGG, G ∼NGG(α,d,G0). It might be
represented as

G =∑
n≥1

π1nδξn, π1n = Tn/∑
i≥1

Ti, ξn
iid∼ G0,

where Tn are points of a generalized gamma process with parameters α > 0, d ∈ (0,1), and ∑i≥1 Ti < ∞ (Brix, 1999). For
d→ 0 we recover the DP. See Ghosal & van der Vaart (2017) for the correspondence between the PY and NGG processes. The
interpretation of the parameters α and d, and the comments on the power law tails behavior of the PY process might be readily
applied to the NGG process.

In educational rating contexts, the PY and the NGG processes might be preferred to the DP when the interest is to identify
a few large clusters of subjects with similar proficiency levels and subjects who might need more one-on-one or personalized
teaching. We refer to De Blasi et al. (2015); Hjort et al. (2010) and Ishwaran & James (2001) for a broader treatment of this
class of priors.

A.2. Multiple ways unbalanced designs
We present here an extension of our proposal for multiple-way unbalanced designs. Without loss of generality, we consider a
three-way design in which ratings are additionally nested within an independent factor. It is the case where subjects are rated
over different tasks (Ten Hove et al., 2022) or across different occasions (Lin et al., 2025).

Consider a subject i = 1, . . . ,I, whose attribute is independently scored by a random subset of raters Ri ⊆ {1, . . . ,J}
on a continuous rating scale across different tasks d ∈ {1, . . . ,D}. We assume that the observed rating Yijd ∈ R depends
independently on subject i, rater j ∈Ri and task d ∈ {1, . . . ,D}. We let the residual part, that is the difference between the true
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and the observed score, depend on rater j’s effects, i.e. systematic bias and reliability. We specify the following decomposition
of rating Yijd :

Yijd = θi +τj + ξd +SRij +SDid +RDjd + εijd, (47)

for i = 1, . . . ,I, j ∈ Ri and d ∈ {1, . . . ,D}. Here θi is the true score of subject i, τj is the systematic bias of rater j, ξd is the
average easiness of task d, τj +SRij is the average bias of rater j in scoring subject i, ξd +SDi is the easiness of task d for subject
i, τj + SRij + SDjd is the bias of rater j in scoring subject i in task d and εijd is a residual term following a zero-mean normal
distribution with variance σ2

j as in the two-way unbalanced design. All the parameters in (47) are assumed to be mutually
independent.

We extend the model presented in Section 2.3 by placing a prior over the new set of parameters. They might be equivalently
equipped with parametric or nonparametric priors. In the latter case, the same modelling strategy as described for {τj}J

1 in
Section 2.3 and 2.4 might be freely adopted for any of the new parameters.

The ICCs class for these multiple-way models might be derived straightforwardly as in the two-way design setting and
following the rationale detailed in Lin et al. (2025). If nonparametric priors are placed over the new set of parameters, the
variance of their respective mixture distribution might be estimated as indicated in Section 2.4. As for the two-way case, the
BNP ICCs class for these models is a generalization of most of those proposed for multilevel data (e.g., Lin et al., 2025; Ten
Hove et al., 2021, 2022), since the residuals’ heteroschedasticity and the flexible mixture distribution of the parameters. As a
consequence, when parametric priors are placed over the parameters in (47) and given σ2

j = σ2, for j = 1, . . . ,J, the standard
ICCs in Lin et al. (2025) are recovered.

B. Proofs

B.1. Proof of Proposition 1
Proof. Let Yij and Yij′ be the ratings given by two random raters j,j′ ∈ Ri, j ≠ j′, to a random subject i, for i = 1, . . . ,I:

Yij = θi +τj + εij, Yij′ = θi +τj′ + εij′ .

Assuming mutual independence between the terms of the decomposition:

Var[Yij∣G,H] = ω2
G +ϕ2

H +σ2
j , Var[Yij′ ∣G,H] = ω2

G +ϕ2
H +σ2

j′

and the conditional covariance between the two ratings is

Cov[Yij,Yij′ ∣G,H] = Cov[θi +τj + εij,θi +τj′ + εij′ ∣G,H]
= Cov[θi,θi∣G,H]+Cov[θi,τj′ ∣G,H]+Cov[θi,εij′ ∣G,H]
+Cov[τj,θi∣G,H]+Cov[τj,τj′ ∣G,H]+Cov[τj,εij′ ∣G,H]
+Cov[εij,θi∣G,H]+Cov[εij,τj′ ∣G,H]+Cov[εij,εij′ ∣G,H]
= Cov[θi,θi∣G,H]
= ω2

G.

The correlation between the ratings is

ICCj,j′ = Cor[Yij,Yij′ ∣G,H,σ2
j ,σ

2
j′] =

Cov[Yij,Yij′]∣G,H√
(Var[Yij∣G,H]

√
Var[Yij′ ∣G,H])

= ω2
G√

ω2
G +ϕ2

H +σ2
j

√
ω2

G +ϕ2
H +σ2

j′
. ◻

B.2. Proof of statement (i) of Proposition 2
Proof. Let Yij and Yij′ be the ratings given by two random raters j,j′ ∈Ri, j ≠ j′, satisfying σ2

j = σ2
j′ = σ̃H to a random subject i,

i = 1, . . . ,I:
Yij = θi +τj + εij, Yij′ = θi +τj′ + εij′ .

Assuming mutual independence between the terms of the decomposition:

Var[Yij∣G,H] = ω2
G +ϕ2

H + σ̃H, Var[Yij′ ∣G,H] = ω2
G +ϕ2

H + σ̃H

and the conditional covariance between the two ratings is

Cov[Yij,Yij′ ∣G,H] = Cov[θi +τj + εij,θi +τj′ + εij′ ∣G,H]
= Cov[θi,θi∣G,H]+Cov[θi,τj′ ∣G,H]+Cov[θi,εij′ ∣G,H]
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+Cov[τj,θi∣G,H]+Cov[τj,τj′ ∣G,H]+Cov[τj,εij′ ∣G,H]
+Cov[εij,θi∣G,H]+Cov[εij,τj′ ∣G,H]+Cov[εij,εij′ ∣G,H]
= Cov[θi,θi∣G,H]
= ω2

G.

The correlation between the ratings is

ICCA = Cor[Yij,Yij′ ∣G,H] =
Cov[Yij,Yij′]∣G,H√

(Var[Yij∣G,H]
√

Var[Yij′ ∣G,H])

= ω2
G

ω2
G +ϕ2

H + σ̃H
. ◻

B.3. Proof of statement (ii) of Proposition 2
Proof. Let us consider the function ICC which, conditional on G and H, is a convex function of the random variable σ2

j :

ICC(σ2
j ∣G,H) =

ω2
G

ω2
G +ϕ2

H +σ2
j
, j = 1, . . . ,J. (48)

. Let ICCA be the ICC function of the expected value of σj:

ICCA =
ω2

G

ω2
G +ϕ2

H +E[σ2
j ∣G,H]

, j = 1, . . . ,J. (49)

Note that E[σ2
j ∣G,H] = E[σ2

j′ ∣G,H] for j,j′ = 1, . . . ,J, j ≠ j′. It readily follows from the conditional Jensen’s Inequality that

ICC(E[σj∣G,H]) ≤ E[ICC(σ2
j ∣G,H)]. (50)

Since for brevity we define ICCA = ICC(E[σj∣G,H]) and ICC = ICC(σ2
j ∣G,H):

ICCA ≤ E[ICC∣G,H]. (51)

where E[ICC∣G,H] = E[Corr(Yij,Yi,j′ ∣G,H)], i = 1, . . . ,I and j,j′inRi. That is the expected correlation between two indepen-
dent ratings given to a random subject. ◻

B.4. Proof of Proposition 3
Proof. Let Yij and Yij′ be the ratings given by j,j′ ∈ Ri, j ≠ j′, to a random subject i, i = 1, . . . ,I:

Yij = θi + εij, Yij′ = θi + εij′ .

Assuming mutual independence between the terms of the decomposition:

Var[Yij∣G,H] = ω2
G +ϕ2

H, Var[Yij′ ∣G,H] = ω2
G +ϕ2

H

and the conditional covariance between the two ratings is

Cov[Yij,Yij′ ∣G,H] = Cov[θi + εij,θi + εij′ ∣G,H]
= Cov[θi,θi∣G,H]+Cov[θi,εij′ ∣G,H]+Cov[εij,θi∣G,H]+Cov[εij,εij′ ∣G,H]
= Cov[θi,θi∣G,H]
= ω2

G.

The correlation between the ratings is

ICC = Cor[Yij,Yij′ ∣G,H] =
Cov[Yij,Yij′ ∣G,H]√

(Var[Yij∣G,H]
√

Var[Yij′ ∣G,H])

= ω2
G

ω2
G +ϕ2

H
.

Since the conditional variance of ratings is equal across subjects Var[Yij∣G,H] = ω2
G+ϕ2

H for i = 1, . . . ,I, the ICC is unique for
all the subjects. ◻
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C. Plots
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Figure C.1. Average estimated density across 10 independent datasets under the unimodal scenario. The columns indicate the

cardinality of ∣Ri ∣ = {2,4}: left and right, respectively. The solid red lines indicate the true densities; the solid black line and the shaded

grey area indicate, respectively, the point-wise mean and 95% quantile-based credible intervals; the density implied by the BP model

(black dotted lines).
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Figure C.2. First row: examples of posterior similarity matrices for pairwise subject and raters allocation (left and right column,

respectively). Second row: posterior similarity matrices for pairwise subject and raters allocation in real data analyzed in Section 7.
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