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Abstract This paper generalizes, in two senses, work of Petzl and Sharp, who showed that, for a Z-
graded module M over a Z-graded commutative Noetherian ring R, the graded Cousin complex for M
introduced by Goto and Watanabe can be regarded as a subcomplex of the ordinary Cousin complex
studied by Sharp, and that the resulting quotient complex is always exact. The generalizations considered
in this paper are, firstly, to multigraded situations and, secondly, to Cousin complexes with respect to
more general filtrations than the basic ones considered by Petzl and Sharp. New arguments are presented
to provide a sufficient condition for the exactness of the quotient complex in this generality, as the
arguments of Petzl and Sharp will not work for this situation without additional input.
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1. Introduction

In [6], Petzl and Sharp compared the graded Cousin complex ∗C(M)• (introduced by
Goto and Watanabe in [4]) for a graded module M over a Z-graded commutative Noethe-
rian ring (Z denotes the set of integers) with the ordinary Cousin complex C(M)• (stud-
ied by Sharp in [7]) obtained by ignoring the gradings. The main results of [6] are that
∗C(M)• can be viewed as a subcomplex of C(M)•, and that the resulting quotient com-
plex is always exact.

This paper is concerned with generalizations of that work to multigraded situations
and to more general Cousin complexes.
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Throughout, let G be a finitely generated free abelian group, and let R be a G-graded
commutative Noetherian ring. LetM be aG-gradedR-module. In [5, Chapter I, § 4], Goto
and Watanabe introduced the G-graded Cousin complex ∗C(M)• for M . It is natural to
ask whether the analogues of the results of [6] hold in this G-graded situation. One of
the aims of this paper is to show that they do; however, while the fact that ∗C(M)•

can be viewed as a subcomplex of the ungraded Cousin complex C(M)• can be proved
by straightforward modification of arguments in [6], we needed fresh ideas to prove, in
this G-graded case, that the resulting quotient complex is always exact, as the argument
in [6] does not deal with the case where rankG > 1.

The other way in which this paper generalizes work from [6] is that here we consider the
Cousin complex C(F ,M)• with respect to a general filtration F of Spec(R) which admits
M , as in [8, § 1]: in this situation, it turns out that there is a natural way to construct a G-
graded Cousin complex ∗C(∗F ,M)• which can be regarded as a subcomplex of C(F ,M)•;
we provide conditions on M and F that are sufficient for the resulting quotient complex
to be exact, and show by example that, even in the case where G = Z, the quotient
complex need not be exact.

2. Partial small supports

In this section we introduce a refinement of the concept of small support (see [6, Defi-
nition 1.1]) of a module over a commutative Noetherian ring. We shall make substantial
use of this refinement.

Definition 2.1. Let L be a module over the commutative Noetherian ring A′. For each
i ∈ N0, the i-th partial small support (or i-th small support) of L, denoted by suppi(L)
or suppiA′(L), is defined by

suppi(L) = {p ∈ Spec(A′) : ExtiA′p(k(p), Lp) 6= 0}
= {p ∈ Spec(A′) : µi(p, L) > 0},

where k(p) = A′p/pA
′
p and µi(p, L) denotes the ith Bass number of L with respect to p.

Note that the small support supp(L) of L (see [6, Definition 1.1]) is given by

supp(L) =
⋃
i∈N0

suppi(L).

The next lemma is a refinement of [6, Lemma 1.2]; it can be proved by similar argu-
ments to those used by Petzl and Sharp in [6], and so it is just stated here without
proof. The properties of partial small supports presented in the lemma are central to our
argument in § 4.

Lemma 2.2. Let L be a module over the commutative Noetherian ring A′ and let

0 −→ L′ −→M ′ −→ N ′ −→ 0

be a short exact sequence of A′-modules and A′-homomorphisms. Let i ∈ N0. Then
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(i) Ass(L) = supp0(L);

(ii) if S is a multiplicatively closed subset of A′ and N is an S−1A′-module,

suppiA′(N) = {p ∈ Spec(A′) : p ∩ S = ∅ and pS−1A′ ∈ suppiS−1A′(N)};

(iii) suppi(M ′) ⊆ suppi(L′) ∪ suppi(N ′);

(iv) suppi(N ′) ⊆ suppi(M ′) ∪ suppi+1(L′); and

(v) suppi(L′) ⊆ suppi(M ′) ∪ suppi−1(N ′) (we interpret suppi−1(N ′) = ∅ if i = 0).

The results of [6, Lemma 1.2] are an immediate consequence of Lemma 2.2.

3. Multigraded Cousin complexes

Notation 3.1. Throughout the paper, G will denote a finitely generated free abelian
group, and M will denote a G-graded module over the G-graded commutative Noetherian
ring R. Let ∗Spec(R) denote the set of all G-graded prime ideals of R and let ∗Supp(M)
be the set of G-graded prime ideals in the support of M . We shall say that an R-
homomorphism between G-graded R-modules is homogeneous if it is homogeneous of
degree 0 ∈ G.

For an arbitrary ideal a of R, we denote by a∗ the largest G-graded ideal of R contained
in a.

We shall only assume that R is ∗local, that is, has a unique ∗maximal ideal (a ∗maximal
ideal of R is a maximal member of the set of G-graded proper ideals of R) when this
is explicitly made clear; however, the phrase ‘(R,m) is ∗local’ is to be interpreted as
meaning that R is ∗local and m is its unique ∗maximal ideal.

In [3, Chapter III], Enshaei considered G-graded analogues of the Cousin complexes
studied in [8, Definition 1.3]. We summarize the main points.

Definitions 3.2. A ∗filtration of ∗Spec(R) is a descending sequence E = (Ei)i∈N0 of
subsets of ∗Spec(R), so that

∗Spec(R) ⊇ E0 ⊇ E1 ⊇ · · · ⊇ Ei ⊇ Ei+1 ⊇ · · · ,

with the property that, for each i ∈ N0, each member of ∂Ei := Ei \ Ei+1 is a minimal
member of Ei with respect to inclusion. We say that E admits M if ∗Supp(M) ⊆ E0.

Now let E = (Ei)i∈N0 be a ∗filtration of ∗Spec(R) that admits M in the above sense.
The Cousin complex ∗C(E ,M)• for M with respect to E is a complex of G-graded R-
modules and homogeneous R-homomorphisms having the form

0 d−2

−−→M
d−1

−−→ ∗M0 −→ · · · −→ ∗M i di−→ ∗M i+1 −→ · · · ,

with, for each i ∈ N0,
∗M i =

⊕
p∈∂Ei

(Coker di−2)(p).
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(Here, ‘(p)’ denotes homogeneous localization at p, that is, fraction formation with respect
to the set of homogeneous elements of R \ p.) The homomorphisms in this complex have
the following properties: for m ∈M and a G-graded prime ideal p ∈ ∂E0, the component
of d−1(m) in M(p) is m/1; and for i > 0, x ∈M i−1 and q ∈ ∂Fi, the component of di−1(x)
in (Coker di−2)(q) is π(x)/1, where π : ∗M i−1 −→ Coker di−2 is the natural epimorphism.
The fact that such a complex can be constructed follows from obvious modifications of
arguments in [7, § 2] and [5, Chapter I, § 4].

Example 3.3. If ∗H(M) denotes the M -∗height filtration (∗Hi)i∈N0 of ∗Spec(R),
defined by

∗Hi = {p ∈ ∗Supp(M) : htM p > i}, for all i ∈ N0

(where htM q = dimRq Mq for q ∈ Supp(M)), then ∗H(M) admits M and the Cousin
complex ∗C(∗H(M),M)• for M with respect to ∗H(M) is just the Cousin complex
∗C(M)• for M considered by Goto and Watanabe in [5, Chapter I, § 4].

Example 3.4. If M ′ is a module over a commutative Noetherian ring R′, and we
take G = 0, then we can regard R′ and M ′ as G-graded in an obvious natural way.
Then ∗Spec(R′) = Spec(R′), a ∗filtration E of ∗Spec(R′) which admits M is just a
filtration of Spec(R′) which admits M in the sense of [8, Definitions 1.1], and the Cousin
complex ∗C(E ,M)• for M with respect to E is just the Cousin complex C(E ,M)• of [8,
Definition 1.3].

We now state the basic theorem on which a comparison of Cousin complexes in our G-
graded case is based. The theorem can be proved by making straightforward modifications
to the arguments used to prove [6, Proposition 3.2 and Theorem 3.3], and so we omit
the proof.

Theorem 3.5. Let F = (Fi)i∈N0 be a filtration of Spec(R) that admits M (see
[8, Definitions 1.1]). We can construct the ungraded Cousin complex C(F ,M)• of [8,
Definition 1.3]. For each i ∈ N0 we set ∗Fi = Fi ∩ ∗Spec(R). Then ∗F = (∗Fi)i∈N0 is a
∗filtration of ∗Spec(R) which admits M in the sense of 3.2, and so we can construct the
Cousin complex ∗C(∗F ,M)• of 3.2.

We write C(F ,M)• as

0 e−2

−−→M
e−1

−−→M0 e0−→M1 −→ · · · −→M i ei−→M i+1 −→ · · · ,
and ∗C(∗F ,M)• as

0 d−2

−−→M
d−1

−−→ ∗M0 d0

−→ ∗M1 −→ · · · −→ ∗M i di−→ ∗M i+1 −→ · · · .
We use ‘overlines’ to denote natural images, of elements of terms in Cousin complexes,
in cokernels of appropriate maps in those complexes.

There is a chain map

Ψ(F ,M) = (ψi)i>−2 : ∗C(∗F ,M)• −→ C(F ,M)•

of complexes of R-modules and R-homomorphisms such that the following hold.

https://doi.org/10.1017/S0013091599000851 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000851


Comparison of multigraded and ungraded Cousin complexes 369

(i) The homomorphism ψ−1 : M −→M is the identity map.

(ii) For all i ∈ N0 and all (yp/tp)p∈∂Fi∩∗Spec(R) ∈ ∗M i,

ψi
((

yp

tp

)
p∈∂Fi∩∗Spec(R)

)
= (βp)p∈∂Fi ,

where, for p ∈ ∂Fi,

βp =


ψi−1(yp)

tp
, if p is G-graded,

0, if p is not G-graded.

(In this notation, each tp denotes a homogeneous element of R outside p, and the
yp denote elements of ∗M i−1; when i = 0, interpret ∗M i−1 as M itself.)

(iii) All the ψi (i > −1) are monomorphisms.

(iv) We have ψi((Coker di−2)(p)) ⊆ (Coker ei−2)p for all p ∈ ∂Fi ∩ ∗Spec(R).

(v) For p ∈ ∂Fi ∩ ∗Spec(R), we have

(Coker ei−2)p/ψ
i((Coker di−2)(p)) ∼= Hi

p(M)p/H
i
p(M)(p).

Definition and Remarks 3.6. In the situation of Theorem 3.5, all the constituent
homomorphisms in the chain map

Ψ(F ,M) = (ψi)i>−2 : ∗C(∗F ,M)• −→ C(F ,M)•

are monomorphisms. We can therefore regard ∗C(∗F ,M)• as a subcomplex of C(F ,M)•:
we denote the quotient complex C(F ,M)•/ Im(Ψ(F ,M)) by

Q(F ,M)• : 0 −→ Q0 f0

−→ Q1 −→ · · · −→ Qi
fi−→ Qi+1 −→ · · · ,

and refer to this as the generalized degradation complex of M with respect to F .
Let i ∈ N0. Then there is an obvious isomorphism Qi ∼= Gi ⊕ U i, where

Gi :=
⊕

p∈∂Fi∩∗Spec(R)

(Coker ei−2)p/ψ
i((Coker di−2)(p))

and

U i :=
⊕

p∈∂Fi\∗Spec(R)

(Coker ei−2)p.

Also, for p ∈ ∗Supp(M) with p ∈ ∂Fi, set

Qi(p,F ,M) := (Coker ei−2)p/ψ
i((Coker di−2)(p)).
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Now Qi(p,F ,M) has a natural structure as an R(p)-module, and it follows from Theo-
rem 3.5(v) and [1, Corollary 4.3.3] that, as such,

QiR(p,F ,M) ∼= QiR(p)
(pR(p),F(p),M(p)),

where the filtration F(p) is as defined in [8, Definitions 1.1]. Furthermore, we can also
conclude from Theorem 3.5(v) and the G-graded analogue of [6, Lemma 2.4] that

SuppR(p)
(QiR(p,F ,M)) ⊆ {qR(p) : q ∈ Supp(M), q is not G-graded and q∗ = p}.

It will be noted that much of Theorem 3.5 and 3.6 represent straightforward general-
izations of work in [6, Proposition 3.2, Theorem 3.3 and Definition and Notation 3.4].
There is an alternative approach to this work, based on generalized Hughes complexes,
presented in [2].

In our investigation, in § 4 below, of conditions under which the generalized degra-
dation complex Q(F ,M)• is exact, straightforward generalization of the work in [6] is
insufficient, on its own, to achieve our goals.

4. Exactness of the generalized degradation complex

In this section we shall discuss exactness of the generalized degradation complex of 3.6.
First we show by example that it is not always exact.

Example 4.1. Let C be the complex field and A = C[X] be the (Cohen–Macaulay)
ring of polynomials in the indeterminate X with coefficients in C, graded in the usual way.
Let H(A) = (Hi)i∈N0 be the height filtration of Spec(A) in the sense of [8, Examples 1.2],
so thatH0 = Spec(A),H1 = {(X−α) : α ∈ C}, andHi = ∅ for all i > 2. Let F = (Fi)i∈N0

be given by F0 = H0, F1 = H1, F2 = {(X − 1)}, and Fi = ∅ for all i > 3. Then

Spec(A) = F0 ⊇ F1 ⊇ F2 ⊇ F3 = F4 = · · · = ∅.

Furthermore, F0 \ F1 = {(0)}, F1 \ F2 = {(X − α) : 1 6= α ∈ C} and F2 \ F3 = F2 =
{(X − 1)}. Thus, F is a filtration of Spec(A).

Then, with the notation of Theorem 3.5, we have ∗F0 = {(0), (X)} = ∗H0, ∗F1 =
{(X)} = ∗H1 and ∗Fi = ∅ for all i > 2. Since A is Cohen–Macaulay, the graded
Cousin complex ∗C(∗H(A), A)• is exact by [4, Theorem 1.3.3] and, since ∗C(∗F , A)• =
∗C(∗H(A), A)•, it follows that the graded Cousin complex ∗C(∗F , A)• is exact.

The Cousin complex C(H(A), A)•, which is exact, has the form

0 −→ A −→ K −→
⊕
α∈C

(K/A)(X−α) −→ 0,

where K = Q(A) is the quotient field of A. Therefore, the map

ξ : K/A −→
⊕
α∈C

(K/A)(X−α),
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defined by ξ(γ) = (γ/1)α∈C for all γ ∈ K/A, is an isomorphism. The Cousin complex
C(F , A)• has the form

0 −→ A −→ K
e0−→

⊕
α∈C\{1}

(K/A)(X−α)
e1−→ (Coker e0)(X−1) −→ 0.

Now (1/(X − 1)) + A is a non-zero element in K/A, but ((1/(X − 1)) + A)/1 = 0 in
(K/A)(X−α) for all α ∈ C with α 6= 1. Therefore, the induced map

θ : K/A −→
⊕

α∈C\{1}
(K/A)(X−α)

(which is defined by θ(γ) = (γ/1)α∈C\{1} for all γ ∈ K/A) is not injective. Hence, the
Cousin complex C(F , A)• is not exact at the zeroth term. The canonical sequence of
complexes

0 −→ ∗C(∗F , A)• −→ C(F , A)• −→ Q(F ,M)• −→ 0

therefore shows that Q(F ,M)• is not exact.

Our next aim is to establish that a certain condition is sufficient for the generalized
degradation complex of 3.6 to be exact.

Remark and Notation 4.2. Suppose that (R,m) is ∗local and that M 6= 0. Let
F = (Fi)i∈N0 be a filtration of Spec(R) which admits M with m ∈ ∂Fh (where h ∈ N0)
and let ∗F = (∗Fi)i∈N0 be the corresponding ∗filtration of ∗Spec(R), as in Theorem 3.5.

With the terminology of [9, Definition 2.2], we have h = htF m; also htM m 6 htF m =
h by [9, Lemma 2.3(iv)]. It follows from Grothendieck’s Vanishing Theorem for local
cohomology that (Hh

m(M))m = 0 if htM m < h. Since the local cohomology module
Hh

m(M) is G-graded, it follows from the G-graded analogue of [6, Lemma 2.2(iii)] that
the natural homomorphism µHhm(M) : Hh

m(M) −→ (Hh
m(M))m is injective. Therefore,

Hh
m(M) = 0 if htM m < h.
Next, Supp(Hh

m(M)) ⊆ Var(m). Set F ′0 = {p ∈ Spec(R) : p∗ = m}, and F ′i = {p ∈
Spec(R) : p∗ = m and ht(p/p∗) > i} for all i ∈ N. Then

Spec(R) ⊇ F ′0 ⊇ F ′1 ⊇ · · · ⊇ F ′i ⊇ · · · ,
and Supp(Hh

m(M)) ⊆ F ′0. (Note that, by [5, Theorem 1.2.3], as R is G-graded, 0 6
ht(p/p∗) 6 rank(G) for each p ∈ Spec(R), and so F ′i = ∅ for all i > rank(G).) There-
fore, the family F ′ = (F ′i )i∈N0 provides a filtration of Spec(R) that admits Hh

m(M),
so that we can construct the Cousin complex C(F ′, Hh

m(M))• as in [8, Definition 1.3].
Set n := rank(G). An application of [9, Corollary 2.6] shows that the Cousin complex
C(F ′, Hh

m(M))• has the form

0 −→ Hh
m(M) −→ (Hh

m(M))m −→
⊕

q∈∂F ′1
(H1

q (Hh
m(M)))q −→ · · ·

−→
⊕

q∈∂F ′n
(Hn

q (Hh
m(M)))q −→ 0.
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In the next lemma we shall show that the Cousin complex C(F ′, Hh
m(M))• is exact.

Henceforth in this paper we shall, for convenience, use the notation Hh
m(M)m and

Hi
p(Hh

m(M))p to denote (Hh
m(M))m and (Hi

p(Hh
m(M)))p, respectively, for i, h ∈ N0 and

p,m ∈ Spec(R).

Lemma 4.3. Let the situation and notation be as in 4.2. Then the Cousin complex
C(F ′, Hh

m(M))• is exact.

Proof. Set H := Hh
m(M). Clearly, we can assume that H 6= 0. Then htM m = htF m =

h and AssH = {m}, since H is m-torsion and G-graded. Thus, Supp(H) = F ′0 and F ′
is the H-height filtration of Spec(R) (see [8, Examples 1.2]); therefore, C(F ′, H)• is just
the Cousin complex C(H)• of [7, § 2]. Write C(H)• as

0
f−2

−−→ H
f−1

−−→ H0 f0

−→ H1 −→ · · · −→ Hi fi−→ Hi+1 −→ · · · .

Suppose that C(H)• is not exact, let v be the least i ∈ N0 such that C(H)• is not exact
at Hi−1 (where we interpret H−1 as H), and let a be the annihilator of a non-zero element
of the (v − 1)th cohomology module of C(H)•. Then Var(a) ⊆ F ′v+1 (by [7, § 2.7(vii)]),
and one can use the ‘partially exact Cousin complex argument’ of [7, Lemma (4.6)] to
see that ExtiR(R/a, H) = 0 for i = 0, . . . , v − 1 and ExtvR(R/a, H) 6= 0. Since H can be
considered as a direct limit of its finitely generated G-graded submodules, it follows that
there exists a finitely generated G-graded submodule L of H such that ExtvR(R/a, L) 6= 0.

Since Ass(L) = {m}, it follows from [5, Corollary 1.2.4] that L is a Cohen–Macaulay
R-module, so that ExtvR(R/a, L) = 0 since Var(a) ⊆ F ′v+1. This contradiction completes
the proof. �

Lemma 4.4. For all i, j ∈ N0, the jth term in the Cousin complex C(F ′, Hh
m(M))•

of 4.2 satisfies

suppiR

( ⊕
p∈∂F ′j

Hj
p(Hh

m(M))p

)
⊆ ∂F ′j .

Proof. It is enough to show that, for each p ∈ ∂F ′j , suppiR(Hj
p(Hh

m(M))p) ⊆ {p}
(because the functor ExtiRp

(k(p), ·) (on the category of all Rp-modules and Rp-homo-
morphisms) commutes with direct limits).

Set L := Hj
p(Hh

m(M)). Since L is p-torsion, it is clear that SuppRp
(Lp) ⊆ {pRp}.

Hence, by Lemma 2.2(ii):

suppiR(Lp) = {q ∈ Spec(R) : q ⊆ p and qRp ∈ suppiRp
(Lp)}

⊆ {q ∈ Spec(R) : q ⊆ p and qRp ∈ SuppRp
(Lp)}

⊆ {p}.

�
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Proposition 4.5. Let the situation and notation be as in 4.2 and 4.3. Then

suppi(Hh
m(M)m/H

h
m(M)) ⊆

i+1⋃
j=1

∂F ′j

for all i ∈ N0.

Proof. With the notation of 4.2, the Cousin complex C(F ′, Hh
m(M))• is exact, by

Lemma 4.3. It therefore follows from the description of that Cousin complex given in 4.2
that there is an exact sequence

0 −→ Hh
m(M)m/H

h
m(M)

g0−→
⊕

p∈∂F ′1
H1

p(Hh
m(M))p

g1−→ · · ·
⊕

p∈∂F ′i
Hi

p(Hh
m(M))p

gi−→ · · · .

Let Kj := Ker gj+1 for all j ∈ N0, so that K0 ∼= Hh
m(M)m/H

h
m(M). Let i ∈ N0. Use

Lemma 2.2(v) (and the interpretation of supp−1 given therein), in conjunction with the
short exact sequences obtainable from the last-displayed long exact sequence, to see that

suppi−j(Kj) ⊆ suppi−j
( ⊕

p∈∂F ′j+1

Hj+1
p (Hh

m(M))p

)⋃
suppi−j−1(Kj+1)

for all j = 0, . . . , i. Since K0 ∼= Hh
m(M)m/H

h
m(M), it follows from these inclusions that

suppi(Hh
m(M)m/H

h
m(M)) ⊆

i⋃
j=0

suppi−j
( ⊕

p∈∂F ′j+1

Hj+1
p (Hh

m(M))p

)
,

and the claim therefore follows from Lemma 4.4. �

Remark 4.6. Let the situation and notation be as in 4.2. Then, by Proposition 4.5
and the construction of the filtration F ′, we have

suppi(Hh
m(M)m/H

h
m(M)) ⊆ {q ∈ Spec(R) : q∗ = m and 1 6 ht(q/q∗) 6 i+ 1}

= {q ∈ Spec(R) \ ∗Spec(R) : q∗ = m, ht(q/q∗) 6 i+ 1}

for all i ∈ N0.

The following corollary is now an immediate consequence of Theorem 3.5(v) and Propo-
sition 4.5.

Corollary 4.7. Suppose that (R,m) is ∗local. Let F = (Fi)i∈N0 be a filtration of
Spec(R) which admits M , and suppose that m ∈ ∂Fh. Let

Ψ(F ,M) = (ψi)i>−2 : ∗C(∗F ,M)• −→ C(F ,M)•
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be the chain map of Theorem 3.5. Then, for each i ∈ N0,

suppi((Coker eh−2)m/ψ
h(Coker dh−2))

⊆ {q ∈ Spec(R) \ ∗Spec(R) : q∗ = m, ht(q/q∗) 6 i+ 1}.

We recall the following definition from the Introduction of [9].

Definition 4.8. Let L be a module over the commutative Noetherian ring A′. Let
F ′ = (F ′i )i∈N0 be a filtration of Spec(A′) which admits L, and let C(F ′, L)• be the Cousin
complex

0 c−2

−−→ L
c−1

−−→ L0 c0−→ L1 −→ · · · −→ Li
ci−→ Li+1 −→ · · ·

for L with respect to F ′. Then we say that a prime ideal p of A′ is significant, or of
significance, for C(F ′, L)• if there exists i ∈ N0 for which p ∈ ∂F ′i and the direct summand
(Coker ci−2)p of the term Li is non-zero; otherwise, we say that p is insignificant, or of
no significance, for C(F ′, L)•.

Lemma 4.9. Let the situation and notation be as in Theorem 3.5 and 3.6, and let

Q(F ,M)• : 0 −→ Q0 f0

−→ Q1 −→ · · · −→ Qi
fi−→ Qi+1 −→ · · ·

be the generalized degradation complex of M with respect to F of 3.6. Then, for all
i, h ∈ N0,

suppiR(Qh) ⊆ {q ∈ Supp(M) \ ∗Supp(M) : q ∈ ∂Fh or q∗ ∈ ∂Fh with q∗ significant

for C(F ,M)• and ht(q/q∗) 6 i+ 1}.

Proof. Let i, h ∈ N0. With the notation of 3.6, we have Qh ∼= Gh
⊕
Uh, where

Gh :=
⊕

p∈∂Fh∩∗Supp(M)

QhR(p),

QhR(p) = (Coker eh−2)p/ψ
h((Coker dh−2)(p)) for all p ∈ ∗Supp(M) ∩ ∂Fh, and

Uh :=
⊕

p∈∂Fh∩Supp(M)\∗Supp(M)

(Coker eh−2)p.

(We have made use of [8, Corollary 1.5] here.) Note that

suppiR(Qh) = suppiR(Gh) ∪ suppiR(Uh).

Since, for each p ∈ Spec(R), the functor ExtiRp
(k(p), ·) (on the category of all Rp-modules

and Rp-homomorphisms) commutes with direct limits, it follows that

suppiR(Gh) =
⋃

p∈∂Fh∩∗Supp(M)

suppiR(QhR(p)),
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and

suppiR(Uh) =
⋃

p∈∂Fh∩Supp(M)\∗Supp(M)

suppiR((Coker eh−2)p).

Now, let p ∈ ∂Fh ∩ ∗Supp(M). Use the notation of 3.6, with the abbreviation QiR(p)
for QiR(p,F ,M). By 3.6, there is an R(p)-isomorphism

QiR(p,F ,M) ∼= QiR(p)
(pR(p),F(p),M(p)),

and so, by Corollary 4.7, we have

suppiR(p)
(QhR(p))

⊆ {Q ∈ SuppR(p)
(M(p)) \ ∗SuppR(p)

(M(p)) : Q∗ = pR(p), ht(Q/Q∗) 6 i+ 1}.
On the other hand, by Definition 2.1 and 3.6 we have

suppiR(p)
(QhR(p)) ⊆ suppR(p)

(QhR(p))

⊆ SuppR(p)
(QhR(p))

⊆ {qR(p) : q ∈ Supp(M) \ ∗Supp(M) and q∗ = p}.
We now compare these two bounds for suppiR(p)

(QhR(p)) to deduce that

suppiR(p)
(QhR(p)) ⊆ {qR(p) ∈ Spec(R(p)) : q ∈ Supp(M) \ ∗Supp(M), q∗ = p,

and ht(q/q∗) 6 i+ 1}.
Next, an application of Lemma 2.2(ii) shows that

suppiR(Qh(p)) ⊆ {q ∈ Supp(M) \ ∗Supp(M) : q∗ = p and ht(q/q∗) 6 i+ 1}.
Note that, for a p ∈ ∂Fh∩ ∗Supp(M), if (Coker eh−2)p = 0, then suppiR(QhR(p)) = ∅, and
if (Coker eh−2)p 6= 0, then p is significant for C(F ,M)•.

Let p ∈ Supp(M) \ ∗Supp(M) with p ∈ ∂Fh. Then we obtain from Definition 2.1
and [6, Lemma 1.2] that

suppiR((Coker eh−2)p) ⊆ suppR((Coker eh−2)p)

⊆ {q ∈ Spec(R) : q ⊆ p and qRp ∈ suppRp
((Coker eh−2)p)}

⊆ {q ∈ Spec(R) : q ⊆ p and qRp ∈ SuppRp
((Coker eh−2)p)}

⊆ {p}.
The result follows. �

The next theorem gives a sufficient condition for the generalized degradation complex
to be exact. Its statement involves the concept of the F-height, htF p, of a prime ideal p

of R introduced in [9, Definition 2.2].
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Theorem 4.10. Let the situation and notation be as in Theorem 3.5 and 3.6, and let

Q(F ,M)• : 0 −→ Q0 f0

−→ Q1 −→ · · · −→ Qi
fi−→ Qi+1 −→ · · ·

be the generalized degradation complex of M with respect to F of 3.6. Suppose that,
whenever p is a non-G-graded prime ideal in Supp(M) with p∗ significant for C(F ,M)•,
then

htF p = htF p∗ + ht(p/p∗).

Then Q(F ,M)• is exact.

Proof. The canonical sequence of complexes

0 −→ ∗C(∗F ,M)• −→ C(F ,M)• −→ Q(F ,M)• −→ 0

induces a long exact sequence,

· · · −→ Hi(∗C(∗F ,M)•) −→ Hi(C(F ,M)•) −→ Hi(Q(F ,M)•)

−→ Hi+1(∗C(∗F ,M)•) · · · ,

of cohomology modules. Use of this in conjunction with [8, Proposition 1.4(i)] and its
G-graded analogue shows that, for each i ∈ N0,

AssR(Hi(Q(F ,M)•)) ⊆ Supp(Hi(C(F ,M)•)) ∪ Supp(Hi+1(∗C(∗F ,M)•))

⊆ Fi+2. (4.1)

Let i, j ∈ N0. It follows from Lemma 4.9 and the hypotheses that

suppiR(Qj) ⊆ {q ∈ Supp(M) \ ∗Supp(M) : q ∈ ∂Fj or htF q 6 i+ j + 1}
= {q ∈ Supp(M) \ ∗Supp(M) : htF q 6 i+ j + 1}. (4.2)

Since H0(Q(F ,M)•) is a submodule of Q0, we conclude from Lemma 2.2(i) and (4.2)
that

AssR(H0(Q(F ,M)•)) ⊆ AssR(Q0) = supp0
R(Q0)

⊆ {p ∈ Supp(M) \ ∗Supp(M) : htF p 6 1}
= {p ∈ Supp(M) \ ∗Supp(M) : htF p = 1}. (4.3)

(There is no non-G-graded prime ideal p in Supp(M) with htF p = 0.) We can now
use this in conjunction with (4.1) to deduce that AssR(H0(Q(F ,M)•)) = ∅, so that
H0(Q(F ,M)•) = 0.

We now use an inductive argument, for which it will be convenient to write Q−1 := 0,
and to denote the (zero) homomorphism from Q−1 to Q0 by f−1. Note that Coker f−1 =
Q0; thus, (4.3) shows that

AssR(Coker f−1) = supp0
R(Q0) ⊆ {p ∈ Supp(M) \ ∗Supp(M) : htF p = 1}.
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Suppose, inductively, that j > 0 and that we have proved that Hi(Q(F ,M)•) = 0 for all
i < j. The fact that the complex Q(F ,M)• is exact at Qi for all i < j means that there
are canonical exact sequences

0 −→ Coker f j−2 −→ Qj −→ Coker f j−1−→ 0,

0 −→ Coker f j−3 −→ Qj−1 −→ Coker f j−2−→ 0,
...

0 −→ Coker f−1 −→ Q1 −→ Coker f0 −→ 0.

We now use these short exact sequences in conjunction with Lemma 2.2(i),(iv) to obtain

AssR(Coker f j−1) ⊆ supp0
R(Qj) ∪ supp1

R(Coker f j−2),

supp1
R(Coker f j−2) ⊆ supp1

R(Qj−1) ∪ supp2
R(Coker f j−3),

...

suppj−1
R (Coker f0) ⊆ suppj−1

R (Q1) ∪ suppjR(Q0).

Therefore,

AssR(Coker f j−1) ⊆ supp0
R(Qj) ∪ supp1

R(Qj−1) ∪ · · · ∪ suppjR(Q0).

Consequently, it follows from (4.2) that

AssR(Coker f j−1) ⊆ {p ∈ Supp(M) \ ∗Supp(M) : htF p 6 j + 1}.

Since Hj(Q(F ,M)•) is a submodule of Coker f j−1, we have

AssR(Hj(Q(F ,M)•)) ⊆ {p ∈ Supp(M) \ ∗Supp(M) : htF p 6 j + 1}.

This, when used in conjunction with (4.1), shows that

AssR(Hj(Q(F ,M)•)) = ∅,

so that Hj(Q(F ,M)•) = 0. This completes the inductive step. �

When we take, in Theorem 4.10, the filtration F to be the M -height filtration of
Spec(R) (see [8, Examples 1.2]), the Cousin complex C(F ,M)• is just the ‘basic’ Cousin
complex C(M)• of [7], while the G-graded Cousin complex ∗C(∗F ,M)• is nothing other
than the Cousin complex ∗C(M)• for M studied by Goto and Watanabe in [5, Chapter I,
§ 4]. Since htM p = htM p∗ + ht(p/p∗) for each p ∈ Supp(M) (by [5, Proposition 1.2.2]),
we can immediately obtain the G-graded analogues of [6, Theorem 3.6 and Corollary 3.7].

Corollary 4.11. Let M be a G-graded (not necessarily finitely generated) R-module,
and let i be an integer with i > −1. Let C(M)• denote the basic Cousin complex of [7],
and let ∗C(M)• denote the G-graded Cousin complex of [5, Chapter I, § 4].

https://doi.org/10.1017/S0013091599000851 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000851


378 M. H. Dogani Aghcheghloo and others

For this situation, the generalized degradation complex Q(M)• := Q(H(M),M)•

(where H(M) denotes the M -height filtration of Spec(R)) is always exact.
Consequently, Hi(∗C(M)•) ∼= Hi(C(M)•), so that the latter cohomology module

inherits a structure as G-graded R-module, and all its associated primes are G-graded;
furthermore, C(M)• is exact at its ith term if and only if ∗C(M)• is exact at its ith term.

Proof. This follows from the comments immediately preceding its statement, together
with an argument similar to that used in the proof of [6, Corollary 3.7]. �

Acknowledgements. M.H.D.A. and R.E. were supported by the Ministry of Cul-
ture and Higher Education of the Islamic Republic of Iran.

References

1. M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with
geometric applications (Cambridge University Press, 1998).

2. M. H. Dogani Aghcheghloo, Generalized Hughes complexes and comparison of Cousin
complexes in the multigraded case, PhD thesis, University of Sheffield (1998).

3. R. Enshaei, Modules of generalized fractions and graded rings and modules, PhD thesis,
University of Sheffield (1987).

4. S. Goto and K. Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179–213.
5. S. Goto and K. Watanabe, On graded rings, II (Zn-graded rings), Tokyo J. Math. 1

(1978), 237–261.
6. H. Petzl and R. Y. Sharp, Comparison of graded and ungraded Cousin complexes,

Proc. Edinb. Math. Soc. 41 (1998), 289–301.
7. R. Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring,

Math. Zeit. 112 (1969), 340–356.
8. R. Y. Sharp, A Cousin complex characterization of balanced big Cohen–Macaulay mod-

ules, Q. J. Math. Oxford (2) 33 (1982), 471–485.
9. R. Y. Sharp and Z. Tang, On the structure of Cousin complexes, J. Math. Kyoto Univ.

33 (1993), 285–297.

https://doi.org/10.1017/S0013091599000851 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000851

