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A NOTE ON PROJECTIVE CAPACITY 

H. ALEXANDER 

In t roduc t ion . In [1] we defined a capacity in Cw. Recently Molzon, 
Shiffman and Sibony [8] have introduced a different capacity which is 
useful for certain Bezout estimates. The object of this note is to apply 
the methods of [1] to study the capacity of [8]. We shall obtain an 
equivalent definition of this capacity via Tchebycheff polynomials, 
along the lines of [1]. Half of this equivalence was independently obtained 
by Sibony [9]. 

To establish the full equivalence of these two approaches to capacity 
a notion of Jensen measures in a setting more general than uniform 
algebras is needed. We shall consider Jensen measures for multiplicative 
semigroups; these are sets of functions in which only the multiplicative 
structure is postulated. It will also be useful to generalize the notion of 
polynomial hull in Cn to a hull with respect to a multiplicative semigroup 
of polynomials. We can then adapt the approach of [1] to these semi­
groups. 

It is central to know when a set has zero capacity. Molzon, Shiffman 
and Sibony [8] showed for their capacity, that if 2 is an irreducible 
closed subvariety of projective space (hence algebraic by Chow's 
theorem), then a compact subset of 2 which is not locally pluripolar has 
positive capacity. As an application of the equivalent definition of 
capacity we shall generalize this by replacing 2 with a local subvariety 
which of course need not be algebraic. Finally we give a very short proof 
of the fact that locally pluripolar implies zero capacity (in the sense of 
[1]) ; the original proof was inordinately long. 

1. Jensen measures and j ^ - h u l l s . We shall be using the following 
notations: For a function/ on a set X, 

\\f\\x = Sup{\f(x)\:xeX}, 

C(X) will denote the set of all continuous complex-valued functions on a 
space X, C(R, X) the real-valued functions. For z in Cn ||z|| will be the 
Euclidian norm; for z and w in Cw, z-w = Xï ZtWit-

Let $f be the set of all homogeneous polynomials in Cn which split 
into linear factors. For n > 2 this is a proper subclass of the set of all 
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1320 H. ALEXANDER 

homogeneous polynomials. For a compact set X in Cn we define the 
^ -hu l l of X by 

y-hull(X) = K Cn:\p(z)\ S \\p\\x for all p G y \ . 

This is of course completely analogous to the polynomially convex hull 
where y is replaced by the algebra of all polynomials. By convention 
we take y to contain the constants. It is clear that (i) for X compact, 
y^-hull (X) is compact, (ii) for a G Cn, a is in y -hu l l (X) if and only if 
there is an M > 0 such that \p{a)\ ^ M\\p\\x for each p G y (by the 
usual argument of applying this to pN) and (iii) XQ j^-hull (X) where X 
is the polynomially convex hull of X. 

Let X be a compact Hausdorff space. We define @ Ç C(X) to be a 
multiplicative semi-group (MSG) of continuous functions on X if it 
satisfies ( a ) / , g G ^ = ^ / t f ^ a n d (b) @ contains the constants. If 
T is a closed subset of X such that | | / \\x = \\ f ||r for each / £ ^ , 
then we say that T is a boundary for @. 

If ja/ is a uniform algebra on X with Shilov boundary T then se 
itself and ^ = {ef:f £ s/) are MSG's on X with boundary T. Our 
principal interest is in the MSG<50f, the restriction of y to X, where X 
is a compact set in Cw. If K is a compact set in Cn and X is j^-hull (X) 
then j ^ X is an MSG on X with boundary K Q X. This example does 
not arise from a uniform algebra. 

Our main interest in MSG's comes from the fact that they possess 
certain Jensen measures. Bishop showed in [3] that homomorphisms of 
uniform algebras can be represented by Jensen measures and in [1] this 
was extended to other functional on uniform algebras. It turns out that 
Bishop's argument is true in even greater generality; namely, for MSG's. 
We shall later apply this fact to the MSGyX with X = y -hu l l (K). 

For the reader's convenience we shall indicate the proof of the existence 
of Jensen measures for MSG's; it is merely an adaptation of Bishop's 
original argument for uniform algebras. A similar extension of Bishop's 
idea appears in [4]. 

THEOREM 1.1. Let y be an MSG on a compact Hausdorff space X, 
r Ç X a boundary and /x a probability measure on X. Then there exists a 
probability measure v on T such that 

Jlog \f\dn ^ j log \f\dv 

for all f Ç y . 

Remark. We shall say that v is a Jensen measure for /x. 

Proof. Let 

N = {u e C(R, T):u < Oon r} 
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and set 

K = \h G C(R, r ) : 3 / € ¥ such that 

(a) J log \f\dn ^ 0 and (b) rh > log | / | on T for some r > Of . 

One checks that K is convex and, using the fact that T is a boundary for 
y , that K H N = 0. By the Hahn-Banach separation theorem, there 
exists a linear functional L Ç C(R, T)* with ||L|| = 1 such that 

sup{£(*):* G N\ = 0 = inf{L(ft):fc G X). 

It follows that L can be represented by a probability measure ? on T. 
Suppose f ^ S^ with /log \f\dp = 0. Then if h > log | / | on T, we 

have h £ K and so 

Jfofo = L(fc) è 0. 

Hence 

j\og\f\dv £ 0 . 

Now in general if / £ 5^, let c = J log | / \dp and apply this e~cf to get 
the theorem. 

COROLLARY. Let X be compact in Cn. Then for a £ Cn, a £ S^-huW(X) 
if and 0n/;y if there exists a probability measure v on X such that 

log |/3 • a\ S /log 1/3 • f |<fo(f ) /or a// 0 ^ 0 in Cw. 

2. Capacity. We shall consider several capacities for subsets of 
Pw_1. Using the natural projection 

n:Cw\{0} -> p»-i, 

we shall identify subsets of P n _ 1 with circled subsets of the unit sphere 
dB in Gn) namely, E C P * 1 will be identified with n^CE) H aJ3. 

First recall the definition of projective capacity [1] for compact sets 
K in Pw - 1 ; we view K as a compact circled set in dJ3 C Cw. We say that 
a homogeneous polynomial / of degree k in Gn is normalized if 

/log | / |da = kj\og\zn\da 

where a is unit surface volume on dB. Denote by &k the set of all normal­
ized homogeneous polynomials of degree k in Cw. Let 

nh = mk(K) = i n f { | | / | | x : / 6 ^ } . 

Then the projective capacity of K is defined by cap(iC) = lim mk
l/k. 
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1322 H.ALEXANDER 

Next we recall the definition of the capacity ^(K), for K compact in 
Pw_1, introduced by Molzon, Shiftman and Sibony [6]. For n Ç %Jl(K) 
( = the set of probability measures on K), let 

u,(z) = j log(\\z\\/\z-w\)dp(w) for z <E Cw; 

here K is a compact circled subset of dB. Then 

tf(K) = sup ^ - r . 
umac) sup u^z) 

z£dB 

For n > 2, ^(K) and cap(i£) are inequivalent capacities. 
We now define a third capacity y -cap (X) by using the elements of 5^ 

in the definition of cap in place of the <?k. Namely let yk = ^ P i y 
and set 

ymk(K) = inf { H / H * : / € ^ * } . 

Define ^ - c a p (K) = lim (ymk(K))1/k. Then ^ - c a p is equivalent to %f 
in the following sense. 

THEOREM 2.1. For K C P*-1, 

A -J^-cap (K) ^ exp ( < ^ y ) ^ ^ - c a p (K) 

where A = exp (/log |zi|do-). 

Remark. The definition of j^-cap was independently arrived at by 
Sibony [9] who obtained the second inequality of the theorem and also 
the relation cap K ^ ^ - c a p (K) (which follows from yk Ç SPk). He 
uses the fact, for / £ ^ * , that f £ j ^ 7 * if and only if / = n ^ i aj-z where 

ikii = i. 
For the proof of Theorem 2.1 we shall need the following. 

THEOREM 2.2. Let K be a compact circled subset of dB in C". Then 
y-cap(K) > 0 if and only if y-hull (K) contains a neighborhood of the 
origin. In particular, 

y-hull(K)^{z:\\z\\ ^y-c<ip(K)\. 

Remarks. This is directly analogous to the results of [1] where «5^-cap 
and j^-hull are replaced by cap and polynomial hull respectively. 
Combining the last two theorems, we can assert that the following are 
equivalent for K C P*-1 compact: (i) &(K) > 0, (ii) y-cap(K) > 0 
and (iii) y-hull(K) contains a neighborhood of the origin. 

LEMMA 2.3. For K compact and circled in dB and f Ç ykJ 

(y-cap JO* g (ymh(K)) <S | | /H*. 
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Proof. As in [1], one shows that 

^-cap(iO s lim(ymk(K))1'* = mi{ymk{K)Y'\ 

Proof of Theorem 2.2. First suppose that y -cap(K) = p > 0. Observe 
that for z Ç Cw, z Ç y - h u l l W if and only if | / (*) | ^ | | / ||* for all 
/ G yk for all jfe. Now if / 6 yk, Lemma 2.3 gives 

Wfhs Si S II / | I*/P*. 

Hence 

II / II — jc\\ s \\ <: II / ll . 
II J WPB - P 11/ Ha = 11/ Ik» 

i.e., PBQy-hul\(K). 
Conversely if PB C y-hull(K) for p > 0, we get for a n y / G 5^*, 

P*II/IU = II/IIPB ^ II/Ik. 

Hence 

cap (P-1) ^ H/H,1'* ^ ^ ll/llic1'*-
P 

This implies that «5^-cap (i£) è p-capCP""1) > 0. 

Proof of Theorem 2.1. We shall first derive the second inequality. Let 
M 6 aW(X) with wM(z) g g < oo for all z ^ 0. Thus for ||a|| = 1, 

jlog\a-w\dn(w) = — Up(a) ^ — q. 

For £ G 5 ^ , since p(w) = n(a^*w) with \\aj\\ = 1, we get 

log II^IU ^ J log |/>|d/x = Ç J log \aj • w|d/i(w) ^ - * g . 

Hence ||£||*1/A; è e~ff and y-cap( i£) ^ e~?. As 1/g can be chosen 
arbitrarily close to *€ (K), the second inequality follows. 

Let p = j^-cap(i£), we may assume that p is strictly positive. Then 
by Theorem 2.2, y -hull (K) 2 Bp. Now apply Theorem 1.1 on Jensen 
measure for the MSGy(X), where X is ^ -hu l l (K), with boundary K. 
For the measure p. take unit surface measure on dBp C X; namely 

/ gdfJi = I g(pz)da(z). 
dBp J dB 

Let y be the associated Jensen measure on K Q dB. 
Now take z with ||z|| = 1. Viewing P(z) = z-w as an element of y \ 

we have 

/log \P\dp ^ /log |P|d„. 
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This yields 

log p + I log \z • w\da(w) ^ I log \z • w\dv. 

The integral on the left is equal to log A = /log \wi\da(w). We get 

/ 
\\z\\ 

•°gi i ^ W ^ —log (A • p). 
\Z ' W\ 

This implies fë(K) ^ —l/\og(A -p) > 0 which gives the first inequality 
of (2.1). 

The capacity *€ in some sense measures the size of a set of hyperplanes 
while cap measures complex lines. The next result reflects this fact. For 
K C P"-1 define 

K* = {z e Vn-l\z-w = 0 for some w G K) 

= U {Hw:w e K\ 
where 

if10 = [z e Yn-l:z-w = 0}. 

PROPOSITION 2.4. 7/ ^ ( X ) > 0 then cap(i£*) > 0. 

Remark. The converse is false: take K to be a hyperplane. Then 
K*= P"-1 but ^(K) = 0. 

Proof. We view X a s a subset of the unit sphere in Cn. There exists a 
probability measure /x on K such that 

^>(s) = j log |s-tt;|d/i(w) ^ — M > —oo for ||z|| = 1. 

Arguing by contradiction, suppose that cap(i£*) = 0, so that K* is 
locally pluripolar in Pn _ 1 . It follows that I I - 1 (i£*) is locally pluripolar in 
Gn where II:Cw\{0} -> P w l is the natural projection. Set L = {0} U 

Now for s G Cn\L and w G X ( C dB) we have z-w ^ 0. It follows that 
<p is a pluriharmonic function on Cn\L. Since <p is locally bounded above 
and below (except at the origin) and L is locally pluripolar, it follows 
that <p extends to be pluriharmonic on all of Cw, the origin included since 
n ^ 2. But (p(\z) = log |X| + <p(z) implies <p(z) —> — oo as z —> 0. This 
is a contradiction. 

COROLLARY. cap(i£) > 0 =» ^( i£*) > 0. 

Proo/. cap(X) > 0 => ^ ( i £ ) > 0 => cap(i£*) > 0 => <^(X*) > 0. 

3. An application. The following is a version of the classical Hartogs 
lemma (see [6], p. 21). 
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LEMMA 3.1. Let 12 be a complex manifold and L a compact subset of 12 
with non-empty interior L°. Let {(pn}i° be plurisubharmonic on 12, uniformly 
bounded on compact subsets, with lim sup <pn = — oo on L. Then {<pn) 
converges uniformly to — oo on each compact subset of 12. 

Proof. Let <p = lim sup <pn and let <£>* be its upper semicontinuous 
regularization, which is known to be plurisubharmonic on 12. Then 
<p = — oo on L° implies <p* = — oo on L° and so <p* = — oo on 12. 
Hence <p = — oo on 12 and the conclusion now follows from the classical 
Hartogs lemma in Cn. 

LEMMA 3.2. Let 12 be a complex manifold, L a compact subset of 12 and K 
a compact subset of 12 which is not pluripolar. Then there exists an a, 
0 < a < 1, such that 

11/IU^ ll/lki/llo1-
for all holomorphic functions f on 12. 

Remark. This generalizes the Three Regions Lemma of Bishop [3] 
where L and K are taken as the closures of open sets. Although we shall 
not need the converse, the validity of such inequalities characterizes 
non-locally pluripolar sets K in 12. An alternate proof could be based on 
the work of Gamelin-Sibony [5]. Or one can consider the class Ĵ ~ of 
negative psh functions on 12 which are ^ — 1 on K. One shows that the 
uppersemicontinuous regularization of sup & is again in £F and hence 
bounded from zero on L and then one applies the fact that an appropriate 
multiple of log | / | lies in ^ . 

Proof. By enlarging L we may suppose that L° is non-empty. We argue 
by contradiction and suppose that no such a exists. Then for n = 1 ,2 , . . . 
there exist fn holomorphic on 12 such that 

(i) ||/M||n = 1, and 

(ii) ||/.IU> WUK11". 

Choose cn > 0 so that 

msxLcnlog \fn\ = - 1 , 

and set <pn = cn log \fn\. Then <pn is plurisubharmonic on 12, <pn < 0, and 

(iii) maxz, cpn = —1. 

Put (p = lim sup (pn on 12. By (ii) and (iii), <pn < —n on K and so 
<p = — oo on K. We claim that (p is not = — oo on L. Otherwise, by 
the Hartogs Lemma 3.1, <pn would converge uniformly to — oo on L, 
contradicting (iii). Hence we can choose z0 6 L and q ^ — oo and 
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ïij è j for j = 1, 2, . . . such that <pnj(zo) > q for each j . Now set 

CD -I 

^ is plurisubharmonic (as a decreasing sequence of psh functions). We 
have \p(zo) ^ — oo and \p = — oo on K, contradicting the assumption 
that K is not pluripolar. This proves the lemma. 

THEOREM 3.3. Let 2 be an irreducible local subvariety of Vn~l which is 
not contained in a hyperplane and let E be a compact subset of 2 which is 
not a locally pluripolar subset of 2. Then fë (E) > 0. 

Remarks. Molzon, Shiftman and Sibony proved this in the case when 
S is a global (closed) subvariety of Pw_1 (hence algebraic by Chow's 
theorem). Theorem 3.3 also contains another of their results; namely, if 
7 is a non-degenerate real analytic arc imbedded in Pn _ 1 , then fë (y) > 0. 
In fact, y is then a non-locally polar set in the holomorphic curve S 
obtained by extending the imbedding map for y from the real axis to a 
domain in the complex plane. 

We shall apply the following fact which will be proved below. 

LEMMA 3.4. With S as in Theorem 3.3, let F C 2 be a closed ball in 
some local coordinates. Then fë (F) > 0. 

Proof of Theorem 3.3. We may assume that S is a local submanifold 
of Pw_1 (since E could not be contained in the singular set of S). With 
I I : O \ 0 —> Pw_1 the natural projection, let Q be the complex manifold 

n - H S ) n {z £ C » : l / 2 < ||*|| < 2} 

and let 

K = n-!(£) r\dBQQ. 

It is straightforward to deduce that K is not locally pluripolar in 12 from 
the fact that E is not locally pluripolar in 2 (cf. [8], Lemma 2.5). 

Choose a compact set i*Ç S which is a ball in local coordinates and 
let L = II-1 (F) C\ dB C Q. By Lemma 3.4, ^ (L) > 0. By Lemma 3.2, 
there exists a, 0 < a < 1, such that 

(*) 11/iu^ 11/Ik ll/Ik-
for all / holomorphic on 12. 

Arguing by contradiction we suppose that & (K) = 0. Then, by 
Theorem 2.1, 5^-cap(i£) = 0 and so there exists a sequence {fk\ with 
/* 6 yk such that || fk\\k

/k -* 0. Since ||s|| < 2 for z 6 12 we have 

| | /*| |a^2i/*|U^2*. 
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Thus, taking a &th root in (*) gives 

l l / . IL 1 ' *^ (\\h\\KUkY2^. 

This implies that H/all^17* —» 0; i.e., j^-cap(L) = 0. Hence, by Theorem 
2.1, ^ ( L ) = 0, a contradiction. 

Proof of Lemma 3.4. This can be deduced from the work of Molzon, 
Shiftman and Sibony [8] but we shall give a direct proof based on the 
following elementary lemma. 

LEMMA 3.5. Let <pi, <p2, . . . , (pn be holomorphic functions on the closed 
unit ball B inCs. Suppose that {<pk}in are linearly independent over C. Then 
there exists a real constant C such that 

J. log 5 3 z*<Pk (f ) dX(f) ^ log | |* | | - C 

where d\ is unit volume on B C Cs. 

Proof. Without loss of generality we may assume that X^II^II-B2 = 1 
and hence that 

I L W D I ^ NI forf G 5. 

Then there exists 4̂ > 1 such that 

(*) 
/ . 

log1 
53**p*(f) 

/dX(f) è 4̂ • sup log' 
nrii^i/2 

5 3 ^ * GO 

for z ^ O . In fact Jensen's inequality is the case with f = 0 in the 
quotient on the right hand side, with the sup deleted and with A = 1\ 
(*) follows from this by applying automorphisms of the ball which move 
the origin, using the negativity of the integrand. We get 

where 

/ log 5 3 ***>*(£) 
R I 

d X è 4 log | | | * | | | - (A - 1) log N | 

|*||| =sup{|ZWf)|:||f|| £i\. 
The assumption of linear independence implies that |||*||| ^ 0 for 
z 7e 0. It follows easily that 111 • 111 is a norm for Gn and since these are all 
equivalent, we have D > 0 such that |||*||| ^ £>||*||- Thus the right hand 
side of (**) dominates 

log ||*|| + A logD. 

This gives Lemma 3.5. 
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Now Lemma 3.4 follows easily. Let n be the probability measure on 
F which is induced from the unit volume measure X on the ball B in 
C s by the local coordinates on S. With fx, f2, . . . , fw the homogeneous 
global projective coordinates on Pw_1 (we may assume that fn ^ 0 on F) 
let \̂ fc, 1 g fe ^ w, be the holomorphic function on 5 which correspond 
to ffc/fn on F. From the fact that 2 does not lie in a hyperplane in P* - 1 

it follows that {(fk\i
n are linearly independent in B. Now Lemma 3.5 

transplanted back to F yields 

Jiog(|«-r|/||f||)dM(f) ^ log ||*n - c 
for some C; i.e., ^ ( F ) > 0. 

4. Zero capacity and locally pluripolar sets. We shall end with 
short proofs of Theorems 6.4 and 6.7 of [1]. The original proof of the 
latter involved a complicated application of a proposition of Josefson 
[7]. It is much simpler to apply the basic theorem of Josefson that locally 
polar in Cn implies globally polar; a nice proof of this, based on their 
theory of the Monge-Ampere operator, has recently been given by 
Bedford and Taylor [2]. 

THEOREM 4.1. Let K C Pn~l be a compact locally pluripolar set. Then 
cap(X) = 0. 

Proof. Let II:Cn\{0} -» P n _ 1 be the natural projection. The fact that 
K is locally pluripolar in P n _ 1 implies that I I - 1 (K) is locally pluripolar 
in Cn and hence globally polar in Cn. Say n_ 1(i£) C {ç = — ooj with 
tp psh on Cn, <p ^ — oo. Let E = U~l (K) H dB. We want to show that 
cap(£) = 0. It.suffices by [1] to show that Ê does not contain a neigh­
borhood of the origin. Suppose otherwise, that Ê ^ Bh. Then, as the 
polynomial hull agrees with the psh hull (see [6], p. 91), we have 

supB5 <p ^ sup# <p = — oo. 

Therefore <p = — oo on B& and hence on Cn, a contradiction. 

THEOREM 4.2. Let L be a compact non-locally pluripolar subset of 
P n _ 1 or, more generally, let K be a non-locally pluripolar subset of an irre­
ducible subvariety S of Pw_1. (In the first case take S to be Pn_1.) Then K 
contains a neighborhood of 0 in I I - 1 (2) U {0} C Gn. 

Remark. The general case was obtained in [8] as a consequence of the 
case S = P n _ 1 which is Theorem 6.4 of [1]. The following proof shows 
that it is a direct consequence of Lemma 3.2 and the method of [1]. 

Proof. We view K as a circled subset of dB which (as noted in the 
proof of Theorem 3.3) is non-locally polar in 

12 s (n-us) u {o}) C\B2. 
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Take L = 12 C\ B\ in Lemma 3.2 to get 

11/ Ik no * 11/II** II/Ik*1-

for / holomorphic on 12. Apply this to a homogeneous polynomial / of 
degree k to get 

11/ Ik no ^ 11/11^(2*11/IU, no)1""-

Hence 

(*) H / l k n o ^ All/Ik 
P 

for p = l/2 ( 1 / a _ 1 ) . Now, by the argument of [1] Section 4, (*) implies 
K 3 Bp C\ 12, as claimed. 
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