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Abstract. Advances in available computing facilities, judiciously employed by our colleagues,
have undoubtedly enhanced our understanding of the processes by which stars (and planets)
form, from very diffuse gas to something you could almost live around. Nevertheless we remain
very far from being able to describe (let alone explain) what is going on in many cases. And this
is likely to remain true even as Moore’s Law growth begins to hit its head against energy and
power considerations. A large fraction of long-standing questions appear to have honest answers
of the general form, “yes and no”, “all of the above”, or “some of them are and some of them
aren’t”. This includes many of my favorites, like triggering, formation of binary populations, and
the role of magnetic fields. Rather few questions have actually been retired from the universe of
discourse in recent years.

1. Introduction

I arrived at the meeting with two lists of questions: a fairly long one of items I had been
wondering about before looking at the abstracts, and a considerably longer one (generally
addressing details) derived from the titles and abstracts, especially of the posters. Most
of these questions have been around for a decade or more. Michael Norman suggested
that progress can be gauged by the number and importance of the questions that can
be retired from discussion, in the sense, for instance, that we no longer ask (with Simon
Newcomb a century ago) what is the primary source of stellar energy. Richard Larson
took us briefly back to the era, preceding and surrounding World War II, when it was
by no means certain that ongoing star formation was either real or important. This, he
pointed out, has definitely been settled, in favor of the process and its early supporters,
including Lyman Spitzer.

A good many other classic questions can be retired, but only in the sense that the
answer is, for instance, that there is triggering by more than one mechanism, that massive
stars grow in several different ways, and that both turbulence and magnetic fields are
important, often at the same time. The questions then return in the form of which
happens when and where, and why, invariably demanding a good deal more computing
power to try to follow everything at once.

The following sections include a few historical remarks, my lists of questions in, at best,
semi-ordered form, followed by summaries of a few specific subfields, and a conclusion of
a sort.
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2. A Bit of History

Early computational tools included the pencil and the abacus (though the ones shown
at the symposium were not used either by Jeans - it was an American pencil - or by
Hayashi in establishing his tracks - it was a Chinese abacus, and in any case he had ac-
cess to electronic computing facilities, including those at Goddard Space Flight Center.
(Sugimoto 2010). Computers were, of course, once people, generally women with some
college education who processed data for the male observers. The best known at Har-
vard included Henrietta Swan Leavitt (Cepheids), William Fleming, Antonia Maury, and
Annie J. Cannon, whose spectral types were, respectively, too simple, too complex (in-
cluding a criterion that separated out giants to which Pickering did not subscribe), and
just right. Cecilia Payne Gaposchkin was their contemporary, but a modern, full-fledged
researched astronomer, who asked difficult questions and managed to answer some of
them.

Sir James Jeans was a pioneer of the pencil and paper school, who had a mass and a
length, and served as president of the Royal Astronomical Society for two year ending in
1927 (keep that date!). He only rather gradually accepted the existence of other galaxies
and the “short” time scale (10'° yr) for the universe, as against his own 10'2 — 10! yr
required for galaxies, star clusters, and binary systems to achieve their current appearance
using processes he had thought of. Thus for much of his career, he opined that (a) gaseous
spirals became star clusters, (b) rotating gaseous spheres became Maclaurin spheroids,
then Jacobi ellipsoids (with the RV Tauri stars as possible examples)and then close
binaries, while (¢) encounters were needed to account for wide binaries and planetary
systems, since the “nebular” hypothesis (to which we all now subscribe) would leave 90%
of the angular momentum in the sun. He wrote, first, (Jeans 1933) that by the time “the
whole of the gas is condensed into detached globules, calculation shews that each globule
would have about the same mass as an actual star, and, second, that if you start with
the entire universe as a chaotic mass of gas, finally the whole mass would condense or
break up, into detached masses of denser gas (for which) calculations shew that these
would be on something like the scale of the actual nebulae, and would form at about the
average distance apart of the observed nebulae, all of about the same size, weight, and
intrinsic brightness. This is found very approximately to be the case.” The observations
he had in mind must have been overwhelmingly dominated by selection effects!

Later computational tools included punch cards for both Fortran commands and data,
output on oversized, green-lined paper, and the Christy code, mentioned by Richard
Larson, which I applied to look for Cepheid-type pulsations of R CorBor stars (yes
they do) in 1970-71. Near the beginning of this stage Hayashi (1961) showed that stars
condensing out of diffuse gas would be completely convective and so follow tracks in the
HR diagram sharply upward and then down onto the main sequence (Hayashi tracks!)
rather than sneaking in from the lower right hand corner under radiative equilibrium as
had been previously thought.

Abandonment of the encounter hypotheses for planetary system formation and estab-
lishment of the Hayashi tracks count as progress in star formation (in Norman’s sense)
over, roughly, the last 70 years. Table 1 describes progress over about the last 40 years, in
the sense that some things just barely calculable then have become routine now, while the
topic of galaxy formation has advanced from incomprehensible to, at least, respectable.
That item violates my general principle of mentioning very few speakers and almost no
poster presenters by name, because those names, in order in their sessions, so conve-
niently give us the A, B, C of the subject. TLA, in case you weren’t sure, is a Three
Letter Acronym. In addition, formation of galaxies and stars (at least the first generation)
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Table 1. Progress in Computability of Formation and Evolution of Stars and Galaxies.

Topic | New Code, 1968 | Now |
|Ga1axy Evolution |Tinsley (1968), top down | Bottom up |
‘Star Evolution ‘ Paczyniski (1970) | On a disk near you |
| Star Formation | Larson (1969) | AMR, SPH, TLA, etc. |
| Galaxy Formation | —_ | Abel, Bournaud, Colin, and all |

are no longer so separable as we once thought them. The topic of galaxy evolution has
gone through a paradigm shift from “top down” to “bottom up.” Tinsley’s (1968) initial
conditions had a gas cloud with mass equal to the eventual galaxy, which was turned into
stars in, perhaps, 10 time steps, with fixed IMF, and the nuclear products then dumped
back into the remaining gas. It had a “G dwarf problem” but otherwise yielded quite
a decent fit to the range of galaxy luminosities, colors, compositions, and residual gas
fractions that we see. Galaxy evolution in 2010 proceeds largely through star formation
in dwarf entities intermingled with mergers and captures, which tend to trigger more star
formation, with the results being required to look not so very different from Tinsley’s.

Also more or less historical, I suppose, is a decoding of the hieroglyphic writing of
the name of the NUT project, which combines more aspects of Egyptian orthography
than one usually sees in one place. The three water jugs and the sky at the beginning
associate her with rain. The three jagged lines are N’s, giving the plural N-W (which
might alternatively have been written with N plus the “weak bird” glyph, whose sound
is W). The loaf of bread is a phonetic T, so that we now have her name “spelled out”.
Then comes the distorted oval shaped womb, indicating her association with childbirth,
and finally the figure of a goddess, so that the final ordering is determinatives-alphabetic
writing-more determinatives.

3. My Initial Question

Some of these can indeed be phrased as questions (Is star formation triggered? for
instance). But most seem to look more natural as parts of a list of things we would like
to understand, and are shown that way here.

Physics to be included and initial conditions: Gravity is the sine qua non of structure
formation, though my initial list left it out (by accident), and at least one speaker claimed
(deliberately) that it wasn’t needed. Other items are distributions of temperature and
density, ionization (due primarily to cosmic rays inside molecular clouds), the strength
and structure of magnetic fields and of turbulence, and the amount and composition of
dust.

Molecular clouds, sometimes giant ones (GMCs) are the locus of star formation, at
least here and now. Thus “why do stars form?” begins with what assembles GMCs; what
causes them to start collapsing or fragmenting; how efficient is the process, and what
does this efficiency depend on; and how do stars form in environments very different
from a temperature around 10K and a density of 103~> Hem 3.

Triggering is generally thought to be part of why collapse and fragmentation begin,
but if it happens only some of the time, what difference does it make (to efficiency,
the IMF, or whatever). On global scales, mergers, infalling dwarfs, and other encounters
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are possible triggers. More locally, we might have shock waves at spiral arms (hardly
mentioned at the meeting), cloud-cloud collisions, expanding HII regions and supernova
remnants, UV radiation, and other shock sources.

Clusters of stars are the natural outcome of fragmenting GMCs, but we are not quite
certain that all stars form in clusters, even very short-lived ones. One would like to know
the range of final cluster masses (in stars) vs. the initial gas cloud mass, and also, within
any one cluster, how co-eval are the stars, is there an ordering of formation by star
mass or propagation of star formation in space, and is mass segregation primordial or
dynamical, this last a case that demands the answer, both please!

The equivalent of dynamic range remains a problem. A decade ago, it was possible for
a theorist to start with a cloud of 50M and follow it fairly honestly down to the scale
of binaries and protoplanetary disks (Alves & McCaughrean 2001). Naturally very few
100M ¢ stars resulted. I arrived wondering how much the treatable mass had increased.
Two different presentations said 500 and 1000Mg, (just right for the number of Moore’s
law doubling times, though not yet quite an OB association).

Stellar populations formed under very different conditions might well be expected to
differ from the disk of the Milky Way. One would particularly like to know just what
Population III was like and where their remnants might be lurking (IMBHs in the cores
of globular clusters??). Other somewhat mysterious contexts include youngish stars in
mostly old galaxies (formed in situ or brought in by mergers?) and the condition under
which globular clusters form, both past and present. They aren’t making them any more,
at least in our galaxy.

The initial mass function looks more similar from place to place than one might have
guessed. One would like observations of it in regions of different metallicity, cloud turbu-
lence, magnetic fields, and redshift, and calculations that can match the full range found.
A topic of some dispute in recent years has been the extent to which the IMF is already
“coded in” at the stage of starless cores in molecular clouds.

Stars of more than about 10M, would seem to have difficulty in assembling by accre-
tion (because their expected luminosities rise above the Eddington limit). Thus one asks
whether they can fool Mother Nature, whether some other process is required (mergers
of less massive cores, presumably), or both. Similar questions arise for the formation of
brown dwarfs and orphan planets (not because of Eddington limit, but because there
doesn’t seem to be anything obvious to stop them accreting). Again, several processes
have been suggested, and if they all contribute, one is surprised at the relative uniformity
of the IMF from place to place.

Binaries are important (at least to me, since their statistics formed part of “my” terri-
tory for a number of years). The problems start at the observational level, where theorists
habitually use very incomplete studies of small samples of the incidence of duplicity and
of the distributions of primary mass, mass ratio, period (or separation), and eccentricity.
One cannot really extract the IMF from observations or define stellar populations by
color or integrated line strength without allowing for them. On the theoretical side, one
would like to know how they form, their relationship to triples and higher-order multi-
plicity (hierarchies vs. Trapezia and their stability), implications for numbers of planets,
and their role in nucleosynthesis and other “advanced problems”.

Disks and jets undoubtedly contribute (positively or negatively!) to planet formation,
binary formation and other interactions, the disposal of spare magnetic flux and angular
momentum, and a range of observable phenomena. My impression is that theorists have
to work harder to make jets than disks.
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Global star formation rates are another area where the problems begin with getting
hold of the data to be matched. One wants to know the SFR as a function of z, Z, and z,
that is time (or redshift), metallicity, and location in galaxies or protogalaxies. General
agreement seems to be limited to the rather qualitative - more at z = 1 — 3 than now,
but less farther back in time. I suspect Redman’s theorem would then apply, that any
competent theorist could explain the data using any theory. Large redshift is particularly
important for reionizing the intergalactic medium so that we can see what is going on.
Not that nature had any desire to help us, but there are at least a few clear sight lines
back to z =7 — 8.

General vs. special purpose hardware and software. The hardware case was discussed
at the symposium. Most star formation codes have been developed specifically for star
formation, but I wonder whether there might be material we could steal from the (per-
haps better funded) territories of cosmology/galaxy formation/VLSS and high energy
astrophysics (which also involve turbulence, magnetic fields, and, of course, gravity!).

4. Questions and Issues Arising from the Abstracts

A large fraction of the titles and abstracts of both talks and posters gave the impression
(which usually turned out to be correct) that the presenters intended to address one or
more of the issues mentioned in Sect. 3. This is a good thing, and if it had not turned
out to be the case, the strong implication would be that I was the wrong person to be
given this task! But there were also a good many other items, sometimes more detailed,
of which this is an attempted list, meaning that if you look hard in the proceedings you
can probably find out something about them.

I have ordered these in the same pattern as the questions of Sect. 3, but as “NASA
bullets” since many are fairly short. Interesting items mentioned in the original abstracts
that did not find their way into the posters and talks as presented have been omitted.

Initial Conditions

e Measured magnetic fields are clearly important, but if determined from continuum
polarization can be badly wrong if dust grains have been oriented by dynamical torques.
An anonymous conference participant, acting as a referee, indicates that several theorists
have concluded that at least the larger grains will be well aligned with the field in any
case. Zeeman broadening of OH lines is an alternative field indicator. This is perhaps
the place to mention, after the fact, that T had the great pleasure of being the (non-
anonymous) referee of Prof. Larson’s contribution, for which my only suggestion (quickly
adopted) was full citations of the references.

e One also needs initial conditions for calculations of chemistry (next subtopic).

e Fluctuations in temperature and density of gas and dust can be described by ther-
modynamic considerations.

Molecular Clouds

e Accurate chemical evolution of the molecular gas is essential if observers’ clouds and
clumps (traced with CO, NH3, CH3OH, etc.) are to be compared with theorists’ clouds
and clumps (generally identified as density enhancements).

e The gas can be bistable; HI is correlated with total gas and star formation rates,
though typically not as well as Hs.

e Formation of GMCs from more extended HI is at least partly a fragmentation process
in a multiphase ISM, whose dynamical evolution continues between the initial cloud and
final proto-star cluster phases.
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e Filamentary clouds may yield a different IMF from spherical ones, and some real
clouds are at least non-spherical in a way that may be related to triggering

e Collisions of superbubbles from previous star formation episodes can form molecular
cloud complexes between them.

Triggering

e Run-away OB stars are another possibility, as is UV irradiation, from them or other
sources (perhaps even AGNs?). Photoevaporative triggering can reveal itself in bright-
rimmed molecular clouds.

e Compressive tides could either trigger star formation or shelter gas from star forma-
tion.

Star Clusters

e Newly formed clusters are still embedded in dust and gas, and it is possible we may
never see the real, unevolved IMF for O stars

e R Associations (with no OB stars but the later types obviously young) exist.

e Clusters can form around an initial very massive star (with triggering in a sort of
ring).

e Dynamical segregation occurs gradually on the same time scale as the higher masses
die.

e Galaxy mergers (etc.) can both trigger formation of star clusters and destroy existing
ones.

e Comparisons of statistics of clusters and molecular clouds is one way of assessing
the efficiency of star formation.

Dynamic Range
e Some indication of the difficulty of the problem is given by the extreme messiness
of real protostellar envelopes (just think of the Vela and Rosette Nebulae).

Star Populations

e The acronym IRDC takes a moment to translate into InfraRed Dark Clouds. The
real curiosity is that some of them actually have protostellar cores in them, and so are
not really “starless cores”.

The Initial Mass Functions

e No one really claimed that these are all the same, everywhere, though there is some
disagreement about whether particular regions with young stars are “top heavy”. These
include the nucleus of our own galaxy (where one does not see the X-rays expected if
there are lots of young, low-mass stars to go with the massive ones in the Arches etc.),
30 Doradus (where a normal IMF would probably tie up more than the total stellar mass
of the LMC), and young massive clusters (which will end up as globular clusters in 10
Gyr or so only if they have an appropriate complement of low masses).

e Evolution of cores to stars in a cluster environment may be different enough to affect
the IMF. A central black hole (for instance for star formation in disks around AGNs)
is likely to inhibit formation of small stars, while having lots of dust should favor extra
cooling and a smaller Jeans Mass for the turnover of the IMF.

The Largest and Smallest Masses

e Star growth by collisions in accreting cluster cores is expected.

e Accurate computations of the spectra expected for brown dwarfs as a function of
mass and age are essential for recognizing them when they are not in binaries.
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Binary Stars

e Accretion can continue from circumbinary disks.

e Binary populations among very low mass stars and brown dwarfs are different from
the A-K stars, though portions of this will reflect observational selection effects and
dynamical evolution.

Disks and Jets

e Jets must somehow be launched, and get loaded up with molecular gas.

e Disks must disappear on the time scales set by observations (and models exist for
making this happen either faster or slower than seen).

e There will be a dust sublimation front where we find dust-free disks.

Global Star Formation Rates

e High Velocity Clouds probably bring in fresh gas to enable star formation to continue.
They themselves seem to contain no stars.

e Downsizing - the shift of the bulk of star formation to smaller galaxies as we approach
the present - is observationally real and not readily reproduced in bottom-up models of
galaxy formation and evolution.

e Something must terminate the formation of stars in early, massive galaxies (arguably
the ionization of the gas so that the Jeans mass becomes some enormous number)

e In the case of population III, line pressure radiation on incoming gas (nearly pure H
and He) is not sufficient to prevent accretion, which, however, should stop with the UV
breakout, ionization of the nearby gas, and radiation pressure from continuum photons.

Hard- and Soft-ware

e A number of presentations featured specific codes and machines on which they run,
but my initial thought that we might be able to “borrow” things from the cosmol-
ogy/galaxy formation community was stretched to include the high energy astrophysics
community by a specific poster abstract, which mentioned disks, jets, magnetic fields and
all, and was not spotted by the SOC as pertaining to neutron stars rather than YSOs
until the program had been largely assembled.

Things I Hadn’t Thought of (but Should Have)

e The most important of these is undoubtedly feedback - the effects of protostellar
and stellar jets and all the rest on the surrounding gas, where they will certainly be a
source of turbulence and, perhaps, of magnetic field amplification.

e Specific YSOs, star formation regions, star clusters, and merging galaxies mentioned
in the presentations include the Perseus Arm (a reminder that spiral shock waves can be
another trigger for GMC assemblage and collapse), Herbig-Haro objects, FUOr’s (and
EXor’s, which by NOT having EX Ori as their prototype are just there to make things
more difficult), the Antennae galaxies, NGC 3603, the Aquila Rift complex, Eta Cha, the
Pipe Nebulae, AFGL 5142, Orion KL, NGC 1333, V4046 Sgr, Herbig Ae stars, Sh2-104,
IRAS17149-3916, and V 582 Aur. This is not a complete list, which is one of the reasons
the editors intend to provide a “object index” to this volume.
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5. Some (Partial) Answers from the Symposium

This is a subset. The 43 hours of talks (plus 10 I spent reading posters) would take an
equal time to retell, just as you can really simulate a 1080 particle universe only with an
N =10 calculation. The ones here are a personal, prejudiced choice.

5.1. Binary Stars

These are important for nucleosynthesis and for the use of Type Ia supernovae as distance
indicators in cosmology. Whether Population III stars had no binaries or practically
nothing but binaries has been determined - theoretically - both ways.

The desired data are numbers as a function of primary mass, mass ratio (my own
little territory), period (or separation) and eccentricity, as a function of metallicity and
formation epoch. The data change: population II when I was your age had “no” bina-
ries. Globular clusters now have a large excess of X-ray binaries among other things.
N(e) is a convolution of formation and dynamical evolution, revealed by distributions of
eccentricity vs. orbit periods in clusters of different ages.

N (M) is intermediate for OB stars, high (more than 50%) for A-K stars, and low
again for M, L, and T types, reflecting formation, survival, and observational selection.
One speaker suggested that nearly all stars form as triples, generally ejecting one member
to leave binaries and singles about equally numerous. I think I last heard this at a 1979
meeting (Harrington 1982). N (M, My /My, a) is clearly not a separable function. In fact,
I suspect that all the distributions are actually sums of about 3 separate curves, arising
from 3 different formation mechanisms, and simply blended in most data.

As for N(Z, z), “there are very little data, and they are contradictory, so I will skip
this point”, quoting Lisa Deharveng on a different topic.

Common proper motion pairs can either be barely bound within clusters, or just drift
off together.

One speaker remarked upon the difficulty of calculating the incidence of binaries in
dwarf spheroidals (important because they must be allowed for in turning an observed
velocity dispersion into a Virial mass to get M/L for these nearly-invisible objects).
Luckily observations come to our aid. Minor (2010, a thesis defended the week before
the meeting) has found, with about a year of radial velocity data for several Milky Way
companions, that there are binaries, some of which indeed have orbital velocities that can
disturb o,, but that the effect on mass determination is generally modest, not exceeding
15% (but, of course, systematic, not random). A major factor is that large amplitudes
come from two stars of nearly equal mass, which show themselves as double lines in the
spectrum most of the time.

5.2. Efficiency

One speaker described the efficiency of star formation as the elephant in the conference
room, because many calculations find a few percent to perhaps 15 %, and yet clusters
remain bound when the residual gas leaves. That the average efficiency must be small
follows because the Galaxy is about one hundred rotation periods old, so that a given
gas atom has had about 100 arm-crossing chances to find its way into a star, and yet gas
remains.

Many calculations yield 1-3 %, while cluster survival requires 15-20 %. One poster
pointed out that it helps if most of the stars form in the cloud core. Data on numbers of
clusters vs. age are not as helpful in defining survival time as you might expect.
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Encounter shocks at z = 8 — 9 apparently yield quite a high ratio of mass going into
stars vs. cold gas coming in.

5.3. Brown Dwarfs

These exist (20 years ago they did not, observationally), but are past the peak of the
IMF in all contexts so far examined, and so are not a major dark matter component.
Binary brown dwarfs also exist, though they are relatively rare and mostly have small
separations (surely some combination of formation physics, dynamical evolution, and
selection effects). They might form as binaries in accretion disks, be left behind when gas
leaves a star formation region, or be gently ejected before they have had time to sweep
up their fair share of gas.

One would like to know whether they form a continuous population with the orphan
planets or exoplanets in general.

5.4. Items New to Me

The concept of sinks is apparently quite new, so I feel no guilt. The same thing happened
when I was summarizing a conference on large scale structure soon after the concept
of og had been introduced [it is the rms density fluctuation on a scale of 8 Mpc for
H = 100km/sec/Mpc]. Its numerical value is about one.

Other items like this include star formation on filaments (like VLSSS in the cosmologi-
cal context), halo globular clusters being correlated with their central black hole masses,
which in turn are correlated with the mass in bulge stars. If this means all this stuff has
come from captures, I am confused.

Some more new stuff - that jets wiggle both observationally and theoretically; that low
mass pre-main-sequence stars are a good deal fainter than expected (implying slow or
episodic accretion), and that there is the risk of a magnetic braking catastrophe, because
some angular momentum must be left to form planets!

5.5. The Core Mass Function vs. the Stellar Initial Mass Function

It was suggested that, in different contexts (and so conceivably all true), there is no
close relationship (because of ongoing accretion, outflow, etc.), that they differ by a
factor three, that they have the same slope when magnetic fields are included (but are
otherwise different), that they arrive from the sum of several processes, that the observed
IMF is universal, but the CMF is not; or conversely.

5.6. Extrema

The prize for the shortest talk went to Andy McLeod. The most popular encounter
was NGC 4038/39 and the most popular cluster NGC 3603 (notice that virtually all
well-known star clusters and galaxies have names beginning with N or M).

The first star formed at z = 42 in 2004 (this is funny if you read certain kinds of
low-brow literature), which has perhaps grown to 70 this year.

The identity, mass, and explanation for the most massive stars remain uncertain. Qual-
itatively, the luminosities of main sequence stars scale as about M?, so that you hit the
Eddington limit at about 100Mg (which must surely depend on both Z and z). Calcu-
lations achieved either 110 or 140 My in the star from a 480M, core, both calculations
coming from the same group, and they explained that the simulation is ongoing. Obser-
vationally, we certainly don’t see many stars in excess of those numbers (when angular
resolution is adequate), but it is not certain whether the lack is real or merely having
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N(= M) = NyM~%3 go to zero. Formation of these very massive stars may well involve
all of accretion, Rayleigh-Taylor instabilities, and mergers.

5.7. Miscellany

We are once again reduced to NASA bullets to collect many short (often verbless) items.

Hs could be just a tracer (vs. the cause) of star formation, in the sense that cold,
dense HI would do just as well. Larson admitted off-line that he had once turned off all
molecule formation in his 1968 code, and it made very little difference. But of course
we need molecules to observe, and when they begin to condense out on ice, the densest
cores become very difficult to observe, yielding systematic errors in mass vs. time and
temperature.

Bottom up star formation appeared in one presentation, as was popular back in about
1970. It will yield a power law (like the energies of cosmic rays) from a sort of self-
organized criticality.

The metallicity to change Pop III to Pop II was 107° in one poster, but 1072 in
another. I would go with the smaller number.

Prototypes are rarely typical, as in the case of Algols, RR Lyrae stars, and Cepheids,
so perhaps also for the Pipe Nebula (justifying investigation of other regions).

Gravity can be left out, said one presenter. Not from my universe, despite potentially
favorable effects on the masses of astronomers.

Magnetic fields in star formation regions make things smoother, yielding fewer and
more massive stars and later star formation, while with turbulence you get finer structure,
earlier stars, more stars, and more low mass stars, but measurements of magnetic fields
by Chandrasekhar-Fermi method can yield the wrong answer (with the fields coming out
smaller than the real values, if there is lots of small-scale structure).

Red and dead? Yes, E and SO galaxies have gas; it is just too hot to make stars.

Do tidal dwarfs get dark matter? They had better if they are to be like the dwarfs
in the Local Group, while tidal globular clusters had better not. One generally does not
have masses for these young, very bright entities and so cannot tell what they will like
in 10 Gyr.

Every trigger or driver of turbulence you have ever heard of is surely important some-
where - mergers, SN(R) shocks, HII expansion, outflow, runaway OB stars, Herbig Haro
objects, shocks at arms, photoevaporation, UV radiation, external photoionization, and
surely some we have not yet thought of.

6. Looking Ahead

If the past is Sir James Jeans stepping down as president of the Royal Astronomical
Society in 1927, and the present is this 2010 conference, then the future means 2093
(which will be my 150th birthday). By then, studies of star formation will probably have
bumped against some fairly fundamental limits.

On the observational side, CCDs already have something like 90% quantum efficiency,
so “mehr licht” has to mean bigger mirrors. Angular resolution can improve as § = A\/D,
but for some phenomena a sort of Olbers’ Paradox will set in, with the sky completely
covered by the things you want to study (for instance HI fluctuations or even dwarf
galaxies at large redshift). Timing is limited by photon bunching on the nano-second
scale (but much sooner by atmospheric scintillation, unless you take your 600-meter
mirror into space). Spectral resolution is limited by the uncertainty principle and the
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length of time you are willing to count wave crests! Admittedly, this is a wavelength
resolution somewhere around 10! for optical astronomers.

On the computational side, Bruce Elmegreen looked at realistic futures. But, if you
wish to look at unrealistic ones you could start with a thermodynamic limit that erasing
one Gigabyte adds S = 8.2 x 107'4J/K of entropy to the universe, and so requires
dumping heat of 2.5 x 107!''J at room temperature. Make up your own rules for how
many Gbyte per particle your N-body simulation will need, how many time steps are
required for your version of the Courant condition, and how long you are willing to let
your simulation run. I ended up with 4 x 10?6 particles per GWatt, while a mere star has
1057 particles. This is apparently not quite the way to go.

The computer of the future will presumably be some sort of quantum picodot, but
it will still be I/O limited, as were the very early computers of 1954, when my father
worked for NCR, then trying to rival IBM. (It lost.) My theoretical astrophysicist of 2093
is under copyright and cannot be shown here, but he is green and wears glasses over quite
large eyes.

7. Last Words

Some of the discussion following papers made me feel that the phrase “star formation
community” might be an oxymoron. This is not actually bad - it means that people in
the field are sure enough of its importance and permanence to be able to afford to risk
not always showing a united front.

“There are”, said Anne B. Underhill, “more models that aren’t stars than there are
stars that aren’t models”. This still seems to be true, though she said it in 1967 at the
Prague TAU (which was attended by at least one person at S270). Miriam Lichtheim was
of the same generation and equally tart, but she taught me the basics of reading and
writing Middle Egyptian at UCLA in 1962-63.

It is the traditional prerogative of the last speaker to express collective thanks to
the local organizers (Josep Miguel Girart and his whole team) and the scientific program
organizers (Joao Alves, Bruce Elmegreen and their team), and this I do both individually
and collectively, most heartily.

My last overhead had the words for “farewell” or “until next time” in 20 languages,
and it was a special pleasure to be able to add Korean, Turkish, Persian, Finnish, and
three other I don’t actually recognize to this list during the meeting.
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