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Local eddy viscosity and diffusivity models are widely used to understand and predict
turbulent flows. However, the local approximations in space and time are not always valid
for actual turbulent flows. Recently, a non-local eddy diffusivity model for turbulent scalar
flux was proposed to improve the local model and was validated using direct numerical
simulation (DNS) of homogeneous isotropic turbulence with an inhomogeneous mean
scalar (Hamba 2022 J. Fluid Mech. 950, A38). The model was modified using the scale-
space energy density in preparation for application to inhomogeneous turbulence (Hamba
2023 J. Fluid Mech. 977, A11). In this paper, the model is further improved by incor-
porating the effects of turbulence anisotropy, inhomogeneity and wall boundaries. The
needed inputs from the flow to evaluate the model are the Reynolds stress and the energy
dissipation rate. With the improved model, one- and two-dimensional profiles of the non-
local eddy diffusivity in turbulent channel flow are evaluated and compared with the exact
DNS values. The DNS results reveal a contribution to the scalar flux from the mean scalar
gradient in a wide upstream region. Additionally, the temporal profile of the non-local eddy
diffusivity moves downstream, diffuses anisotropically and is tilted towards the bottom
wall. The model reproduces this behaviour of mean flow convection and anisotropic
turbulent diffusion well. These results indicate that the non-local eddy diffusivity model
is useful for gaining insights into scalar transport in inhomogeneous turbulence.

Key words: shear layer turbulence, turbulence modelling, turbulence simulation

1. Introduction
Eddy viscosity and diffusivity models that are widely used in turbulence simulations are
local in space and time. For example, in the eddy diffusivity model, the turbulent scalar
flux at a point is assumed to be proportional to the mean scalar gradient at the same point.
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The local approximation requires the characteristic scale of the transport mechanism to be
smaller than the distance over which the mean gradient of the transported property changes
appreciably (Corrsin 1974). However, the condition for the local approximation does not
necessarily hold true for actual turbulent flows. A typical example is the scalar transport in
the atmospheric boundary layer, where convective eddies driven by buoyancy are as large
as the height of the boundary layer. Several attempts have been made to develop non-local
models in addition to local eddy diffusivity models (Stull 1984, 1993; Ebert, Schumann &
Stull 1989; Pleim & Chang 1992). Berkowicz & Prahm (1980) proposed a generalisation of
eddy diffusivity, which is the scalar flux expressed by a spatial integral of the mean scalar
gradient. Romanof (1989) studied space–time non-local models for turbulent diffusion,
and Romanof (2006) applied them to diffusion in atmospheric calm. In addition to scalar
transport, non-local models have been developed for momentum transport. Nakayama &
Vengadesan (1993) proposed a non-local eddy viscosity model for the Reynolds stress.
Egolf (1994) developed a non-local model for the Reynolds stress called the difference-
quotient turbulence model.

Recently, Mani & Park (2021) developed the macroscopic forcing method to reveal
the differential operators associated with turbulence closures. Using this method, Shirian
& Mani (2022) computed the scale-dependent eddy diffusivity characterising scalar
and momentum transport and demonstrated that a non-local operator captures the eddy
diffusivity behaviour. Liu, Williams & Mani (2023) developed a systematic and cost-
effective approach for modelling the non-local eddy diffusivity using matched moment
inverse operators. Lavacot et al. (2024) investigated the non-locality of scalar transport
in Rayleigh–Taylor instability using the macroscopic forcing method. Fractional calculus
is another important method for investigating the non-local transport of turbulence.
Fractional derivatives involve both differential and integral operators and can describe
non-local properties (Uchaikin 2013). Non-local models for subgrid-scale viscosity and
diffusivity in large-eddy simulations have been proposed using fractional operators
(Samiee, Akhavan-Safaei & Zayernouri 2020; Di Leoni et al. 2021; Samiee, Akhavan-
Safaei & Zayernouri 2022; Seyedi & Zayernouri 2022; Seyedi, Akhavan-Safae &
Zayernouri 2022). Di Leoni et al. (2021) assessed the two-point correlation between the
filtered strain rate and subfilter stress tensors to show that the non-local eddy viscosity
model based on the fractional derivative accounts for long-tailed profiles of the correlation.
Seyedi & Zayernouri (2022) proposed a non-local subgrid-scale model for homogeneous
isotropic turbulence using the fractional Laplacian operator and determined the fractional
order using data-driven approaches. Reynolds-averaged Navier–Stokes (RANS) models
have also been investigated using fractional derivatives. Fang et al. (2020) applied the
fractional derivative for the velocity gradient in neural-network models to represent the
non-local property of the Reynolds stress in turbulent channel flow. Mehta (2023) proposed
fractional models for RANS equations by formulating a stress–strain relationship with
variable-order fractional derivative.

Non-local expressions for momentum and scalar transport have also been investigated
using the statistical theory of turbulence. Using the direct interaction approximation
developed by Kraichnan (1959), Roberts (1961) studied turbulence diffusion to derive
the probability distributions of the positions of fluid elements corresponding to non-
local eddy diffusivity. Kraichnan (1964) demonstrated that non-local eddy diffusivity
can be approximated in terms of the averaged Green’s function and velocity correlation.
Moreover, using Green’s functions for velocity and scalar fluctuations, Kraichnan (1987)
derived implicit exact non-local expressions for the Reynolds stress and scalar flux.
Georgopoulos & Seinfeld (1989) also derived a similar exact expression for the scalar
flux. By modifying the Green’s function for scalar fluctuations, Hamba (1995) derived an
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explicit exact non-local expression for scalar flux and evaluated non-local eddy diffusivity
in the atmospheric convective boundary layer. A similar expression was investigated
by Romanof (1989) for a turbulent diffusion problem. Non-local eddy diffusivity and
viscosity were evaluated, and the non-local expressions were verified using the direct
numerical simulation (DNS) data of turbulent channel flow (Hamba 2004, 2005).

Recently, we examined a non-local expression for scalar flux in detail using a DNS of
homogeneous isotropic turbulence with an inhomogeneous mean scalar (Hamba, 2022b).
We proposed a systematic model expression for non-local eddy diffusivity proportional to
the two-point velocity correlation in a customary manner based on the statistical theory
of turbulence (Kraichnan 1959; Yoshizawa 1984, 1998). In this model, the two-point
velocity correlation is expressed in terms of the Kolmogorov energy spectrum. However,
to apply the model to wall-bounded turbulence, we must replace the energy spectrum with
a quantity in physical space. A candidate is the second-order structure function because
its transport equation has been investigated not only in homogeneous isotropic turbulence,
but also in inhomogeneous turbulence (Hill 2002; Marati, Casciola & Piva 2004; Cimarelli
et al. 2013, 2016; Gatti et al. 2020). However, the behaviour of the structure function as the
separation increases in an inhomogeneous direction is inadequate for turbulence modelling
(Hamba 2023). Instead of the structure function, we recently proposed an expression for
the scale-space energy density based on filtered velocities (Hamba, 2022a). By adopting
the scale-space energy density, we improved the non-local eddy diffusivity model and
examined it using the DNS of homogeneous isotropic turbulence (Hamba 2023). In
this paper, we examine non-local eddy diffusivity in detail using the DNS of turbulent
channel flow. We modify the above model for non-local eddy diffusivity by incorporating
the effects of turbulence anisotropy, inhomogeneity and wall boundaries to apply it to
turbulent channel flow.

The remainder of this paper is organised as follows. In § 2, we evaluate the exact
profiles of non-local eddy diffusivity using the DNS of turbulent channel flow. In § 3, we
first describe the non-local eddy diffusivity model originally developed for homogeneous
isotropic turbulence and then improve it for inhomogeneous turbulence. Using the new
model, we evaluate the profiles of non-local eddy diffusivity and compare them with the
DNS values to better understand non-local scalar transport in wall-bounded turbulence.
Finally, § 4 presents our conclusions.

2. Analysis of non-local eddy diffusivity in channel flow

2.1. Non-local expression for turbulent scalar flux
We first describe an exact non-local expression for the turbulent scalar flux (Hamba 1995,
2004). The velocity u∗

i and scalar θ∗ are divided into mean and fluctuating parts as follows:

u∗
i = Ui + ui , Ui = 〈u∗

i 〉, (2.1)
θ∗ = Θ + θ, Θ = 〈θ∗〉, (2.2)

where 〈 〉 denotes ensemble averaging. A non-local expression for the turbulent scalar flux
〈uiθ〉 can be expressed as

〈uiθ〉(x, t) = −
∫

dx′
∫ t

−∞
dt ′κN Li j (x, t; x′, t ′) ∂

∂x ′
j
Θ(x′, t ′), (2.3)

where
∫

dx = ∫∞
−∞ dx

∫∞
−∞ dy

∫∞
−∞ dz, and the summation convention is used for repeated

indices. The velocity components should originally be written as u1, u2 and u3, but
here they are written as ux , uy and uz instead. The same holds for κN Li j . Here,
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κN Li j (x, t; x′, t ′) is the non-local eddy diffusivity that represents the non-local effect of
the mean scalar gradient at (x′, t ′) on the scalar flux at (x, t). Using the Green’s function
g j (x, t; x′, t ′) for the scalar fluctuation equation, non-local eddy diffusivity is given by

κN Li j (x, t; x′, t ′) = 〈ui (x, t)g j (x, t; x′, t ′)〉. (2.4)

A detailed description for the Green’s function is given in Appendix A.
Equation (2.3) was verified using the DNS data of turbulent channel flow and

homogeneous isotropic turbulence (Hamba 2004, 2022b). The non-local eddy diffusivity
κN Li j (x, t; x′, t ′) has a non-zero value if the distance

∣∣x − x′∣∣ and time difference t − t ′
are comparable to or less than the turbulent length and time scales, respectively. If the
mean scalar gradient ∂Θ/∂x ′

j is nearly constant in this region in terms of space and time,
then the scalar flux can be approximated as

〈uiθ〉(x, t) = −κLi j (x, t)
∂Θ

∂x j
, (2.5)

where κLi j (x, t) is the local eddy diffusivity defined as

κLi j (x, t) =
∫

dx′
∫ t

−∞
dt ′κN Li j (x, t; x′, t ′). (2.6)

Conversely, if the mean scalar gradient changes significantly in the region, the local
approximation is invalid and the non-local expression should be used to predict the
turbulent scalar flux.

2.2. Direct numerical simulation of turbulent channel flow
To investigate the behaviour of non-local eddy diffusivity in detail, we examined the DNS
data of turbulent channel flow. The simulation was performed as follows. We numerically
solved the equations for the velocity and scalar given by

∂u∗
i

∂t
+ ∂

∂x j
u∗

j u
∗
i = −∂p∗

∂xi
+ ν

∂2u∗
i

∂x j∂x j
+ fuδi1, (2.7)

∂u∗
i

∂xi
= 0, (2.8)

∂θ∗

∂t
+ ∂

∂xi
u∗

i θ
∗ = κ

∂2θ∗

∂xi∂xi
+ fθ , (2.9)

where p∗ is the pressure, ν is the molecular viscosity, κ is the molecular diffusivity,
fu(= 1) is an external force and fθ is an external source. In addition, we solved
the equation for the Green’s function gi (x, t; x′, t ′) given by (A2). The size of the
computational domain was Lx × L y × Lz = 3π × 2 × 1.5π , where x , y and z denote
the streamwise, wall-normal and spanwise directions, respectively. The number of grid
points was Nx × Ny × Nz = 256 × 128 × 256. The Reynolds number based on the friction
velocity uτ and channel half-width L y/2 was set as Reτ [= uτ (L y/2)/ν] = 180, and the
Prandtl number was set as Pr(= ν/κ) = 1. Hereafter, the physical quantities are non-
dimensionalised using uτ and L y/2. Periodic boundary conditions for u∗

i , θ∗ and gi
were used in the streamwise and spanwise directions, and the no-slip conditions u∗

i = 0,
θ∗ = 0 and gi = 0 were set at the wall at y = ±1. We used the fourth-order finite-
difference scheme in the x and z directions, the second-order scheme in the y direction
and the Adams–Bashforth method for time marching. Statistical quantities were obtained
by averaging over the x–z plane and time.
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Figure 1. Profiles of the mean fields: (a) mean velocity Ux and mean scalar Θ for the two cases as functions
of y+, and (b) mean scalar gradient ∂Θ/∂y as a function of y for the two cases.

We calculated two cases with respect to the scalar θ∗; the profile of the external source
fθ was given by

fθ =
{

1, case 1,
2√

0.01π
exp

(
− y2

0.01

)
, case 2.

(2.10)

In case 1, the external source fθ was constant in space, such as the external force fu
for the velocity. In case 2, fθ had a non-zero value only near the channel centre at
y = 0. The integral value of fθ at −1 � y � 1 was equal to 2 in both cases such that the
mean scalar gradient at the wall could be equal to 1/κ . Similar profiles for the external
sources were used in a previous study (Hamba 2004). Figure 1(a) shows the profiles of
the mean velocity Ux and those of the mean scalar Θ for cases 1 and 2 as functions of
y+[= (y + 1)uτ /ν]. Because fθ = fu = 1, the mean scalar profile in case 1 is nearly
identical to the mean velocity profile. In contrast, the mean scalar profile in case 2
rapidly increases as y increases near the channel centre at y+ = 180. Figure 1(b) shows
the profiles of the mean scalar gradient as functions of y for cases 1 and 2. The scalar
gradient gradually decreases at −0.8 < y < 0.8 in case 1, whereas it rapidly decreases at
−0.1 < y < 0.1 in case 2. The length scale associated with the mean scalar gradient is
large in case 1 and small near the channel centre in case 2.

2.3. Non-local eddy diffusivity evaluated using a DNS
Generally, non-local eddy diffusivity κN Li j is a function of (x, t, x′, t ′). Because the
turbulent field of channel flow is statistically steady and homogeneous in the x and z
directions, the non-local eddy diffusivity can be expressed as

κN Li j (x, t; x′, t ′) = κN Li j (x − x ′, y, y′, z − z′, τ ), (2.11)

where τ = t − t ′. The wall-normal scalar flux is then given by a one-dimensional integral
as

〈uyθ〉N L(y) = −
∫ 1

−1
dy′κN Lyy(y, y′)∂Θ

∂y′ , (2.12)

where

κN Lyy(y, y′) =
∫ 3π

0
dx ′

∫ 1.5π

0
dz′

∫ ∞

0
dτκN Lyy(x − x ′, y, y′, z − z′, τ ), (2.13)
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Figure 2. Profiles of non-local eddy diffusivity: (a) κN Lyy(y, y′) as a function of y and (b) κN Lyy(y, y′) as a
function of y′.

because the mean scalar gradient ∂Θ/∂y′ depends only on y′. The notation κN Lyy should
originally be κN L22. Note that κN Lyy(y, y′) on the left-hand side is a different quantity
than κN Lyy(x − x ′, y, y′, z − z′, τ ) on the right-hand side, although the same notation
κN Lyy is used. They can be distinguished from the dimension of their input space. If
∂Θ/∂y′ is nearly constant in the y′ region where κN Lyy(y, y′) has a non-zero value, then
the local approximation holds

〈uyθ〉L (y) = −κLyy (y)
∂Θ

∂y
, (2.14)

where the local eddy diffusivity is defined as

κLyy(y) =
∫ 1

−1
dy′κN Lyy(y, y′). (2.15)

Using results of the DNS described in § 2.2, we first examine the non-local eddy
diffusivity κN Lyy(y, y′) given by (2.13). The integrand κN Lyy(x − x ′, y, y′, z − z′, τ ) is
given by (2.4), and the detailed method of its evaluation is described in Hamba (2004).
Note that the Green’s function gi (x, t; x′, t ′) is obtained solely from the velocity field u∗

i
and the molecular diffusivity κ because the transport equation for gi (x, t; x′, t ′) given by
(A2) does not involve the scalar θ∗. Therefore, non-local eddy diffusivity is determined
solely by the velocity field and the molecular diffusivity, and the same profile of non-local
eddy diffusivity is applied to the scalar flux in cases 1 and 2.

Figure 2(a) shows the profiles of κN Lyy(y, y′) as functions of y for four locations of y′.
The profiles represent the contribution to the scalar flux at y from the mean scalar gradient
at a given location of y′. The peak values of the profiles reflect the turbulence intensity 〈u2

y〉
at y = y′. The peak value κN Lyy(y, y) is correlated with 〈u2

y〉(y) because uy(x, y, z, t)
and uy(x ′, y, z′, t ′) are used to evaluate κN Lyy(y, y). As y′ increases, it increases rapidly
and then decreases gradually towards the centre of the channel. The widths of the profiles
reflect the extent of the non-local effect. The profile for y′ = −0.942 (y′+ = 10.5), plotted
as a solid line, is narrow because y′ is close to the wall. As y′ increases, the profile
becomes wider; the profile for y′ = 0 (y′+ = 180) at the channel centre, plotted as a dot-
dashed line, is as wide as the channel half-width at approximately −0.5 < y < 0.5 and is
symmetrical with respect to the centre. The profile for y′ = −0.486 (y′+ = 92.5) is also
wide and nearly symmetrical with respect to the peak location at y = y′. Owing to the
wall boundary conditions ui = 0 and gi = 0, non-local eddy diffusivity also vanishes at
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Figure 3. Profiles of the scalar fluxes 〈uyθ〉, 〈uyθ〉N L and 〈uyθ〉L as functions of y for (a) case 1 and
(b) case 2.

the wall at y = ±1 and exhibits a small value near the wall. This condition results in
asymmetric profiles of non-local eddy diffusivity for y′ = −0.942 and y′ = −0.737; the
profile is wider at y > y′ than at y < y′. Figure 2(b) shows the profiles of κN Lyy(y, y′) as
functions of y′ for four locations of y. In this case, the profiles represent the contribution
from the mean scalar gradient at y′ to the scalar flux at a given location of y. For example,
the wide profile for y = −0.486 (y+ = 92.5), plotted as a small dotted line, indicates that
the scalar flux at y = −0.486 is affected by the mean scalar gradient in the bottom half
of the channel at approximately −1 < y′ < 0. The profiles in figure 2(b) are very similar
to the corresponding ones in figure 2(a) but not identical. The differences between the two
types of profiles are discussed later using two-dimensional profiles.

Using the profiles of κN Lyy(y, y′) obtained from the DNS, we verify the non-local
expression for the scalar flux given by (2.12) (Hamba 2004). Figure 3 shows the profiles
of the scalar fluxes as functions of y for both cases. Here, ‘DNS’ denotes 〈uyθ〉 evaluated
directly, ‘Non-local’ denotes 〈uyθ〉N L given by (2.12) and ‘Local’ denotes 〈uyθ〉L given
by (2.14). The profiles of 〈uyθ〉N L plotted as solid lines agree with the DNS values
in both cases. This agreement verifies the non-local expression for scalar flux given by
(2.12). As shown in figure 3(a), the profile of 〈uyθ〉L almost agrees with the DNS value
within −0.8 < y < 0.8. The local approximation is reasonable because the mean scalar
gradient in case 1 changes gradually within −0.8 < y < 0.8, as shown in figure 1(b), and
its length scale is larger than the width of the non-local eddy diffusivity κN Lyy(y, y′)
shown in figure 2(b). In contrast, as shown in figure 3(b), the profile of 〈uyθ〉L significantly
overpredicts the DNS value near the channel centre within −0.2 < y < 0.2. The local
approximation is invalid because the mean scalar gradient decreases rapidly, as shown in
figure 1(b), and its length scale is smaller than the width of the non-local eddy diffusivity.
In both cases, the profile of 〈uyθ〉L slightly overpredicts the DNS value near the wall
within −1 < y < −0.8 and 0.8 < y < 1. This is because the mean scalar gradient changes
rapidly near the wall in both cases.

The profiles of non-local eddy diffusivity κN Lyy(y, y′) are sufficient to verify the one-
dimensional non-local expression given by (2.12). In this paper, to investigate non-local
scalar transport in more detail, we further examine the non-local eddy diffusivity given by
(2.13). Here, we consider the behaviour of non-local eddy diffusivity not only in the wall-
normal direction but also in the streamwise direction. We can decompose the non-local
eddy diffusivity κN Lyy(y, y′) into the following integral in the streamwise direction:

κN Lyy(y, y′) =
∫ 3π

0
dx ′κN Lyy(x − x ′, y, y′), (2.16)
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Figure 4. Contour plots of non-local eddy diffusivity: (a) κN Lyy(x − x ′, y, y′) as a function of x − x ′ and
y for y′ = −0.737 (y′+ = 47.3) and (b) κN Lyy(x − x ′, y, y′) as a function of x ′ − x and y′ for y = −0.737
(y+ = 47.3).

where

κN Lyy(x − x ′, y, y′) =
∫ 1.5π

0
dz′

∫ ∞

0
dτκN Lyy(x − x ′, y, y′, z − z′, τ ). (2.17)

Note that κN Lyy on the left-hand side is a different quantity than κN Lyy on the right-
hand side, although the same notation is used. The non-local eddy diffusivity κN Lyy(x −
x ′, y, y′) depends on both y and y′ in the inhomogeneous wall-normal direction, whereas
it depends only on the separation x − x ′ in the homogeneous streamwise direction.

Figure 4(a) shows the two-dimensional contour plots of κN Lyy(x − x ′, y, y′) in the
x − x ′ and y plane for y′ = −0.737 (y′+ = 47.3). The position y′+ = 47.3 is located in
the logarithmic layer of the turbulent channel flow. The profile represents the contribution
to the scalar flux in the downstream region at (x − x ′, y) from the mean scalar gradient
at a given upstream location (x − x ′ = 0, y = y′). It appears as a typical profile of the
diffusion of a scalar emitted from a point source; it spreads in the downstream direction
by mean flow convection and in the wall-normal direction by turbulent diffusion. As
shown in figure 2(a), the profile is slightly asymmetric with respect to the horizontal
line at y = y′, and the contour is wider at y > y′ than at y < y′. Figure 4(b) shows the
two-dimensional contour plots of κN Lyy(x − x ′, y, y′) in the x ′ − x and y′ plane for
y = −0.737 (y+ = 47.3). The profile represents the contribution from the mean scalar
gradient in the upstream region at (x ′ − x, y′) to the scalar flux at a given downstream
location (x ′ − x = 0, y′ = y). This indicates that the mean scalar gradient in a wide
upstream region significantly affects the scalar flux at (x ′ − x = 0, y′ = y). The profile
is similar to that shown in figure 4(a). However, the contribution from the bottom region
at y′ < y is slightly larger in figure 4(b).

Figure 5 shows the two-dimensional contour plots of κN Lyy(x − x ′, y, y′) for y′ =
−0.942 (y′+ = 10.5) and y = −0.942 (y+ = 10.5). The position y+ = 10.5 is located in
the buffer layer of the turbulent channel flow, which is closer to the bottom wall than
that in figure 4. In figure 5(a), because of the wall effect at y = −1, the contour near
the wall becomes nearly horizontal, and the profile is more asymmetric with respect to
the horizontal line at y = y′ than in figure 4(a). The same holds for figure 5(b). Moreover,
the contour in the streamwise direction is longer in figure 5(b) than in figure 5(a). In
summary, the two-dimensional profiles of non-local eddy diffusivity clearly reveal a
contribution from the mean scalar gradient in a wide upstream region to the scalar flux
at a given location, which cannot be observed in the one-dimensional profiles in figure 2.
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Figure 5. Contour plots of non-local eddy diffusivity: (a) κN Lyy(x − x ′, y, y′) as a function of x − x ′ and
y for y′ = −0.942 (y′+ = 10.5) and (b) κN Lyy(x − x ′, y, y′) as a function of x ′ − x and y′ for y = −0.942
(y+ = 10.5).

To investigate the temporal behaviour of non-local scalar transport, we further
decompose the two-dimensional profiles of non-local eddy diffusivity into the following
time integral:

κN Lyy(x − x ′, y, y′) =
∫ ∞

0
dτκN Lyy(x − x ′, y, y′, τ ), (2.18)

where

κN Lyy(x − x ′, y, y′, τ ) =
∫ 1.5π

0
dz′κN Lyy(x − x ′, y, y′, z − z′, τ ). (2.19)

Note that κN Lyy on the left-hand side is a different quantity than κN Lyy on the right-hand
side, although the same notation is used. Figures 6(a)–6(c) show the two-dimensional
contour plots of κN Lyy(x − x ′, y, y′, τ ) in the x − x ′ and y plane for y′ = −0.737
(y′+ = 47.3) at τ = 0.0225, 0.045 and 0.0675. The profiles represent the contribution to the
scalar flux at (x − x ′, y, t + τ) from the mean scalar gradient at a given location and time
of (x − x ′ = 0, y = y′, t). The turbulence time scale can be defined as T = K/ε where
K (= 〈u2

i 〉/2) is the turbulent kinetic energy and ε is its dissipation rate. Because the
turbulence time scale T = 0.330 at y = −0.737, the normalised value τ/T ranges from
0.0682 to 0.205. As the time difference τ increases, the profile moves forward in
the downstream direction. The peak location at each time point can be understood as
convection based on the mean velocity U (y′)(= 15.3). The location x − x ′ = U (y′)τ
becomes 0.344, 0.689 and 1.03 for τ = 0.0225, 0.045 and 0.0675, respectively, which
almost agrees with the peak location in figures 6(a)–6(c). In addition, as τ increases,
the peak value decreases rapidly and the size of the profile increases gradually. The
contours are more elliptical than circular; they are elongated in the streamwise direction
and tilted towards the bottom wall. This behaviour suggests anisotropic diffusion in
the x − x ′ and y plane. Figures 6(d)–6(f ) show the two-dimensional contour plots of
κN Lyy(x − x ′, y, y′, τ ) in the x ′ − x and y′ plane for y = −0.737 (y+ = 47.3) for the
three values of τ . The profiles represent the contribution from the mean scalar gradient
at (x ′ − x, y′, t − τ) to the scalar flux at a given location and time of (x ′ − x = 0,

y′ = y, t). As τ increases, the profile moves backward in the upstream direction. The peak
location can be understood as convection based on the mean velocity, similar to that in
figures 6(a)–6(c). The contours are also elongated in the streamwise direction and tilted
towards the centre of the channel. Clearly, the profile in figure 6(f ) is more significantly
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Figure 6. Contour plots of non-local eddy diffusivity: κN Lyy(x − x ′, y, y′, τ ) as a function of x − x ′ and y for
y′ = −0.737 (y′+ = 47.3) at (a) τ = 0.0225, (b) τ = 0.045 and (c) τ = 0.0675, and κN Lyy(x − x ′, y, y′, τ ) as
a function of x ′ − x and y′ for y = −0.737 (y+ = 47.3) at (d) τ = 0.0225, (e) τ = 0.045 and (f ) τ = 0.0675.

elongated than that in figure 6(d) for the same value of τ . The profiles in figures 6(d)–6(f )
indicate that the mean scalar gradient in a wide upstream region in the past affects the
scalar flux at a point and at the present, and that the region becomes wider as the time
difference τ increases. When the profiles of κN Lyy(x − x ′, y, y′, τ ) are integrated over
time, the profiles of κN Lyy(x − x ′, y, y′) are restored, as shown in figure 4. In figure 4, the
profiles are nearly symmetrical with respect to the horizontal line at y = y′. Anisotropic
and tilted profiles are observed only in the temporal behaviour shown in figure 6.

Figures 7(a)–7(c) show the two-dimensional contour plots of κN Lyy(x − x ′, y, y′, τ ) in
the x − x ′ and y plane for y′ = −0.942 (y′+ = 10.5) for the three values of τ . Because
the turbulence time scale is T = 0.173 at y = −0.942, the normalised value τ/T ranges
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Figure 7. Contour plots of non-local eddy diffusivity: κN Lyy(x − x ′, y, y′, τ ) as a function of x − x ′ and y for
y′ = −0.942 (y′+ = 10.5) at (a) τ = 0.0225, (b) τ = 0.045 and (c) τ = 0.0675, and κN Lyy(x − x ′, y, y′, τ ) as
a function of x ′ − x and y′ for y = −0.942 (y+ = 10.5) at (d) τ = 0.0225, (e) τ = 0.045 and (f ) τ = 0.0675.

from 0.130 to 0.390. The peak location can also be understood as convection based on
the mean velocity U (y′)(= 8.82). The location x − x ′ = U (y′)τ becomes 0.198, 0.397
and 0.595 for τ = 0.0225, 0.045 and 0.0675, respectively, which almost agrees with the
peak location in figures 7(a) and 7(b), whereas it slightly overpredicts the peak location in
figure 7(c). The profiles are elongated in the streamwise direction, but they are not tilted
towards the wall. Owing to the wall boundary conditions, non-local eddy diffusivity is
limited to a small value near the wall, whereas the profile diffuses freely away from the
wall. Figures 7(d)–7(f ) show the two-dimensional contour plots of κN Lyy(x − x ′, y, y′, τ )

in the x ′ − x and y′ plane for y = −0.942 (y+ = 10.5) for the three values of τ . As
τ increases, the profile moves backward in the upstream direction, similar to that in
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figures 6(d)–6(f ). Compared with the profiles in figures 7(a)–7(c), the peak location moves
faster, and the profiles are elongated more significantly. This behaviour accounts for the
scenario in which the contour in the streamwise direction is longer in figure 5(b) than in
figure 5(a). The profiles in figures 7(d)–7(f ) also indicate a non-local contribution from
the mean scalar gradient in a wide upstream region.

In this section, we examine the one- and two-dimensional profiles of non-local eddy
diffusivity obtained from the DNS. The two-dimensional profiles as functions of x − x ′
and y in figures 4(a), 5(a), 6(a)–6(c) and 7(a)–7(c) show a forward diffusion process
representing a contribution to the scalar flux at (x − x ′, y). The temporal profile moves
downstream, diffuses anisotropically and is tilted towards the bottom wall. The two-
dimensional profiles as functions of x ′ − x and y′ in figures 4(b), 5(b), 6(d)–6(f )
and 7(d)–7(f ) show a backward diffusion process representing a contribution from the
mean scalar gradient at (x ′ − x, y′). These profiles are directly related to the non-local
expression given by (2.3) or the following two-dimensional expression

〈uyθ〉N L(x, y) = −
∫ 3π

0
dx ′

∫ 1

−1
dy′κN Lyy(x − x ′, y, y′) ∂

∂y′ Θ(x ′, y′). (2.20)

The temporal behaviour is similar to that of forward diffusion; however, the profiles are
elongated more significantly in the streamwise direction. These results provide detailed
information about non-local scalar transport, that is, how the mean scalar gradient affects
the scalar flux non-locally in space and time.

3. Modelling non-local eddy diffusivity in channel flow
In § 2, the profiles of non-local eddy diffusivity are evaluated using the DNS of turbulent
channel flow. In the analysis, we need to solve the equation for the Green’s function given
by (A2). The profiles are exact in the sense that they satisfy the non-local expression for the
turbulent scalar flux given by (2.3). However, the physical mechanisms that produce these
profiles remain unclear. To better understand the behaviour of non-local eddy diffusivity
and to accurately predict the scalar transport in the turbulence simulation, we attempt to
develop a model for non-local eddy diffusivity. A model was developed for homogeneous
isotropic turbulence and validated using the DNS (Hamba 2022b, 2023). In this paper,
we improve it for inhomogeneous turbulence by incorporating the effects of turbulence
anisotropy, inhomogeneity and wall boundaries. The model does not require solving the
Green’s function equation; only the Reynolds stress and the energy dissipation rate are
required. Because ensemble averaging is used to define the mean and fluctuating parts
in (2.1) and (2.2), model expressions discussed in this study are for the RANS model.
However, we expect that a similar non-local model can also be applied to the large-eddy
simulation by adopting the filter width as a representative length scale.

3.1. Non-local eddy diffusivity model for homogeneous isotropic turbulence
In § 3.1, we briefly describe a model of non-local eddy diffusivity for homogeneous
isotropic turbulence (Hamba 2022b, 2023). Because the turbulent velocity field is
isotropic, non-local eddy diffusivity can be expressed in an isotropic form

κN Li j (x, t; x′, t ′)(≡ 〈ui (x, t)g j (x, t; x′, t ′)〉) = κN L(r, τ )δi j , (3.1)

where r = |r|, r = x − x′ and the term proportional to rir j/r2 is neglected. Following
the statistical theory of turbulence (Kraichnan 1964; Yoshizawa 1998), we model
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the non-local eddy diffusivity κN L(r, τ ) using the two-point velocity correlation
Qii (r)(= 〈ui (x, t)ui (x′, t)〉) as

κN L(r, τ ) = G(r, τ )Q(r), (3.2)

where Q(r) = Qii (r)/3.
The time-dependent part G(r, τ ), which corresponds to the mean Green’s function for

the scalar, is given by

G(r, τ ) = 1
(4π)3/2(CωGu0τ)3 exp

[
− r2

4(CωGu0τ)2

]
, (3.3)

where u0 = 〈u2
i 〉1/2 = (2K )1/2, and CωG(= 0.46) is a model constant. Equation (3.3)

represents a diffusion process with effective diffusivity C2
ωGu2

0τ . Because it is multiplied
by Q(r) in (3.2), the magnitude of κN L(r, τ ) is proportional to Q(r), and the region of
diffusion is limited to the integral scale of turbulence even when G(r, τ ) has a very wide
profile for a large value of τ .

To model the velocity correlation Q(r), we use the energy density in the scale space
developed by Hamba (2022a) instead of the energy spectrum in the wavenumber space.
The velocity correlation Qii (r) can be expressed as the following integral with respect to
the scale s:

Qii (r) =
∫ ∞

0
ds Q̂ii (r, s). (3.4)

Here, Q̂ii (r, s) is the velocity correlation in the scale space and is modelled in terms of
the scale-space energy density Q̂ii (s) and a simple Gaussian function as follows:

Q̂ii (r, s) = Q̂ii (s) exp
(

− r2

4s

)
. (3.5)

For the scale-space energy density Q̂ii (s), we assume the following simple form:

Q̂ii (s) =
⎧⎨
⎩

ν−1ε, s < sd ,

Csε
2/3s−2/3, sd � s � sc,

Csε
2/3s11/6

c s−5/2, s > sc,

(3.6)

where Cs(= 1.3) is a model constant, and two interface scales are introduced:
sd(= Cs

3/2ν3/2ε−1/2) in the dissipation range and sc[= (6/11)3Cs
−3K 3ε−2(1 +

Cs
3/2ν1/2K −1ε1/2)3] in the energy-containing range. The function Csε

2/3s−2/3 for
sd � s � sc in (3.6) corresponds to the Kolmogorov energy spectrum E(k) =
CK ε2/3k−5/3. The filtered velocities are used to formulate the scale-space energy density
(Hamba, 2022a). A similar approach based on the filtered velocities was used to examine
the roles of vorticity stretching and strain amplification in the turbulence energy cascade
(Johnson 2020, 2021). A detailed description of the energy density and two-point velocity
correlation in the scale space is given in Appendix B.

To understand the physical meaning of the non-local eddy diffusivity given by (3.2), we
consider the local eddy diffusivity κL corresponding to (2.15) as a simple case. The local
approximation holds if the mean scalar gradient is nearly constant in space and time. For
steady homogeneous isotropic turbulence, the local eddy diffusivity can be defined as

κL =
∫

dr
∫ ∞

0
dτκN L(r, τ ). (3.7)
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Substituting (3.2) into (3.7) gives

κL =
∫

dr
∫ ∞

0
dτG(r, τ )Q(r). (3.8)

Furthermore, substituting (3.4) and (3.5) into (3.8) yields

κL = 1
3

∫ ∞

0
ds Q̂ii (s)T (s), (3.9)

where

T (s) =
∫

dr
∫ ∞

0
dτG(r, τ ) exp

(
− r2

4s

)
. (3.10)

Here, T (s) can be considered as the time scale of velocity fluctuations at scale s. Equation
(3.9) suggests that the local eddy diffusivity can be obtained by summing the product of
the turbulent energy Q̂ii (s) and the time scale T (s) over all scales. By focusing only on
the large scales in the energy-containing range, we can derive a commonly used model

κL ∝ K T = K 2/ε, (3.11)

where T = K/ε is the turbulence time scale. Therefore, the model given by (3.9) is an
extended model that accurately incorporates the effects of the turbulent energy and the
time scale at each scale.

The model given by (3.8) can also be related to the integral length scale (Hamba, 2022b).
By substituting (3.3) into (3.8) and integrating it over time, we obtain

κL =
∫ ∞

0
dr4πr2 1

12π3/2CωGu0r2 Qii (r) = u0

3π1/2CωG

∫ ∞

0
dr

Qii (r)
Qii (0)

. (3.12)

The integral
∫∞

0 dr Qii (r)/Qii (0) appearing on the right-hand side can be considered
as an integral length scale L . Equation (3.12) shows that the local eddy diffusivity is
proportional to the product of the turbulent intensity u0 and the integral length scale L;
this relationship has been often discussed in turbulence model studies.

3.2. Improvement of the model for inhomogeneous turbulence
The model expressions given by (3.2)–(3.6) were validated using the DNS of
homogeneous isotropic turbulence with an inhomogeneous mean scalar in Hamba (2023).
In § 3.2, to apply it to turbulent channel flow, we improve the model by incorporating
the effects of turbulence anisotropy, inhomogeneity and wall boundaries. Because the
turbulent velocity field is statistically steady and homogeneous in the x and z directions,
the model expression given by (3.2) can be rewritten as

κN Li j (x − x ′, y, y′, z − z′, τ ) = G(rx , ry, rz, τ, y′)Qi j (rx , ry, rz, y′), (3.13)

where rx = x − x ′ − Ux (y′)τ , ry = y − y′ and rz = z − z′. The effect of convection
based on the mean velocity Ux (y′) is included in the definition of rx . Owing to the
inhomogeneity in the wall-normal direction, the coordinate y′ is included on the right-hand
side of (3.13) in addition to ry .

In this study, we treat the wall-normal component given by

κN Lyy(x − x ′, y, y′, z − z′, τ ) = G(rx , ry, rz, τ, y′)Qyy(rx , ry, rz, y′). (3.14)
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The anisotropy of the two-point velocity correlation Qyy(rx , ry, rz, y′) is expressed in
terms of that of the Reynolds stress Ri j (= 〈ui u j 〉) at the y′ location as follows:

Qyy(rx , ry, rz, y′) = Ryy(y′)
Rii (y′)

Q j j (rx , ry, rz, y′). (3.15)

The correlation Q j j (rx , ry, rz, y′) is given by (3.4)–(3.6), and the values of K and ε

included in (3.6) are evaluated at the y′ location.
The anisotropic effect of diffusion is incorporated into the time-dependent part G(r, τ )

given by (3.3) using the Reynolds stress Ri j (y′) as follows (Roberts 1961):

G(rx , ry, rz, τ, y′) = 1
(12πC2

ωGτ 2)3/2 det(R)1/2
exp

(
− R−1

i j ri r j

12C2
ωGτ 2

)
, (3.16)

where

det(R) = (Rxx Ryy − R2
xy)Rzz, (3.17)

R−1
i j ri r j = 1

Rxx Ryy − R2
xy

(Ryyr2
x − 2Rxyrxry + Rxxr2

y ) + 1
Rzz

r2
z . (3.18)

This form represents anisotropic diffusion, in which a scalar diffuses more quickly in
the direction in which the Reynolds stress component is larger. Moreover, the Reynolds
stress Ri j included in (3.16)–(3.18) is replaced by Ri j + κ/(3C2

ωGτ)δi j to incorporate the
molecular diffusion effect for a very small value of τ (see Appendix C for details).

The wall boundary conditions must be considered for turbulent channel flow. Because
ui = 0 and g j = 0 at the wall, the non-local eddy diffusivity given by (2.4) should also
vanish at the wall. In this paper, the method of images is utilised to satisfy the wall
boundary conditions. For example, the time-dependent part G(rx , ry, rz, τ, y′) near the
bottom wall at y = −1 can be modified as follows:

G(rx , ry, rz, τ, y′) = 1
(12πC2

ωGτ 2)3/2 det(R)1/2

×
[

exp

(
− R−1

i j ri r j

12C2
ωGτ 2

)
− exp

(
− R−1

I i j rI i rI j

12C2
ωGτ 2

)]
, (3.19)

where rI x = rx , rI y = y + 2 + y′, rI z = rz , RI xx = Rxx , RI yy = Ryy , RI zz = Rzz and
RI xy = −Rxy . Here, a negative point source of the diffusion is added at (x ′, −2 − y′, z′)
such that the value of G(rx , ry, rz, τ, y′) vanishes at y = −1. Similarly, the two-point
velocity correlation Qii (rx , ry, rz, y′) near the bottom wall is modified as

Qii (rx , ry, rz, y′) =
∫ ∞

0
ds Q̂ii

(
s, y′)

×
[

exp
(

− r2

4s

)
− exp

(
− r2

I

4s

)]/[
1 − exp

(
−r2

I y0

4s

)]
, (3.20)

where r2
I = r2

I i and rI y0 = 2 + 2y′. A factor [1 − exp(−r2
I y0/4s)]−1 is introduced in (3.20)

such that for r = 0, the turbulent kinetic energy can be expressed as the following integral
of the scale-space energy density:

Qii (0, 0, 0, y′)(= 2K ) =
∫ ∞

0
ds Q̂ii (s, y′). (3.21)
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Figure 8. Profiles of pre-multiplied energy density s Q̂ii (s, y) obtained from the DNS of turbulent channel
flow at Reτ = 590 as a function of s for different y+ locations. The black lines denote DNS values, and the red
lines denote those obtained from the model expression given by (3.6).

The form of the energy density Q̂ii (s, y′) given by (3.6) is a reasonable approximation
for homogeneous isotropic turbulence (Hamba 2023); however, its accuracy for turbulent
channel flow is not clear. The profiles of the scale-space energy density were evaluated for
turbulent channel flow in Hamba (2022a). Figure 8 shows the profiles of the pre-multiplied
energy density s Q̂ii (s, y) obtained from the DNS of the turbulent channel flow at Reτ =
590 as a function of s at different y+ locations. The model profile reasonably agrees with
the DNS value for y+ = 180 and 490, but it underpredicts the DNS value at a large scale
s for y+ = 10 and 50. In addition, we observe that the DNS value of the energy density
for y+ < 10 has a profile similar to that for y+ = 10 whereas the model underpredicts it
significantly. We then modify the scale-space energy density as follows:

Q̂ii (s, y) =
⎧⎨
⎩

K (y)

K (yb)
Q̂0i i (s, yb), y+ < y+

b ,

Q̂0i i (s, y), y+ � y+
b ,

(3.22)

where Q̂0i i (s, y) is the original value given by (3.6), and y+
b = 10.

3.3. Non-local eddy diffusivity obtained from the model
Using the improved model in § 3.2, we evaluate the profiles of non-local eddy diffusivity
in turbulent channel flow and compare them with those directly obtained from the
DNS shown in § 2.3. First, we examine the one-dimensional profiles of non-local eddy
diffusivity as functions of y or y′. Figure 9(a) shows the profiles of κN Lyy(y, y′) as
a function of y for four locations of y′. The black lines represent the DNS values in
figure 2(a), and the red lines represent those obtained from the model. The red line for
each y′ location almost agrees with the corresponding DNS value, although the peak
value at y = y′ is slightly overpredicted. The asymmetry of the profiles near the wall is
reproduced using the model incorporating the wall effect. Figure 9(b) shows the profiles
of κN Lyy(y, y′) as a function of y′ for four locations of y. The agreement between the
DNS and model is similar to that in figure 9(a).

Next, we examine the two-dimensional profiles of non-local eddy diffusivity in the
streamwise and wall-normal directions. Figure 10(a) shows the two-dimensional contour
plots of κN Lyy(x − x ′, y, y′) obtained from the model in the x − x ′ and y plane for
y′ = −0.737 (y′+ = 47.3). The profile spreading downstream shown in figure 10(a) agrees
well with the DNS values shown in figure 4(a). The streamwise lengths of the contours are
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Figure 9. Profiles of non-local eddy diffusivity: (a) κN Lyy(y, y′) as a function of y and (b) κN Lyy(y, y′) as a
function of y′. The black lines denote DNS values, and the red lines denote those obtained from the model.
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Figure 10. Contour plots of non-local eddy diffusivity obtained from the model: (a) κN Lyy(x − x ′, y, y′) as a
function of x − x ′ and y for y′ = −0.737 (y′+ = 47.3) and (b) κN Lyy(x − x ′, y, y′) as a function of x ′ − x and
y′ for y = −0.737 (y+ = 47.3).

nearly equal in the two figures. The width of the contours in the y direction in figure 10(a)
is slightly smaller than that in figure 4(a). The profiles of κN Lyy(x − x ′, y, y′) in the
x ′ − x and y′ plane in figure 10(b) are similar to the DNS values in figure 4(b). The model
reproduces the behaviour of non-local eddy diffusivity in which the mean scalar gradient
in a wide upstream region significantly affects the scalar flux at a point. Figures 11(a) and
11(b) show the two-dimensional contour plots of κN Lyy(x − x ′, y, y′) obtained from the
model for y′ = −0.942 (y′+ = 10.5) and for y = −0.942 (y+ = 10.5), respectively. These
profiles are similar to the DNS values shown in figure 5. The contours near the wall become
almost horizontal because of the wall effect. The streamwise length of the contours in
figures 11(a) and 11(b) is slightly larger than that in figures 5(a) and 5(b), but the tendency
in which the length is larger in figure 5(b) than in figure 5(a) is reproduced by the model
in figures 11(a) and 11(b).

Figures 12(a)–12(c) show the two-dimensional contour plots of κN Lyy(x − x ′, y, y′, τ )

obtained from the model in the x − x ′ and y plane for y′ = −0.737 (y′+ = 47.3) for the
three values of τ . The forward diffusion profiles clearly demonstrate the role of the model
expressions. The wall effect expressed in (3.19) and (3.20) is not significant because
location y′ = −0.737 is away from the wall. Note that the convection velocity Ux (y′) for
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Figure 11. Contour plots of non-local eddy diffusivity obtained from the model: (a) κN Lyy(x − x ′, y, y′) as a
function of x − x ′ and y for y′ = −0.942 (y′+ = 10.5) and (b) κN Lyy(x − x ′, y, y′) as a function of x ′ − x and
y′ for y = −0.942 (y+ = 10.5).

rx = x − x ′ − Ux (y′)τ , the energy dissipation ε(y′) appearing in (3.6) and the Reynolds
stress Ri j (y′) appearing in (3.15)–(3.18) are all evaluated at a single y′ location where the
mean scalar gradient is considered; these values are fixed and independent of y and τ . For
a fixed value of y′, the isosurface of Qyy(rx , ry, rz, y′) given by (3.15) with (3.4)–(3.6)
as a function of r becomes a sphere. The isosurface of G(rx , ry, rz, τ, y′) given by (3.16)
becomes an ellipsoid because of the anisotropic Reynolds stress Ri j (y′). Therefore, the
two-dimensional profiles obtained from the model in figures 12(a)–12(c) become ellipses;
they are elongated in the streamwise direction because Rxx > Ryy and tilted towards
the bottom wall because Rxy < 0. As τ increases, the profile moves downstream with a
uniform velocity Ux (y′), the peak value decreases and the size increases according to
(3.16). This behaviour agrees with the DNS values shown in figures 6(a)–6(c) although
the peak values are slightly overpredicted. Therefore, the anisotropic turbulent diffusion
due to the Reynolds stress given by (3.16) can account for the behaviour of non-local
eddy diffusivity shown in figures 6(a)–6(c). In contrast, figures 12(d)–12(f ) show the
two-dimensional contour plots of κN Lyy(x − x ′, y, y′, τ ) obtained from the model in
the x ′ − x and y′ plane for y = −0.737 (y+ = 47.3). The overall profile is similar to
the corresponding profile in figures 12(a)–12(c). The profiles are ellipses elongated
in the streamwise direction and tilted towards the centre of the channel. As τ increases,
the profile moves upstream with Ux (y′), the peak value decreases and the size increases.
However, the profile is not a simple ellipse but is elongated asymmetrically, as shown in
figures 12(d)–12(f ). This asymmetric elongation is caused by the inhomogeneity effect.
For example, because the convection velocity Ux (y′) depends on y′, each part of the
profile moves upstream at a different speed, that is, the mean shear elongates the profile.
The dependence of Ri j (y′) and ε(y′) on y′ can also affect the asymmetric elongation.
Therefore, elongated profiles obtained from the DNS in figure 6(d)–6(f ) can be understood
as the inhomogeneity effect.

Figures 13(a)–13(c) show the two-dimensional contour plots of κN Lyy(x − x ′, y, y′, τ )

obtained from the model in the x − x ′ and y plane for y′ = −0.942 (y′+ = 10.5) for the
three values of τ . The behaviour of the contours moving downstream is similar to that
shown in figures 12(a)–12(c). Because the y′ location is close to the bottom wall, the
convection velocity Ux (y′) is low and the contours are nearly horizontal owing to the wall
effect. This behaviour agrees with the DNS values shown in figures 7(a)–7(c), although the
peak values are overpredicted and the width of the contours in the wall-normal direction
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Figure 12. Contour plots of non-local eddy diffusivity obtained from the model: κN Lyy(x − x ′, y, y′, τ ) as a
function of x − x ′ and y for y′ = −0.737 (y′+ = 47.3) at (a) τ = 0.0225, (b) τ = 0.045 and (c) τ = 0.0675
and κN Lyy(x − x ′, y, y′, τ ) as a function of x ′ − x and y′ for y = −0.737 (y+ = 47.3) at (d) τ = 0.0225,
(e) τ = 0.045 and (f ) τ = 0.0675.

is slightly underpredicted. Figures 13(d)–13(f ) show the two-dimensional contour plots of
κN Lyy(x − x ′, y, y′, τ ) obtained from the model in the x ′ − x and y′ plane for y = −0.942
(y+ = 10.5). The asymmetric elongation of the profiles is clearly shown in figures 13(e)
and 13(f ). The profile shown in figure 13(f ) is much longer in the streamwise direction than
that shown in figure 13(c). This significant elongation is caused by the strong mean shear
of Ux (y′) near the wall. The same behaviour is observed for the DNS values shown in
figures 7(c) and 7(f ). Therefore, the improved model reasonably reproduces the temporal
behaviour of non-local eddy diffusivity obtained from the DNS.

Here, we mention the dependence of the model expression on the y′ location. Based
on the model expression for homogeneous isotropic turbulence described in § 3.1, we
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Figure 13. Contour plots of non-local eddy diffusivity obtained from the model: κN Lyy(x − x ′, y, y′, τ ) as a
function of x − x ′ and y for y′ = −0.942 (y′+ = 10.5) at (a) τ = 0.0225, (b) τ = 0.045 and (c) τ = 0.0675
and κN Lyy(x − x ′, y, y′, τ ) as a function of x ′ − x and y′ for y = −0.942 (y+ = 10.5) at (d) τ = 0.0225,
(e) τ = 0.045 and (f ) τ = 0.0675.

incorporate the inhomogeneity effect into the model in § 3.2. In this procedure, whether
statistical quantities should depend on y or on y′ is not trivial. In the present model,
quantities such as Ux (y′) and Ri j (y′) are assumed to be functions of y′. Other choices
for the y and y′ dependence of the model are possible, such as Ux (y) and Ux ((y + y′)/2),
but resulting profiles of non-local eddy diffusivity must be different from figures 12 and 13.
Because the present model approximately reproduced the DNS results shown in figures 6
and 7, we consider the y′ dependence of the present model to be adequate.

Using this model, we can understand the behaviour of non-local eddy diffusivity as
follows. The forward diffusion process shown in figures 12(a)–12(c) and 13(a)–13(c)
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Figure 14. Profiles of the scalar fluxes 〈uyθ〉N L and 〈uyθ〉L obtained from the DNS and the model as functions
of y for (a) case 1 and (b) case 2. ‘Non-local DNS’ denotes 〈uyθ〉N L with DNS data, ‘Local DNS’ denotes
〈uyθ〉L with DNS data, ‘Non-local model’ denotes 〈uyθ〉N L with the model and ‘Local model’ denotes 〈uyθ〉L
with the model.

is rather simple: as τ increases, a profile moves downstream with a uniform velocity
Ux (y′) and diffuses anisotropically owing to a fixed value of Ri j (y′). In contrast, the
backward diffusion process shown in figures 12(d)–12(f ) and 13(d)–13(f ) becomes rather
complicated: as τ increases, a profile moves upstream with a non-uniform velocity
Ux (y′) and diffuses anisotropically owing to a non-uniform value of Ri j (y′), resulting
an asymmetric elongation of the profile.

Note that the two-dimensional contours shown in figures 10 and 11 are obtained
by integrating the temporal profiles shown in figures 12 and 13 with respect to τ .
Subsequently, one-dimensional profiles shown in figure 9 are obtained by integrating the
two-dimensional profiles shown in figures 10 and 11 with respect to x − x ′. Therefore,
the profiles in figures 9–11 can be understood as the accumulated effects of mean flow
convection and anisotropic turbulent diffusion shown in figures 12 and 13.

Figures 10(b), 11(b), 12(f ) and 13(f ) suggest that the mean scalar gradient in a wide
upstream region significantly affects the scalar flux at a downstream point. Such a non-
local property is important in scalar diffusion problems where the mean scalar profile is
inhomogeneous in the streamwise direction, unlike the present channel flow. An example
is the diffusion of a chemically reactive species released from a factory. The profile of the
mean scalar changes rapidly near the point source, and the length scale of the mean scalar
can be much smaller than the scale of velocity fluctuations in the atmospheric boundary
layer. In this case, simulation results with local models are expected to be inaccurate, and
non-local models must be used to accurately predict the scalar flux in the downstream
region.

3.4. Turbulent scalar flux obtained from the model
The one-dimensional profiles of non-local eddy diffusivity obtained from the model are
shown in figure 9. Here, we examine how turbulent scalar flux is evaluated using the non-
local eddy diffusivity model. Figure 14 shows the profiles of the scalar fluxes 〈uyθ〉N L
and 〈uyθ〉L obtained from the DNS and model for the two cases. The black lines denote
the profiles of the non-local expression 〈uyθ〉N L given by (2.12) and the local expression
〈uyθ〉L given by (2.14) and (2.15); in both expressions exact DNS values of κN Lyy(y, y′)
are used. The red lines denote the profiles of the non-local and local expressions in which
the values of the model of κN Lyy(y, y′) are used. At −0.8 < y < 0.8, the non-local model,
plotted as a red solid line, almost agrees well with the DNS value, plotted as a black solid
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Figure 15. Profiles of the scalar fluxes 〈uyθ〉N L and 〈uyθ〉L obtained from the DNS and the modified model
as functions of y for case 1. ‘Non-local DNS’ denotes 〈uyθ〉N L with DNS data, ‘Local DNS’ denotes 〈uyθ〉L
with DNS data, ‘Non-local model’ denotes 〈uyθ〉N L with the model and ‘Local model’ denotes 〈uyθ〉L with
the model.

line, in both cases. In particular, in figure 14(b) for case 2, the non-local model predicts the
scalar flux accurately within −0.25 < y < 0.25 where the local expression overpredicts it
significantly. In contrast, near the wall within −1 < y < −0.8 and 0.8 < y < 1 the non-
local model slightly overpredicts the DNS value in both cases. These results suggest that
the non-local eddy diffusivity model described in § 3.2 still requires improvement near the
wall.

One of the reasons for this overprediction is the inaccurate modelling of Q̂ii (s, y) near
the wall, as shown in figure 8. Here, we attempt to improve the expression for Q̂ii (s, y)

near a wall. In (3.20), where the method of images is used, the following factor is used:[
1 − exp

(
−r2

I y0

4s

)]−1

, (3.23)

where rI y0[= 2(1 + y)] = 2yw and yw is the distance from the wall. Because the factor
tends to unity when yw is sufficiently large, it does not change the integrand in (3.20) away
from the wall. This behaviour suggests that y2

w/s can be an important quantity related to
the wall effect which vanishes away from the wall. Using this quantity, we empirically
model the energy density as

Q̂ii (s, y) = Q̂1i i (s, y)

(
1 + Cw

s

y2
w

)−1

, (3.24)

where Q̂1i i (s, y) is the energy density given by (3.22), and Cw = 0.1. For a fixed value of
s, the correction factor (1 + Cws/y2

w)−1 decreases to a small value near the wall and tends
to unity away from the wall, where yw is sufficiently large.

Figure 15 shows the profiles of the scalar fluxes 〈uyθ〉N L and 〈uyθ〉L obtained from
the DNS and modified model for case 1. The non-local model, plotted as a red solid line,
agrees with the DNS value, plotted as a black solid line, near the wall. Although the
modification given by (3.24) has not yet been physically justified, this agreement suggests
that the accurate modelling of Q̂ii (s, y) near the wall can improve the performance of

1012 A21-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
22

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10221


Journal of Fluid Mechanics

the non-local eddy diffusivity model. In future studies, we will examine the profile of
Q̂ii (s, y) in detail and propose a model based on physical mechanisms.

The proposed model for κN Lyy(x − x ′, y, y′, z − z′, τ ) consists of (3.6), (3.14), (3.15),
(3.19) and (3.20). The needed inputs from the flow to evaluate the model are the Reynolds
stress Ri j (y) and the dissipation rate ε(y). No information of two-point correlations is
needed. Nevertheless, the model expressions are too complex for a practical turbulence
model. Here, we discuss a possible simplification of the present model. The expression for
the correlation Qii (r) given by (3.4), (3.5) and (3.6) is based on the velocity fluctuations
from small to large scales. It can be simplified by focusing only on large scales as follows:

Qii (r) = 2K exp
(

− r2

4sc

)
, (3.25)

where sc is the scale in the energy-containing range. For homogeneous isotropic
turbulence, the non-local eddy diffusivity κN L(r, τ ) can be written as

κN L(r, τ ) = 1
3

G(r, τ )Qii (r) = 2K

3(4π)3/2(CωGu0τ)3 exp
{
−
[

1
4(CωGu0τ)2 + 1

4sc

]
r2
}

.

(3.26)
Moreover, for steady turbulence, the non-local eddy diffusivity κN L(r) is given by

κN L(r) =
∫ ∞

0
dτκN L(r, τ ) = K

6π3/2CωGu0r2 exp
(

− r2

4sc

)
. (3.27)

Using the simple expression, non-local properties can be incorporated into a model of
the turbulent scalar flux. Results obtained from the simple model may be inaccurate, and
some empirical factors, such as the wall damping function, may be needed to compensate
for the simplification. In this case, such factors can be suggested by comparing the simple
model with the present model. The proposed non-local models have not yet been applied
to turbulence simulations. In future studies, such a simplified model will be applied to
actual turbulence simulations. The present model is expected to be useful for proposing
and improving simple practical models.

4. Conclusions
A non-local expression for the turbulent scalar flux is investigated using the DNS data
of turbulent channel flow. In addition to the velocity and scalar, the Green’s function for
scalar fluctuation is evaluated to obtain non-local eddy diffusivity. We have verified that
the non-local expression for scalar flux agrees with the directly obtained value. In contrast,
the local expression significantly overpredicts the DNS value in the region where the mean
scalar gradient changes rapidly. The profile of non-local eddy diffusivity is analysed in
detail using DNS data. First, one-dimensional profiles of non-local eddy diffusivity are
evaluated to examine how the mean scalar gradient at a wall-normal location contributes
to the scalar flux at a different location. Two-dimensional profiles of non-local eddy
diffusivity in the streamwise and wall-normal directions are evaluated to examine the
effects of mean flow convection and turbulent diffusion. The profiles reveal a contribution
to the scalar flux from the mean scalar gradient in a wide upstream region. Additionally, we
show that the temporal profile of non-local eddy diffusivity moves downstream, diffuses
anisotropically and is tilted towards the wall. The profile of the backward diffusion moving
upstream is elongated more significantly than that of the forward diffusion.

To better understand the behaviour of non-local eddy diffusivity and to take the
first step towards improving practical turbulence models from a non-local perspective,
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we investigate a model expression for non-local eddy diffusivity for inhomogeneous
turbulence. A model expression was proposed for homogeneous isotropic turbulence in
Hamba (2022b, 2023). In this paper, we modify the model by incorporating the effects of
turbulence anisotropy, inhomogeneity and wall boundaries. The one- and two-dimensional
profiles of non-local eddy diffusivity obtained from the model agree reasonably well with
the DNS values. The model reproduced the behaviour of the profiles as convection based
on the mean velocity and anisotropic turbulent diffusion related to the Reynolds stress. In
particular, the behaviour of backward diffusion, in which the contours are elongated more
significantly than those of forward diffusion, can be understood as the inhomogeneity
effect. The model accurately reproduced the turbulent scalar flux at the centre of the
channel, where the mean scalar gradient changes rapidly. Because the scalar flux is slightly
overpredicted near the wall, the model still requires to be improved based on physical
mechanisms. Nevertheless, the results clearly indicate the potential of the non-local eddy
diffusivity model. The analysis and modelling of non-local eddy diffusivity provides
insights into scalar transport in inhomogeneous turbulence.

Funding. This work was supported by JSPS KAKENHI Grant number 23K03670.

Declaration of interests. The author reports no conflict of interest.

Appendix A. Green’s function for scalar fluctuation
The transport equation for the scalar fluctuation θ is given by

Dθ

Dt
+ ∂

∂xi
(uiθ − 〈uiθ〉) − κ

∂2θ

∂xi∂xi
= −ui

∂Θ

∂xi
, (A1)

where D/Dt = ∂/∂t + Ui∂/∂xi . By considering the right-hand side of (A1) as a source
term for θ , we introduce the Green’s function gi (x, t; x′, t ′) which satisfies

D

Dt
gi (x, t; x′, t ′) + ∂

∂x j
(u j (x, t)gi (x, t; x′, t ′) − 〈u j gi 〉) − κ

∂2

∂x j∂x j
gi (x, t; x′, t ′)

= ui (x′, t ′)δ(x − x′)δ(t − t ′), (A2)

where δ(x) and δ(t) are three- and one-dimensional Dirac delta functions, respectively.
Note that the velocity fluctuation ui (x′, t ′) is included on the right-hand side of (A2). The
Green’s function gi (x, t; x′, t ′) represents a scalar field at (x, t) associated with a point
source at (x′, t ′) whose value is proportional to ui (x′, t ′). Using the Green’s function, the
formal solution to (A1) can be expressed as

θ(x, t) = −
∫

dx′
∫ t

−∞
dt ′g j (x, t; x′, t ′) ∂

∂x ′
j
Θ(x′, t ′). (A3)

By multiplying it by ui (x, t) and taking the ensemble averaging, we obtain the turbulent
scalar flux 〈uiθ〉 given by (2.3) with (2.4).

Appendix B. Energy density and two-point velocity correlation in scale space
The two-point velocity correlation Qii (r) used in (3.2) was expressed in terms of energy
spectrum E(k) in Hamba (2022b). Because the Fourier transform of the velocity in
homogeneous directions was used to define the energy spectrum, it is unclear whether
the model can be applied to inhomogeneous turbulence. In Hamba (2023), the model was
improved using the energy density in the scale space instead of the energy spectrum in
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the wavenumber space. The scale-space energy density was based on filtered velocities
(Hamba, 2022a). The first filtered velocity ūi (x, s) is defined as

ūi (x, s) =
∫

dx′Ḡ(x − x′, s)ui (x′), (B1)

where Ḡ(x, s) is a filter function given by

Ḡ(x, s) = 1

(2πs)3/2 exp
(

−x2

2s

)
. (B2)

Note that the quantity s appearing in (B1) and (B2), which has the dimension of the square
of the length, is called the scale. The filtered velocity ūi (x, s) represents the velocity with
a scale equal to or greater than s.

By differentiating ūi (x, s) by s, we can obtain the second filtered velocity ûi (x, s) given
by

ûi (x, s) ≡ − ∂

∂s
ūi (x, s) =

∫
dx′Ĝ(x − x′, s)ui (x′), (B3)

where

Ĝ(x, s) ≡ − ∂

∂s
Ḡ(x, s) = 1

(2πs)3/2

(
3
2s

− x2

2s2

)
exp

(
−x2

2s

)
. (B4)

The filtered velocity ûi (x, s) represents the velocity with a scale equal to s. The original
velocity ui (x) can be expressed in terms of ûi (x, s) as

ui (x) =
∫ ∞

0
dsûi (x, s). (B5)

This equation indicates that the velocity ui (x) is decomposed into modes ûi (x, s) in the
scale space.

We further consider the two-point correlation of the filtered velocities at the same scale
as

Q̄ii (x, x′, s) = 〈ūi (x, s)ūi (x′, s)〉. (B6)

Another correlation can be defined as

Q̂ii (x, x′, s) ≡ − ∂

∂s
Q̄ii (x, x′, s) = 〈ûi (x, s)ūi (x′, s)〉 + 〈ūi (x, s)ûi (x′, s)〉. (B7)

Using the second correlation Q̂ii (x, x′, s), we can decompose the original velocity
correlation Qii (x, x′)(= 〈ui (x)ui (x′)〉) into modes in the scale space as follows:

Qii (x, x′) =
∫ ∞

0
ds Q̂ii (x, x′, s). (B8)

For homogeneous turbulence, (B8) can be expressed as

Qii (r) =
∫ ∞

0
ds Q̂ii (r, s), (B9)

where r = x − x′. Moreover, when r = 0, the velocity correlation represents the turbulent
kinetic energy Qii (0) = 〈u2

i 〉, and (B9) can be expressed as

〈u2
i 〉 =

∫ ∞

0
ds Q̂ii (s), (B10)
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where Q̂ii (s)(= Q̂ii (0, s)) is the energy density in the scale space. In Hamba (2023), an
approximate relationship between Q̂ii (r, s) and Q̂ii (s) was proposed as follows:

Q̂ii (r, s) = Q̂ii (s) exp
(

− r2

4s

)
. (B11)

By substituting (B11) into (B9), we obtain

Qii (r) =
∫ ∞

0
ds Q̂ii (s) exp

(
− r2

4s

)
. (B12)

Therefore, the two-point velocity correlation Qii (r) is expressed in terms of the scale-
space energy density Q̂ii (s).

Because the energy density Q̂ii (s) is defined analytically as (3.6), we can express the
correlation Qii (r) analytically using know functions as follows. By substituting (3.6) into
(B12) and integrating over s, we obtain

Qii (r) =
∫ sd

0
dsν−1ε exp

(
− r2

4s

)
+
∫ sc

sd

dsCsε
2/3s−2/3 exp

(
− r2

4s

)

+
∫ ∞

sc

dsCsε
2/3s11/6

c s−5/2 exp
(

− r2

4s

)

= ν−1ε

[
sd exp

(
− r2

4sd

)
− r2

4
Γ

(
0,

r2

4sd

)]

+ Csε
2/3
[

s1/3
c E4/3

(
r2

4sc

)
− s1/3

d E4/3

(
r2

4sd

)]

+ Csε
2/3s11/6

c

[
− 4

s1/2
c r2

exp
(

− r2

4sc

)
+ 4π1/2

r3 erf

(
r

2s1/2
c

)]
, (B13)

where Γ (a, x) = ∫∞
x dt ta−1 exp(−t) is the incomplete gamma function, En(x) =∫∞

1 dt t−n exp(−xt) is the exponential integral and erf(x) = (2/π1/2)
∫ x

0 dt exp(−t2) is
the error function.

Appendix C. Effect of molecular diffusivity on Green’s function
For homogeneous isotropic turbulence, the time-dependent part G(rx , ry, rz, τ, y′) given
by (3.16) can be rewritten as

G(r, τ ) = 1
(4πC2

ωGu2
0τ

2)3/2
exp

(
− r2

4C2
ωGu2

0τ
2

)
. (C1)

This function represents the solution to the diffusion equation with effective diffusivity
C2

ωGu2
0τ . This turbulent diffusion process originates from the transport equation for

the Green’s function gi (x, t; x′, t ′) given by (A2). The second term on the left-hand
side of (A2) involving the velocity fluctuation u j causes turbulent diffusion with
C2

ωGu2
0τ . However, for a very small value of τ , C2

ωGu2
0τ is smaller than the molecular

diffusivity κ . In this case, the molecular diffusion term in (A2) dominantly contributes
to the time evolution of gi (x, t; x′, t ′). Rather than the effective diffusivity C2

ωGu2
0τ , the

molecular diffusivity κ is adequate for the diffusion coefficient. To consider the molecular
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diffusion effect, we can rewrite (C1) as

G(r, τ ) = 1
(4πC2

ωGu2
0τ

2 + 4πκτ)3/2
exp

(
− r2

4C2
ωGu2

0τ
2 + 4κτ

)
, (C2)

by replacing C2
ωGu2

0τ with C2
ωGu2

0τ + κ . Similarly, for inhomogeneous turbulence, the
time-dependent part G(rx , ry, rz, τ, y′) given by (3.16) is modified by replacing Ri j

with Ri j + κ/(3C2
ωGτ)δi j . Consequently, molecular diffusion with κ is dominant in

G(rx , ry, rz, τ, y′) for an extremely small value of τ . The expression given by (C2) has not
yet been verified because only a single Reynolds number with a single value of molecular
diffusivity was tested. In future studies, the model will be verified using DNS data of
channel flows at different Reynolds and Prandtl numbers.
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