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Abstract
We present a fully three-dimensional kinetic framework for modeling intense short pulse lasers interacting with
dielectric materials. Our work modifies the open-source Particle-In-Cell (PIC) code EPOCH to include new models for
photoionization and dielectric optical response. We use this framework to model the laser-induced damage of dielectric
materials by few-cycle laser pulses. The framework is benchmarked against experimental results for bulk silica targets
and then applied to model multi-layer dielectric mirrors with a sequence of simulations with varying laser fluence. This
allows us to better understand the laser damage process by providing new insight into energy absorption, excited particle
dynamics, and nonthermal excited particle distributions. We compare common damage threshold metrics based on the
energy density and excited electron density.

1. Introduction

The 2023 Nobel Prize in Physics awarded to Pierre Agos-
tini, Ferenc Krausz and Anne L’Huillier “for experimental
methods that generate attosecond pulses of light for the study
of electron dynamics in matter” [1] and the 2018 National
Academies of Science report [2] that spurred the “Brightest
Light Initiative” [3] highlight the impactful science enabled
by producing the shortest possible pulses of light [4–6]. Re-
cent advances in high-energy few-cycle pulse generation
techniques [7,8] allow us to probe new physical effects includ-
ing those from carrier-envelope phase [9–11] and to generate
high laser intensities with moderate laser energies for ap-
plications such as relativistic plasma-based attosecond pulse
generation [12]. These developments motivate the design
of optical components with higher Laser-Induced Damage
Thresholds (LIDTs) for few to single-cycle pulses. The scal-
ing of LIDT with laser fluence is generally well understood
for the tens of picosecond to nanosecond regimes [13], but
is more complex for shorter pulses [14], especially few-cycle
pulses [15,16].

Previous experimental work has explored the damage and
ablation of SiO2 using few-cycle ∼800 nm wavelength
pulses with durations of 5 fs [15,17,18] and 7 fs [16,19–21]. Re-
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cently Kafka et al. [18] determined the damage threshold for
different optical components with a 5 fs pulse and Talisa
et al. [22] explored the damage and ablation of SiO2/HfO2

multilayer coatings with 8 fs pulses. As highlighted in the
review by Nagy et al. [8], post-compression techniques allow
researchers around the world (e.g., Refs. [12,23–25]) to generate
few-cycle pulses, but traditional optics are easily damaged
by these compressed pulses.

Understanding few-cycle pulse material interactions
requires advances in computational and theoretical models.
There has been significant work using one-dimensional
Finite-Difference-Time-Domain (FDTD) simulations to
model these interactions [26], with recent efforts in two
dimensions [27,28]. FDTD simulations provide insight into
the laser material interactions and can predict LIDT, but
do not capture the nonthermal nature of excited electrons,
nor do they capture their ballistic motion. To expand our
understanding of the interaction dynamics, we use Particle-
In-Cell (PIC) simulations [29,30]. As with FDTD simulations,
PIC codes solve Maxwell’s equations on a computational
grid. Additionally, PIC simulations statistically represent the
neutral and excited particles in the simulation with a finite
number of ‘macroparticles’ [29–31]. The charged particles
are then advanced using the Lorentz force and additional
physical effects including ionization and collisions are often
added.
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PIC simulations are commonly used to study laser-plasma
interactions (e.g., Ziegler et al. [32]) and increasingly being
modified to simulate laser damage and related regimes.
For example, Mitchell et al. [33] model crater formation in
metals due to femtosecond laser ablation, Cochran et al. [34]

model liquid-crystal plasma mirrors [35], Déziel et al. [36]

study laser-induced periodic surface structures, and Ding
et al. [37] and Do et al. [38] model plasmons using PIC. Inter-
actions of lasers with nano/micro-scale structures in silicon
and SiO2 have been modeled with versions of the framework
introduced in this work [39,40] and recently Charpin et al. [41]

developed a similar framework to explore ionization in
dielectrics. Our work builds on these efforts specifically for
laser damage for few-cycle pulses by including the corrected
Keldysh ionization model [28,42,43], to account for ionization
across a range of fluences. We are able to explore the
nonthermal distribution of excited particles in the laser-
damage regime using PIC, which improves our fundamental
understanding of damage mechanisms.

In this work, we begin in Sec. 2 by introducing the
modifications and extensions we have made to a PIC code
to model laser-dielectric interactions. Then in Sec. 3 we
discuss the material properties and simulation setup for both
bulk and multi-layer targets. Next, in Sec. 4 we compare
the predictions of this framework to existing experimental
results and discuss expected damage threshold metrics. Then
we apply the framework to the modeling of multi-layer
mirrors in Sec. 5 and conclude in Sec. 6.

2. Particle-In-Cell Simulation Modifications

Our work extends the three-dimensional (3D) implementa-
tion of version 4.17.10 of the EPOCH [31] PIC code, which
is designed for the study of high energy density physics.
EPOCH is a popular open-source PIC code that can scale
to run on thousands of CPU cores, although we note that
there are a variety of other open-source and proprietary
PIC codes available with different features and implemen-
tations [44] such as GPU operation (e.g., PIConGPU [45] and
WarpX [46]). PIC simulations of laser-matter interactions are
typically used to study only tens-to-hundreds of femtosecond
timescales due to numerical instability issues and compu-
tational cost. As such, we focus on the initial laser-matter
interaction and the resulting excited electron dynamics. For
long-term dynamics and equilibration, one could use a
final simulation state from PIC as the initial conditions for
another model. For example, one could use the electron and
ion temperatures in a two temperature model, or consider
tabulated equation of state values [16].

EPOCH includes multiple physics modules, but was not
designed with laser-dielectric interactions in mind. Towards
this goal, we have added a new photoionization model
relevant for dielectric materials and a model for optical
material properties as discussed in the next subsections.

2.1. Keldysh Photoionization

Our work extends the existing ionization framework already
available in EPOCH [31] to include the photoionization model
developed by L. V. Keldysh [42]. The Keldysh ionization
model allows us to calculate probabilities for electron transi-
tions from the valence to the conduction band in solids due
to the electric field of a laser pulse [47].

For a laser pulse with electric field amplitude E and
frequency ω interacting with a material having band gap ∆
and reduced electron-hole mass m∗, the Keldysh parameter
is γ = ω

√
m∗∆/eE, where γ >> 1 is the multiphoton

ionization regime and γ << 1 is in the tunneling regime [42].
The Keldysh formulation is especially useful as it spans both
regimes, which are often present when considering a laser
induced damage experiment. For example, the peak electric
fields in our simulations give values of γ ranging from about
0.3 to 0.9, which means the photoionization regime is neither
multiphoton nor tunneling, suggesting that the full Keldysh
formula should be utilized.

The Keldysh model is used in our simulations to calculate
the probability that a given neutral macroparticle will ionize.
When ionization occurs, a new electron macroparticle and
corresponding ion macroparticle are created in place of the
original macroparticle. Now we introduce the ionization rate
equation used in our work. For brevity in the following ex-
pressions, we follow Refs. [48,49] by introducing the variables
γ1 = γ2/(1 + γ2) and γ2 = 1/(1 + γ2). The effective band
gap is then given by

x =
2

π

∆

ℏω

ϵ(γ2)√
γ1

. (1)

We may then write the ionization rate W as

W [m−3s−1] = 2
2ω

9π

(
m∗ω

ℏ
√
γ1

)3/2
(2)

×Q(γ, x) exp

(
−π⌊x+ 1⌋

κ(γ1)− ϵ(γ1)

ϵ(γ2)

)
,

where κ and ϵ are complete elliptic integrals of the first
and second kind, Φ is the Dawson integral, and

Q(γ, x) =

√
π

2κ(γ2)

∞∑
n=0

exp

(
−nπ

κ(γ1)− ϵ(γ1)

ϵ(γ2)

)
(3)

×Φ


√

π2(⌊x+ 1⌋ − x+ n)

2κ(γ2)ϵ(γ2)

 .
We note that this is the corrected version of the formu-

lation, where the original contains a misprint as noted by
Gruzdev [43]. Using the uncorrected version can result in
significantly different calculations [28,43].

For our simulation framework, the Keldysh ionization
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rate is evaluated in-situ1 rather than interpolated from a
tabulated form which facilitates accuracy over a wide range
of fluences. We use the first 500 terms in this infinite sum
in Eq. 3, which is sufficient for the regimes of interest in
this paper, as illustrated in Appendix A, while limiting the
computational cost. An adaptive approach to a prescribed
tolerance could be employed in the future. Currently each
macroparticle can only be ionized once.

While the Keldysh parameter depends on the laser am-
plitude E, the amplitudes of our pulses vary within the
laser envelope. Moreover, each computational cell in a PIC
simulation only considers the instantaneous electric field. To
address this, we store the electric field magnitude at each
time step using an array large enough to store an entire laser
cycle on a rolling window, as suggested by Zhang et al. [28].
Then the maximum field for the previous cycle is used to
approximate the amplitude to calculate the ionization rate.
This approach would encounter challenges for single-cycle
pulses. In the future a more complex envelope model could
be explored [50].

2.2. Collisional Effects

We use the Pérez/Nanbu [51,52] binary collision module al-
ready included in the EPOCH code to account for colli-
sions. The collision frequency in EPOCH is calculated for
a charged particle α with charge qα scattering off a charged
particle β as

ναβ =
(qαqβ)

2nβ ln(Λ)

4π(ε0µ)2
1

v3r
, (4)

where nβ is the density (for particles of species β), ln(Λ) is
the Coulomb Logarithm, µ = mαmβ/(mα +mβ) is the re-
duced mass, and vr is a relative velocity [31]. EPOCH extends
the model to low temperatures following an approach by
Pérez et al. [51], Lee and More [53]. More details can be found
in Arber et al. [31] and in the source files and documentation
provided with the open-source EPOCH code2. Collisions are
included between all charged particles in the simulation. The
Coulomb logarithm is calculated automatically with a fixed
lower bound of 1.

EPOCH includes a collisional ionization routine designed
for atoms [31,54], but this is not well suited for impact ion-
ization in dielectrics. A more appropriate ionization rate
for our regime can be calculated with the approach by
Keldysh [55], although some of the input parameters to the
models are not well reported and may require fitting of
output results to experimental data [41,56]. Impact ionization
is reduced for shorter few-cycle pulses. Models by Petrov
and Davis [57] suggest collisional ionization dominates pho-
toionization for fluences exceeding 0.4 J cm−2, whereas

1with the exception of the elliptic integrals which are read from tabulated
data files with 1,000 points

2https://epochpic.github.io/

the Multiple-Rate-Equation (MRE) model by Rethfeld [58]

predicts this threshold to be 10 J cm−2 [49]. For this work,
we do not include impact ionization, since we model few
cycle pulses that are only 7 fs (fewer than 3 laser cycles)
Full Width at Half Maximum (FWHM) in duration. We
find good agreement with previous experiments without the
need for impact ionization, but expect this to be an important
consideration for longer pulses in future work.

2.3. Refraction

The optical properties of dielectrics are modeled using a
spatially varying permittivity ε throughout the simulation
box. At the beginning of the simulation the optical properties
are stored in a matrix with the same size as the simula-
tion grid. We then modified the field solver to include a
spatially-dependent permittivity when advancing Maxwell’s
equations, following a similar approach to the one in the
WarpX code [46] and the modification to EPOCH by Charpin
et al. [41]. To easily account for arbitrary target structures,
we define the shape of the optical region at the same
place where particle species are initialized. There has been
work including nonlinear optical effects in PIC or FDTD
simulations [36,59], although those effects are not considered
here.

3. Simulation Setup

We begin by applying this simulation framework to a slab
of fused silica (SiO2) corresponding to the experiment dis-
cussed in Chimier et al. [16] and then apply the framework
to a multi-layer mirror as shown in Fig. 1. We test a range
of fluences near the reported damage threshold, where the
fluence is given by F = 2Elas/πω

2
0 , with Elas being

the energy of the laser pulse. The laser is introduced
as a boundary condition and enters into vacuum before
interacting with a slab of fused silica at normal incidence.
For both the bulk and multi-layer targets, a λ = 800 nm,
τFWHM = 7 fs pulse duration, sine-squared pulse with a
spot radius of ω0 = 4.65 µm is modeled.

3.1. Grid and Particle Initialization

The simulation setup for bulk SiO2 is shown in Fig. 1(a). The
simulation box is 1.0 µm in the longitudinal (y) direction
and 9.6 µm in the transverse (x/z) directions. The target is
0.9 µm thick, leaving 0.1 µm vacuum region before the laser
interacts with the target. Simple outflow boundaries are used
to allow transmission of the laser out of the simulation box
with minimal reflection. The bulk silica simulations have a
resolution of 5 nm in the longitudinal (y) direction and 40 nm
in the transverse directions. A higher resolution was used
in the longitudinal direction to better resolve the ionization
dynamics at the interface between the target surface and the
vacuum region.
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Figure 1. A schematic of the 3D simulations for bulk fused silica (a),
and the coating of the multi-layer quarter-wave mirror with a fused SiO2

protective layer (b). The normally incident few-cycle laser pulse (c) is
driven from the minimum y boundary into a 0.1 µm vacuum region before
the target. The SiO2 regions are represented in yellow and the HfO2 in blue.
A cross section of the multi-layer mirror in the x−z plane is shown in (d) (z
dimension is not to scale). The thickness of the top SiO2 layer is 270.90 nm
and then there are alternating layers of HfO2 (98.95 nm) and SiO2 (135.45
nm).

Then we apply this framework to multi-layer interference
coatings composed of alternating fused SiO2(yellow) and
HfO2(blue) layers as shown in Fig. 1(b,d). The simulation
space is 9.6 µm by 1.533 µm by 9.6 µm long in x, y, z
respectively, with a resolution of 13.8 nm in the longitudinal
(y) direction and 40 nm in the transverse directions. The
thickness of the surface protective SiO2 layer is λ/(2n), while
the rest of the layer thickness is λ/(4n), a typical Bragg
quarter-wavelength mirror, where n is the index of refraction
for each material. The top fused SiO2 layer is placed at 0 µm
and the pulse enters normally from y-axis at –0.1 µm.

Both series of simulations are initialized with 1000 neutral
SiO2 (or HfO2) macroparticles per cell with a temperature
of 300 K. Similar to Charpin et al. [41], we found that a
large number of particles per cell were required for accuracy
with the Keldysh ionization model in this regime. The
simulations are run to a simulation time of 24 fs, which
allows the pulse to make multiple passes across the simu-
lation domain. For each simulation, we use the default time
step in EPOCH of 0.95 times the Courant–Friedrichs–Lewy
(CFL) limit [60,61], or 0.95/(c

√
1/∆x2 + 1/∆y2 + 1/∆z2),

where ∆x, y, z represents the grid size in each simulation
dimension [31].

3.2. Material Properties

The simulations require a number of material properties as
inputs to model the interaction and interpret the predictions.
These include the linear refractive index, density, and band
gap, for which we use standard values listed in Table 1.
There is less agreement in reported values for the effective
electron and hole masses (m∗

e and m∗
h respectively) and sub-

sequently this results in different reduced effective masses
m∗ = 1/(1/m∗

e +1/m∗
h). This variation leads to significant

differences in predictions for the excited electron density
using the Keldysh ionization model [27,62]. To calculate m∗

e

for fused HfO2, we assume it is the spherically averaged
effective mass around the Γ and B point of the monoclinic
HfO2

[63,64]. We generally use material properties for m-
HfO2 as those for amorphous HfO2 are less readily available.
These effective electron masses are used for ionized electron
particles in the simulations.

4. Damage Modeling of Bulk Silica Target

We benchmark our framework against the experiment in
Chimier et al. [16] [21], which finds damage with a fluence of
1.18 J cm−2 and ablation at 1.3 J cm−2 for a 7 fs FWHM
pulse at normal incidence. There is some uncertainty in these
thresholds. Other experiments of LIDT for bulk silica with
different experimental conditions including a shorter 5 fs
pulses [15,18] report thresholds from 1.5 to 1.8 J cm−2. We
use a 4.65 µm spot radius in our simulations to match the
experimental conditions in Chimier et al. [16]. We note that
experiments by Lenzner et al. [15] and Kafka et al. [18] used
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Table 1. Material Properties used in simulations.
Material Band Gap (eV) Index n Density (g cm−3) m∗

h m∗
e

SiO2 9 [26] 1.477 2.2 [65] 8 [66] 0.6 [66]

HfO2 5.7 [64] 2.021 9.68 1.12 [64] 1.09 [64]

larger spot sizes, although petawatt-class laser systems [67]

can often achieve spot sizes on the order of a few wave-
lengths (e.g., see Poole et al. [68]).

4.1. Electron Density

For simulation and theoretical work, the predicted excited
electron density is often used as a criterion to predict dam-
age. Many studies use the critical electron density [69] for
free electrons or some fraction of total ionization [70]. This
qualitatively makes sense, as exceeding such thresholds can
result in high absorption and subsequent damage. This
choice has shown good agreement with longer pulses, al-
though recent work has suggested that this description is
insufficient for modeling shorter few-cycle pulses [16,71]. As
shown in Fig. 2, the damage threshold is predicted at about
0.8 J cm−2 by the critical density criterion, which is about
a 30% underestimation of the experimental LIDT. Number
density is a standard output variable for PIC simulations. It
is calculated by mapping the position of the macroparticles
to the spatial grid based on the shape function selected for
the simulation [29–31].

Alternatively, the instability density suggested by Stampfli
and Bennemann [72] states that when the conduction band
electron density reaches about 9% of the valence band elec-
tron density, the elastic shear constant will become negative
and the lattice becomes unstable, which then leads directly
to a very rapid melting of the crystal structure. This criterion
was developed for crystals, but the fundamental physical
principles—namely, the relationship between conduction
band electron density and the stability of the atomic structure
is similar. By applying this criterion to the bulk fused SiO2

simulations, the damage is achieved at about 1.2 J cm−2,
which agrees with the experimental results.

4.2. Energy Density

The excited electron energy density criterion has also been
suggested to predict damage [71,73]. The predicted energy
density is typically compared to material properties such as
the dissociation energy, or an energy barrier associated with
melting, or boiling [71,74]. We compare the energy densities
in our simulations to these thresholds.

Previous computational approaches typically assume
some simple electron energy distribution, whereas in PIC,
the energy density can be calculated directly with standard
outputs. For our simulations, we multiply the number
density by average particle energy for a species in each cell.
Alternately, this could be re-sampled to a finer or a coarser

Figure 2. The electron density at the center of the x-z plane (Averaged
over 6 cells in x and y) along y at 20 fs for a series of PIC simulations
at various laser fluences with a 7 fs duration pulse interacting with bulk
SiO2. The critical plasma density ncrit and electron instability density
from Stampfli and Bennemann [72] are labeled with dashed lines. The latter
predicts damage around 1.2 J cm−2.

grid if the individual macroparticle positions and energies
are extracted from the simulation.

Due to variations of reported material properties in the
literature and uncertainty of previous simulations, the exact
energy density for damage is not agreed upon. For reference,
the dissociation energy of SiO2 has reported values from
54−68 kJ cm−3 (Refs. [73,75,76]). For comparison, the thresh-
old for high energy density physics [77] is ∼100 kJ cm−3.

The energy densities related to melting or boiling are
lower, where we can use the temperature-dependent heat
capacity and latent heat of vaporization used in Zhao et al. [78,

79] to calculate an energy density of 5.7 kJ cm−3 for melting
and 34.7 kJ cm−3 for boiling. We do have uncertainty in
these values. The latent heat of vaporization has the largest
contribution to the boiling criteria and there is a great deal of
uncertainty in reported values. For example, the calculation
above uses values from Bäuerle [80] who calculate the latent
heat of vaporization of c-SiO2 to be 1.23×107 J kg−1, while
Kraus et al. [81] report 1.177 ± 0.095×107 J kg−1, and
Khmyrov et al. [82] use 0.96×107 J kg−1 (from Refs. [83,84]).
This gives a range from 28.7 kJ cm−3 to 35.6 kJ cm−3

for boiling We expect some uncertainty in melting energy
density as well.

Figure 3 shows the maximum energy density in sim-
ulations with and without collisions for a range of laser
fluences. The simulations just including photoionization,
(without collisions) have lower energy density at the end of
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Figure 3. The peak energy density for the series of PIC simulations
at various fluences with a 7 fs duration pulse interacting with bulk
fused silica. The experiment [16] being modeled observed damage around
1.18 J cm−2 and ablation [21] at 1.3 J cm−2. The shaded horizontal
line/bands indicate approximate energy density thresholds for melting,
boiling, and dissociation. The shaded vertical bands represent uncertainty
in experimental damage and ablation thresholds. The simulations including
collisions have a higher predicted energy density. Including both our
Keldysh photoionization model and collisional effects show agreement
between the expected damage fluence and the dissociation energy.

the simulation and do not exceed the boiling criterion until
much higher fluences than are expected for LIDT in these
conditions.

In Fig. 3, we see that at 1.3 J cm−2, where ablation
is observed in experiments, the simulation energy density
overlaps with the reported dissociation energy values. For
1.2 J cm−2 near the LIDT, the energy density for the
simulation is around 49 kJ cm−3, exceeding the boiling
threshold and near the dissociation energy.

4.3. Kinetic Particle Motion

The kinetic nature of PIC simulations allows us to explore
the energy and motion of the excited electrons. While most
previous approaches assume a thermal distribution of the
excited electrons, Fig. 4, shows that this is not the case
during the interaction. The spectra at different times of
the simulation are shown and the energy is fitted by the χ2

distribution using the SciPy [85] library

χ2 : f(Ee; k, σ) =
E

k/2−1
e e−

Ee
2σ

(2σ)k/2Γ (k2 )
, (5)

where Ee is the energy of the electrons, and fitting pa-
rameters k, σ are the degree and scale parameter, respec-
tively. The χ2 distribution becomes the standard Maxwell-
Boltzmann distribution when k=3 and σ=kbT /2. In our
analysis, we primarily focus on the variation of the degrees
of freedom k as it is crucial in describing the main charac-
teristics of the Maxwell-Boltzmann distribution. For both
cases, with or without collisions, the excited electrons are

Figure 4. Excited electron energy distributions in a (200 nm)2× (900 nm)
region of the target at the center of the interaction for a 1.2 J cm−2 pulse.
A simulation with just field ionization is shown in (a) and a simulation
with field ionization and collisions is shown in (b). A fit with the given
temperature is shown. We observe the nonthermal nature, especially for
early times and for simulations without collisions.

highly nonthermal at the early stage of 4 fs, the degree k
is about 0.7. Then at 10 fs, after the peak intensity passed
through the target, the energy spectrum is still nonthermal
with k=1.07 when collision are not included, as shown in
Fig. 4(a), while in Fig. 4(b) the degree k goes to 1.86. At the
stable stage of 23 fs, the electrons still remain nonthermal
in Fig. 4(a), while in Fig. 4(b), the k is about 2.56, which
is approaching to the Maxwell-Boltzmann distribution as
indicated by the black curve given the average energy at
23 fs. Therefore, our simulations not only show the dynamic
evolution of the excited electron energy spectrum during
the interaction, but also show the importance of including
collisions to capture particle dynamics. When collisions
are included in the simulations, the energy absorbed by
the electrons increases, leading to a higher average energy
(Fig. 4) and higher maximum energy density (Fig. 3) at the
end of the simulation.

5. Damage Modeling of Multi-layer Mirrors

For the multi-layer dielectric mirror, HfO2 is expected to
have a lower damage threshold than SiO2

[86,87] due to the
lower bandgap. Therefore, the damage may be initiated in
the first HfO2 layer. For example, Talisa et al. [22] found the
damage threshold for a four-layer SiO2/HfO2 mirror to be
half that of a bulk SiO2 target. Due to the high computational
cost of 3D simulations and uncertainty in material properties
for HfO2, we explore a simple mirror with a relatively small
spot size to gain a better qualitative understanding of the
interaction. Future validations with experiment should be
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Figure 5. The electron density at the center of the x-z plane along y at 20 fs
for a series of PIC simulations at various fluences with a 7 fs duration pulse
interacting with multi-layer mirror. The yellow area is SiO2, and blue area
is HfO2. Different critical electron densities are labeled in the figure with
dashed lines.

coupled with more accurate material property measurements
and LIDT measurements of bulk HfO2.

5.1. Electron Density

As mentioned in Sec. 4, the plasma critical density may
underestimate the damage threshold, it predicts the LIDT
slightly above 0.2 J cm−2 in the first HfO2 layer as shown
in Fig. 5. If we apply the instability density criterion to
the mirror target, the damage may be achieved at about
0.5 J cm−2 in the same layer. Above 0.7 J cm−2, the hot
spots in the top two layers are almost fully ionized as the
peak electron density reaches about 1.5 × 1022 cm−3.

5.2. Energy Density

The peak electron energy density along y at the center of
x-z plane in each layer with different fluences is shown in
Fig. 6. The dissociation energy of fused HfO2 has not been
extensively studied, particularly for amorphous samples,
which are expected in these multi-layer coatings. There are
reported values for the formation energy density of m-HfO2

from 48.44 to 52.64 kJ cm−3 [88–94], which are similar to
the dissociation energy density of SiO2. We assume it has
the same value as fused SiO2 since both of their molecules
have four valence band electrons and are amorphous [28],
which is about 54 kJ cm−3 indicated by the red dashed
line. In addition, the effects of structure on boiling and
melting points are not considered, as each layer is assumed
to retain the melting and boiling points characteristic of its
bulk state. This criterion suggests the damage should occur
at the surface at fluence of about 1.4 J cm−2, which is even
higher than the LIDT of bulk fused SiO2 discussed in Sec. 4.

Instead let us consider energy density thresholds for melt-
ing and boiling as these may relate to damage within the
layers of a coating. To calculate the melting and boiling

Figure 6. The peak electron energy density at the center of x-z plane along
y at 20 fs for a series of PIC simulations at various fluences with a 7 fs
duration pulse interacting with multi-layer mirror. The yellow area is fused
SiO2, and blue area is fused HfO2. The SiO2 boiling and melting energy
density are at about 34.7 kJ cm−3 and 5.7 kJ cm−3 indicated as the yellow
dashed lines, and the HfO2 boiling and melting energy density are at about
49.9 kJ cm−3 and 10.7 kJ cm−3 indicated as the blue dashed lines.

energy densities, we make the following assumptions: (a)
the vaporization latent heat for HfO2 is the same as SiO2,
and (b) the heat capacity for fused HfO2 is the same as
m-HfO2

[95]. These approximations give the boiling energy
density of HfO2 to be about 49.9 kJ cm−3, which is much
higher than that of SiO2 34.7 kJ cm−3, and may overestimate
the actual damage threshold. Similarly, the melting energy
density of SiO2 is about 5.7 kJ cm−3, and we calculated
about 10.7 kJ cm−3 for HfO2.

The boiling energy density criterion predicts LIDT at a
fluence between 1.1 J cm−2 and 1.2 J cm−2 on the surface
of the mirror, which is close to the LIDT of bulk SiO2.
Alternately, applying the melting energy density criterion
gives the LIDT to be less than 0.5 J cm−2, and the damage
site is initiated in the first HfO2 layer as expected.

5.3. Plasma Screening Effects

As shown in Fig. 6, the global maximum energy density at
low fluences is in the first HfO2 layer as expected. When
the fluence exceeds about 1.1 J cm−2 it shifts to the top
SiO2 layer and the HfO2 energy density increases slowly
after the fluence reaches about 0.7 J cm−2. This is because
the excited electron density in the first SiO2 layer begins to
exceed the critical plasma density (Fig. 5). In the top SiO2

layer, the steady state of the dynamic simulation leads to
a local maximum enhancement of the electric field at the
center.

As the fluence increases beyond 0.5 J cm−2, we observe
a new peak appearing and shifting from the center to the
surface in both the electron and energy density profiles. The
ionization rate at the center of the top SiO2 layer is enhanced
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Figure 7. The (a) energy density and (b) electron density at the center of
x on y-z plane at 20 fs at 0.7 J cm−2 with a 7 fs duration pulse interacting
with multi-layer mirror. The mirror surface starts at y=0, and the dashed red
lines are the interfaces between layers. The white areas have no excited
electrons. (c) The maximum accumulated normalized intensity over the
entire simulation.

due to the strong intensity and thus the electron density
reaches a maximum. The absorption and reflection will
continue to increase so that the source can hardly penetrate
the target by the end of the laser pulse. Therefore, the
resonant pattern of the electric field is altered, and a new
intensity peak appears.

To illustrate this process clearly, a two-dimensional y-z
cross section of the layers at the center of x-axis are shown
in Fig. 7 at fluence of 0.7 J cm−2. The maximum electron
and energy density are both observed in the first HfO2 layer
as shown in (a) and (b), while the maximum accumulated
intensity is in the first SiO2 layer in (c). The intensity is
recorded at intervals of 0.5 fs and compared across all time
points to generate this figure. These results are similar to
those from FDTD simulations by Zhang et al. [28].

Noticeably, the electron, energy density, and intensity
profiles in the protective SiO2 layer all present a bump
extending from the center to the surface, which is different
from what previous FDTD simulation works by Zhang

Figure 8. The energy histogram for the electrons in the first SiO2 layer (a)
and HfO2 layer (b) at 6, 10, 24 fs for the 0.7 J cm−2 simulation with χ2

distribution fitted. The black curve is the Maxwell-Boltzmann distribution
given the average energy at the stable stage around 24 fs.

et al. [28]. We observed that the electron density peak first
appeared at the center and then expanded at about 9 fs to
the surface, and became stable at about 15 fs. These are the
times when the pulse peak intensity reached the surface and
when the entire pulse left the surface.

Furthermore, in Fig. 6, the first HfO2 layer is more
strongly affected by the lower fluence pulse. At higher
fluence, there is significant growth of the energy density at
the surface, while the lower layers do not show as significant
of an increase. In addition, the energy density at 0.9 J cm−2

is highest among all the fluences, which adds additional
evidence that the first SiO2 layer has reflected more injected
energy due to the plasma screening effects.

The plasma generation could also imply the breakdown
threshold which is defined as a permanent change to the
optical properties. We can see from both energy and electron
density profiles, the local peak in the top SiO2 layer starts to
shift at 0.5 J cm−2 and the profile is no longer symmetric
at the center. This analysis is also consistent with the
conclusion predicted by the instability criterion.

5.4. Particle Energy

The kinetic nature of the excited electrons is shown in Fig. 8.
The spectrum of the electrons in the SiO2 layer is wider
than that in the HfO2 layer, though both maximum electron
density and energy density reaches maximum in the first
HfO2 layer. For both layers, three snapshots of the energy
distribution are shown. At 6 fs, in the early stage of the
interaction, there are some excited electrons generated from
the ionization. The electrons are highly nonthermalized
since the degree k is less than one. At about 10 fs, the peak
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Figure 9. The SiO2 and HfO2 electron energy spatial distribution for a fluence of 0.7 J cm−2 is shown on the left at 24 fs. The highest energy particles are
found in the center of the first layer and at the interfaces between layers. Particle trajectories for a random 2% of electrons with low (below average) final
energy demonstrate the ionization dynamics in the first SiO2 layer up to 16 fs (after the pulse has left). Ionization near the surface generally occurs at later
times as indicated by the color of the tracks.

intensity has passed through the target, leading to an average
electron energy of 24.56 eV and 8.61 eV for the SiO2 and
HfO2 layers. The electrons are still nonthermalized as k is
about 1.4. At 24 fs, the pulse front has left the target for
about 10 fs. The degree k is above 2 and approaching to
3, indicating the thermalization process is finishing towards
a Maxwell-Boltzmann distribution indicated by the black
curves in Fig. 8.

5.5. Particle Dynamics

The peak intensity of the 0.7 J cm−2 pulse is about
1014 Wcm−2, giving a theoretical ponderomotive energy [96]

Up of approximately 10 eV and 5.5 eV for SiO2 and HfO2

electrons respectively (using the m∗
e values from Table 1).

Some studies have reported keV-scale electron spectra under
similar intensities but with longer pulse durations [96]. This
enhancement is often attributed to the surface modification of
the target due to ablation, which enhances the local intensity
and facilitates stronger electron acceleration. In our previous
work, we also observed keV-scale spectra using a 7 fs pulse
by introducing pit-like defects on the target surface under
comparable conditions [40].

In gases, electrons with kinetic energies exceeding 10Up

are typically observed [97], and in our simulation, the highest
electron energy from the first SiO2 layer reaches up to 150
eV. Additionally, a few electrons in the first HfO2 layer
achieve energies around 100 eV, as shown in Fig. 9 (left).
These results align with the kinetic energy predictions for
excited electrons based on the Drude model. If we assume
the collisional frequency is 1 fs−1, then the energy would
be about 118 eV and 65 eV for SiO2 and HfO2, as seen in
the studies by Duchateau et al. [98] Furthermore, the excited
SiO2 electrons at the HfO2-SiO2 interfaces rarely enter the
HfO2 layers. There are a limited number of HfO2 electrons
penetrating into the adjacent SiO2 layers for a few tens of
nanometers.

The tracks of select electrons in the first SiO2 layer are

shown from 6 to 16 fs in Fig. 9 (right). Most electrons
near the vacuum interface are born after 10 fs, indicated by
their yellowish tails. In contrast, electrons near the center
of the first SiO2 layer are born earlier. This suggests that
the electron density expansion in Fig. 5 and Fig. 7(b) is due
to direct excitation near the surface rather than displacement
from the center.

6. Conclusion

Understanding few-cycle pulse interactions with dielectric
optical components and their LIDT is essential for ad-
vancing next-generation laser systems. The use of kinetic
simulations in relevant regimes are becoming increasingly
popular [33,36,37,41]. Kinetic simulations allow us to capture
the nonthermal nature of the initial interaction, which is
important to accurately model absorption and ionization.
We show that both excited electron density and energy
density provide insight into LIDT. Our framework shows
good agreement with experimental LIDTs for bulk silica
targets. Multi-layer mirror simulations indicate that plasma
screening effects can alter the laser interaction and electron
energy distribution for high fluences.

In the future, this framework can be applied to a variety
of mirror and grating designs [28] for both near and mid-
infrared wavelengths [39,99]. Additionally, simulations can be
inserted into an optimization algorithm to optimize LIDT or
other properties of interest for optical components [100]. This
framework already provides a deeper qualitative understand-
ing of the dynamics of laser damage, and we show promising
quantitative agreement with experiment for few-cycle pulses.
Further development of this framework including impact
ionization [41,54], coupled with more precise measurements of
material properties for relevant optical coating designs can
allow further validation of the framework across large ranges
of laser fluence.
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Figure 10. Percent error for 10 to 500 terms in the infinite sum in Eq. 3
for SiO2 at varying laser intensities. The error is calculated with the result
for 1,000 terms as the ‘actual’ value. Our simulation framework uses 500
terms, which shows a negligible difference compared to 1,000 terms for
these intensities. The errors for HfO2 (not shown) are of similar magnitude
to those for SiO2.

A. Keldysh Ionization Model Implementation

Here we include additional implementation details for our
Keldysh ionization model in EPOCH. As stated in Sec. 2.1,
we use 500 terms in the infinite sum in Eq. 3. To decide
the number of terms, we tested the convergence as shown in
Fig. 10. Using 100 terms yields errors below 1% for our laser
intensities, while selecting 500 terms provided results nearly
identical to 1,000 terms.

The Dawson integral (Φ in Eq. 3) is evaluated using John
Burkardt’s Fortran 90 code [101], which is based on the work
by Cody et al. [102].
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