ON SUMS OF SETS OF INTEGERS

J. H. B. KEMPERMAN AND PETER SCHERK

1. Introduction. Small italics denote integers. Let A, B, \ldots be sets of non-negative integers. Let A(h) be the number of positive integers in A that are not greater than h. Finally let A+B denote the set of all integers of the form a+b where $a \subset A$, $b \subset B$. The following result is implicitly contained in Mann's Proposition 11 (4):

THEOREM 1. Let n > 0 and

$$(1.1) 0 \subset A, \quad 0 \subset B, \quad n \not\subset C = A + B.$$

Then there exists an m such that

(1.2)
$$C(n) - C(n-m) \geqslant A(m) + B(m),$$

$$(1.3) 0 < m \leqslant n,$$

$$(1.4) m \not\subset C,$$

especially

$$(1.5) m \not\subset A and m \not\subset B.$$

Finally, $a + n - m \subset C$ for every $a \subset A$, $a \leq m$.

In this paper, we prove several theorems related to Theorem 1. Like Theorem 1, each of them readily implies Mann's famous result: Let $n \ge 0$, $\gamma \le 1$; $0 \subset A$, $0 \subset B$, $C = A \cup B$

$$0 \subset B, C = A + B$$

and
$$A(k) + B(k) \geqslant \gamma k$$
 $(k = 1, 2, ..., n)$.

Then $C(n) \geqslant \gamma n$.

2. Khintchine's inversion principle. Let n > 0 be an arbitrary but fixed integer and let I be the set of the non-negative integers $\leq n$. Let A, B, . . . denote subsets of I. Put

$$(2.1) A \oplus B = (A+B) \cap I.$$

Following Hadwiger, we define the difference $C \ominus A$ of C and A as the set of all the $d \subset I$ such that $A \oplus d \subset C$ (2). Thus $C \ominus A$ is the largest subset D of I such that $A \oplus D \subset C$. Obviously

$$(2.2) A \oplus B \subset C \leftrightarrow B \subset C \ominus A.$$

The inversion \tilde{A} of A is defined to be the set of all the integers $n - \bar{a} \subset I$ where $\bar{a} \not\subset A$ (3). Thus

$$(2.3) (\tilde{A})^{\sim} = A.$$

Received September 24, 1951; in revised form November 9, 1953.

If $n \not\subset A$, then $0 \subset \tilde{A}$; and if $0 \subset A$, then $n \not\subset \tilde{A}$. We readily verify

$$(2.4) C \ominus A = D \leftrightarrow A \oplus \tilde{C} = \tilde{D}$$

and hence, by (2.3),

$$(2.5) \tilde{A} \ominus \tilde{C} = (\tilde{C} \oplus A)^{\sim} = (A \oplus \tilde{C})^{\sim} = C \ominus A.$$

Furthermore, from (2.2) and (2.4),

$$(2.6) A \oplus B \subset C \leftrightarrow A \oplus \tilde{C} \subset \tilde{B}.$$

This is a slightly modified version of Khintchine's Inversion Formula (3). It enables us to deduce new results from given ones.

We note that

(2.7)
$$\tilde{C}(k) = k - C(n-1) + C(n-k-1) \quad (0 \leqslant k \leqslant n-1)$$
 and

(2.8)
$$\tilde{C}(n) = n - 1 - C(n - 1) \quad \text{if } 0 \subset C.$$

3. The dual of Mann's theorem. Using the above notations, Mann's theorem can be reformulated as follows:

THEOREM 1A. Let

$$(3.1) A \subset I, \quad B \subset I, \quad C = A \oplus B$$

and suppose

$$(3.2) 0 \subset A, \quad 0 \subset B, \quad n \not\subset C.$$

Then there exists an m such that

(3.3)
$$C(n) - C(n-m) \ge A(m) + B(m),$$

$$(3.4) 0 < m \leqslant n,$$

$$(3.5) m \not\subset C,$$

and

$$(3.6) n-m \subset C \ominus A.$$

We note once more that (3.5) and (3.2) imply

$$(3.7) m \not\subset A, m \not\subset B$$

and that (3.6) and (3.2) yield

$$(3.8) n-m \subset C.$$

Applying Khintchine's Inversion Formula to Theorem 1A, we obtain Theorem 1B. Let

$$(3.9) A \subset I, B \subset I, A \oplus B \subset C \subset I$$

and assume (3.2). Then there exists an m satisfying (3.3), (3.4), (3.6) and

$$(3.10) n-m \subset C \ominus B.$$

 $B \subset D$

Again (3.6), (3.10), and (3.2) will imply (3.7) and (3.8).

Proof. Put

$$(3.11) D = C \ominus A.$$

Thus by (3.9) and (2.2)

and by (2.4)

 $\tilde{C} \oplus A = \tilde{D}$. (3.13)

From (3.2) and (3.12) we have

$$(3.14) 0 \subset \tilde{C}, \quad 0 \subset A, \quad n \not\subset \tilde{D}.$$

By Theorem 1A, there exists therefore a number m satisfying (3.4) such that

$$(3.15) \tilde{D}(n) - \tilde{D}(n-m) \geqslant \tilde{C}(m) + A(m),$$

m O D. (3.16)

and

$$(3.17) n-m\subset \tilde{D}\ominus \tilde{C}.$$

Here, (3.16) is equivalent to (3.6). Furthermore, (3.17), (2.5) and (3.12) imply

$$n-m\subset \tilde{D}\ominus \tilde{C}=C\ominus D\subset C\ominus B,$$

i.e. (3.10). Hence we also have (3.7) and (3.8). It remains to verify (3.3). Since $0 \subset B \subset D \subset C$, (3.15) implies on account of (2.7) and (2.8)

(3.18)
$$C(n-1) - C(n-m-1) \ge A(m) + D(m-1) + 1$$

if 0 < m < n, and

(3.19)
$$C(n-1) \geqslant A(n) + D(n-1)$$

if m = n. By (3.7), we have $m \not\subset B$. Hence (3.18) and (3.12) yield

$$C(n) - C(n - m) \geqslant C(n - 1) - C(n - m - 1) - 1 \geqslant A(m) + D(m - 1)$$

$$\geqslant A(m) + B(m - 1) = A(m) + B(m)$$

if 0 < m < n. If m = n, then (3.19), (3.12) and $m = n \not\subset B$ imply

$$C(n) \ge C(n-1) \ge A(n) + D(n-1) \ge A(n) + B(n-1) = A(n) + B(n);$$
 q.e.d.

4. Analogues of Mann's theorem. Theorem 1B can be improved slightly:

THEOREM 1C. Under the assumptions of Theorem 1B there exists an m satisfying (3.3), (3.6), (3.10) (and therefore also (3.7) and (3.8)) and

$$(4.1) m = n, or 0 < m < \frac{1}{2}n.$$

Applying the Inversion Principle to Theorem 1C, we obtain a corresponding extension of Theorem 1A (cf. §5, Remark (vii), below).

We shall also prove

THEOREM 2A. Suppose A, B, C satisfy (3.9),

$$(4.2) 0 \subset A, \quad 0 \subset B,$$

and

$$(4.3) C(n) < A(n) + B(n).$$

Then there exists an m satisfying (3.4) such that

$$(4.4) C(n) - C(n-m) \geqslant A(m) + B(m) - 1,$$

$$(4.5) m \subset A, m \subset B,$$

and that

$$(4.6) \hspace{1cm} \lambda m \subset C \ominus A \hspace{0.2cm} and \hspace{0.2cm} \lambda m \subset C \ominus B$$

for every integer λ such that $\lambda m \subset I$.

Define for any $D \subset I$

(4.7)
$$\epsilon(D) = \begin{cases} 1 & \text{if } 0 \subset D, \\ 0 & \text{if } 0 \not\subset D. \end{cases}$$

Thus

$$\tilde{D}(n) = n - D(n-1) - \epsilon(D).$$

Replacing A, B, C consecutively by B, \tilde{C} , \tilde{A} , we deduce from Theorem 2A

THEOREM 2B. Suppose A, B, C satisfy (3.9),

$$(4.9) 0 \subset B, \quad n \not\subset C,$$

and

$$(4.10) C(n) < A(n) + B(n) - (\epsilon(C) - \epsilon(A)).$$

(Obviously $0 \le \epsilon(A) \le \epsilon(C) \le 1$.) Then there exists an m satisfying (3.4) such that

(4.11)
$$C(n) - C(n-m) \geqslant A(m-1) + B(m-1) + \epsilon(A),$$

$$(4.12) m \subset B, \quad n-m \not\subset C,$$

and

$$(4.13) \lambda m \subset C \ominus A, \quad n - \lambda m \not\subset A \oplus B$$

for every integer λ such that $\lambda m \subset I$.

We note that m = 1 implies C = I in Theorem 2A. In 2B it implies that A is empty (cf. (4.6) and (4.13)).

Let m = n. Then C(n) = A(n) + B(n) - 1 and $n \subset B$ in both theorems. Furthermore $n \subset A$ in Theorem 2A but $n \not\subset A$, $0 \not\subset A$, $0 \not\subset C$ in Theorem 2B.

5. Generalizations to ordered groups. An ordered group is an (additively written) commutative group $G = \{g, g', \ldots\}$ with a transitive ordering such that g' < g'' always implies g + g' < g + g''. The following examples may be of interest:

- (i) G is the set of all real numbers with the ordinary addition.
- (ii) G is the set of positive real numbers, their "sum" being their ordinary product.
- (iii) Let $\lambda > 0$. G is the set of real numbers greater than $-1/\lambda$ and the "sum" of g and h is defined to be $g + h + \lambda gh$.
- (iv) G is the set of real vectors (r_1, \ldots, r_m) with the ordinary addition and a lexicographic ordering.

Let $n \subset G$ be given; n > 0. Let I be the set of all the g's with $0 \leqslant g \leqslant n$. Let A, B, \ldots again denote subsets of I. Then the definitions of Section 2 and the formulas (2.2) - (2.6) will carry over. Put

$$(5.1) D(g) = \sum_{\substack{0 < d \leq g \\ d \in D}} 1.$$

We can now state our main results:

THEOREM I. Let A, B, C be finite subsets of I,

$$(5.2) A \oplus B \subset C,$$
and

 $0 \subset A$, $0 \subset B$, $n \subset C$. (5.3)

Then there exists an $m \subset G$ with the following properties:

(5.4)
$$C(n) - C(n-m) \geqslant A(m) + B(m),$$

$$(5.5) m = n or 0 < 2m < n,$$

$$(5.6) n-m \subset C \ominus A, \quad n-m \subset C \ominus B.$$

THEOREM II. Let A, B, C be finite subsets of I,

$$(5.7) A \oplus B \subset C,$$

$$(5.8) 0 \subset A, \quad 0 \subset B,$$

and

(5.13)

$$(5.9) C(n) < A(n) + B(n).$$

Then there exists an $m \subset G$ with the following properties:

(5.10)
$$C(n) - C(n-m) \geqslant A(m) + B(m) - 1,$$

$$(5.11) 0 < m \leqslant n,$$

(5.12)
$$m \subset A, m \subset B,$$

and
(5.13) $\lambda m \subset C \ominus A, \lambda m \subset C \ominus B$

for every integer λ such that $\lambda m \subset I$.

(i) If G is the group of the ordinary integers, then the above theorems specialize to Theorems 1C and 2A respectively.

- (ii) Theorem II remains valid if G is merely an ordered semi-group, i.e. a transitively ordered set with a commutative and associative addition such that g' < g'' always implies g + g' < g + g''. Furthermore G is supposed to have a null-element 0 such that g > 0 for every $g \neq 0$. However this extension to ordered semi-groups is only apparent since any ordered semi-group can be imbedded into an ordered group.
 - (iii) Both theorems remain valid if we replace (5.1) by

$$(5.14) D(g) = \sum_{\substack{0 \le d \le g \\ d \in D}} f(d)$$

where f(g) is any non-negative non-decreasing real-valued function in G. These generalizations can be proved along the same lines as the original theorems.

(iv) Let \bar{A} denote the complement in I of a subset A of I. By applying the Inversion Principle to Theorem I, we obtain the following generalization of Mann's Theorem 1A:

THEOREM I'. Let \bar{A} , B, \bar{C} be finite subsets of I such that (5.2) and (5.3) hold true. Then there exists an $m \subset G$ satisfying (5.5),

(5.15)
$$\bar{A}(m) \geqslant B(m) + (\bar{C}(n) - \bar{C}(n-m)),$$

and
(5.16) $m \not\subset A \oplus B, n-m \subset C \ominus A.$

We note that A and C need not be finite.

(v) In the same fashion, Theorem II yields the following generalization of Theorem 2B:

THEOREM II'. Let \bar{A} , B, \bar{C} be finite subsets of I satisfying (5.7),

(5.17)
$$0 \subset B, \quad n \not\subset C,$$
 and

(5.18)
$$\bar{A}(n) - \epsilon(A) < B(n) + \bar{C}(n) - \epsilon(C)$$

(cf. (4.7)). Then there exists an $m \subset G$ which satisfies (5.11),

(5.19)
$$\sum_{\substack{0 \le \bar{a} \le m \\ \bar{a} \in \bar{A}}} 1 \geqslant B(m) + \bar{C}(n) - \bar{C}(n-m) - 1,$$

$$(5.20) m \subset B, \quad n-m \not\subset C,$$

and

$$(5.21) \lambda m \subset C \ominus A, \quad n - \lambda m \not\subset A \oplus B$$

for every integer λ such that $\lambda m \subset I$.

(vi) Let I be finite. Then every subset D of I is finite and we have

for any $k \subset I$. Furthermore the group property of G implies

$$\sum_{0 \leqslant g < m} 1 \ = \ \sum_{0 < m - g \leqslant m} 1 \ = \ \sum_{0 < g \leqslant m} 1 \ = \ \sum_{n - m < n - m + g \leqslant n} 1 \ = \ \sum_{n - m < g \leqslant n} 1,$$

or

(5.23)
$$\sum_{0 \le n \le m} 1 = I(m) = I(n) - I(n-m).$$

On account of (5.22) and (5.23), we can then replace (5.15) by (5.4), (5.18) by

$$(5.24) C(n) + \epsilon(C) < A(n) + B(n) + \epsilon(A),$$

and (5.19) by

(5.25)
$$C(n) - C(n-m) \geqslant \sum_{\substack{0 \le a \le m \\ arA}} 1 + B(m) - 1.$$

- (vii) The preceding remarks apply in particular when G is the additive group of the ordinary integers. In this case Theorem I' specializes to a result containing Theorem 1A while Theorem II' is specialized to Theorem 2B.
- **6. Proof of Theorem I.** Since $B \subset C \ominus A$ it suffices to prove Theorem I under the stronger assumption

$$(6.1) B = C \ominus A.$$

(Note that $0 \subset A$ implies $C \ominus A \subset C$. In particular, $C \ominus A$ is finite.)

Put

$$(6.2) A_0 = A, B_0 = B.$$

Let e_1 be the smallest element of A_0 such that

$$(6.3) e_1 + b_1 + b_1' = \bar{c} \begin{cases} \leqslant n \\ \not\subset C \end{cases}$$

has solutions b_1 , $b_1' \subset B_0$ (if there are no such elements, then the index h of the following proof will be zero). Let B_1^* denote the set of all these solutions b_1 , b_1' and let $A_1^* = e_1 \oplus B_1^*$. Thus $B_1^* \subset B_0$ while A_0 and A_1^* are disjoint. For $a_1 \subset A_1^*$ implies $a_1 = e_1 + b_1$ and hence

$$a_1 + b_1' = e_1 + b_1 + b_1' \begin{cases} \subset I \\ \not\subset C \end{cases}$$

for some b_1 , $b_1' \subset B_0$. Thus $a_1 \not\subset A_0$.

Let B_1 be the complement of B_1^* in B_0 and let A_1 be the union of A_0 and A_1^* . By (6.3) we have

$$(6.4) 0 \not\subset B_1^*.$$

Thus

$$(6.5) 0 \subset A_1, \quad 0 \subset B_1.$$

LEMMA 1.

$$B_1 = C \ominus A_1.$$

Proof. By (6.1),
(6.6)
$$C \ominus A_1 \subset C \ominus A_0 = B_0$$

and
(6.7) $B_1 \subset B_0$.

If $b_1 \subset B_1^*$, then some b_1' will satisfy (6.3). Since $e_1 + b_1' \subset A_1$, (6.3) implies $b_1 \not\subset C \ominus A_1$. Thus (6.6) implies $C \ominus A_1 \subset B_1$.

Conversely, let $b_1 \subset B_0$ and $b_1 \not\subset C \ominus A_1$. Thus there is an $a_1 \subset A_1$ such that

$$a_1 + b_1 \begin{cases} \subset I \\ \not\subset C. \end{cases}$$

Since $A_0 \oplus b_1 \subset C$, we have $a_1 \subset A_1^*$ or $a_1 = e_1 + b_1'$ for some $b_1' \subset B_1^*$. Hence $a_1 + b_1 = e_1 + b_1 + b_1'$ is a solution of (6.3) and therefore $b_1 \not\subset B_1$. Thus (6.7) yields $B_1 \subset C \ominus A_1$.

We now repeat our construction as often as possible defining in the same fashion e_2 , B_2^* , A_2^* , B_2 , A_2 etc. B_0 was finite and each B_r contains fewer elements than the preceding B_{r-1} . Thus this construction has to stop at some index $h \geqslant 0$. We then have

$$(6.8) A_h \oplus B_h \oplus B_h \subset C.$$

Moreover, by induction,

(6.9)
$$B_{\nu} = C \ominus A_{\nu},$$

(6.10) $0 \not\subset B_{\nu}^{*}, \quad 0 \subset B_{\nu}$ $(\nu = 1, 2, \dots, h).$

From (6.10), (6.8), and (6.9)

$$B_h \subset B_h \oplus B_h \subset C \ominus A_h = B_h$$
.

Hence

$$(6.11) B_h \oplus B_h = B_h.$$

LEMMA 2.

$$e_1 < e_2 < \ldots < e_h.$$

Proof. It suffices to prove

$$(6.12) e_1 < e_2.$$

We have $e_2 \subset A_1$. If $e_2 \subset A_0$, then (6.12) follows from the minimum property of e_1 and the definition of B_1^* . But if $e_2 \subset A_1^*$, then $e_2 = e_1 + b_1$ where $b_1 \subset B_1^*$. By (6.4), $b_1 > 0$. This implies again (6.12).

By (6.10), the set B_n is not empty. Let n-m be its largest element. We wish to show that m has the required properties (5.4) - (5.6).

From (6.11) and the definition of n-m, we have

(6.13) either
$$2(n-m) = n - m$$
 or $2(n-m) > n$.

By (5.2) and (5.3),

$$B_h \subset B = 0 \oplus B \subset A \oplus B \subset C$$
.

Thus $n \not\subset C$ implies $n \not\subset B_h$ and therefore

$$(6.14) n-m \neq n.$$

(6.13) together with (6.14) yields (5.5). Obviously

$$n-m\subset B_h\subset B=C\ominus A.$$

Furthermore, $n - m \subset B_h$ implies

$$(6.15) n-m \not\subset B_1^*.$$

Combining the minimum property of e_1 with (6.15), we obtain: There is no $b_1' \subset B_0$ such that

$$0+(n-m)+b_1' \begin{cases} \subset I \\ \not\subset C \end{cases}.$$

Thus the second part of (5.6) is also verified. We prove (5.4) by means of several lemmas.

LEMMA 3.

$$B(m) = \sum_{1}^{h} B_{r}^{*}(m).$$

Proof. Since B is the union of the disjoint sets $B_1^*, \ldots, B_h^*, B_h$, we only have to prove

$$(6.16) B_h(m) = 0.$$

Let $b \subset B_h$; b > 0. By (6.11),

$$b + (n - m) \subset B_h$$
 unless $b + (n - m) > n$.

The first possibility being excluded by the maximum definition of n - m, we have b > m. This implies (6.16).

LEMMA 4.

$$C(n) - C(n - m) \geqslant A(m) + \sum_{i=1}^{h} A_{i}^{*}(m).$$

Proof. We have

$$A_h \oplus (n-m) \subset A_h \oplus B_h \subset C$$
.

Thus

$$0 < a \leq m, \quad a \subset A_h$$

implies

$$n-m < a + (n-m) \leqslant n, \quad a + (n-m) \subset C.$$

Hence

$$C(n) - C(n-m) \geqslant A_h(m) = A(m) + \sum_{i=1}^{h} A_{i}^{*}(m)$$

since A_h is the union of the disjoint sets A, A_1^*, \ldots, A_h^* .

LEMMA 5.

$$A_{\nu}^{*}(m) = B_{\nu}^{*}(m) \qquad (\nu = 1, 2, \ldots, h).$$

Proof. We have $A_{\nu}^* = e_{\nu} \oplus B_{\nu}^*$. Thus it suffices to prove that

(6.17)
$$b \subset B_r^*$$
, $0 < b \le m$ implies $e_r + b \le m$. Put $t = n - m + b$.

Then we have to show

$$e_{\nu} + t \leq n$$
.

Case 1. $t \not\subset B_{r-1}$. By (6.9) there is an $a \subset A_{r-1}$ such that

$$a+t=a+(n-m)+b$$
 $\begin{cases} \leqslant n \\ \not\subset C \end{cases}$.

Since $n - m \subset B_h \subset B_{r-1}$ and $b \subset B_r^* \subset B_{r-1}$, the minimum property of e_r implies $a \ge e_r$ and hence $e_r + t \le a + t \le n$.

Case 2. $t \subset B_{r-1}$. By (6.18) and (6.17), we have t > n - m. Thus the maximum definition of n - m implies $t \not\subset B_h$. Hence $t \subset B_{\mu}^*$ for some μ with $\nu \leqslant \mu \leqslant h$. Thus there is a $b' \subset B_{\mu}^*$ such that

$$e_{\mu}+t+b'\bigg\{ \begin{matrix} \leqslant n \\ \not\subset C \end{matrix}.$$

Hence by Lemma 2

$$n \geqslant e_n + t + b' > e_n + t \geqslant e_n + t$$

Combining Lemmas 4, 5 and 3, we obtain (5.4).

7. Proof of Theorem II. Put

$$(7.1) A_0 = A, B_0 = B.$$

Let e_1 be the smallest element of A_0 such that

$$(7.2) e_1 + b_1 = \bar{a} \begin{cases} \subset I \\ \not\subset A \end{cases}$$

has solutions b_1 in B_0 . (If no such elements exist, then we shall again define h = 0.) Let B_1^* be the set of all these solutions b_1 and let $A_1^* = e_1 \oplus B_1^*$. Thus $B_1^* \subset B_0$ while A_0 and A_1^* are disjoint. Let B_1 be the complement of B_1^* in B_0 and let A_1 be the union of A_0 with A_1^* . By (7.2),

(7.3)
$$0 \not\subset B_1^*$$
.

Thus, from (5.8),

$$(7.4) 0 \subset A_1, \quad 0 \subset B_1.$$

Furthermore

$$(7.5) A_1^*(n) = B_1^*(n)$$

and hence, by (5.9),

(7.6)
$$A_1(n) + B_1(n) = [A_0(n) + A_1^*(n)] + [B_0(n) - B_1^*(n)]$$
$$= A(n) + B(n) > C(n).$$

LEMMA 1.

$$A_1 \oplus B_1 \subset C$$
.

Proof. Since $A_0 \oplus B_1 \subset A_0 \oplus B_0 \subset C$, we only have to show

$$A_1^* \oplus B_1 \subset C.$$

Let

$$\bar{a} = e_1 + b_1 \subset A_1^*, \quad b \subset B_1, \quad \bar{a} + b \leqslant n.$$

Then $0 \le e_1 + b \le \bar{a} + b \le n$. Thus $b \subset B_0$, $b \not\subset B_1^*$ implies $e_1 + b \subset A$. Hence

$$\bar{a} + b = (e_1 + b_1) + b = (e_1 + b) + b_1 \subset A \oplus B \subset C$$

Starting with A_1 and B_1 , we define e_2 , B_2^* , A_2^* , B_2 , A_2 , . . . in the same fashion. Since B_0 is finite and each B_r contains fewer elements than the preceding one, our process has to stop at some index $h \ge 0$. Thus

$$(7.8) A_h \oplus B_h \subset A_h.$$

Furthermore, by construction,

(7.9)
$$0 \subset A_{\nu}, \quad 0 \subset B_{\nu}, \\ (7.10) \qquad C(n) < A_{\nu}(n) + B_{\nu}(n), \\ A_{\nu} \oplus B_{\nu} \subset C$$
 $(\nu = 0, 1, ..., h)$

$$(7.11) A_{r} \oplus B_{r} \subset C$$

(cf. (7.4), (7.6), and Lemma 1).

Since $A_h = A_h \oplus 0 \subset A_h \oplus B_h \subset A_h$, (7.8) and (7.11) imply

$$(7.12) A_h = A_h \oplus B_h \subset C,$$

hence, by induction,

$$(7.13) A_h \oplus \lambda B_h = A_h \subset C$$

for every integer $\lambda \geq 0$. Obviously,

$$(7.14) B_b \subset B, \quad A \subset A_b.$$

LEMMA 2.

$$B_h \subset A \cap B \subset A \cup B \subset A_h$$

Proof. Let $b \subset A$. Then $b \subset A \subset A_h$. If

$$(7.15) b \subset B, \quad b \not\subset A,$$

then $\bar{a} = 0 + b$ is a solution of (7.2). Hence h > 0, $e_1 = 0$, $b \subset B_1^*$ (thus $b \not\subset B_1$), and

$$(7.16) b = e_1 + b \subset A_1^* \subset A_1 \subset A_b.$$

This proves $B \subset A_h$. Since (7.15) implies $b \not\subset B_1$, it follows that $B_1 \subset A$. Thus

$$(7.17) B_h \subset B_1 \subset A.$$

Using (7.14) we obtain Lemma 2.

LEMMA 3.

$$\lambda B_h \subset C \ominus A, \quad \lambda B_h \subset C \ominus B \qquad (\lambda = 0, 1, 2, \ldots).$$

Proof. By Lemma 2, and (7.13),

(7.18)
$$A \oplus \lambda B_h = A_h \subset C.$$

$$B \oplus \lambda B_h = A_h \subset C.$$

LEMMA 4.

$$e_1 < e_2 < \ldots < e_h.$$

 $e_1 < e_2$.

Proof. It suffices to prove

We have $e_2 \subset A_1$. If $e_2 \subset A_0$, then (7.19) follows from the minimum property of e_1 . But if $e_2 \subset A_1^*$, then $e_2 = e_1 + b_1 > e_1 + 0$ on account of (7.3). From (7.12) and (7.10),

$$A_h(n) + B_h(n) > C(n) \geqslant A_h(n)$$
.

Hence $B_h(n) > 0$ and there exists a smallest positive element m in B_h . It obviously satisfies (5.11). Lemma 2 implies (5.12), and (5.13) follows from Lemma 3. We wish to show that m also satisfies (5.10).

For any finite subset D of G let $D(g \mid \text{mod } m)$ denote the number of elements d of D which are mutually incongruent (mod m) and satisfy $0 < d \le g$.

Lemma 5.

$$C(n) - C(n - m) \geqslant A_h(n \mid \text{mod } m).$$

Proof. Let $a \subset A_h$. By (7.13), each element $a + \lambda m$ which lies in I, belongs to A_h ($\lambda = 0, 1, 2, \ldots$). A_h being finite, there exists a largest element $a + \lambda_0 m$ of this kind. Thus

$$a + \lambda_0 m \leqslant n < (a + \lambda_0 m) + m$$

or

$$(7.20) n - m < a + \lambda_0 m \leqslant n.$$

Conversely, our postulates for G imply that the solution λ_0 of (7.20) is unique for a given a. Thus each residue class (mod m) of A_h contains one and only one element a' with $n - m < a' \le n$. Hence, by (7.12),

$$C(n) - C(n-m) \geqslant A_h(n) - A_h(n-m) = A_h(n \mid \text{mod } m).$$

LEMMA 6. Let

(7.21)
$$a \subset A_{\nu-1}, \quad a \leqslant e_{\nu} + m$$

$$b \subset B_{\nu}^*, \quad 0 < b \leqslant m$$

$$(0 < \nu \leqslant h).$$

Then

$$(7.23) a \not\equiv e_{\nu} + b \pmod{m}.$$

Proof. Suppose (7.23) is false. Then there exists an integer λ such that

$$(7.24) e_{\nu} + b = a + \lambda m.$$

By (7.22) and (7.21),

$$\lambda m = e_{\nu} + b - a > e_{\nu} - a \ge e_{\nu} - (e_{\nu} + m) = -m.$$

Thus $\lambda > -1$. Furthermore, $e_{\nu} + b \not\subset A_{\nu-1}$ and $a \subset A_{\nu-1}$ imply $\lambda \neq 0$. Hence $\lambda \geqslant 1$.

Since $a \subset A_{\nu-1}$ while

$$a + \lambda m = e_{\nu} + b \begin{cases} \subset I \\ \not\subset A_{\nu-1}, \end{cases}$$

there exists an integer μ such that

$$a + \mu m \subset A_{\nu-1}, \quad (a + \mu m) + m \begin{cases} \subset I, \\ \not\subset A_{\nu-1} \end{cases} \quad 0 \leqslant \mu < \lambda.$$

Hence, from $m \subset B_h \subset B_r$ and the minimum definition of e_r ,

$$a + \mu m > e_{\nu}$$
.

Thus (7.24) yields

$$e_{\nu} + b = a + \lambda m \geqslant (a + \mu m) + m > e_{\nu} + m$$
.

This contradicts (7.22).

LEMMA 7.

$$A_h(e_h + m | \text{mod } m) \geqslant A_0(m | \text{mod } m) + \sum_{1}^h B_{\nu}^*(m).$$

Proof. Let $0 < \nu \le h$. A_{ν} is the union of the disjoint sets $A_{\nu-1}$ and $A_{\nu}^* = e_{\nu} \oplus B_{\nu}^*$. By Lemma 6, $a \not\equiv a^* \pmod{m}$ if

$$a \subset A_{\nu-1}$$
, $a \leqslant e_{\nu} + m$, $a^* \subset A_{\nu}^*$, $a^* \leqslant e_{\nu} + m$.

Thus, each residue class (mod m) counted in $A_{\nu}(e_{\nu} + m \mid \text{mod } m)$ is counted either in $A_{\nu-1}$ $(e_{\nu} + m \mid \text{mod } m)$ or in A_{ν}^* $(e_{\nu} + m \mid \text{mod } m)$ but not in both. Conversely, any residue class counted in either of the latter expressions is also counted in the first one. Hence,

$$(7.25) \quad A_{\nu}(e_{\nu} + m \mid \mod m) = A_{\nu-1}(e_{\nu} + m \mid \mod m) + A_{\nu}^{*}(e_{\nu} + m \mid \mod m).$$

Each element of A_{ν}^* being greater than e_{ν} , we have

$$(7.26) A_{\nu}^{*}(e_{\nu} + m \mid \text{mod } m) = A_{\nu}^{*}(e_{\nu} + m) = B_{\nu}^{*}(m).$$

Put $e_0 = 0$. Then, by Lemma 4, $e_{\nu} \ge e_{\nu-1}$. Hence (7.25) and (7.26) imply

$$(7.27) A_{\nu}(e_{\nu} + m \mid \mod m) \geqslant A_{\nu-1}(e_{\nu-1} + m \mid \mod m) + B_{\nu}^{*}(m).$$

Adding (7.27) over ν , we obtain our statement.

LEMMA 8.

$$B(m) = \sum_{1}^{h} B_{\nu}^{*}(m) + 1.$$

Proof. B is the union of the disjoint sets $B_1^*, \ldots, B_h^*, B_h$. Furthermore, $B_h(m) = 1$, by the minimum definition of m.

Applying consecutively Lemmas 5, 7, and 8, we obtain

$$C(n) - C(n - m) \geqslant A_h(n| \mod m)$$

$$\geqslant A_h(e_h + m | \mod m)$$

$$\geqslant A_0(m| \mod m) + \sum_{1}^{h} B_{\nu}^{*}(m)$$

$$= A(m) + B(m) - 1.$$

This proves (5.10).

8. A variant of Theorem II. If D is any finite subset of the ordered group G, we define

$$D[g] = \sum_{\substack{0 \le d \le g \\ d \in D}} 1$$
 [cf. (5.1)].

THEOREM III. Let A and B be finite subsets of G; $0 \subset A$, $0 \subset B$. Put

$$C = A + B = \{a + b; a \subset A, b \subset B\}.$$

Let $n \subset G$, n > 0 and suppose

$$(8.1) C[n] < A[n] + B[n].$$

Then there exists an element $m \subset G$ with the following properties:

(8.2)
$$C[n] - C[n-m] \geqslant A[m] + B[m] + 1,$$

$$(8.3) 0 < m < n.$$

$$(8.4) m \subset A, m \subset B.$$

$$(8.5) a + \lambda m \subset C$$

for every $a \subset A$ and every non-negative integer λ such that $a + \lambda m < n$.

Proof. Let I' denote the set of those $g \subset G$ with $0 \leqslant g < n$. Without loss of generality, we may assume that A and B are subsets of I' and replace C by the intersection of A + B with I'. Replacing $I, A(g), B(g), \ldots$ by $I', A[g], B[g], \ldots$, we can readily prove Theorem III after the pattern of the proof of Theorem II.

In a similar way, a variant of Theorem I can be obtained.

The following application of Theorem III may be of interest.

THEOREM IV. Let g^* be a positive element of G and let A and B be finite subsets of G; $0 \subset A$, $0 \subset B$. Furthermore let $\phi(g)$ be a real-valued function defined for all positive $g \subset G$ and such that $g \leqslant g' + g''$ implies $\phi(g) \leqslant \phi(g') + \phi(g'') + 1$. Finally, suppose

$$(8.6) A[h] + B[h] \geqslant \phi(h)$$

for each $h \subset G$ with $0 < h \leq g^*$. Then the set C = A + B satisfies

$$(8.7) C[h] \geqslant \phi(h)$$

for the same elements h.

Remark. Van der Corput and Kemperman (1) proved this result assuming only that $G = \{g, g', \ldots\}$ is an ordered set with a smallest element 0 and with a commutative and associative addition such that (i) g + 0 = g, (ii) g + g' > g if g' > 0, (iii) g' = g'' if g + g' = g + g''.

Proof. It suffices to prove (8.7) for $h = g^*$.

Let H be the finite set consisting of g^* and the positive elements of C. Let $n \subset H$, $n \leq g^*$. Then it is sufficient to prove

$$(8.8) C[n] \geqslant \phi(n)$$

assuming (8.7) for every $h \subset H$ with h < n.

If $C[n] \ge A[n] + B[n]$, then (8.8) follows from (8.6). Thus we may assume (8.1). By Theorem III, there is an $m \subset G$ that satisfies (8.2) - (8.5). By (8.2) and (8.6),

(8.9)
$$C[n] - C[n-m] \geqslant A[m] + B[m] + 1 \geqslant \phi(m) + 1.$$

Since $0 \subset A$, (8.5) implies $\lambda m \subset C$ for each integer $\lambda \geqslant 0$ such that $\lambda m < n$. C being finite, there is an element c_0 in C with

$$(8.10) c_0 < n, c_0 + m \geqslant n.$$

Let c_0 be the smallest element of C with this property. Thus c + m < n if $c \subset C$, $c < c_0$. Hence

$$(8.11) C[n-m] \geqslant C[c_0].$$

Furthermore

$$(8.12) C[c_0] \geqslant \phi(c_0)$$

on account of (8.10) and our induction assumption. Finally, (8.10) and the assumptions of our theorem imply

$$\phi(c_0) + \phi(m) + 1 \geqslant \phi(n).$$

Combining (8.9), (8.11), (8.12), and (8.13) we obtain (8.8).

REFERENCES

- J. G. van der Corput and J. H. B. Kemperman, The second pearl of the theory of numbers I. Nederl. Akad. Wetensch., Proc., 52 (1949), 696-704; or Indagationes Math. 11 (1949), 226-234.
- H. Hadwiger, Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt. Math. Z. 53 (1950), 210-218.
- 3. A. Khintchine, Zur additiven Zahlentheorie. Mat. Sbornik 39 (1932), 27-34.
- 4. H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers. Ann. Math. (2), 43 (1942), 523-527.

Purdue University

University of Saskatchewan