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Tree posets: Supersaturation, enumeration,
and randomness
Tao Jiang, Sean Longbrake, Sam Spiro, and Liana Yepremyan
Abstract. We develop a powerful tool for embedding any tree poset P of height k in the Boolean
lattice which allows us to solve several open problems in the area. We show that:
• If F is a family in Bn with ∣F∣ ≥ (q − 1 + ε)( n

⌊n/2⌋) for some q ≥ k, then F contains on the order of as
many induced copies of P as is contained in the q middle layers of the Boolean lattice. This generalizes
results of Bukh [9] and Boehnlein and Jiang [8] which guaranteed a single such copy in non-induced
and induced settings, respectively.

• The number of induced P-free families of Bn is 2(k−1+o(1))( n
⌊n/2⌋
), strengthening recent independent

work of Balogh, Garcia, and Wigal [1] who obtained the same bounds in the non-induced setting.
• The largest induced P-free subset of a p-random subset of Bn for p≫ n−1 has size at most (k − 1 +

o(1))p( n
⌊n/2⌋), generalizing previous work of Balogh, Mycroft, and Treglown [4] and of Collares and

Morris [10] for the case when P is a chain.
All three results are asymptotically tight and give affirmative answers to general conjectures of

Gerbner, Nagy, Patkós, and Vizer [18] in the case of tree posets.

1 Introduction

The celebrated Sperner’s theorem [41] in extremal set theory determines the size of
the largest family of sets in [n] not containing a 2-chain F1 ⊃ F2. Later, Erdős [16]
extended Sperner’s theorem to determine the largest family not containing any k-chain
and showed how Sperner’s lemma can be used to solve the classical Littlewood–Offord
problem [28]. Afterward, Katona and Tarján [23] initiated a systematic study of the
size of the largest family in the Boolean lattice Bn that avoids a given subposet. This
topic has attracted much attention and witnessed many advances in the last decades;
we refer the interested reader to the nice survey paper by Griggs and Li [20] for more.

The question we are interested in this article is one of supersaturation, that is,
how many copies of a poset are we guaranteed once we are above the threshold
of containing one. The simplest poset to consider the supersaturation question for
are 2-chains. Erdős and Katona conjectured that a family with ( n

⌊n/2⌋) + t sets in
[n] must contain at least t ⋅ ⌊ n+1

2 ⌋ many 2-chains. This conjecture was confirmed by
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2 T. Jiang et al.

Kleitman [24], who in fact showed that for every 0 ≤ a ≤ 2n , every family in [n] with
size a contains at least as many 2-chains as the so-called centralized family of size a, i.e.,
a family of a sets whose cardinalities are as close to n/2 + 1/4 as possible. Kleitman [24]
further conjectured that the same families should also minimize the number of
k-chains for every k. Five decades later, Kleitman’s result was rediscovered by Das,
Gan, and Sudakov [11] and independently by Dove, Griggs, Kang, and Sereni [14]. Both
papers further confirmed Kleitman’s conjecture for every k and a belonging to a certain
range above the sum of the k − 1 largest binomial coefficients. Subsequently, Balogh
and Wagner [7] proved Kleitman’s conjecture for all k and a ≤ (1 − ε)2n , provided that
n is sufficiently large with respect to k and ε. Finally, in a remarkable paper, Samotij [39]
resolved Kleitman’s conjecture in full. There have been further generalizations of the
supersaturation problem for 2-chains to more general hosts other than the Boolean
lattice, such as the collection of subspaces of Fn

q ordered by set inclusion [32] or
{0, 1, 2, . . . r}n [7, 32]. The latter problem gives rise to a natural generalization of
Kleitman’s problem, and while weaker approximate results do hold for r ≥ 2 as shown
by Noel, Sudakov, and Scott [32], the exact analog of Kleitman’s conjecture (see [7, 32])
fails as shown by Balogh, Petříčková, and Wagner [5].

Our main goal is to establish similar supersaturation results for more general family
of posets beyond 2-chains, and in particular, we do this for so-called tree posets, which
are posets whose Hasse diagram is a tree. To state our results, we need a short prelude
on the precise definition of extremal numbers for posets, since below this extremal
number we cannot guarantee any copies of our poset.

Let P, Q be two finite posets, that is, they are finite sets equipped with partial orders
<P and <Q . A poset homomorphism is a function f ∶ P → Q such that f (x) <Q f (y)
whenever x <P y. An induced poset homomorphism is a function f ∶ P → Q such that
f (x) <Q f (y) if and only if x <P y. We say that a poset Q contains another poset
P if there is an injective poset homomorphism from P to Q. We say that a poset Q
contains an induced copy of another poset P if there is an injective induced poset
homomorphism from P to Q. If a poset Q does not contain a copy of another poset
P, we say that Q is P-free. If Q does not contain an induced copy of P, we say that
Q is induced P-free. Given a poset P and an integer n, we define La(n, P) to be the
largest size of a P-free subfamily of Bn and La∗(n, P) the largest size of an induced P-
free subfamily of Bn . Motivated by a number of early results in the study of La(n, P)
(see, e.g., [12, 13, 19, 42]), Griggs and Lu [21] and independently Bukh [9] made the
following conjecture on the form of La(n, P).

Conjecture 1.1 (Bukh[9], Griggs-Lu [21]) Let P be a poset. Then,

La(n, P) = (1 + o(1))e(P)( n
⌊n/2⌋),

where e(P) denotes the largest integer � such that for all j and n the family ⋃�
i=1 ([n]i+ j) is

P-free.

A similar conjecture for the induced case as well as a supersaturation version of
both results were stated in Gerbner, Nagy, Patkós, and Vizer (see [18, Conjectures
1 and 3], see also [35]). An approximate version of Conjecture 1.1 was proven by
Methuku and Pálvölgyi [30] who showed that for every poset P, there exists a
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Tree posets: Supersaturation, enumeration, and randomness 3

constant CP such that La∗(n, P) ≤ CP( n
⌊n/2⌋). The value of CP was later improved by

Tomon [43]. However, this conjecture as well as the companion ones from [18] were
proven to be false for P the d-dimensional Boolean lattice with d ≥ 4 due to a recent
beautiful construction of Ellis, Ivan, and Leader [15].

Nevertheless there are still a number of families of P for which Conjecture 1.1
remains true (see [20] for more), the most general family perhaps being that of tree
posets as established by Bukh [9].

Theorem 1.2 (Bukh [9]) Let P be a tree poset of height k. Then,

La(n, P) = (k − 1 + O ( 1
n
))( n

⌊n/2⌋).

Bukh’s result was later extended to the induced setting by Boehnlein and Jiang [8],
who showed that La∗(n, P) = (k − 1 + O(

√
n log n

n ))( n
⌊n/2⌋) for any tree poset of height

k. Our main result is the following supersaturation extension of these results.

Theorem 1.3 Let k be a fixed positive integer, and let P be a tree poset of height k.
Then, for any real ε > 0 and integer q ≥ k, there exists a real δ > 0 such that every family
F ⊆ Bn with ∣F∣ ≥ (q − 1 + ε)( n

⌊n/2⌋) contains at least δ ⋅ M∗(n, q, P) induced copies of
P, where M∗(n, q, P) denotes the number of induced copies of P in the q middle levels
of Bn .

This result answers [18, Conjecture 3] in a strong form for tree posets which stated
their conjecture only in the special case of q = k. In fact, an analog of Theorem 1.3 holds
if we replace ∣F∣ with F’s Lubell weight, see Theorem 5.4 for the precise statement. It is
worth noting that we do not know of an explicit formula for M∗(n, q, P) in general,
but this does not end up being a significant barrier to the proof (see Section 3 for more
details). However, as a corollary to Theorem 1.3, we can get the following explicit result
which is tight for saturated tree posets, i.e., those for which every maximal chain has
the same length.

Corollary 1.4 Let k be a fixed positive integer, and let P be a tree poset of height k.
For any real ε > 0, there exists a real δ > 0 such that every subfamily F ⊆ Bn with ∣F∣ ≥
(k − 1 + ε)( n

⌊n/2⌋) contains at least δn∣P∣−1( n
⌊n/2⌋) induced copies of P.

A slight modification of our approach can extend Corollary 1.4 into a balanced
supersaturation result, Theorem 5.6, which roughly speaking says that we can guar-
antee our collection of copies of P to be such that no subset of F is contained in
too many induced copies of P in this collection. Balanced supersaturation while
interesting on its own is usually used in combination with the container method to
establish counting results. The container method originated in papers by Kleitman and
Winston [25, 26] in early 1980s and was further independently developed by Balogh,
Morris, and Samotij [2] and Saxton and Thomason [40], and has had a tremendous
impact on combinatorics since then. Containers have been widely used to establish
counting results and random Turán-type in various settings, such as for H-free graphs
or hypergraphs for a fixed graph H, AP-free sets in additive combinatorics, and so on.
See the excellent survey by Balogh, Morris, and Samotij [3] for an extensive overview
on the method.
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4 T. Jiang et al.

In the setting of posets, containers have been most widely used in counting subsets
of Bn avoiding 2-chains, which is equivalent to the problem of counting antichains.
When the host is the Boolean lattice, this problem was solved independently by
Balogh, Treglown, and Wagner [6] and by Noel, Sudakov, and Scott [32]. The second
group [32] also generalized this to hosts being subspaces of Fq

n ordered by inclusion,
and sets of divisors of a square of a square free integer. Note that the latter is equivalent
to studying {0, 1, 2}n under the natural ordering. In the more general setting of
counting antichains in [t]n , which turns out to be connected to a Ramsey-theoretic
question in ordered hypergraphs [31], there has been much recent progress, most
notably by Pohoata and Zakharov [37], Park, Sarantis, and Tetali [34] and finally, by
Falgrav-Ravry, Rävy, and Tomon [17].

Our main counting result gives tight bounds for the number of induced P-free
families of Bn for all tree posets P, solving Conjecture 4 from [18] in this case. This
extends previous work of Patkós and Treglown [36] and Gerbner, Nagy, Patkós, and
Vizer [18] who obtained similar results for special subclasses of tree posets. Our result
also strengthens the recent work of Balogh, Garcia, and Wigal [1] who independently
obtained the same counting result but in the non-induced setting.

Theorem 1.5 If P is a tree poset of height k, then the number of induced P-free sets in
Bn is at most

2(k−1+o(1))( n
n/2).

With a similar approach, we also obtain tight bounds for the largest size of an
induced P-free family of a random subset of Bn for all tree posets P. Let P(n, p)
be the uniformly random subset of Bn , where each set survives with probability p
such that pn →∞. This model P(n, p) was first investigated by Renyi [38], after
which Kohayakawa and Kreuter [27] studied the size of the largest 2-chain-free subset
of P(n, p). Their results were subsequently improved by Osthus [33] and Balogh,
Mycroft, and Treglown [4], the latter establishing optimal bounds, and independently
by Collares and Morris [10] who established the analogous results for k-chains for
all k ≥ 2. Other results in this direction were obtained by Patkós and Treglown [36]
and by Gerbner, Nagy, Patkós, and Vizer [18] for some special subfamilies of tree
posets. We establish a far-reaching generalization of all these results by establishing
the corresponding result onP(n, p) for all tree posets P in the induced setting, solving
Conjecture 7 of [18] in this case.

Theorem 1.6 If P is a tree poset and pn →∞, then with high probability, the largest
induced P-free subset of P(n, p) has size (k − 1 + o(1))p( n

n/2).

The hypothesis that pn →∞ is best possible for this result to hold. Indeed, as noted
in [4, 10], if p = cn−1 then a computation due to Osthus [33] shows that with high
probability there exists subsets of P(n, p) of size at least (k − 1 + e−c + o(1))( n

n/2)
which contains no k-chain and thus also no tree poset of height k.

Finally, it is worth highlighting that the main tool of this article, Theorem 4.15,
which we believe is of independent interest, and can be viewed as a general tool similar
to results in graphs of passing to subgraphs of high minimum degree. While the exact
analog of such a result is out of reach, that is, obtaining a subfamily in the poset setting
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of “high minimum degree” we obtain a sequence of nested subfamilies of our original
family F having high minimum degree in the predecessor of the sequence which still
allows us to greedily find many embeddings of a tree poset, similar to embedding
copies of a fixed tree in a high minimum degree subgraph. We believe that this result
will have further applications in the future.

The rest of this article is organized as follows. In Section 2, we introduce some
notation. In Section 3, we present a sketch of the proof of Theorem 1.3. In Section 4,
after gathering some preliminary lemmas, we prove Theorem 4.15, in Section 5, we
prove both the usual and balanced supersaturation results Theorems 1.3 and 5.6. In
Section 6, we use hypergraph containers together with balanced supersaturation to
prove Theorems 1.5 and 1.6.

2 Notation

Throughout our article, we drop floors and ceiling whenever these are not crucial to
our analysis. Let

B̃n ∶= {F ∈ Bn ∶ ∣F − n
2
∣ < 2

√
n ln n} .

Using some standard tools, we will assume that the family F we are working with
is subfamily of B̃n instead of Bn .

We define the Hasse diagram of P, denoted H(P), as a directed graph with vertex set
P where there is an edge from x to y only if y > x and there is no z such that y > z > x.
Notice that this definition differs slightly from the classical definition of Hasse diagram
via undirected graphs embedded on the plane, but for us, it will be more convenient
to use the directed setting.

Given a subfamily F ⊆ Bn and a positive integer q, we say that a tuple (F1 , . . . , Fq)
of members of F is a q-chain if F1 ⊃ F2 ⊃ ⋅ ⋅ ⋅ ⊃ Fq . In particular, when we refer to the
ith element of any q-chain we mean the one with the ith largest cardinality. We will
abuse notation slightly by occasionally identifying decreasing tuples (F1 , . . . , Fq) by
the corresponding set {F1 , . . . , Fq}. We use C to denote the family of all full chains of
Bn (with n fixed), i.e., C is the set of chains of length n + 1 in Bn . The height of P is the
largest length of a chain in P.

Given a q-chain Q in F and a full chain χ in Bn that contains all of the members
of Q, we call the pair (χ, Q) a q-marked chain with markers in F or a q-marked chain
from F. Given a family of q-marked chains M, let

Li(M) = {D ∈ Bn ∶ D is the ith member of a q-chain in M}.

Our proof will rely on obtaining a nice nested sequence of q-marked chains from
F that are of a specific form. To this end, given a family T of 1-marked chains of
some subfamily F ⊆ Bn and χ ∈ C, we define T(χ) = {F ∶ (χ, F) ∈ T}. We say that T is
q-strong if for each χ ∈ C, where T(χ) ≠ ∅, we have that ∣T(χ)∣ ≥ q. For a q-strong
1-marked chain family T from F, we define the qth power of T, denoted by T[q], to be
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6 T. Jiang et al.

the q-marked chain family

T[q] = {(χ, Q) ∶ Q ∈ (T(χ)
q

)} .(2.1)

We will consider some of our results in a somewhat more general setting. To this
end, we define the Lubell weight of a family F, denoted by μ(F), by

μ(F) = ∑
F∈F

1
( n
∣F∣)

.(2.2)

The Lubell weight is a natural measure to put on families in Bn , and in particular,
we note that μ(F) is the expected number of members of F that are contained in a
uniformly randomly chosen full chain. While this notion is not strictly needed for
our work, we are able to apply our methodology in this more general setting which
has historically been of interest to extremal problems for posets (see, e.g., [29]).

In Section 6, we will use Chernoff ’s Inequality in the following form (see [22]).
Lemma 2.1 If X = Bin(n, p) and δ ≤ 1,

Prob(∣X −E[X])∣ ≥ δE[X] ≤ 2 exp(−δ2

3
E[X]) .

3 Sketch of the Proof of Theorem 1.3

Here, we sketch how to prove Theorem 1.3, which we recall says that every large family
F ⊂ Bn contains many copies of a given tree poset P. We will do this by showing that
there are many ways of embedding P into F, but before we get into this we need some
preliminaries.

It will be convenient to associate each member F of a given subfamily F ⊆ Bn with
the full chains χ of Bn that contain it, so we will work with pairs (χ, F) instead of
individual members F, where F ∈ F and χ is any full chain in the Boolean lattice.
Likewise, we will associate each q-chain Q in our family F with the full chains χ of
Bn that contain it and call such pairs (χ, Q)q-marked chains. It is worth mentioning
that the approach of working with q-marked chains was originated by Bukh [9] and
was later further developed by Boehnlein and Jiang [8].

Using Chernoff bounds, it is standard [8, 21] to show that the number of sets F ∈ Bn
with ∣∣F∣ − n/2∣ > 2

√
n ln n is o(( n

n/2)). Thus, whenever we are given a dense subfamily
F of Bn i.e., ∣F∣ = Ω(( n

n/2)), by leaving out at most o(( n
n/2)) members of F, we may

assume that all F ∈ F lie in the family B̃n .
At the heart of all of our arguments is a general result Theorem 4.15, which says that

any subset F ⊆ B̃n of large Lubell weight, more precisely at least of weight at least q −
1 + ε, contains a nested sequence of large q-marked chain families that have a certain
robustness property which we will describe momentarily. Note that if F is of size at
least (q − 1 + ε)( n

⌊n/2⌋), then the hypothesis above on the Lubell weight is satisfied.
Before the embedding starts, we fix an ordering x1 , x2 , . . . , x∣P∣ of vertices of P such

that each x j+1 has a unique neighbor (called the parent) among x1 , . . . x j , and we fix
a poset homomorphism r ∶ P → [q], with [q] under the reverse of the natural total
ordering. As a pre-processing step, we use our main tool Theorem 4.15 to generate a
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nested family of q-marked chains M0 ⊇M1 ⊇ ⋅ ⋅ ⋅ ⊇M∣P∣ such that if F ∈ F is in some
q-marked chain of Mi family then it is “robust” with respect to Mi−1 as well, meaning
F is contained in “many” q-chains of Mi−1 as well. The idea of nested families Mi may
seem a bit peculiar but unfortunately we were not able to guarantee the existence of
a single marked chain family M with the property of every F being contained in the
desired number of copies of q-marked chains in M. To obtain this nested sequence,
we iteratively remove all the sets F ∈ F, which are bad with respect to M j−1 and the
relevant q-chains from M j−1 subsequently, and ensure that the sizes of M j do not
shrink dramatically, thus guaranteeing that after ∣P∣ many steps we still have a large
family of q-marked chains.

Having run the cleaning process, we embed the vertices x1 , x2 , . . . x∣P∣ iteratively so
that at the jth step, we find many partial embedding of the form φ j ∶ {v1 , v2 , . . . , v j}.
We embed v1 arbitrarily in the r(v1)-level of any q-marked chain inside M∣P∣. Notice
that the number of elements in the r(v1)-level of a chain inM∣P∣ gives us a lower bound
on the number of ways to embed v1. Also whileM∣P∣ is the smallest family of q-marked
chains it has the property that every F in a q-chain of M∣P∣ is “robust” with respect to
every M j with j < ∣P∣. This is the incentive behind embedding the vertices of P in the
reverse order of the nested families, more precisely, v j will be embedded in M∣P∣− j+1.
At the jth step, we embed v j , assuming that its parent y who is among {v1 , v2 , . . . , v j−1}
is already embedded. We wish to embed v j in the r(v j)th position of some q-marked
chain ofM∣P∣− j+1, which has φ j−1(y) in the r(y)th position. By the cleaning process we
ran earlier, we are guaranteed to have many such choices to embed v j and find many
partial embeddings φ j . This embedding procedure in total gives a lower bound on the
number of induced copies of P in F as a function of our choice of r. It turns out there
is a relation between M∗(n, q, P) and the counting of copies of P via all such rank
functions r (see Lemma 5.5). Thus, we may choose r suitably and get this lower bound
to be a constant fraction of M∗(n, q, P). This gives us our desired supersaturation
result saying that the number of induced copies of P guaranteed in F is as least as
large as a fraction of the number of induced copies of P in the middle q-levels without
knowing M∗(n, q, P) explicitly.

The full details of this embedding are slightly technical, as one also needs to make
sure that the embedding guarantees noncomparable pairs stay noncomparable and
other nuances, however the main gist of the argument is that the cleaning process in
Theorem 4.15 provides the framework to do this successfully.

4 Key tools

In this section, we state and prove our main tool Theorem 4.15, which roughly speaking
guarantees in any large F ⊆ Bn the existence of a nested sequence of q-marked
chains M∣P∣ ⊆M∣P∣−1 ⊆ ⋅ ⋅ ⋅ ⊆M0 which are “robust” in a certain way. We begin by
establishing some preliminary lemmas.

4.1 Counting lemmas on marked chains

In this section, we collect some basic counting lemmas about marked chains that we
will use in the final step of our proof (Theorem 5.4). We begin by recalling the following
lemma of Bukh [9, Lemma 4] for q-marked chains.
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8 T. Jiang et al.

Lemma 4.1 [9] If F ⊆ Bn and ∣F∣ ≥ (q − 1 + ε)( n
n/2), then there are at least ε

q n!q-
marked chains with markers from F.

For our purposes, we will need the following variant of Lemma 4.1.

Lemma 4.2 Let q be a positive integer and ε > 0. LetF ⊆ Bn . Suppose μ(F) ≥ q − 1 + ε
and let

T = {(χ, F) ∶ χ ∈ C, F ∈ χ ∩ F, ∣χ ∩ F∣ ≥ q}.

Then, T is a q-strong 1-marked chain family from F, satisfying ∣T∣ ≥ εn!. In particular,
if ∣F∣ ≥ (q − 1 + ε)maxF∈F ( n

∣F∣) then ∣T∣ ≥ εn!

Proof Let M = {(χ, F) ∶ χ ∈ C, F ∈ F}. For each i ∈ [n], let C i denote the number of
full chains χ that contain exactly i members of F. Then, ∣M∣ = ∑n

i=1 iC i . On the other
hand, for each F ∈ F, the number of full chains in Bn that contain F is exactly n!

( n
∣F∣)

.
Hence,

n
∑
i=1

iC i = ∑
F∈F

n!
( n
∣F∣)

= μ(F)n! ≥ (q − 1 + ε)n!.

Clearly, ∑i<q iC i ≤ (q − 1)n!. Hence, ∣T∣ = ∑i≥q iC i ≥ εn!.
For the second statement, suppose ∣F∣ ≥ (q − 1 + ε)maxF∈F ( n

∣F∣). Then,

μ(F) = ∑
F∈F

1
( n
∣F∣)

≥ ∣F∣
maxF∈F ( n

∣F∣)
≥ q − 1 + ε.

So, the statement follows from the first statement. ∎

We note that although Lemma 4.2 is stated in terms of a particular 1-marked chain
family T, it being q-strong immediately implies that F contains at least ε

q n!q-marked
chains. This recovers Bukh’s original lemma that says if ∣F∣ ≥ (q − 1 + ε)( n

n/2) then it
contains at least ε

q n!q-marked chains and more generally recovers it under the weaker
hypothesis μ(F) ≥ q − 1 + ε.

We will also need the following technical lemma, which roughly says that if T is a
large q-strong 1-marked chain family, then there are many members of F that can start
our embedding of P at the “ith level” for all i ∈ [q].

Lemma 4.3 Let F be a subfamily of Bn , and let q be a positive integer. Let T be a q-
strong 1-marked chain family from F, and let M = T[q] be the qth power of T. For each
i ∈ [q] and each χ ∈ C, let

Li(M, χ) ∶= {F ∈ F ∶ ∃(χ, Q) ∈M such that F is the ith member on Q},

and let Li(M) = ⋃χ∈CLi(M, χ). If ∣T∣ ≥ εn!, then for each i ∈ [q], we have

∣Li(M)∣ ≥ ε
q

min
F∈F

( n
∣F∣).

Proof Consider any χ ∈ C, where T(χ) ≠ ∅. Because T is q-strong, we have ∣T(χ)∣ ≥
q by definition. Note that for each F ∈ T(χ) that is not among the largest i − 1 members
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Tree posets: Supersaturation, enumeration, and randomness 9

or smallest q − i − 1 members in T(χ), there exists a q-chain in (T(χ)
q ) that contains F

as the ith member. Hence, ∣Li(M, χ)∣ ≥ 1
q ∣T(χ)∣ and therefore

∑
χ∈C

∣Li(M, χ)∣ ≥ 1
q ∑

χ∈C
∣T(χ)∣ ≥ ε

q
n!.(4.3)

On the other hand, for each F ∈ Li(M), F is contained in exactly n!/( n
∣F∣) full chains

of Bn and hence belongs to Li(M, χ) for at most n!/( n
∣F∣) different χ. Hence,

∑
χ∈C

∣Li(M, χ)∣ ≤ ∑
F∈Li(M)

n!
( n
∣F∣)

≤ n! ⋅ ∣Li(M)∣
minF∈F ( n

∣F∣)
.(4.4)

Combining (4.3) and (4.4), we get ∣Li(M)∣ ≥ ε
q minF∈F ( n

∣F∣). ∎

4.2 Main cleaning result

Given a family F ⊆ Bn and a family M of q-marked chains from F, we define for each
i ∈ [q], F ∈ F and χ ∈ C, the sets

M(χ, F , i) = {(χ, Q) ∈M ∶ F is the ith member of Q},

M(F , i) = ⋃
χ∈C

M(χ, F , i).

Definition 4.4. For any i ∈ [q], we say a member F ∈ Bn is (i , δ)-lower bad with
respect to M if M(F , i) ≠ ∅ and if there exists a subfamily W ⊆ Bn such that the
following three properties hold:
(a) Every D ∈W satisfies D ⊆ F.
(b) For every (χ, Q) ∈M(F , i), we have Q ∩W ≠ ∅.
(c) We have

Prob[χ0 ∩W ≠ ∅∣F ∈ χ0] ≤ δ,

where χ0 is a uniformly randomly chosen full chain of Bn .
Any such subfamily W will be called an (i , δ)-lower witness for F.

Informally, F being (i , δ)-lower bad means that there exists a subfamily of small
measure (in the sense of property (c)) W of members below F such that every chain
in M which has F as the ith member must pass through this subfamily. While there
may be many subfamilies W, which are (i , δ)-lower witnesses for F, in some contexts,
it will be useful to work with some fixed canonical witness. To this end, for any F that
is (i , δ)-lower bad with respect to M, we let W(F , i ,M) denote the lexicographically
minimal W, which is an (i , δ)-lower witness. Note that for all W,

Prob[χ0 ∩W ≠ ∅∣F ∈ χ0] ≤ ∑
D∈W

Prob(D ∈ χ0∣F ∈ χ0) = ∑
D∈W

1
( ∣F∣∣F−D∣)

,(4.5)

where the right-hand side can be thought of as the Lubell weight of W relative to F.
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10 T. Jiang et al.

Definition 4.5. Similarly, we say F is (i , δ)-upper bad with respect toM if there exists
a set Ŵ such that the following three properties hold:
(â) Every D ∈ Ŵ satisfies D ⊇ F.
(b̂) For every (χ, Q) ∈M(F , i), we have Q ∩ Ŵ ≠ ∅.
(ĉ) We have

Prob[χ0 ∩ Ŵ ≠ ∅∣F ∈ χ0] ≤ δ,

where χ0 is a uniformly randomly chosen full chain.

Such Ŵ is called an (i , δ)-upper witness for F.

Definition 4.6. We say that a member F ∈ Bn is δ-robust with respect to a q-marked
chain family M if for each i ∈ [q], F is neither (i , δ)-lower-bad nor (i , δ)-upper-bad
with respect to M.

The rest of the section is dedicated to proving the following result which builds a
nested sequence of families of q-marked chains with some robustness features with
the additional property that each of these families is the qth power of some family of
1-marked chains (recall the definition of the qth power of a 1-marked chain family
from (2.1)). This theorem provides the most important ingredient of our proof of
Theorem 4.15.

Theorem 4.7 For all integers q ≥ 1 and for all reals ε > 0, there exists some δ > 0 such
that the following holds. Let F ⊆ B̃n and let T0 be a q-strong 1-marked chain family with
markers from F such that ∣T0∣ ≥ εn!. Then, there exists a collection of 1-marked chains
T∣P∣ ⊆ T∣P∣−1 ⊆ ⋅ ⋅ ⋅ ⊆ T0 satisfying the following:
(1) For each j = 0, . . . , ∣P∣, T j is q-strong.
(2) For each j = 1, . . . , ∣P∣, for each (χ, Q) ∈ T j[q] and F ∈ Q, F is δ-robust with respect

to T j−1[q].
(3) ∣T∣P∣∣ ≥ 2ε

3 n!.

Before starting the proof, we set up some notation and claims that will be useful.
In what follows, we fix F ⊆ B̃n as in the theorem statement together with the large
constant

Δ ∶= 12∣P∣ + q + 2,

and for later convenience, we define

K ∶= Δq2 ( Δ
Δ − 2

)
∣P∣

.

Starting with T0, we will build our subsets T j as follows. Suppose T j−1 has already
been defined for some 1 ≤ j ≤ ∣P∣, and for ease of notation, letM j−1 = T j−1[q]. For each
i = 1, . . . , q and for every χ ∈ C, let B j−1(χ, i , ↑) be the set of members F in T j−1(χ)
such that F is the ith member of some q-chain in M j−1(χ) and F is (i , δ)-upper bad
to M j−1. Let B j−1(χ, i , ↓) be the set of members F in T j−1(χ) such that F is the ith
member of some q-chain in M j−1(χ) and F is (i , δ)-lower bad with respect to M j−1.
For convenience, we denote the union of these sets by
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B j−1(χ, ↓) = ⋃
1≤i≤q

B j−1(χ, i , ↓),

B j−1(χ, ↑) = ⋃
1≤i≤q

B j−1(χ, i , ↑),

B j−1(χ) = B j−1(χ, ↓) ∪ B j−1(χ, ↑).

We now classify our chains χ ∈ C based on whether they contain a relatively large
number of bad members or not. To this end, we define

C
j
1(↓) = {χ ∶ ∣B j−1(χ, ↓)∣ > ∣T j−1(χ)∣/Δ} ,

C
j
1(↑) = {χ ∶ ∣B j−1(χ, ↑)∣ > ∣T j−1(χ)∣/Δ} ,

C
j
2 = C − C

j
1(↓) − C

j
1(↑).

Let

T j = {(χ, F) ∶ χ ∈ C j
2 , F ∈ T j−1(χ) − B j−1(χ)}.

In other words, to form T j from T j−1, we remove all (χ, F) ∈ T j−1 from each
χ ∈ C j

1(↓) ∪ C
j
1(↑) (i.e., from those χ with a large number of bad members), and for

each χ ∈ C j
2, we remove those (χ, F), where F is bad. In particular, we record the

following immediate consequence of the definition of C j
2.

Lemma 4.8 If χ ∈ C j
2 for some j, then

∣T j(χ)∣ ≥ (1 − 2
Δ
) ∣T j−1(χ)∣.

It remains to analyze our process for constructing T j . For this, we develop some
properties of full chains χ in C

j
1(↓) and we will then use these properties to show

∑χ∈C j
1(↓)

∣T j−1(χ)∣ is relatively small; the situation for C j
1(↑) is similar. For this result,

given an index i and a full chain χ, let χF(i) be the ith member of F ∩ χ. If no such
member exists, by convention, we let this denote the empty set.

Lemma 4.9 For every j, there exists a function b⃗ from χ ∈ C j
1(↓) to increasing sequences

of integers of even length of the form (b1 , b′1 , b2 , b′2 , . . . ) with the following properties:

(1) There exists an i ∈ [q] such that for all 1 ≤ � ≤ ∣b⃗(χ)∣
2 , we have χF(b�) ∈ B j−1(χ, i , ↓).

(2) For all 1 ≤ � ≤ ∣b⃗(χ)∣
2 , we have χF(b′�) ∈W(χF(b�), i ,T j−1[q]).

(3) If ∣b⃗(χ)∣ = 2m, then ∣T0(χ)∣ ≤ Km and b⃗(χ) ∈ ([Km]
2m ).

(4) For any vector of increasing integers c⃗ of length 2m, there are at most qδm n! chains
χ satisfying b⃗(χ) = c⃗.

Proof of Lemma 4.9 We begin by explicitly defining b⃗(χ) for each χ ∈ C j
1(↓), and

will refer to this vector as the lower-bad profile for χ relative to M j−1 .
Fix some χ ∈ C j

1(↓). Let F1 ⊃ F2 ⋅ ⋅ ⋅ ⊃ Ft be the members of T0(χ). Let Fa1 ⊃ Fa2 ⊃
⋅ ⋅ ⋅ ⊃ Far be the subsequence of F1 , . . . Ft consisting of all of the members in T j−1(χ).
By definition ofC j

1(↓), we have ∣B j−1(χ, ↓)∣ > ∣T j−1(χ)∣/Δ. By the pigeonhole principle,
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there exist some i ≤ q such that

∣B j−1(χ, i , ↓)∣ > ∣T j−1(χ)∣/qΔ.

Fix such an i. We will now greedily build a tuple of integers b⃗(χ) =
(b1 , b′1 , b2 , b′2 , . . . , bm , b′m) such that for all 1 ≤ � ≤ m, Fb�

is (i , δ)-lower bad relative
to M j−1 and Fb′

�
∈W(Fb�

, i ,T j−1[q]), as follows.
Let d be the smallest integer such that Fad ∈ B j−1(χ, i , ↓); such a d exists because

B j−1(χ, i , ↓) ≠ ∅. By definition, Fad is the ith member of some marked chain (χ, Q)
in M j−1(χ).

In particular, this implies that there are at least q − i additional members ofT j−1(χ)
on χ below Fad . Because Fad ∈ B j−1(χ, i , ↓), it is the ith member of some q-marked
chain in M j−1(χ) = (T

j−1(χ)
q ), and in particular, there exists at least i − 1 members

which come before it, and at least q − i members coming after in inside T j−1(χ). By
property (b) of witness sets, we have then {Fad+1 , . . . Fad+q−i} ∩W(Fad , i ,T( j−1)[q]) ≠
∅. Let b1 = ad and let b′1 be the index of the any member {Fad+1 , . . . Fad+q−i} ∩
W(Fad , i ,T( j−1)[q]).

Now, let d′ be the smallest integer such that Fad′ ∈ B j−1(χ, i , ↓) and ad′ > b′1
if it exists. Just as before, we are guaranteed one of Fad′+1 , . . . Fad′+q−i

belongs to
W(Fad′ , i ,T( j−1)[q]), and we let b2 = ad′ and b′2 be the index of the any member of
W(Fad′ , i ,T( j−1)[q]) ∩ {Fad′+1 , . . . Fad′+q−i

}. We continue to repeat the process, e.g.,
by defining d′′ to be the smallest integer such that Fad′′ ∈ B j−1(χ, i , ↓) and ad′′ > b′2,
if it exists, until no more choices remain. Note that the process goes on at least

1
q−i ∣B

j−1(χ, i , ↓)∣ many steps, as between Fb i and Fb′i there are at most q − i members
of B j−1(χ, i , ↓). Furthermore, b⃗(χ) ⊆ [∣T0(χ)∣].

Claim If b⃗(χ) has length 2m, then ∣T0(χ)∣ ≤ Km. ∎

Proof By our assumption of χ ∈ C j
1(↓), we must have χ ∈ C�

2 for � = 0, 1, . . . , j − 1 and
χ ∈ C j

1(↓). Therefore, for 1 ≤ � ≤ j − 1, we know that ∣T�(χ)∣ ≥ (1 − 2
Δ )∣T

�−1(χ)∣, and
hence ∣T0(χ)∣ ≤ ( Δ

Δ−2 )
j ∣T j−1(χ)∣. By definition of χ ∈ C j

1(↓), we know that ∣B j−1(χ, ↓)
∣ ≥ ∣T j−1(χ)∣/Δ. By our choice of i, ∣B j−1(χ, i , ↓)∣ ≥ 1

q ∣B
j−1(χ, ↓)∣. By our earlier obser-

vation, we have that m ≥ 1
q−i ∣B

j−1(χ, i , ↓)∣. It, therefore, follows that

∣T0(χ)∣ ≤ ( Δ
Δ − 2

)
∣P∣

Δ∣B j−1(χ, ↓)∣ ≤ Δq2 ( Δ
Δ − 2

)
∣P∣

m ≤ Km. ∎

Claim Let χ ∈ C j
1(↓). Suppose b⃗(χ) has length 2m. Then, b⃗(χ) ∈ ([Km]

2m ).

Proof Since b⃗(χ) has length 2m, by Claim 4.10, t ∶= ∣T0(χ)∣ ≤ Km. Since the entries
in (b1 , b′1 , . . . , bm , b′m) are all inside {1, 2, . . . , t} ⊆ [Km], we have b⃗(χ) ∈ ([Km]

2m ). ∎

To prove the last part of the lemma, we will use the following technical result,
where here we roughly think of S as the F which are (i , δ)-lower bad and W∗(F) =
W(F , i ,T j−1[q]).
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Claim Let χ be a uniformly randomly chosen full chain in Bn . Let S ⊆ F be such that
for every F ∈ S, there is a subfamily W∗(F) ⊆ Bn such that Prob[W∗(F) ∩ χ ≠ ∅∣F ∈
χ] ≤ δ. Then given an increasing tuple c⃗ = (c1 , c′1 , c2 , c′2 . . . , cm , c′m), the probability that
χ satisfies χF(c�) ∈ S and χF(c′�) ∈W∗(χF(c i)) for all 1 ≤ � ≤ m is less than δm .

Proof Let A� be the event that χF(c�) ∈ S and χF(c′�) ∈W∗(χF(b�)). Then,

Prob[A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ Am] = Prob[A1]Prob[A2∣A1] . . . Prob[Am ∣A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ Am−1].

Note that

Prob[χF(b′�) ∈W∗(F)∣(χF(c�) = F) ∩ A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ A�−1]
= Prob[χF(b′�) ∈W∗(F)∣χF(c�) = F],

since conditioned on χF(c�) = F the events χF(c′i) ∈W∗(F) and A1 ∩ A2 ∩ . . . A�−1
are independent.

Thus, by definition of W∗(F), we have

Prob[χF(b′�) ∈W∗(F)∣χF(c i) = F)] ≤ Prob[χ ∩W∗(F) ≠ ∅∣χF(c�) = F)]
≤ δ.

Observe that A� is exactly the union over the events χF(c�) = F over F ∈ S and
χF(c′�) ∈W∗(F). Since these events are disjoint, we have that the following series of
inequalities hold:

Prob[A�∣A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ A�−1] = ∑
F∈S
(Prob[χF(c�) = F∣A1 ∩ A2 ∩ . . . A�−1]

⋅ Prob[χF(c′�) ∈W∗(F)∣(χF(c i) = F) ∩ A1 ∩ A2 ∩ . . . A�−1])

≤ ∑
F∈S

Prob[χF(c�) = F∣A1 ∩ A2 ∩ . . . A�−1]δ

≤ δ.

Therefore,

Prob[A1 ∩ A2 . . . Am] = Prob[A1]Prob[A1∣A2] . . . Prob[Am ∣A1 ∩ A2 ∩ . . . Am−1]
≤ δm . ∎

We now prove the last part of the lemma. Note that for each chain χ ∈ C j
1(↓),

which satisfies b⃗(χ) = c⃗, all of the sets of the form χF(c�) are (i , δ)-lower bad for
some i ∈ [q] with χF(c′�) in the corresponding set W(F , i ,T j−1[q]). Thus, applying
Lemma 4.12 with S = ⋃χ∈C j

1(χ) B j−1(χ, i , ↓) the set of (i , δ)-lower bad members, and
taking W∗(F) =W(F , i ,T j−1[q]), we have that χ satisfies the conclusion of Lemma
4.12. Thus, there are no more than δm n! such chains. Summing over all i, there are at
most qδm n! many chains satisfying b⃗(χ) = c⃗.

Lemma 4.13 For each 1 ≤ j ≤ ∣P∣,

∑
χ∈C j

1(↓)
∣T j−1(χ)∣ ≤ ε

18∣P∣n!.

Downloaded from https://www.cambridge.org/core. 17 Nov 2025 at 21:29:36, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 T. Jiang et al.

Proof Let b⃗ be the function from Lemma 4.9.
Recall that Lemma 4.9.3 states that for all m ∈ [n], each bad profile of length 2m is

a member of ([Km]
2m ). This together with part Lemma 4.9.4 implies

∑
χ∈C j

1(↓)
∣T j−1(χ)∣ ≤

n
∑
m=1

∑
c⃗∈([Km]

2m )
∑

χ∶b⃗(χ)=c⃗
∣T j−1(χ)∣

≤
n
∑
m=1

∑
c⃗∈([Km]

2m )
∑

χ∶b⃗(χ)=c⃗
∣T0(χ)∣

≤
n
∑
m=1

∑
c⃗∈([Km]

2m )
∑

χ∶b⃗(χ)=c⃗
Km (By Lemma 4.9.3)

≤
n
∑
m=1

∑
b⃗∈([Km]

2m )
(δm n!)qKm

≤ q
n
∑
m=1

2Km Km δm n!

≤ 2K+1Kqδn!,

provided that δ < 1
2K+2 K . This will be less than ε

18∣P∣ provided that δ < ε
18∣P∣2K+1 Kq . ∎

By a similar argument,

Lemma 4.14 For each 1 ≤ j ≤ ∣P∣,

∑
χ∈C j

1(↑)
T j−1(χ) ≤ ε

18∣P∣n!.

We are now in a position to prove our main theorem in this section.

Proof of Theorem 4.7 For each j ∈ ∣P∣, when building T j from T j−1 we made sure to
remove all the members that are either (i , δ)-lower-bad or (i , δ)-upper-bad relative
to T j−1[q] for any i ∈ [q]. So every member F on a q-chain in T j[q] is δ-robust with
respect to T j−1[q].

We will inductively prove for all 0 ≤ j ≤ ∣P∣ that

T j is q-strong and ∣T j ∣ ≥ (1 − 1
3∣P∣ )

j

∣T0∣.

The base case holds by our conditions. Assume that we have proven the statements for
all � ≤ j − 1, which in particular means ∣T j−1∣ ≥ 2

3 εn! since ∣T0∣ ≥ εn! by hypothesis.
Consider any j ∈ [∣P∣]. Let χ be a full chain in Bn with T j(χ) ≠ ∅. Then, by our
process, this means that χ ∈ C�

2 for each � = 1, . . . , j − 1. If T j(χ) = T j−1(χ), then by
induction hypothesis, ∣T j(χ)∣ ≥ q. Hence, we may assume that T j−1(χ) contains at
least one bad member. If ∣T j−1(χ)∣ < Δ, then χ would have been in C

j
1 , a contradiction.

So ∣T j−1(χ)∣ ≥ Δ. By definition of χ ∈ C j
2, we have by Lemma 4.8 that

∣T j(χ)∣ ≥ (1 − 2
Δ
) ∣T j−1(χ)∣ ≥ Δ − 2 ≥ q.
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Thus, T( j) is q-strong. Furthermore,

∣T j ∣ = ∑
χ∈Bn

∣T j(χ)∣ ≥ ∑
χ∈Bn

∣T j−1(χ)∣ − ∑
χ∈C j

2

∣B j−1(χ)∣ − ∑
χ∈C j

1(↓)

∣T j−1(χ)∣ − ∑
χ∈C j

1(↑)

∣T j−1(χ)∣

≥ ∑
χ∈Bn

∣T j−1(χ)∣ − 2
Δ ∑χ∈Bn

∣T j−1(χ)∣ − ε
9∣P∣n! (By Lemmas 4.13 and 4.14)

≥ ∣T j−1∣ − 1
3∣P∣ ∣T

j−1∣,

where in this last step used Δ ≥ 12∣P∣ and that inductively 2
3 εn! ≤ ∣T j−1∣.

Thus, we have for all 1 ≤ j ≤ ∣P∣,

∣T j ∣ ≥ (1 − 1
3∣P∣ )

∣P∣

∣T0∣ ≥ 2
3
∣T0∣ ≥ 2ε

3
n!,

completing the proof. ∎

Finally, we combine all of the results we have established up to this point into a
single statement. Also note that the second part of this result is not needed for our
proofs, but we include it in the statement since it adds no extra difficulty to the proof
and may be useful for future applications.

Theorem 4.15 For all integers q ≥ 1 and reals ε > 0, there exists some δ > 0 such that the
following holds. If F ⊆ B̃n is a family with μ(F) ≥ q − 1 + ε, then there exists a nested
sequence of q-marked chains M∣P∣ ⊆M∣P∣−1 ⊆ ⋅ ⋅ ⋅ ⊆M0 such that for all j ∈ [∣P∣], we
have:
• For each (χ, Q) ∈M j and F ∈ Q, we have that F is δ-robust with respect to M j−1.
• For each i ∈ [q], we have

∣Li(M j)∣ ≥ 2ε
3q

min
F∈F

( n
∣F∣).

Proof By Lemma 4.2, there exists a q-strong 1-marked family T0 from F with ∣T0∣ ≥
εn!. We can thus apply Theorem 4.7 with this T0 to obtain a nested sequence T∣P∣ ⊆
⋅ ⋅ ⋅ ⊆ T0 of q-strong 1-marked chain families such that property 1 holds for M j ∶=
T j[q]. Moreover, Theorem 4.7 guarantees ∣T j ∣ ≥ ∣T∣P∣∣ ≥ 2ε

3 n!, so applying Lemma 4.3
to T j gives property 2, completing the proof. ∎

4.3 Tools for induced posets

Throughout this section, let P be a fixed tree poset of height k ≤ q. Given a set F ∈ Bn ,
we let U(F) = {S ∈ Bn ∶ S ⊇ F} and D(F) = {S ∈ Bn ∶ S ⊆ F}. If S is a subfamily of
Bn , we let

U(S) = ⋃
S∈S

U(S) and D(S) = ⋃
S∈S

D(S).

Let

Comp(S) = U(S) ∪ D(S).
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Note that Comp(S) is the set of members of Bn which comparable to some member
of S.

Furthermore, given a set F and family S such that S ∩ U(F) = ∅, we set

D∗(F , S) = (D(F)/{F}) ∩ Comp(S) ∩ B̃n

and if S ∩ D(F) = ∅

U∗(F , S) = (U(F)/{F}) ∩ Comp(S) ∩ B̃n .

We call these sets the forbidden neighborhood of S with respect to F. We note that
these notions are needed only for the induced part of our proof. To that end, we need
two lemmas from [8].

Lemma 4.16 [Lemma 3.1 in [8]] Let F ∈ B̃n , S ⊆ B̃n , where S ∩ U(F) = ∅ and ∣S∣ ≤
n/6. Let χ be a uniformly random full chain in C. Then,

Prob[χ ∩ D∗(F , S) ≠ ∅∣F ∈ χ] ≤ 39∣S∣
√

n ln n
n

.

Lemma 4.17 [Lemma 3.2 in [8]] Let F ∈ B̃n , S ⊆ B̃n , where S ∩ D(F) = ∅ and ∣S∣ ≤
n/6. Let χ be a uniformly random full chain in C. Then,

Prob[χ ∩ U∗(F , S) ≠ ∅∣F ∈ χ] ≤ 39∣S∣
√

n ln n
n

.

LetM be a family of q-marked chains. Let i ∈ [q], F ∈ Bn . Recall that for each χ ∈ C,
we let M(χ, F , i) denote the set of all (χ, Q) ∈M such that F is the ith member of Q,
and we let M(F , i) = ⋃χ M(χ, F , i).

We say a family F ⊆ Bn is �-gapped if for every F , G ∈ F, with F ⊊ G, ∣G − F∣ ≥ �.
For q ≥ 1, we say that a q-marked chain family M with markers from F is �-gapped if
F is �-gapped.

Definition 4.18. Fix γ > 0. Let i , s ∈ [q]with i < s. We say that F ∈ Li(M) is (i , s, γ)-
bad with respect to an �-gapped family M, if there exist two families of sets W1 ,W2 ⊆
B̃n such that the following conditions hold:
(1) W1 ∩ U(F) = ∅ and ∣W1∣ ≤ ∣P∣.
(2) ∣W2∣ ≤ γn�(s−i).
(3) For each (χ, Q) ∈M(F , i), either Q ∩ D∗(F ,W1) ≠ ∅ or the sth member of Q is

in W2.

Definition 4.19. Similarly for i , s ∈ [q] with i > s, we say that F ∈ Li(M) is (i , s, γ)-
bad with respect to an �-gapped family M if there exists two families of sets W1 ,W2 ⊆
B̃n such that the following conditions hold:
(1) W1 ∩ D(F) = ∅ and ∣W1∣ ≤ ∣P∣.
(2) ∣W2∣ ≤ γn�(i−s).
(3) For each (χ, Q) ∈M(F , i), either Q ∩ U∗(F ,W1) ≠ ∅ or the sth member of Q is

in W2.

This next lemma connects this newly defined notion of badness with the badness
notion defined in the previous section.
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Lemma 4.20 For every δ > 0, and every �, q positive integers, there exists γ = γ(δ, �, q)
such that the following holds for every i , s ∈ [q] such that i ≠ s. Let M be an �-gapped
family of q-marked chains with markers from B̃n and let F ∈ Li(M). Suppose F is
(i , s, γ)-bad with respect to M and that n is sufficiently large.
• If i < s, then F is (i , δ)-lower bad with respect to M.
• If i > s, then F is (i , δ)-upper bad with respect to M.

Proof We will only prove the case i < s, the other case is analogous. Because F is
(i , s, γ)-bad, there exist two setsW1 ,W2 satisfying the conditions in the definition and
we will choose W2 to be minimal, i.e., no W′2 ⊊W2 satisfies condition three with W1.
Observe that this minimality of W2 implies that every D ∈W2 is in the sth position of
some q chain in M(F , i).

We will show that F is (i , δ)-lower bound with respect to M with W ∶=W2 ∪
D∗(F ,W1) being an (i , δ)-lower witness. Since M is �-gapped and for all D ∈W2, D
is in the sth position of some q-chain in M(F , i), we have ∣F − D∣ ≥ �(s − i). Since n is
sufficiently large and F , D ∈ B̃n , ∣F − D∣ ≤ n/6. Thus, for a uniformly chosen random
full chain χ ∈ C, we have

Prob[χ ∩W2 ≠ ∅∣F ∈ χ] ≤ ∑
D∈W2

1
( ∣F∣∣F−D∣)

by (4.5)

≤ ∣W2∣
1

( n/3
�(s−i))

≤ γn�(s−i)(3�(s − i))�(s−i)n−�(s−i)

≤ γ(3�(s − i))�(s−i)

≤ δ
2

,

by the choice of γ = δ
2(3�q)�q . On the other hand by Proposition 4.16,

Prob[χ ∩ D∗(F ,W1) ≠ ∅∣F ∈ χ] ≤ 39∣P∣
√

n ln n
n

≤ δ
2

.

Thus, by the union bound,

Prob[χ ∩W ≠ ∅∣F ∈ χ] ≤ δ.

This implies that F is (i , δ)-lower bad, because by definition, every (χ, Q) ∈M(F , i)
intersects W. ∎

5 Embedding tree posets

In this section, we use the tools developed in the previous section to prove our two
main supersaturation results: Theorem 1.3 and a balanced supersaturation version
of Corollary 1.4 stated formally as Theorem 5.6. Both of these proofs will follow
essentially the same scheme for embedding a tree poset P into a large family F one
member at a time by using Theorem 4.15 to show that at every step, we always have
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many choices for how to embed the next member of P even when we forbid some
number of “bad” choices in F.

5.1 Embedding process

We establish the following general embedding result Theorem 5.2 using Theorem 4.15.
It basically states that given some sufficiently sparse forbidden set Γ ⊆ 2F , we can
grow many induced copies of P not in Γ. For the non-balanced supersaturation, we
actually do no need to have such a forbidden set (i.e., Γ = ∅) but for the balanced
supersaturation result, Γ will be the upward closure of all the sets which are already
contained in too many induced copies (i.e., saturated sets) of P in the current
collection.

Definition 5.1. Given an �-gapped family F, we say a collection Γ ⊆ 2F is a (γ, �,F)-
bounded family if it satisfies the two properties below:

(1) We have {F} ∉ Γ for all F ∈ F.
(2) If D /∈ Γ, then the number of F ∈ F such that {F} ∪D ∈ Γ is less than γn�.

Theorem 5.2 Let P be a tree poset of height k. Let q ≥ k and � be positive integers and
ε > 0 then there exists a constant γ = γ(ε, q, �) such that the following holds for any v ∈ P
and for any r ∶ P → [q] a poset homomorphism. Let F ⊆ B̃n be an �-gapped family and
has Lubell weight μ(F) ≥ q − 1 + ε and Γ a ( γ

2 , �,F)- bounded family. Then, there is
F ∈ F such that the number of injective induced homomorphisms φ ∶ P → F′ satisfying
φ(P) /∈ Γ and φ(v) = F is at least

(γ
2
)
∣P∣−1 ⎛

⎝ ∏
x y∈H(P)

n�∣r(y)−r(x)∣⎞
⎠

.

Proof Because P is a tree poset, there exists an ordering v1 , v2 , . . . v∣P∣ of the members
of P with v1 = v such that every member v j with j ≥ 2 has exactly one neighbor v j′ with
j′ < j in the Hasse diagram of P, and we call this v j′ the parent of v j .

Apply Theorem 4.15 to F with q, ε to find a δ = δ(ε, q) > 0 and a nested sequence
of q-marked chains M∣P∣ ⊆M∣P∣−1 ⊆ ⋅ ⋅ ⋅ ⊆M0 with markers from F such that for all
j ∈ [∣P∣], we have that for each (χ, Q) ∈M j and F ∈ Q, we have that F is δ-robust with
respect to M j−1.

Fix γ be obtained from Lemma 4.20 applied with q, �, δ.
Fix F0 ∈ Lr(v1)(M∣P∣) and define our initial embedding φ1(v1) ∶= F0. To define the

final embedding, we iteratively extend φ j ∶ {v1 , v2 , . . . , v j} → F to φ j+1 maintaining
the following properties:

(C1): Let H j(P) ∶= H(P)[{v1 , v2 , . . . , v j}], that is, the Hasse diagram induced by the
first j elements of P. For all edges vavb in H j(P), there exists a (χ, Q) in M∣P∣− j

with φ j(va) in the r(va)th position of Q and φ j(vb) in the r(vb)th position of
Q.

(C2): For all noncomparable pairs va , vb ∈ {v1 , . . . , v j}2, φ j(va) and φ j(vb) are not
comparable in Bn .

(C3): {φ j(v1), φ j(v2), . . . φ j(v j)} /∈ Γ.
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Note that these properties are satisfied for φ1, since (C1) and (C2) both hold
vacuously and (C3) holds because F0 /∈ Γ by Definition 5.1 part 1.

Let us emphasize that the choice of F0 and (C1) ensures φ j(vc) ∈ Lr(vc)(M∣P∣− j)
for all vc ∈ {v1 , . . . v j}. This will be useful later.

Furthermore, (C1) and (C2) ensure the poset induced by
φ j+1(v1), φ j(v2), . . . , φ j(v j) has Hasse diagram isomorphic to H j(P). As two
posets are isomorphic if and only if their Hasse diagrams are isomorphic, by the end
of the process, we will obtain an induced copy P′ of P. Let us now show that indeed
these partial embeddings are possible to construct, and count how many choices we
have at each step.

Now, let j ≥ 1 and suppose (C1)–(C3) hold for φ j . We want to extend φ j to a partial
embedding φ j+1 so that (C1)–(C3) hold for φ j+1.

For notational convenience let x ∶= v j+1, and let y denote the unique parent of x
which has already been embedded. We wish to find at least one way of embedding
x. For further convenience, we only consider the case y >P x, the other case being
analogous. This, in particular, implies r(y) < r(x).

Recall the formal definition of D∗(F , S) from Section 4.3 for a member F ∈ F and
a family S which is simply the set of all members S ∈ S, which are downsets of F and
are comparable to some set of S. Furthermore, let M̂∣P∣− j−1 ∶=M∣P∣− j−1(φ j(y), r(y)),
that is the family of all q-marked chains in M∣P∣− j−1, which have φ j(y) in their r(y)th
position. Let P j = {φ j(z) ∶ z /≥P y, z ∈ {v1 , v2 , . . . , v j}}, that is, the set of all images of
currently embedded elements of P which are either below y or incomparable with y,
and thus not cannot be comparable with φ j+1(x) because in the embedding φ j , x has
the unique neighbor y.

The following set encodes the choices for x that would preserve φ j+1 being an
induced homomorphism. Now, let

A = Lr(x)(M̂∣P∣− j−1) − D∗(φ j(y),P j),

i.e., this is the set of F which are not in the forbidden neighborhood of P j and which
are in the r(x)th position of some q-marked chain of M∣P∣− j−1, which has φ j(y) in the
r(y)th position.

Claim

∣A∣ ≥ γn�(r(x)−r(y)). ∎

Proof of Claim 5.3 Suppose ∣A∣ < γn�(r(x)−r(y)). We derive a contradiction by
showing this would imply φ j(y) is (r(y), r(x), γ)-bad (recall Definition 4.18) with
W1 = P j and W2 = A. This is a contradiction because Lemma 4.20 implies that φ j(y)
is (r(y), δ)-bad with respect to M∣P∣− j−1. However, this cannot happen since we
constructed our marked chain families using Theorem 4.15 which guarantees that
φ j(y) is δ-robust with respect to M∣P∣− j−1 (see Definition 4.6).

Note that by definition of P j , we have P j ∩ U(φ j(y)) = ∅ and ∣P j ∣ ≤ ∣P∣, and
by hypothesis, we are assuming ∣W2∣ ≤ γn�(r(x)−r(y)). It thus remains to check the
last condition in the definition of (r(y), r(x), γ)-badness, i.e., that for each (χ, Q) ∈
M̂ ∣P∣− j−1, either Q ∩ D∗(φ j(y),P j) ≠ ∅ or Q contains a member fromA in the r(x)th
position.
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Consider any (χ, Q) ∈ M̂∣P∣− j−1. If Q ∩ D∗(φ j(y),P j) = ∅, then the r(x)th mem-
ber of Q lies in A by definition of A. Therefore, every (χ, Q) ∈ M̂∣P∣− j−1 has Q either
intersecting D∗(φ j(y),P j) or A. ∎

Let A′ = A − {F ∈ F ∶ {F , φ j(v1), φ j(v2), . . . φ j(v j)} ∈ Γ}. By (C3) and Definition
5.1, ∣A′∣ ≥ 1

2 γn�(r(x)−r(y)). Fix one such F ∈ A′. We claim that by embedding x into any
set in A′, we will extend φ j to φ j+1, satisfying all the desired properties (C1)–(C3).
Indeed, define φ j+1(va) = φ j(va) for all a ∈ [ j] and φ j+1(x) = F. Let us now check
that φ j+1 satisfies (C1)–(C3).

Since M∣P∣− j ⊆M∣P∣− j−1, for all a, b ∈ [ j], (C1) and (C2) hold for all such pairs so
we only need to check that these two conditions are satisfied for pairs of form (x , va)
for any a ∈ [ j].

By definition of A, φ j+1(x) is in the r(x)th position of some (χ, Q) ∈M∣P∣− j−1,
which has φ j+1(y) in the r(y)th position.

Let a ∈ [ j], and suppose va is not comparable with x. We would like to show that
φ j+1(va) and F are incomparable. It is easy to see that va /≥ y, so φ j+1(va) = φ j(va) ∈
P j . Since F ∈ D(φ j(y))/D∗(φ j(y),P j) by our choice, F is not comparable with any
element in P j , in particular, φ j+1(va).

To see φ j+1 satisfies (C3), notice that F was chosen so that
{F , φ j(v1), φ j(v2), . . . φ j(v j)} /∈ Γ.

Finally, to check that the desired counting bound does hold, it is enough to observe
that at every step while going from φ j to φ j+1 starting at j ≥ 2 we had at least
1
2 γn�(r(x)−r(y)) many choices to embed x = v j+1, where y is the parent of x among
already embedded vertices v1 , v2 , . . . , v j . Taking the product over all j = 2, . . . , ∣P∣ − 1
gives us the desired result.

5.2 Proof of Theorem 1.3

We begin by proving an analog of Theorem 1.3 in the setting of Lubell weight and
�-gapped families and deduce Theorem 1.3 from it.

Theorem 5.4 For every tree poset P of height k, positive integers q, � with q ≥ k, and
ε > 0, there exists γ = γ(ε, q, �) such that the following holds for any r ∶ P → [q] a poset
homomorphism. Let F ⊆ B̃n be an �-gapped family such that for all S ⊆ F with ∣S∣ = N ,
we have μ(F − S) ≥ q − 1 + ε. Then, the number of induced copies of P in F is at least

(γ
2
)
∣P∣−1 ⎛

⎝ ∏
x y∈H(P)

n�∣r(y)−r(x)∣⎞
⎠
⋅ N .

Proof Let v be any vertex of P and γ = γ(ε, q, �) the real number returned by
Theorem 5.2 applied with ε, q, �.

Assume on the contrary that F contains less than

(γ
2
)
∣P∣−1 ⎛

⎝ ∏
x y∈H(P)

n�∣r(y)−r(x)∣⎞
⎠
⋅ N ,

induced copies of P.
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Let Fb be the set of elements in F which are embedded as v in more than
( γ

2 )
∣P∣−1

∏x y∈H(P) n�∣r(y)−r(x)∣ induced copies of P.
Since by assumption, we know that

∣Fb∣ ⋅ (
γ
2
)
∣P∣−1

∏
x y∈H(P)

n�∣r(y)−r(x)∣ ≤ (γ
2
)
∣P∣−1 ⎛

⎝ ∏
x y∈H(P)

n�∣r(y)−r(x)∣⎞
⎠
⋅ N ,

:⇒ ∣Fb∣ ≤ N .

Let F′ = F − Fb. Then, μ(F′) ≥ q − 1 + ε by assumption.
Now, apply Theorem 5.2 to F′ with Γ = ∅, q, �, ε. Then, there is F ∈ F playing the

role of v in at least

(γ
2
)
∣P∣−1

∏
x y∈H(P)

n�∣r(y)−r(x)∣ ,

induced copies of P. This contradicts the construction of F′, and so F contains at least

(γ
2
)
∣P∣−1 ⎛

⎝ ∏
x y∈H(P)

n�∣r(y)−r(x)∣⎞
⎠
⋅ N ,

induced copies of P, completing the proof of the theorem. ∎

Lastly, we will need the following upper bound on M∗(n, q, P) in terms of all poset
homomorphisms r ∶ P → [q]. Recall that M∗(n, q, P) is the number of copies of P in
the q middle levels of Bn .

Lemma 5.5 If P is a tree poset and q is any positive integer, then

M∗(n, q, P) ≤ ∑
r

∏
x y∈H(P)

n∣r(x)−r(y)∣ ⋅ ( n
n/2),

where the sum ranges over all poset homomorphisms r ∶ P → [q].

Proof For ease of notation, let Mn ,q be the middle q layers of Bn . Given a poset
homomorphism r ∶ P → [q], we say that a copy P′ of P in Mn ,q is of type- r if for each
x ∈ P, the member Fx ∈ P′ corresponding to x lies in the r(x)th level ofMn ,q . Observe
that every copy of P ∈Mn ,q must be of type r for some r. As such, to prove the result,
it will suffice to show that for all homomorphisms r, the number of induced copies of
P or type r in Mn ,q is at most

∏
x y∈H(P)

n∣r(x)−r(y)∣ ⋅ ( n
n/2).

Let x1 , . . . , x∣P∣ be an ordering of P such that for all j ≥ 2x j has a unique neighbor,
called the parent of x j , among x1 , . . . , x j−1 if we view H(P) as an undirected graph.
Note that such an ordering exists since P is a tree poset. We can identify the copies
of P in Mn ,q of type-r by tuples (F1 , . . . , F∣P∣) of members of Mn ,q such that the map
f (x i) = Fi defines a copy of P of type r. So, it is enough to upper bound the number
of such tuples.
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Since F1 must be a member of the r(x1)th layer of Mn ,q , the number of choices for
F1 is at most ( n

n/2). Given that F1 , . . . , F j−1 have been selected, let x i be the parent of x j .
If x i < x j , then F j must be a set containing Fi together with r(x i) − r(x j) additional
elements from [n], and the number of such sets is at most nr(x i)−r(x j). Similarly if x j <
x i then the number of choices for F j is at most nr(x j)−r(x i). Multiplying the number of
choices for each step gives the total result, since each edge of H(P) is counted exactly
once by some n∣r(x i)−r(x j)∣ term. ∎

With all of this established, we can now complete the proof of our main supersat-
uration theorem.
Proof of Theorem 1.3 Using Chernoff bounds, it is standard [8, 21] to show that the
number of sets F ∈ Bn with ∣∣F∣ − n/2∣ > 2

√
n ln n is o(( n

n/2)). Thus, we may assume
F ⊆ B̃n .

Note that F is one-gapped and for every subfamily S of size N = ε
2(

n
n/2), we have

that μ(F − S) ≥ q − 1 + ε
2 . Thus, applying Theorem 5.4 with F, q, � = 1, ε

2 and taking
the maximum over r ∶ P → [q], we have that the number of induced copies of P in F

is at least

Ω
⎛
⎝

max
r
∏

x y∈H(P)
n∣r(y)−r(x)∣ ⋅ ( n

n/2)
⎞
⎠
= Ω
⎛
⎝∑r

∏
x y∈H(P)

n∣r(y)−r(x)∣ ⋅ ( n
n/2)

⎞
⎠
= Ω (M∗(n, q, P)) ,

where the first equality holds since there are at most ∣P∣q = Oq ,P(1) possible poset
homomorphisms r ∶ P → [q], and the second does because of Lemma 5.5. ∎

5.3 Balanced supersaturation

As mentioned above, a similar proof to that of Theorem 1.3 can be used to improve
Corollary 1.4 to a balanced supersaturation result. To state this formally, given a
hypergraph H and a set of vertices D, we define the degree degH(D) of D to be
the number of edges of H containing the set D, and for an integer j, we define the
maximum j-degree as

Δ j(H) ∶= max
D⊆V(H),∣D∣= j

degH(D).

Given a collection H of induced copies of a poset P in a family F, we can identify H

as a ∣P∣-uniform hypergraph with vertex set F and with hyperedges consisting of sets
of members of F which form an induced copy of P in H. With this, we can now state
our balanced supersaturation result, where here we recall that a family F is �-gapped
if ∣F − G∣ ≥ � for all F , G ∈ F with G ⊊ F.
Theorem 5.6 For every tree poset P with height k, real number ε > 0, and integer �;
there exists δ = δ(ε, P, �) such that the following holds. Let n be sufficiently large andF ⊆
B̃n satisfy ∣F∣ ≥ (k − 1 + ε)( n

n/2), and suppose F is �-gapped. Then, there is a collection
H of induced copies of P from F satisfying
(1) ∣H∣ ≥ δ∣P∣n�(∣P∣−1)( n

n/2);
(2) Δ j(H) ≤ (δn�)∣P∣− j for all 1 ≤ j ≤ ∣P∣.

Note that this in particular implies Corollary 1.4 since every F is 1-gapped.
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Lemma 5.7 For every tree poset P with height k and ε > 0, there exists a δ = δ(ε, �, P)
such that the following holds. Let n be sufficiently large and F ⊆ Bn satisfy ∣F∣ ≥ (k − 1 +
ε)( n

n/2) and suppose F is �-gapped. If H is a collection of copies of P from F satisfying

(P1). ∣H∣ ≤ δ∣P∣n�(∣P∣−1)( n
n/2);

(P2). for all 1 ≤ j ≤ ∣P∣, Δ j(H) ≤ (δn�)∣P∣− j ,
then there exists an induced copy P′ of P not in H such that H′ =H ∪ {P′} satisfies

Δ j(H′) ≤ (δn�)∣P∣− j

for all 1 ≤ j ≤ ∣P∣.

Observe that Theorem 5.6 follows immediately from repeatedly applying Lemma
5.7 until ∣H∣ ≥ δ∣P∣n�(∣P∣−1)( n

n/2), so it will suffice to prove this result.

Proof We say that D ⊆ Bn is saturated if 1 ≤ ∣D∣ ≤ ∣P∣ and

deg(D) = ⌊(δn�)∣P∣−∣D∣⌋.

We say a subfamily K ⊆ Bn with ∣K∣ ≤ ∣P∣ is inadmissible if there exists a subfamily
D ⊆K that is saturated. Otherwise, we say K is admissible.

Observe that proving the lemma is equivalent to saying that there exists an
admissible set K which forms an induced copy of P which is not already in H. To
show this, we will start by removing from F any F such that {F} is saturated, as no
such F can ever be used in an admissible K. For this, we observe the following.

Claim If Fsat ⊆ F denotes the set of F ∈ F such that {F} is saturated, then ∣Fsat∣ ≤
ε
2(

n
n/2). ∎

Here and throughout the proof, we will make frequent use of the inequality
⌊(δn�)∣P∣−i⌋ ≥ 1

2 (δn�)∣P∣−i for all i ≤ ∣P∣, since n is sufficiently large.

Proof of Claim 5.8 We first show that

⌊(δn�)∣P∣−1⌋ ⋅ ∣Fsat∣ ≤ ∑
F∈Fsat

deg({F}) ≤ ∣P∣ ⋅ ∣H∣.

Indeed, the lower bound for the sum follows from the definition of what it means for
{F} to be saturated; the upper bound comes from the fact that the sum counts the
number of pairs (P′ , F) with P′ a copy of P in H and F ∈ P′ ∩ Fsat.

Using the inequality above together with (P1) shows that

1
2
(δn�)∣P∣−1 ⋅ ∣Fsat∣ ≤ ⌊(δn�)∣P∣−1⌋ ⋅ ∣Fsat∣ ≤ ∣P∣ ⋅ ∣H∣ ≤ ∣P∣ ⋅ δ∣P∣n�(∣P∣−1)( n

n/2),

and rearranging gives the desired result, by choosing δ sufficiently small with respect
to ε, P. ∎

Define F′ ∶= F −Fsat. Note that

∣F′∣ ≥ (k − 1 + ε/2)( n
n/2).
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For every K ⊆ Bn , let us define

Z(K) ∶= {F ∈ F′ ∶ {F} ∪K is inadmissible}.

The intuition here is that if we have already partially built some set K to eventually
be used in a copy of P, thenZ(K) represents the set of “bad choices” of F that we could
add to K to make it inadmissible. A simple double counting argument shows that the
number of such “bad choices” is relatively small.

Claim For any admissible K ⊆ Bn and ∣K∣ ≤ ∣P∣, we have

∣Z(K)∣ ≤ 2∣K∣ ⋅ 2δ∣P∣n� .

Proof of Lemma 5.9 For every subfamily D ⊆K, let

S(D) ∶= {F ∈ Bn ∶ {F} ∪D is saturated}.

Observe that since K is admissible, having {F} ∪K inadmissible implies that
the subsets of {F} ∪K that are saturated must be of the form {F} ∪D for some
D ⊆K, i.e., we have Z(K) = ⋃D⊆K S(D). Moreover, because every F ∈ Z(K) ⊆ F′

is unsaturated, we have that S(∅) = ∅. In total, then we see that

Z(K) = ⋃
D⊆K,D≠∅

S(D),(5.6)

and it now suffices to bound ∣S(D)∣ for each D ≠ ∅.
Fix some D ⊆K non-empty. Let E denote the set of pairs (P′ , F), where P′ is a

copy containing D and F ∈ P′ is arbitrary. Let E′ ⊆ E be the set of tuples (P′ , F) ∈ E
with the additional property that F ∈ S(D). With this, we see

∑
F∈S(D)

deg({F} ∪D) = ∣E′∣ ≤ ∣E∣ = ∣P∣deg(D).(5.7)

Since {F} ∪D is saturated for each F ∈ S(D), we have deg({F} ∪D) =
⌊(δn�)∣P∣−∣D∣−1⌋. Since D ⊆K is unsaturated (because K is admissible), we have
deg(D) ≤ (δn�)∣P∣−∣D∣. Therefore, (5.7) implies

∣S(D)∣⌊(δn�)∣P∣−∣D∣−1⌋ = ∑
F∈S(D)

deg({F} ∪D) ≤ ∣P∣deg(D) ≤ ∣P∣(δn�)∣P∣−∣D∣.

This implies

∣S(D)∣ ≤ 2δ∣P∣n� .

This together with (5.6) gives ∣Z(K)∣ ≤ 2∣K∣ ⋅ 2δ∣P∣n� as desired. ∎

To complete the proof, let γ = γ(ε, k, �) be derived from Theorem 5.2 applied with
parameters P, q = k, �, and ε

2 . We let Γ be the set of all inadmissible sets. Note that by
choosing δ sufficiently small with respect to γ, we may ensure that for allK admissible,
Z(K) ≤ γ

2 n� by Claim 5.9. This guarantees Γ to be ( γ
2 , �,F′)-bounded family. Now,

applying Theorem 5.2 to F′, Γ, and any v ∈ P, we obtain an induced copy P′ of P such
that deg(D) < ⌊(δn�)∣P∣−∣D∣⌋ for allD ⊆ P′, and so P′ /∈H. Adding P′ to our collection
H preserves the desired maximum degree condition.
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6 Using balanced supersaturation

In this section, we use our balanced supersaturation result Theorem 5.6 together with
the powerful method of hypergraph containers in order to prove Theorems 1.5 and 1.6.
In the next section, we prove our main container result Theorem 6.4, after which we
use it together with standard arguments to conclude our main results.

6.1 Hypergraph containers

For a hypergraph H, we let I(H) be the set of independent sets of H.

Lemma 6.1 (Container Lemma [2, 40]) For every a ∈ N and c > 0, there exists a δ > 0
such that the following holds. Let τ ∈ (0, 1) and suppose H is a a-uniform hypergraph
on N vertices such that

Δb(H) ≤ cτb−1 ∣H∣
N

for every 1 ≤ b ≤ a. Then, there exists a family C of subsets of V(H) and a function
f ∶ 2V(H) → C such that:
(1) For every I ∈ I(H), there is a T(I) ⊆ I with ∣T(I)∣ ≤ a ⋅ τN and I ⊆ f (T(I)) ∪

T(I).
(2) ∣C∣ ≤ (1 − δ)N for every C ∈ C.

Given a poset P, let GP be the ∣P∣-uniform hypergraph with vertex set Bn , where a
set is hyperedge if the poset the set induces is isomorphic to P.

Fix a tree poset P of height k. For subsets F ⊆ Bn , we define

τ(F, k) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
n if ∣F∣ < 3k( n

n/2)
1

n3 if ∣F∣ ≥ 3k( n
n/2).

We will use Theorem 5.6 to prove the following result.

Corollary 6.2 Let P be a tree poset of height k. Then, for every ε > 0, there exists δ =
δ(ε, k) > 0 such that the following holds. Let n ∈ N be sufficiently large and F ⊆ Bn with
∣F∣ ≥ (k − 1 + ε)( n

n/2). Then, there exists a collection C ⊆ 2F and a function f ∶ 2F → C

such that:
(1) For every set I ∈ I(GP[F]), there exists a T with ∣T(I)∣ ≤ ∣P∣ ⋅ τ(F, k)∣F∣ and

T(I) ⊆ I ⊆ f (T(I)) ∪ T(I).
(2) For every C ∈ C, ∣C∣ ≤ (1 − δ)∣F∣.

Proof If (k − 1 + ε)( n
n/2) ≤ ∣F∣ ≤ 3k( n

n/2), then we apply Theorem 5.6 with ε, � = 1, to
find a δ1 ∶= δ1(ε, P) and a subgraph H ⊆ GP[F] with properties:

(1) ∣H∣ ≥ δ∣P∣1 n∣P∣−1( n
n/2);

(2) Δ j(H) ≤ (δ1n)∣P∣− j for all 1 ≤ j ≤ ∣P∣.
Note that this satisfies the conditions of Lemma 6.1, with c = 2

δ∣P∣1
and τ = τ(F, k) = 1

n .
Applying Lemma 6.1 to H then gives the result.
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If ∣F∣ ≥ 3k( n
n/2), then we arbitrarily split F into t + 1 families F = F0 ∪F1 ∪ ⋅ ⋅ ⋅ ∪ Ft

such that ∣F0∣ < 3k( n
n/2) and each ∣Fi ∣ = 3k( n

n/2). For each Fi and j ∈ {0, 1, 2}, define

F
j
i ∶= {F ∈ Fi ∶ ∣F∣ ≡ jmod 3}.

Since the F j
i partition Fi , there exists some j, where ∣F j

i ∣ ≥ k( n
n/2). For this j, let F′i =

F
j
i .

Since F′i is a 3-gapped family, we may apply Theorem 5.6 to F′i with ε = 1
2 , � = 3, to

find a δ2 ∶= δ2(ε, P) a subgraph Hi ⊆ GP[Fi] with properties:

(1) ∣H∣ ≥ δ∣P∣2 n3(∣P∣−1)( n
n/2);

(2) Δ j(H) ≤ (δ2n)3(∣P∣− j) for all 1 ≤ j ≤ ∣P∣.
Consider now the collection H = ∪t

i=1Hi ⊆ GP[F], noting that because the Hi are
vertex disjoint we have Δ�(H) = maxi Δ�(Hi) for all 1 ≤ b ≤ ∣P∣, and hence

Δb(H) = max
j

Δb(H j) = (δ2n)3(∣P∣−b) ≤
6k
δ∣P∣2

n3(1−b) ⋅
tδ∣P∣2 n3(∣P∣−1)( n

n/2)

6kt( n
n/2)

≤
6k
δ∣P∣2

n3(1−b) ⋅
∣H∣
∣F∣

,

where this last step used that ∣F∣ ≤ 3k(t + 1)( n
n/2) ≤ 6kt( n

n/2) by how we defined t and
that ∣H∣ = ∑ ∣H j ∣ ≥ t ⋅ δ∣P∣2 n3(∣P∣−1)( n

n/2). With this, we can apply Lemma 6.1 to H with
c = 6k

δ∣P∣2
and τ = τ(F, k) = 1

n3 . ∎

In this section, we follow directly the framework set up in [10] following [2, 40].

Definition 6.3. A fingerprint of GP is a triple (T, g , C) such that:
(1) T is a collection of “certificates,” which are vectors T = (T1 , . . . , Tm) of disjoint

subsets of V(GP). For such a vector, we let T̂ = ⋃i Ti .
(2) g ∶ I(GP) → T is a “fingerprint function,” which satisfies ĝ(I) ⊆ I for every I ∈

I(GP).
(3) C ∶ T → 2V(GP) is a “container function” such that I ⊆ C(g(I)) for every I ∈

I(GP).

We will now apply Corollary 6.2 iteratively to construct a fingerprint of “small” size.
This fingerprint will then be directly used to prove Theorems 1.5 and 1.6.

Theorem 6.4 For every tree poset P of height k ≥ 2 and every ε > 0, there exists a
constant K = K(ε, P) > 0 and a fingerprint (T, g , C) of GP such that if n is sufficiently
large, the following holds:
(a) Every T ∈ T satisfies ∣T̂ ∣ ≤ K

n (
n

n/2).
(b) The number of members T ∈ T with ∣T̂ ∣ = s is at most

⎛
⎝

K( n
n/2)
s

⎞
⎠

s

exp(K
n
( n

n/2)) .

(c) ∣C(g(I))∣ ≤ (k − 1 + ε)( n
n/2) for every I ∈ I(GP).

To prove part (b) of this theorem, we will use Lemma 4.3 from [10], stated below.
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Lemma 6.5 Let M > 0, s > 0, and 0 < δ < 1. For any sequence (a1 , a2 , . . . , am) of real
numbers summing up to s such that 1 ≤ a j ≤ (1 − δ) j M for each j ∈ [m], we have

s log s ≤
m
∑
j=1

a j log a j + O(M).

Proof of Theorem 6.4 Let δ ∶= δ(ε, P) be given by Corollary 6.2, and choose K large
depending on ε, δ, ∣P∣, k. Let n be sufficiently large.

Fix some I ∈ I(GP), we will apply Corollary 6.2 a certain number of times,
which we will denote by m = m(I), to construct two sequences F1 ,F2 , . . .Fm+1 and
T1 , T2 , . . . Tm of subsets of V(GP).

First setF1 ∶= Bn . Then apply Corollary 6.2 toF1 with ε
2 . This gives us a T(I) of size

less than ∣P∣τ(F1 , k)∣F1∣ and a f (T(I)) of size less than (1 − δ)∣F1∣ such that I ⊆ T(I) ∪
f (T(I)). Let T1 = T(I) and F2 = f (T(I)) − T(I). In general, as long as ∣Fi ∣ ≥ (k −
1 + ε

2 )(
n

n/2), apply Corollary 6.2 to Fi with ε
2 . This gives a T(I) and an f (T(I)) such

that T(I) ⊆ Fi ∩ I andFi ∩ I ⊆ f (T(I)) ∪ T(I). Let Ti = T(I), andFi+1 = f (T(I)) −
T(I).

It is easy to see that the above construction will inductively maintain the following
properties for all i:

(i) I ⊆ Fi+1 ∪ T1 ∪ T2 ∪ ⋅ ⋅ ⋅ ∪ Ti ;
(ii) Fi+1 , T1 , . . . Ti are pariwise disjoint;
(iii) Fi+1 depends only on Fi and Ti ;
(iv) ∣Fi+1∣ ≤ (1 − δ)∣Fi ∣.

We define our fingerprint (T, g , C) of GP by setting

g(I) ∶= (T1 , T2 , . . . Tm) and C(g(I)) ∶= Fm+1 ∪ T1 ∪ ⋅ ⋅ ⋅ ∪ Tm ,

and letting T ∶= {g(I) ∶ I ∈ I(GP)}. Note that property (iii) implies that C is well
defined, as the choice of Fm+1 does not depend on I, while property (i) guarantees
that it is a container function. Similarly, (ii) together with how we constructed Ti
guarantees that g is a fingerprint function.

In order to check that the constructed fingerprint satisfies the conditions of the
theorem, we first bound the sizes of the Ti ’s, and then the number of iterations.

To begin, let 2 ≤ m0 ≤ m be minimum such that ∣Fm0 ∣ ≤ 3k( n
n/2) and observe that

by property (iv) and definition of τ(F, k):

τ(Fi , k)∣Fi ∣ ≤
⎧⎪⎪⎨⎪⎪⎩

n−3 ⋅ 2n if i < m0 ,
n−1 ⋅ (1 − δ)i−m0 3k( n

n/2) otherwise.

Since ∣Fi ∣ decays at a geometric rate by (iv), we have that m = Oε ,P(log n) and m −
m0 = Oε ,P(1).

We thus have the following:

m0−1
∑
i=1

τ(Fi , k)∣Fi ∣ ≤
m2n

n3 ≪ 1
n2 (

n
n/2) and

m
∑

i=m0

τ(Fi , k)∣Fi ∣ =
Oε ,P(1)

n
( n

n/2).(6.8)
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Thus, by Corollary 6.2, ∣Ti ∣ ≤ ∣P∣τ(Fi , k)∣Fi ∣, and therefore
m0−1
∑
i=1

∣Ti ∣ ≤
m2n

n3 ≪ 1
n2 (

n
n/2) and

m
∑

i=m0

∣Ti ∣ =
Oε ,P(1)

n
( n

n/2).(6.9)

Since ∣ĝ(I)∣ = ∑m
i=1 ∣Ti ∣, we have the bound in (a).

Similarly, n is sufficiently large

∣C(g(I)) = ∣Fm+1∣ + ∣T1 ∪ ⋅ ⋅ ⋅ ∪ Tm ∣ ≤ (k − 1 + ε)( n
n/2),

proving part (c) of the theorem.
It remains to prove (b). Recall that T is a collection of sequences T =

(T1 , T2 , . . . Tm), where m can be arbitrary. We are looking to count the number T ∈ T
such that ∣T̂ ∣ = ∑m

i=1 ∣Ti ∣ = s. To do this, we will partition T into subfamilies of form
T(m0 , t) for all m0 ∈ N and t = (t1 , t2 , . . . , tm) in N

m . We collect in T(m0 , t) all
T = (T1 , T2 , . . . Tm) ∈ T such that ∣Ti ∣ = t i for all i ∈ [m] and m0 is the minimum
integer for which ∣Fm0 ∣ ≤ 3k( n

n/2). Notice that while Fm0 were produced for various I,
a fixed Fm0 depends only on T1 , T2 , . . . Tm0 by property (iii).

Let s1 = ∑m
i=m0

t i , and observe that Lemma 6.5 applied with M = 3k
n (

n
n/2), s = s1,

and δ implies
m
∑

i=m0

t i log t i ≥ s1 log s1 +
Oε ,P(1)

n
( n

n/2) :⇒

m
∑

i=m0

t i log 1
t i
≤ s1 log 1

s1
+ Oε ,P(1)

n
( n

n/2).

We also observe that by (6.9), we have that
m0−1
∑
i=1

t i ≪
1

n2 (
n

n/2).(6.10)

Using all this together with the observation that each Ti is a subset of the correspond-
ing Fi for all i, together with ∣Fi ∣ ≤ 2n and the definition of m0, we find that

∣T(m0 , t)∣ ≤
m0−1
∏
i=1

(2n

t i
)

m
∏

i=m0

(3k( n
n/2)

t i
)

≤ (
m0−1
∏
i=1

2t i n)
⎛
⎝
[3ek( n

n/2)]
s1 m
∏

i=m0

( 1
t i
)

t i⎞
⎠

= exp
⎛
⎝

log(2)n
m0−1
∑
i=1

t i + s1 log(3ek( n
n/2)) +

m
∑

i=m0

t i log 1
t i

⎞
⎠

≤ exp(Oε ,P(1)
n

( n
n/2) + s1 log(3ek( n

n/2)) + s1 log 1
s1
+ Oε ,P(1)

n
( n

n/2))

= (3ek
s1

( n
n/2))

s1

exp(Oε ,P(1)
n

( n
n/2)) .
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Since this final expression is a monotone function in s1 over the interval
(0, 1

3ek (
n

n/2)), we may replace s1 with the larger value s ≤ K
n (

n
n/2) (with this bound

for s using (a)). There are only 2O(n log n) choices for t and O(log(n)) choices for both
m0 and m, so the claimed bound holds by summing the bound above over all possible
T(m0 , t). ∎

6.2 Applications of container lemma

We will now prove Theorem 1.5.

Theorem 6.6 (Restatement of Theorem 1.5) For every ε > 0 and P a tree poset of height
k, there exists an n0 such that if n ≥ n0, then the number of induced P-free sets in Bn is
at most

2(k−1+ε)( n
n/2).

Proof Recall that GP is the hypergraph on vertex set Bn , where each edge corre-
sponds to an induced copy of P, and hence the number of induced P-free subsets of
Bn is exactly the number of independent sets of GP .

Now, apply Theorem 6.4 to GP with ε/2, P to find a constant K = K(ε, P) > 0 and
a fingerprint (T, g , C) of GP such that the following holds if n is sufficiently large:
(1) Every T ∈ T satisfies ∣T̂ ∣ ≤ K

n (
n

n/2).
(2) The number of members of T of size s is at most

⎛
⎝

K( n
n/2)
s

⎞
⎠

s

exp(K
n
( n

n/2)) .

(3) ∣C(g(I))∣ ≤ (k − 1 + ε
2)(

n
n/2) for every I ∈ I(GP).

(4) Every I ∈ I(GP) satisfies I ⊆ C(g(I)).
Thus, the number of independent sets I ∈ I(GP) at most the sum over all T ∈ T the

number of subsets of C(T), and so we have the following bound:

∣I(GP)∣ ≤
K
n (

n
n/2)

∑
s=1

∣{T ∈ T ∶ ∣T ∣ = s}∣2(k−1+ ε
2 )(

n
n/2)

≤
K
n (

n
n/2)

∑
s=1

⎛
⎝

K( n
n/2)
s

⎞
⎠

s

exp(K
n
( n

n/2)) 2(k−1+ ε
2 )(

n
n/2)

≤ K
n
( n

n/2)n
K
n (

n
n/2) exp(K

n
( n

n/2)) 2(k−1+ ε
2 )(

n
n/2)

≤ 2(k−1+ε)( n
n/2) ,

as desired. ∎
Theorem 6.7 (Restatement of Theorem 1.6) Let P be a tree poset of height k. Let
P(n, p) be the uniformly random subset of Bn , where each set survives with probability
p such that pn →∞. Then with high probability, the largest induced P-free subset of
P(n, p) has size (k − 1 + o(1))p( n

n/2).
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Proof Let k ≥ 2 and ε > 0 be arbitrary, and let K = K(ε, P) > 0 and (T, g , C) be the
constant and fingerprint given by Theorem 6.4 applied to GP with ε, P. Let n ∈ N be
sufficiently large, and note that we may assume pn ≥ Kε−1 since pn →∞. Let P(n, p)
be the uniformly random subset of Bn , where each set survives with probability p.
Suppose I ⊆ P(n, p) is an induced P-free subset (or equivalently an independent set
of GP) of size at least (k − 1 + 3ε)p( n

n/2). Then, it follows that ĝ(I) ⊆ P(n, p) and

∣C(g(I)) ∩P(n, p)∣ ≥ (k − 1 + 3ε)p( n
n/2).

Let X be the number of elements of T for which these two properties T̂ ⊆ P(n, p)
and ∣C(T) ∩P(n, p)∣ ≥ (k − 1 + 3ε)p( n

n/2) hold. Then,

E(X) ≤ ∑
T∈T

Prob(T̂ ⊆ P(n, p)) ⋅ Prob(∣C(T) ∩P(n, p) − T̂ ∣ ≥ (k − 1 + 2ε)p( n
n/2)) ,

where we used that ∣T̂ ∣ ≤ K
n (

n
n/2) ≤ εp( n

n/2) and T̂ ⊆ C(T) by the lower bound on pn
and Theorem 6.4.

Note, by Lemma 2.1, applied with δ = ε
k−1+ε , we obtain the following:

Prob(∣C(T) ∩P(n, p) − T̂ ∣ ≥ (k − 1 + 2ε)p( n
n/2)) ≤ 2 exp(− ε2

3k
p( n

n/2)) .

Hence, by properties of (T, g , C) guaranteed by Theorem 6.4 and the above
inequality, we have

E(X) ≤
K
n (

n
n/2)

∑
s=1

⎛
⎝

K( n
n/2)
s

⎞
⎠

s

exp(K
n
( n

n/2)) ⋅ ps ⋅ 2 exp(− ε2 p
3k

( n
n/2))

≤
K
n (

n
n/2)

∑
s=1

⎛
⎝

K p( n
n/2)

s
⎞
⎠

s

exp(K
n
( n

n/2)) ⋅ 2 exp(− ε2 p
3k

( n
n/2))

≤ 2K
n
( n

n/2) exp(K
n
( n

n/2)(log(pn) + 1) − ε2 p
3k

( n
n/2)) .

Therefore, by Markov’s inequality and pn ≫ log(pn) ≫ 1, we have that

Prob(α(GP[P(n, p)]) ≥ (k − 1 + 3ε)p( n
n/2)) ≤ exp(− ε2 p

6k
( n

n/2)) → 0

as n →∞, as required. ∎
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