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ABSTRACT.

Large-scale glacier mass balance models often rely on positive-degree-day

(PDD) melt models, which have known limitations. This study evaluates a rel-

atively simple, elevation-dependent surface energy balance (SEB) model that

requires minimal downscaling of climate input data to simulate glacier melt.

Using ERA5 reanalysis data and multi-year mass balance observations from

23 glaciers across Canada, we compare mass balance models incorporating

SEB and PDD components under various calibration scenarios. Initial tests

with the uncalibrated SEB model highlight the importance of accurate ERA5

inputs, particularly lapse-rate corrections for 2 m air temperature. Mass bal-

ance simulations with the SEB model that includes calibrated corrections for

precipitation and albedo match or outperform those with the PDD model,

especially when using a machine learning-derived albedo trained on remote

sensing albedo data, which tends to underestimate summer albedo in accu-

mulation zones. Seasonal calibration further improves accuracy of the mass

balance simulations by addressing biases in summer melt and winter accu-

mulation. Despite its simplicity, the SEB model provides a good balance of

performance and computational efficiency, emphasizing its utility for regional-

scale applications when calibrated appropriately.
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(http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided
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INTRODUCTION

Over the past decade, large-scale simulations of glacier mass changes predominantly use positive-degree-day

(PDD) models (e.g. Clarke and others, 2015; Huss and Hock, 2015; Maussion and others, 2019; Radi and

Hock, 2014; Rounce and others, 2023). These models, which estimate glacier melt based on the empirical

relationship between temperature and melt, are relatively straightforward to apply but have several known

limitations: they are often not transferable across different spatial and temporal scales (MacDougall and

others, 2011; Rounce and others, 2020), exhibit excessive sensitivity to temperature shifts (Pellicciotti

and others, 2005; Huss and others, 2008), and lack the capacity to provide process-based insights into

glacier responses to climate change. As a result, large-scale projections of glacier mass change still contain

significant uncertainties, particularly at the scale of individual glaciers and glacierized watersheds, where

the impacts of deglaciation on local freshwater supplies are most critical (Anderson and Radi, 2020). While

advances in non-linear melt models, such as deep learning approaches (Bolibar and others, 2020), overcome

some of the limitations of PDD models, they also fall short in delivering process-based understanding of

glacier-climate interactions. Although progress continues to be made in enhancing ice-dynamics modeling

with more physics-based approaches (Rounce and others, 2023), the melt modeling component continues

to rely on empirical methods, highlighting the need for physics-based melt models, such as surface energy

balance (SEB) models.

Using SEB models in large-scale glacier simulations presents substantial challenges due to the limited

availability of crucial climatic inputs, including shortwave and longwave radiation, wind speed, specific

humidity, and surface characteristics like albedo and roughness length, all of which need to be resolved

accurately at the glacier scale. Consequently, large-scale SEB models are rare and often depend on semi-

empirical methods that require calibration with mass balance observations (Giesen and Oerlemans, 2013;

Huss and Hock, 2018; Gunnarsson and others, 2023) or statistical downscaling techniques, which are

challenging to generalize across varying timescales (Shannon and others, 2019; Noël and others, 2018).

Even regional applications of complex SEB models, such as COSIPY (Sauter and others, 2020), require

calibration of parameters such as albedo with mass balance observations to achieve comparable performance

to PDD models (Temme and others, 2023). Until recently, mass balance observations for individual glaciers

covered fewer than 0.1 percent of glaciers worldwide. The availability of glacier-specific remote sensing

estimates from 2000 onward (Hugonnet and others, 2021) has facilitated broader model calibration over

multi-year timescales (e.g., Rounce and others, 2023; Temme and others, 2023; Zekollari and others, 2024;
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Hanus and others, 2024; Schuster and others, 2023; Compagno and others, 2022). While these estimates

align well with in-situ mass balance observations for long-term trends, significant discrepancies persist at

annual and sub-annual timescales (Hugonnet and others, 2021).

Recent advances in climate reanalysis products and the growing availability of remote sensing data

have created new opportunities to address some limitations in large-scale SEB modeling. For instance, the

ECMWF Reanalysis v5 (ERA5) reanalysis dataset (Hersbach and others, 2020) reasonably represents key

meteorological inputs for SEB models at glaciers in western Canada (Draeger and others, 2024). However,

while ERA5 provides surface albedo data, it poorly represents albedo at the glacier scale (Draeger and

others, 2024). In contrast, Moderate Resolution Imaging Spectroradiometer (MODIS) data (Hall and

Riggs, 2021) enables regional mapping of snow and ice albedo and are commonly used in SEB studies on

ice caps (Gascoin and others, 2017; Gunnarsson and others, 2023) and ice sheets (Stroeve and others, 2005;

Box and others, 2012). However, for mountain glaciers, MODIS-derived albedo presents larger errors and

more frequent data gaps (Davaze and others, 2018; Xiao and others, 2022), and its direct application in

regional-scale SEB models remains unexplored.

This study builds on recent advances by leveraging ERA5 climatic data and MODIS-derived albedo to

investigate physics-based melt modeling with minimal downscaling. Specifically, we evaluate an elevation-

dependent SEB model, with varying calibration levels, for glacier mass balance simulations and compare its

performance against the widely-used elevation-dependent PDD model. A central focus is on representing

glacier albedo in the SEB model, contrasting a simple empirical albedo model with a novel machine learning

approach trained on MODIS data. With the limitations of mass balance observations at sub-annual scales

such as those provided in the Hugonnet and others (2021) database in mind, we investigate the impact

of using seasonal versus annual mass balance data for model calibration. We evaluate model performance

across a diverse set of Canadian glaciers with in-situ mass balance observations, spanning varied climatic

regimesfrom small temperate valley glaciers in the Canadian Rockies and the maritime climate of the Coast

Mountains to large polythermal glaciers in the Arctic.

DATA AND METHODS

Study glaciers and their mass balance observations

We select 23 glaciers across Canada (Figure 1, Table 1), each with a minimum of three years of elevation-

based mass balance records since 1979 (WGMS, 2022). On average, these glaciers have 13 years of mass
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Fig. 1: Geographic distribution of glaciers included in this study, organized by subregion. Marker colors
and shapes represent subregions: red circles for West Coast, green squares for Rockies, orange diamonds
for East Coast, and blue stars for Arctic glaciers. The number of glaciers in each subregion is indicated by
corresponding colored labels. Red dots denote locations of on-glacier meteorological observation sites used
for ERA5 data comparison. Map projection: WGS84.

balance data post-1979, with individual records ranging from 3 to 39 years. The glaciers are clustered into

four geographic subregions: West Coast, Rockies, East Coast and Arctic (Figure 1). Devon Ice Cap North

West in the Arctic is the largest glacier in our sample at 765.44 kmš, though it represents an outlier in size,

with the next largest, Bridge Glacier, covering 81.98 kmš. The smallest glacier, Abraham Glacier, located

on Canadas East Coast, has an area of 0.503 kmš. Of the 23 glaciers 17 also have seasonal mass balance

measurements and mass balance profiles, allowing for more precise calibration of the elevation-dependent

mass balance model and a more comprehensive comparison of model outputs than possible with annual

mass balance data alone. Further details for each glacier are available in Table S3.

Climate data and downscaling

We use surface-level, hourly ERA5 reanalysis climate data at a 30 Œ 30 km grid resolution (Hersbach and

others, 2020) from 1979 to 2019 in this study. For each glacier, we select the reanalysis data from the nearest

ERA5 grid point to its central coordinates. Depending on the variable, hourly data is either averaged or

summed to produce daily values. The PDD model utilizes mean daily near-surface temperature, while the

SEB model relies on mean daily values for near-surface temperature, dewpoint temperature, wind speed,

surface pressure, as well as daily totals for incoming shortwave and longwave radiation, and precipitation.

Both daily precipitation and mean near-surface temperature are used in the accumulation model. To

demonstrate difference in these variables among the four subregions, we show their timeseries as area-
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weighted mean across all glaciers per subregion (Figure S1).

Among the meteorological inputs used in this study, we apply downscaling only to temperature by

lapse-rate correcting ERA5 temperature to account for elevation differences between the ERA5 grid cell

and the glacier site. Following Draeger and others (2024), we calculate the lapse rate using multi-level

monthly ERA5 temperature data between the surface and 400 hPa, spanning 17 levels. This monthly lapse

rate is linearly interpolated to obtain a daily lapse rate, lr (˝C m´1), which we then apply to correct the

temperature at each elevation band of each glacier:

Th “ TERA ` lrph ´ hERAq, (1)

where Th (˝C) is the corrected near-surface temperature for the given elevation, h (m a.s.l.), while TERA

(˝C) is ERA5 temperature at the elevation of the grid cell, hERA (m a.s.l.).

Albedo data

We use the MOD10A1 MODIS/Terra Snow Cover Daily L3 Global 500 m SIN Grid, Version 6 dataset

(Hall and Riggs, 2021) to derive daily snow albedo values for our 23 study glaciers during the summer

months (June to September) from 2000 to 2019. The MODIS Terra satellite, operating in a near-polar,

sun-synchronous orbit, captures up to 9 daily observations of high Arctic glaciers (Williamson and others,

2020). Data processing utilizes the Normalized-Difference Snow Index (Hall and others, 1995), which

calculates albedo based on the visible-to-infrared radiation ratio and identifies snow-covered surfaces. The

algorithm dynamically assigns snow albedo values to snow/ice-covered grid cells, leaving non-snow-covered

cells with null values. Daily snow albedo data is provided on a 500ˆ500 m grid, with the highest quality

observation each day selected based on illumination, satellite angle, cloud cover, and fractional snow cover

(Hall and Riggs, 2021).

To ensure data quality, we filter the MODIS albedo values by removing physically unrealistic observa-

tions, specifically those greater than 0.99 and less than 0.05 (Williamson and others, 2020). As our model

operates at an elevation-band level, we convert gridded daily MODIS data into an average daily albedo for

each elevation band of each glacier (detailed in the next section). Due to cloud cover, the dataset is often

incomplete; not all days contain observations, and available data may cover only select elevation bands.

For some bands, no albedo observations are available. Across the study glaciers, albedo observations are

present in at least one elevation band 17% to 77% of the time, with an average observation coverage of
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Fig. 2: Daily MODIS-derived albedo (α) compared to in-situ albedo from radiometer measurements at on-
glacier sites over multiple summer seasons for four glaciers (listed in the legend; see text for site details).

44%.

Comparison between MODIS-derived and in-situ albedo

MODIS-derived albedo often differs from in-situ albedo measurements at glacier sites (Davaze and others,

2018), but such comparisons are limited due to the scarcity of field observations. To estimate these

differences for our study glaciers, we compiled in-situ albedo observations from four glacier sites in or near

our study area (see Figure 2). Radiometer data, which record incoming and reflected shortwave radiation,

are available for two study glaciers in the Rockies, covering multiple summer seasons (Fitzpatrick and

others, 2017, 2019). For the Arctic subregion, radiometer observations are accessible from nearby glaciers,

specifically Belcher Glacier (two summer seasons; Sharp and others (2011)) and Prince of Wales Glacier

(one summer season; S. Marshall, personal communication, May 2020). We derive daily average albedo

values from these radiometer data by calculating the ratio of integrated hourly reflected to incoming

shortwave radiation, excluding hours with solar zenith angles exceeding 65˝ to minimize error and bias

(Fitzpatrick and others, 2017). Additional details on the radiometer measurements are provided in Table

S1. In processing MODIS data to derive an average albedo for each glacier elevation band, we select the

MODIS-derived albedo from the band nearest to each glaciers site with daily in-situ albedo values (Figure

2, Table 2). The comparison shows that MODIS-derived albedo consistently underestimates albedo at all

four sites, with a mean bias error of -0.14 across sites.
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Models

To simulate mass changes of our study glaciers, we use an elevation-dependent mass balance model, com-

monly used for large-scale simulations (e.g., Radi and Hock, 2014; Huss and Hock, 2015; Rounce and others,

2023). Our focus is on modeling the climatic or reference mass balance, which assumes constant glacier area

and hypsometry over time, set to the values from the initial year of the mass balance observational record

for each glacier. Consequently, the model does not account for ice flow contributions to glacier geometry

changes or the feedback between changes in glacier thickness, area, and mass balance. For consistency with

the mass balance data, the hypsometry is sourced from the WGMS dataset, where glacier area and mass

balance are provided for 100 m elevation bands.

For each elevation band, we calculate daily specific mass balance (in m water equivalent, w.e.), as

the difference between modeled daily accumulation and ablation. The glacier-wide mass balance is then

computed as the area-weighted mean of specific mass balance across all elevation bands for each glacier.

Summer mass balance is derived as the integrated mass balance over the summer season, defined as the

period from 01 May to 01 October, which roughly corresponds to the reported observation dates for the

study glaciers (WGMS, 2022). Winter mass balance is calculated over the remaining months of the year.

We maintain a constant definition for summer and winter periods to allow for fair comparison between

glaciers and over the model period, as well as to maintain consistency with other regional/global approaches

to mass balance modeling (e.g., Radi and Hock, 2014; Shannon and others, 2019).

Accumulation model

We adopt a relatively simple accumulation model, commonly used in previous large-scale glacier mass

balance simulations (e.g., Radi and Hock, 2014; Rounce and others, 2023), where daily accumulation, c (in

m w.e.), at elevation h (m a.s.l.), the center elevation of each elevation band, is calculated as:

cphq “

$

’

’

&

’

’

%

0 Th ą 2

kp ˆ pPERA ` dpph ´ hERAqq Th ď 2,

(2)

where Th (˝C) is the lapse-rate corrected ERA5 temperature for the given elevation band, PERA (m

day´1) is ERA5 precipitation, and kp and dp are calibration-dependent parameters: a multiplicative pre-

cipitation factor (kp) to correct the ERA5 precipitation, which often underestimates precipitation over
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mountainous regions (Tarek and others, 2020), and a precipitation gradient (dp, 100m´1) to account for

orographic precipitation increases not captured by ERA5’s original spatial resolution. Despite not being

mass conserving, this correction is often necessary to achieve a better match between modeled and observed

profiles of winter glacier mass balance (Radi and Hock, 2014). Both parameters are calibrated against the

mass balance observations for each of our study glaciers; further details are provided later in this section.

Melt model: PDD approach

We use a PDD melt model following Radi and Hock (2014), which assumes an empirical relationship

between temperature and glacier’s daily melt, a (in m w.e.), given by:

aphq “ fice{snow

ż

maxpTh, 0qdt, (3)

where fice{snow is the calibration-dependent melt factor for ice or snow (m w.e. day´1 ˝C´1); both are

constant values that are individually calibrated for each glacier. The melt factor for snow (fsnow) is used

above the assumed firn-line elevation regardless of snow cover, while below the firn-line elevation we apply

the melt factor for ice (fice) when snow depth is zero and fsnow when the snow depth is greater than zero.

Following Huss and Hock (2015) and Rounce and others (2020), the firn-line elevation is set to the elevation

where the five-year running mean of each elevation band’s annual mass balance changes from positive to

negative.

Melt model: SEB approach

We use a simple SEB model, keeping only the key contributors to melt energy as is done in Draeger and

others (2024). Daily surface melt, a (in m w.e.) is calculated for each elevation band as:

aphq “
Qmelt

Lf ρw
, (4)

where Qmelt is the total daily energy available for surface melt (J m´2), Lf is the latent heat of fusion

(334000 J kg´1) and ρw is the density of water (1000 kg m´3).

To calculate the energy available for melt, we use:

Qmelt “ QÓ
Sp1 ´ αq ` QÓ

L ´ QÒ
L ` QH ` QE . (5)
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QÓ
S represents incoming shortwave radiation, α is surface albedo, simulated by albedo models described

below, QÓ
L and QÒ

L represent incoming and outgoing longwave radiation, respectively, and QH and QE

denote the sensible and latent heat fluxes, respectively. All fluxes are integrated over one day, thus expressed

in J m´2. We intentionally neglect: (i) empirical correction schemes applied to shortwave radiation fluxes,

such as separating direct and diffuse components, (ii) conductive heat flux into the ground, and (iii) energy

supplied by rain. These terms generally rely on calibration-dependent parameterizations and typically

play a minimal role in determining seasonal melt, depending on glacier type and location (Hock, 2005;

Fitzpatrick and others, 2017, 2019). Our rationale for excluding these terms is to simplify the SEB model

while retaining the most impactful terms for surface melt.

QÓ
L is taken directly from ERA5 without modifications. QÒ

L is computed using the Stefan-Boltzmann

law for blackbody radiation, assuming the ice/snow surface remains at a constant temperature of 0˝C year-

round (i.e., the ice/snow surface is consistently at the melting point) (Hock, 2005; Cuffey and Paterson,

2010; Fitzpatrick and others, 2017). We also tested an approach where the ice/snow surface temperature

is set to the lapse-rate-corrected 2 m air temperature (Th), when it falls below freezing, but observed

negligible effects on the modeled annual Qmelt relative to the former approach.

The turbulent fluxes, QH and QE , are calculated using the bulk aerodynamic method, specifically

following the Clog approach described by Fitzpatrick and others (2017):

QHphq “
cp ρa CH p u pTh ´ T0q

p0

QEphq “
0.622 lv ρa CE p u peh ´ e0q

p0
,

(6)

where cp is the specific heat capacity of air (1005 J kg´1 K´1), p is the surface air pressure (hPa), p0

is the air pressure at sea level (1013.25 hPa), ρa is the density of air at sea level (1.29 kg m´3), lv is the

latent heat of vaporization of water (2.514 ˆ106 J kg´1), and T0 is the temperature of the ice/snow surface

(assumed to be at 0˝C over a summer season).

The mean daily wind speed, u (m s´1), is taken directly from ERA5 data (u “ uERA) and is also tested

with a calibration-dependent multiplicative wind correction factor, ku, such that u “ ku ˆ uERA. The

vapor pressures e0 and eh represent the surface vapor pressure (assumed to be 6.1078 hPa at 0˝C) and

the vapor pressure 2 m above the surface, respectively. The latter is calculated using ERA5 data via the

August-Roche-Magnus formula (Alduchov and Eskridge, 1996), with relative humidity derived from ERA5

temperature and dewpoint temperature.
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The bulk transfer coefficients for heat (CH) and moisture (CE) are dimensionless and are parameterized

following Fitzpatrick and others (2017), without stability corrections. These coefficients depend on the

roughness lengths for momentum (z0,v), temperature (z0,T ), and humidity (z0,q) at the glacier surface. For

this study, we use roughness length values of z0,v “ 10´3 m, z0,T “ 10´5 m, and z0,q “ 10´5 m, consistent

with typical observations at mid-latitude glaciers (Hock, 2005; Fitzpatrick and others, 2019).

Albedo models

During the winter months, the albedo for each glacier is assigned its specific snow albedo value, calculated

as the mean annual maximum MODIS albedo over the summer months during the 20002019 period (see

Table S2 for individual glacier values). Across the 23 study glaciers, the average MODIS-derived albedo

values are 0.85 for snow, 0.52 for firn, and 0.23 for ice. The evolution of summer albedo in each glacier’s

elevation bands is simulated using two distinct modeling approaches. The first approach, denoted as αDec,

is based on the empirical model of Hirose and Marshall (2013), developed for a glacier in the Canadian

Rockies. This model employs a logarithmic expression to represent the decay of albedo following snowfall

events. The daily summer albedo, αDecptq, is simulated for each elevation band as:

αDecptq “ αsnow ´ A ln
ÿ

PDDptq, (7)

where αsnow is the albedo of fresh snow, A is a decay factor calibrated individually for each glacier, and

PDDptq represents the cumulative positive degree days (in ˝C) up to time t. The sum of PDDptq is calculated

daily, starting from the onset of the melt season and resetting to zero after each fresh snowfall. Hirose

and Marshall (2013) calibrate this model against in-situ albedo observations, and find that A “ 0.05668.

We optimize A using the Nelder-Mead method (Nelder and Mead, 1965) to minimize the root-mean-

square-error (RMSE) between the MODIS-derived and modeled daily albedo over the 2000-2019 period.

Optimization of A is performed individually for each glacier, with RMSE calculated using two metrics:

the daily glacier-wide albedo and the mean summer albedo for each elevation band, both weighted equally.

The optimized A values for each glacier are provided in Table S2. To ensure physical realism, we constrain

albedo in the model to avoid values below a minimum threshold: above the firn-line, this threshold is set

to firn albedo, and below the firn-line, it is set to ice albedo. For most glaciers, we find A to be below 0.5,

except for the Arctic glaciers (see Table S2).

The second albedo model, denoted as αMLP , uses a neural network multilayer perceptron (MLP) to
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simulate daily summer albedo. The MLP model is trained on MODIS-derived albedo values for each

elevation band, aggregated across glaciers within the same subregion rather than on individual glaciers.

This approach assumes that a model trained on a broader dataset within a subregion is more robust,

benefiting from the increased amount of training data, as machine learning models typically improve with

larger datasets (Hsieh, 2009). The MLP is a feed-forward neural network consisting of an input layer, one

or more hidden layers, and an output layer, with neurons in each layer connected via non-linear activation

functions. During training, the model’s parameters (weights) are optimized to minimize the mean square

error between the predicted and observed MODIS-derived daily albedo values for each elevation band.

For each subregion, the MLP model is trained using data from any study glacier with available MODIS

albedo observations in a given elevation band, implicitly incorporating elevation information. When mul-

tiple glaciers have observations in the same elevation band, their data are combined for model training.

The model inputs include the day of the year, as well as ERA5 temperature and precipitation data for

the target glacier, spanning the current day and the preceding six days. Each input variable is normalized

to a range of 0 to 1 based on its minimum and maximum values. The paired input data and MODIS

albedo observations are randomly shuffled and split into training and testing datasets, ensuring data from

each glacier within the subregion are represented in both. We use 80% of the data for model training and

validation and reserve 20% for testing. Within the training set, 80% is allocated for training and 20% for

validation.

For the model runs, we test various configurations with 1 to 2 hidden layers, each containing between

1 and 15 neurons. The model with the best performance (i.e., lowest mean square error) is selected. This

process is repeated 20 times using different initial weights, creating an ensemble of the 20 best-performing

MLP models for each elevation band and subregion. We experimented with several model architectures,

including training separate models for each glacier and using different combinations of input parameters.

Ultimately, we chose the described model setup as it minimized the need for interpolation and effectively

reproduced the MODIS observations. The average RMSE across all glaciers between modeled and MODIS-

derived albedo is 0.11.

The model is implemented in Python (Van Rossum and Drake, 2009), utilizing the Scikit-Learn library

(Pedregosa and others, 2011). We use the Rectified Linear Activation Unit (ReLU) as the activation

function and optimize the model with the Adaptive Moment Estimation (Adam) method. Adam combines

the advantages of both moving average gradients and adaptive learning rates to update the neural network
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weights, effectively minimizing the objective function (Kingma and Ba, 2014; Sun and others, 2019). For

further details on these algorithms, refer to Kingma and Ba (2014).

After calibrating or training both albedo models, the resulting albedo values are incorporated into the

SEB model. Given the known biases between MODIS-derived and in-situ albedo, as well as discrepancies

in ERA5 incoming shortwave radiation compared to observations at glacier surfaces (Draeger and others,

2024), we introduce an additional calibration parameter as an additive correction to the modeled albedo.

The final albedo is then computed as:

α “ αmod ` ∆α, (8)

where αmod represents the albedo value from either the empirical model (αDec) or the machine learning

model (αMLP ), and ∆α is the additive correction factor. The melt model that uses the empirical repre-

sentation of albedo is denoted SEBDec and the one that uses the MLP albedo representation is denoted

SEBMLP .

Since neither of the two albedo models fully capture short-term albedo variations due to fresh snowfall

events during the summer, we account for this process separately for each study glacier. On days when

daily snowfall, as estimated from the accumulation model (Equation 2), exceeds 0.5 mm in a given elevation

band, we override the modeled albedo by setting it to the snow albedo value derived from MODIS data.

This adjustment is applied regardless of the albedo value predicted by the empirical or machine learning

models. Finally, to ensure physical plausibility, the albedo time series for each elevation band is constrained

such that the values do not exceed 0.9 or fall below 0.1.

Model calibration

As described in previous sections, several calibration-dependent parameters are optimized during the cal-

ibration of the mass balance model. These include the precipitation correction parameters (kp and dp) in

the accumulation model and the melt factors (fsnow and fice) in the PDD model. While the SEB model

is originally designed to be calibration-independent, we also test model runs that incorporate calibration-

dependent wind correction (ku) and albedo correction (∆α). Since the melt and accumulation models must

operate together to generate mass balance estimates, it is not possible to optimize them independently. All

calibration procedures aim to minimize the RMSE between the model output and observed mass balance

data (WGMS) for each study glacier. The RMSE is computed from both the seasonal mass balance time
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series and the average seasonal mass balance profile, with both metrics given equal weight. For comparison,

we also perform a calibration where the RMSE is calculated from annual mass balance observations instead

of seasonal ones.

The parameters are optimized using the Nelder-Mead optimization scheme (Nelder and Mead, 1965).

The bounds for the precipitation correction parameter (dp) range from 0 to 3% per 100 m elevation increase,

and for the precipitation factor (kp), they range from 1 to 3, in line with the mass balance model used by

Radi and Hock (2014) for Canadian glaciers. Following Hock (2003), the bounds for the snow melt factor

(fsnow) are set between 1 and 9 mm w.e. day´1 ˝C´1, and for the ice melt factor (fice), between 3 and 11

mm w.e. day´1 ˝C´1, with the condition that fice must be greater than fsnow. The bounds for the albedo

correction parameter (∆α) are between 0 and 0.3, with the upper bound determined by the difference

between the maximum physically reasonable albedo for snow (0.9) and the lowest MODIS-derived snow

albedo (0.6 for the Nordic glacier). The multiplicative wind correction factor (ku) is bound between 0 and

4, based on the work of Shannon and others (2019).

Model intercomparison and sensitivity tests

Our primary goal is to evaluate and compare the performance of the models in replicating the observed

(WGMS) inter-annual variability of glacier-wide summer, winter, and net mass balance, as well as the

averaged mass balance profile over the observational period. Given the limited sample size, we do not

apply calibration-validation methods (e.g., leave-one-out cross-validation); thus, our assessment focuses on

how well each model fits the available data. We begin by analyzing model runs where the SEB model

parameters remain uncalibrated. We then proceed to evaluate runs with an optimized albedo correction

(∆α), and finally, we assess runs that include both optimized albedo and wind corrections.

We also evaluate the impact of temperature perturbations on the simulated mass balance over the

19802019 period. To do this, we apply uniform temperature adjustments to the ERA5 input temperatures

for each glacier and across all models, including the albedo models. The temperature perturbations are

set at -2˝C, -1˝C, +1˝C, and +2˝C for the entire 40-year period. The impact is quantified by calculating

the mass balance sensitivity (BB
BT ) for each glacier, defined as the difference in the mean modeled mass

balance between the adjusted temperature scenario and the original scenario, divided by the temperature

perturbation.
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RESULTS

Calibrated parameters

Here we provide a summary of the calibrated parameter values across the study glaciers, with detailed

values available in Table S2. The precipitation correction parameters (kp and dp) are calibrated separately

for each of the three melt models (SEBMLP , SEBDec, and PDD). The multiplicative factor kp had mean

values (with relative variance in parentheses) of 1.76 (19%) for the SEBMLP model, 1.94 (16%) for the

SEBDec model, and 1.87 (27%) for the PDD model. The precipitation gradient dp averaged 1.11 (48%)

100m´1 for the SEBMLP model, 0.90 (72%) 100m´1 for the SEBDec model, and 0.85 (75%) 100m´1 for

the PDD model.

In the PDD model, we observe substantial variability in the melt factors (fsnow and fice) across the

study region, though some consistency is noted within certain subregions. On the West Coast, glaciers

generally displayed minimal differences between fsnow and fice, with a mean fsnow of 3.68 mm w.e. day´1

˝C´1 (5.8% variance) and a mean fice of 3.84 mm w.e. day´1 ˝C´1 (1.4% variance). In contrast, East Coast

glaciers exhibited greater variability and larger differences between melt factors, with a mean fsnow of 1.75

mm w.e. day´1 ˝C´1 (16.7% variance) and a mean fice of 4.84 mm w.e. day´1 ˝C´1 (69.0% variance). For

Arctic glaciers, where only two glaciers are included in the analysis, the fice values spanned a wide range,

from 3.77 to 10.79 mm w.e. day´1 ˝C´1.

In the SEB models, the albedo correction factor (∆α) ranged from 0 to 0.3 across the study glaciers.

The mean ∆α is 0.11 for the MLP model and 0.19 for the logistic decay model. Analyzing the subregional

differences, the mean ∆α values (with relative variance) for the MLP model are as follows: 0.06 (141.4%)

in the Arctic, 0.22 (66.7%) on the East Coast, 0.09 (74.6%) on the West Coast, and 0.08 (85.1%) in the

Rockies. For the logistic decay model, the mean values are 0.18 (89.1%) in the Arctic, 0.28 (11.1%) on the

East Coast, 0.16 (51.1%) on the West Coast, and 0.18 (36.1%) in the Rockies.

Modeled versus observed albedo

To assess the performance of the two albedo models in simulating seasonal albedo evolution, we compare

timeseries of modeled and MODIS-derived daily glacier-wide albedo, averaged over all available MODIS

data days and then averaged across glaciers in each subregion (Figure 3, a-d). Both the MLP and logistic

decay models successfully capture the gradual decrease in albedo during the early melt season, showing the
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Fig. 3: a-d: Time series of daily average albedo, shown as a 5-day running mean, averaged across glaciers
within each subregion. Values are derived from MODIS observations (black), the machine learning (MLP)
model (blue), and the logistic decay model (green), calculated as the mean of all days with MODIS
observations during the 20002019 period. e-f: Average summer (JuneAugust) albedo versus glacier elevation
for each subregion, derived from MODIS and the two models, calculated as the mean of all days with MODIS
observations for each elevation of the study glaciers during the same period.
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best agreement with MODIS-derived albedo for Arctic and East Coast glaciers. However, for glaciers in

western Canada, the MLP model more accurately follows the seasonal pattern of MODIS-derived albedo

compared to the logistic decay model, which exhibits a faster decline in albedo at the onset of the melt

season. In contrast, the MLP model tends to produce higher albedo values in late summer relative to

MODIS-derived albedo.

We further compare modeled and MODIS-derived average albedo across elevation bands in each subre-

gion, averaged over all available MODIS observation days (Figure 3, e-h). Both the modeled and MODIS-

derived albedo generally display the expected increase with elevation. However, relatively low absolute

values are observed at the highest elevation bands in both MODIS data and the models. Except for Arctic

glaciers, the average summer albedo for the highest elevations rarely exceeds 0.5, whereas a range of 0.6 to

0.7 would be more physically realistic for the accumulation zones of glaciers without debris cover (Hock,

2005; Cuffey and Paterson, 2010). More detailed results of the elevation profiles for individual glaciers are

provided in Figure S2, where these subregional patterns are consistently confirmed.

The relatively low MODIS-derived albedo in glacier accumulation zones is further supported by com-

parisons with in-situ albedo observations from multiple glacier sites (Figure 4). We closely examine the

timeseries of daily albedo values from both in-situ measurements and MODIS observations, alongside out-

puts from the two albedo models, for two glaciers in the Rockies where in-situ albedo data are available.

The modeled albedo includes a calibrated correction factor (∆α) and adjustments for fresh snowfall events.

Both albedo models successfully capture the gradual decline in albedo during the early melt season and

the sharp increase as the melt season ends. Although neither model fully replicates short-term albedo

variations due to fresh snowfall, they generally indicate the presence of these events, albeit with some

discrepancies in timing compared to observations. Across all sites, the RMSE between modeled and in-situ

albedo timeseries ranges from 0.12 to 0.16, suggesting a reasonable fit. However, MODIS-derived albedo is

observed to be consistently lower than in-situ measurements, particularly in the accumulation zone (e.g.,

Station 3 on Conrad Glacier), where MODIS-derived albedo is on average 0.2 units lower than the in-situ

observations over the observational period.

Finally, we examine whether the calibrated albedo correction factor (∆α) is associated with the tendency

of both MODIS data and the models to underestimate albedo values at higher glacier elevations. Our

analysis shows a strong, statistically significant negative correlation between the magnitude of the calibrated

albedo correction and the maximum MODIS-derived summer albedo across the elevation rangetypically
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Fig. 4: Timeseries of daily albedo at multiple sites on two glaciers (Conrad and Nordic) in the Rockies,
shown for various summer seasons. The albedo values are derived from: MODIS observations (black),
automatic weather station (AWS) measurements (grey), the logistic decay model (green), and the machine
learning (MLP) model (blue). Both the logistic decay and MLP models include the calibrated albedo
correction factor, ∆α (refer to text for calibration details). MODIS albedo values are taken from the grid
cell nearest to the AWS location, while modeled albedo values correspond to the elevation band closest to
each AWS site. Data from Conrad Glacier are labeled as: Conrad Stn 1 (a and b), Conrad Stn 2 (c), and
Conrad Stn 3 (d), while data from Nordic Glacier are labeled as Nordic Stn (e). Further site details are
available in Table S1.
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Fig. 5: Albedo correction (∆α) from the SEBMLP model versus the maximum MODIS-derived albedo
along the glacier elevation range for each study glacier. Points are color-coded by subregion, with the
linear regression slope and Pearson’s correlation coefficient shown in the top right corner.

in the accumulation zone for most glaciers (Figure 5). This finding suggests that lower albedo values in

the accumulation zone necessitate a larger correction to align the modeled mass balance with observations

during the calibration process.

Model intercomparison

We compare the performance of the PDD and SEB modeling approaches using box-and-whisker plots that

illustrate the distribution of normalized root-mean-square-error (NRMSE) across the study glaciers (Figure

6). The NRMSE is calculated by dividing the RMSE, which measures the discrepancy between observed

and modeled mass balance timeseries as well as the averaged mass balance profiles (using the same RMSE

metric applied during model calibration), by the range of observed values (i.e., the difference between the

maximum and minimum values). This normalization provides a standardized error metric, enabling direct

comparison across glaciers of different sizes. We evaluate NRMSE separately for annual (net), summer,

and winter mass balances. The annual NRMSE is calculated for all 23 study glaciers, while the seasonal

NRMSE is evaluated for a subset of 17 glaciers.

First, we examine the results from the uncalibrated SEB models and the calibrated PDD model, where

melt factors are individually optimized for each glacier (Figure 6). In these runs, no precipitation corrections

are applied (i.e., dp “ 0 and kp “ 1). The performance for winter mass balance is similarly poor across

all three models, with median NRMSE values of 51.5%, 54.0%, and 42.4% for the SEBMLP , SEBDec,

and PDD models, respectively. Statistical analysis using an independent two-sample t-test reveals no
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significant differences among these distributions, as shown by the box plots. In contrast, the PDD model

shows significantly better performance than the SEB models for summer and net mass balance. For annual

(net) mass balance, the median NRMSE of the PDD model is 17.8%, substantially lower than the 47.4%

and 72.7% recorded by the SEBMLP and SEBDec models, respectively.

Next, we consider the model intercomparison using SEB models calibrated with varying sets of calibration-

dependent parameters (Figure 6). In these runs, all models include calibrated precipitation correction

parameters (kp and dp). Compared to the previous results without precipitation correction, incorporating

these parameters leads to lower median NRMSE values for winter mass balance across the study glaciers.

For summer mass balance, we observe a median NRMSE reduction of 9.2% for the SEBMLP model, 2.2%

for the SEBDec model, and 0.5% for the PDD model. Notably, the NRMSE distributions for summer and

annual mass balance in the SEB models, when only precipitation factors are calibrated, show statistically

significant differences from those of the PDD model, as indicated by an independent two-sample t-test.

Incorporating the albedo correction into the SEB models results in the most significant improvement

in summer mass balance performance, reducing the median NRMSE from 24.6% to 13.0% for the SEBMLP

model and from 44.9% to 13.1% for the SEBDec model. Similarly, for annual mass balance, the albedo

correction decreases the median NRMSE from 18.5% to 11.4% in the SEBMLP model and from 38.5% to

10.7% in the SEBDec model. With this correction, the NRMSE distributions of the SEB models are no

longer significantly different from those of the PDD model. Adding a wind correction alongside precipitation

and albedo corrections provides only minor, statistically insignificant improvements, lowering the median

summer NRMSE by 1.3% for the SEBMLP model and by 1.6% for the SEBDec model.

Across all subregions, we observe a consistent reduction in NRMSE values with the introduction of cal-

ibrated parameters. In each subregion, incorporating the albedo correction significantly reduces NRMSE

for both the SEBMLP and SEBDec models, while adding the wind correction yields more modest improve-

ments. The East Coast glaciers typically have the highest mean annual NRMSE values, starting at 30.3%

for the uncalibrated SEBMLP model, which decreases to 25.6% after applying the albedo correction, and

results in a mean annual NRMSE of 21.8% for the PDD model. In contrast, the Rockies glaciers exhibit

the lowest NRMSE values, with the SEBMLP model achieving a mean annual NRMSE of 16.2%, which

further decreases to 11.9% with the albedo correction applied, while the PDD model has a comparable

mean annual NRMSE of 12.3%.

At the scale of individual glaciers, we find that the PDD and SEBMLP models, with calibrated pre-
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Fig. 6: Box plots of normalized root-mean-square error (NRMSE) for annual (a), summer (b), and winter
(c) mass balance across 23 glaciers, comparing SEBMLP (blue), SEBDec (green), and PDD (pink) models
under different calibration scenarios. Scenarios include: no calibration (SEBMLP , SEBDec), precipitation-
only (SEBMLP P, SEBDec P), precipitation and albedo (SEBMLP P,α, SEBDec P,α), and precipitation,
albedo, and wind corrections (SEBMLP P,α,u, SEBDec P,α,u). PDD model results are shown for melt
factor calibration (PDD) and calibration of melt factor and precipitation (PDD P). Solid lines represent
median NRMSE, dashed lines indicate mean NRMSE, and median values are labeled above the whiskers.
Boxes span the interquartile range, with whiskers extending to the 5th and 95th percentiles.
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Fig. 7: Normalized root-mean-square error (NRMSE) for summer mass balance: SEBMLP vs. PDD model
(a) and SEBDec vs. PDD model (b). SEB models include calibrated precipitation and albedo corrections,
while the PDD model uses calibrated melt factors and precipitation. Results are shown for 17 glaciers with
seasonal observations, colored by subregion.

cipitation and albedo corrections, produce similarly good fits to the mass balance observations (annual

comparison of NRMSE is shown in Figure S3). Specifically, the NRMSE for summer mass balance across

the 17 glaciers is strongly and significantly correlated between the two models (r “ 0.88; Figure 7). This

correlation in NRMSE is stronger for the SEBMLP model than for the SEBDec model, which exhibits

substantially larger NRMSE values than the PDD model for several glaciers. Overall, the correlation of

NRMSE between the SEB and PDD models is stronger for winter (r in the range 0.86 to 0.89) than for

summer mass balance (r in the range 0.70 to 0.88). Notably, the SEBMLP model consistently achieves

substantially lower NRMSE values than the PDD model for winter mass balance across multiple glaciers

(Figure S4).

Finally, we examine the effects of calibrating the models using annual versus seasonal mass balance

observations (Figure 8). For consistency, we limit this analysis to the 17 glaciers with available seasonal

mass balance data. We compare model runs for the SEB models with calibrated precipitation and albedo

corrections, and the PDD model that has calibrated precipitation and melt factors. For all three models

(SEBMLP , SEBDec, and PDD), calibration based on annual mass balance observations leads to lower

median NRMSE values for annual mass balance; however, the differences are not statistically significant.

In contrast, for seasonal mass balance, median NRMSE values are either similar or higher, with a notably

larger spread in NRMSE across the 17 glaciers. When calibrated solely on annual mass balance, the models
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Fig. 8: Box plots of normalized root-mean-square error (NRMSE) for annual, summer, and winter mass
balance across 17 glaciers with seasonal observations. Results compare SEBMLP (blue), SEBDec (green),
and PDD (pink) models under two calibration scenarios: seasonal (“S”) and annual (“A”) mass balance
observations. SEB models include calibrated precipitation factors and albedo corrections, while the PDD
model includes calibrated melt and precipitation factors. Solid lines indicate median NRMSE, dashed lines
show mean NRMSE, and median values are labeled above the whiskers. Boxes represent the interquartile
range, with whiskers extending to the 5th and 95th percentiles.
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for many glaciers tend to overestimate both summer melt and winter accumulation, balancing these errors

to achieve a better fit to the net mass balance (see Figure S5). In contrast, calibration using seasonal

mass balance observations effectively reduces biases in winter and summer mass balances, leading to more

accurate seasonal simulations.

Modeled versus observed in-situ mass balance

In addition to evaluating NRMSE, we assess how well the models replicate the in-situ (stake) mass balance

observations at the study glaciers. Although these in-situ measurements are not directly used for model

calibration, their aggregates, such as glacier-wide mass balance timeseries and average mass balance profiles,

are considered. For each glacier, we evaluate the “goodness of fit” between modeled and observed (WGMS)

seasonal and annual in-situ mass balances, using the modeled value from the elevation band nearest to the

stake measurement. The performance metrics include RMSE, mean bias error (MBE), Pearson correlation

coefficient (r), and Nash-Sutcliffe efficiency coefficient (NSE), as detailed in Table 3. For conciseness, we

present results only for the SEB model runs incorporating calibrated precipitation and albedo corrections.

Across all subregions and models, there is a statistically significant correlation (at the 95% confidence

level) between modeled and observed in-situ annual mass balance (Table 3). For summer mass balance, the

correlation coefficients are consistently higher than for winter mass balance, with all correlations statistically

significant (p-value < 0.05), except for the winter mass balance in the Arctic subregion. Despite this, the

RMSE for winter mass balance is generally smaller than for summer mass balance, likely due to the lower

inter-annual variability in winter mass balance. When comparing RMSE and correlation coefficients, the

PDD model gives a slightly better fit to observations than the SEBMLP model in the East Coast subregion.

In contrast, the SEBMLP model either performs similarly to or marginally better than the PDD model in

the other subregions. A detailed comparison of the modeled versus observed in-situ mass balance for each

study glacier is provided in Figures S7 and S8.

Sensitivity to temperature perturbations

To quantify mass balance sensitivity to temperature changes, the models were first run with unperturbed

ERA5 data over the 19802019 period, followed by runs in which ERA5 temperatures were systematically

perturbed. When forced with unperturbed ERA5 data, the PDD and SEBMLP models produced closely

resembling mass balance reconstructions across all study glaciers. Both models captured a consistent
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Fig. 9: Modeled summer, winter, and annual (net) mass balance from 19802019, averaged across all study
glaciers, comparing SEBMLP , SEBDec, and PDD models. a: Results using unperturbed ERA5 temperature
data. b: Results with a +1˝C temperature perturbation. SEB model results include calibrated precipitation
and albedo correction factors, while the PDD model incorporates calibrated precipitation and melt factors.

negative long-term trend over the 40-year period, with the SEBMLP model generally exhibiting a slower

decline in mass balance compared to the PDD model (Figure S6). To assess whether these differences

in long-term trends were statistically significant, we performed an analysis of covariance (ANCOVA). The

results indicate that none of the glacier-specific trends differ significantly at the 95% confidence level (noting

that ANCOVA considers both trend slopes and intercepts).

In addition to mass balance trends, both models yielded similar interannual variability in mass balance.

On average, the variance of the PDD models mass balance time series was higher than that of the SEB

model, with a mean variance ratio (σ2
P DD{σ2

SEB) of 1.49 ś 0.36 across all study glaciers. However, when

averaged across glaciers, differences in trends and interannual variability among SEBMLP , SEBDec, and

PDD models were negligible (Figure 9).

When a +1˝C temperature perturbation was introduced to ERA5 data, the PDD model exhibited a

substantially more negative mass balance response than the SEB model (Figure 9). Across all models,

winter mass balance was less affected by the temperature perturbation compared to summer mass balance.

These results are further summarized in box plots for all temperature perturbation scenarios, illustrating

the sensitivity of annual, winter, and summer mass balance separately (Figure 10).

The results for winter mass balance sensitivity to a 2˝C temperature increase show that the SEB models

have a median BB
BT value of -0.03 m w.e. yr´1 ˝C´1, whereas the PDD model shows a higher sensitivity

with a median value of -0.11 m w.e. yr´1 ˝C´1 (Figure 10). In contrast, the summer mass balance exhibits
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Fig. 10: Box plots of the temperature sensitivity of mass balance (BB
BT ) for annual (a), summer (b), and

winter (c) mass balance across the 23 study glaciers under different temperature perturbations. The sensi-
tivity BB

BT is determined by comparing the mass balance timeseries from the original model runs (SEBMLP ,
SEBDec, and PDD) to those from model runs with applied temperature perturbations. Results are shown
for the SEB models with calibrated precipitation and albedo correction factors, and for the PDD model
with calibrated precipitation and melt factors. Solid horizontal lines indicate the median values, while
dashed lines represent the mean values of BB

BT . The median value is labeled above the top whisker of
each distribution. Box edges denote the first and third quartiles, and whiskers represent the 5th and 95th

percentiles.
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Fig. 11: Mass balance sensitivity to a 1˝C´1 temperature increase (BB
BT ) derived from the PDD model

compared to the SEBMLP model (a) and the SEBDec model (b). Results are shown for all 23 study
glaciers, with points colored by subregion. SEB models incorporate calibrated precipitation factors and
albedo corrections, while the PDD model includes calibrated melt and precipitation factors.

greater sensitivity to temperature increases across all models. For the SEBMLP model, the median BB
BT

values range from -0.20 to -0.21 m w.e. yr´1 ˝C´1, while for the SEBDec model, they range from -0.28

to -0.29 m w.e. yr´1 ˝C´1. The PDD model, however, shows significantly higher sensitivity, with median

values ranging from -0.50 to -0.53 m w.e. yr´1 ˝C´1 across the temperature perturbations. In all cases,

the PDD model’s sensitivity is significantly different from that of the SEB models (as confirmed by an

independent two-sample t-test) and exhibits a wider spread of BB
BT values compared to the SEB models.

At the scale of individual glaciers, the PDD model consistently produces higher annual mass balance

sensitivities to a +1˝C temperature change compared to the SEB models (Figure 11). The annual mass

balance sensitivities across the 23 glaciers are significantly correlated between the PDD and SEBMLP

models (r “ 0.54) and between the PDD and SEBDec models (r “ 0.61). While the SEB models maintains

relatively stable sensitivities across different magnitudes of temperature perturbations, the PDD model

exhibits substantial variability. Specifically, the lowest sensitivity for all models, but particularly the PDD

model, occurs under a -2˝C perturbation and increases progressively with temperature perturbations up

to +2˝C. This effect is most pronounced for glaciers with a large difference between the snow melt factor

(fsnow) and ice melt factor (fice), where the PDD model shows the most significant shifts in mass balance

sensitivity, especially for winter mass balance.
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The mass balance sensitivity to temperature change varies significantly across the four subregions. The

Arctic region shows the lowest mean annual BB
BT values for all three models (PDD, SEBMLP , and SEBDec),

with values ranging from -0.02 to -0.11 m w.e. yr´1 ˝C´1 for the SEBMLP model and -0.03 to -0.18 m w.e.

yr´1 ˝C´1 for the PDD model. In contrast, the West Coast glaciers exhibits the highest mean annual mass

balance sensitivity, with BB
BT values ranging from -0.21 to -0.61 m w.e. yr´1 ˝C´1 for the SEBMLP model

and from -0.24 to -0.76 m w.e. yr´1 ˝C´1 for the PDD model.

DISCUSSION

Our results demonstrate that the PDD model, calibrated with glacier-specific melt factors, initially outper-

forms the SEB models when no additional parameters are adjusted. Introducing calibrated precipitation

correction factors (dp and kp) to the models leads to significant improvements in simulating winter and

net mass balance. However, even with these corrections, the SEB models underperform relative to the

PDD model. It is only after incorporating a calibrated albedo correction in the SEB models that their

performance matches or slightly exceeds that of the PDD model. The median NRMSE values for net mass

balance are 12.3% for SEBMLP and 11.6% for SEBDec, compared to 12.8% for the PDD model. These

findings highlight the pivotal role of accurately simulating glacier albedo, as net shortwave radiation is

the dominant contributor to melt energy at our sites, accounting for approximately 70% of the total melt

energy.

A key focus of this study is the use of MODIS-derived albedo data to train the MLP model and

calibrate the logistic decay model. However, for many study glaciers, the MODIS-derived albedo exhibits

relatively low summer values, including unrealistic estimates (below 0.5) in glacier accumulation zones.

These underestimated albedo values, when used as inputs in the SEB models, lead to an overestimation

of melt and consequently higher NRMSE values. The calibrated albedo correction mitigates this bias by

increasing the albedo by an average of 0.11, significantly improving the model’s fit to observed mass balance.

Introducing a calibrated wind speed correction, in addition to the precipitation and albedo corrections,

yields only marginal enhancements in model performance.

Our analysis also reveals a consistent tendency for MODIS to underestimate albedo when compared

with in-situ albedo observations from several glacier sites. This finding is consistent with other studies that

have compared MODIS-derived albedo with in-situ snow albedo measurements across various mountainous

regions, where results often vary widely (e.g., Sorman and others, 2007; Calleja and others, 2019; Stroeve
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and others, 2006; Williamson and others, 2016). These discrepancies highlight the site-specific performance

of MODIS in assessing snow and ice albedo. According to the MODIS user guide, snow albedo estimates

are generally within 10% of in-situ observations under optimal conditions. However, the guide also notes

that errors can be significantly higher over steep mountainous terrain (Hall and Riggs, 2021). Our findings

underscore the need for applying albedo corrections to MODIS data or to models trained on this data,

particularly given the variability in MODIS performance across different regions and local conditions. We

observe that the greater the underestimation of summer albedo in the glacier accumulation zone, the larger

the required albedo correction.

Additional factors to consider when using MODIS-derived albedo data include atmospheric conditions,

shadowing effects, and surface type changes. Shadowing from local terrain and variations in surface type

primarily impacts grid cells near glacier edges, introducing potential errors in the observed MODIS albedo

(Williamson and others, 2020). Furthermore, extensive cloud cover often coincides with snowfall events,

preventing albedo measurements from being recorded. Consequently, MODIS observations may miss the

rapid, short-term increases in albedo over summer following fresh snowfall on exposed glacier surfaces. To

address this discrepancy, we adjust the albedo models by increasing albedo to fresh snow values on days

with modeled snowfall during summer. This adjustment has a minimal impact on the simulated mass

balance, resulting in an average difference of less than 2% in the NRMSE of summer mass balance across

our study glaciers. While the frequency of fresh snowfall events has been shown to significantly influence

summer albedo and, consequently, summer mass balance (Oerlemans and Klok, 2004), our findings suggest

that accurately resolving the average summer albedo across the glacier elevation range is more critical than

capturing short-term albedo variability from individual snowfall events.

While the albedo data simulated by both modelsMLP and logistic decayultimately result in similar

simulations of summer mass balance, there are critical differences between these models that can affect their

suitability for regional and global-scale applications. Notably, without the calibrated albedo correction,

the SEBMLP model showed a significantly better fit to mass balance observations compared to the SEBDec

model, with a median summer NRMSE of 24.6%, compared to 44.9% for the SEBDec. One key difference lies

in their sensitivity to temperature: the logistic decay albedo model relies solely on temperature as an input,

making it more responsive to temperature perturbations, as evidenced by our mass balance sensitivity tests.

In contrast, the MLP albedo model incorporates additional features and is designed to be elevation-specific

within subregions rather than glacier-specific, potentially enhancing its spatial transferability. Moreover,
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while we utilized a neural network (MLP) approach for regional albedo simulation in this study, this is just

one of many possible machine learning strategies. More advanced architectures, such as recurrent neural

networks (RNNs) or long short-term memory (LSTM) models, have yet to be explored and could offer

further improvements in simulating albedo on regional scales.

Since our SEB model is elevation-dependent, it does not explicitly account for the effects of glacier slope

and aspect on incoming shortwave radiation. In contrast, a fully distributed SEB model (e.g., Hock and

Holmgren, 2005; Hill and others, 2020) that incorporates these topographic factors would likely offer a more

accurate depiction of the net radiative balance but would introduce substantially greater model complexity.

Instead, the calibrated albedo correction we apply to help mitigate biases in ERA5 incoming radiation

(Draeger and others, 2024) and inaccuracies in MODIS-derived albedo data, also indirectly compensates

for the combined effects of glacier slope and aspect on shortwave radiation.

Recognizing the limitations of sub-annual mass balance observations, particularly from remote sensing

data such as those provided in the Hugonnet and others (2021) database, we explore the effects of using

seasonal versus annual mass balance data for model calibration. Our analysis shows that calibrating

both the PDD and SEB models using annual mass balance observations results in a similarly good fit to

annual mass balance as when seasonal observations are used. However, relying solely on annual data for

calibration introduces notable biases in the seasonal components; overestimated (or underestimated) winter

accumulation is compensated by overestimated (or underestimated) summer melt, effectively masking the

errors in net mass balance simulation. In contrast, calibrating the models with seasonal mass balance data

helps to optimize the accumulation and melt processes separately, leading to more accurate simulations of

both winter and summer mass balance. These findings underscore the critical importance of in-situ seasonal

mass balance measurements, especially as the field increasingly relies on remote sensing data (Rounce and

others, 2023; Zekollari and others, 2024; Compagno and others, 2022; Hanus and others, 2024), which

currently have limited accuracy at annual and sub-annual scales. Accurate seasonal calibration ensures

that simple models are better tuned to represent the distinct processes driving glacier mass changes, a

crucial consideration for reliable mass balance projections in future climate scenarios. Our results highlight

the importance of seasonal-scale calibration while recognizing the value of glacier-specific calibration based

on long-term trends, as implemented in Rounce and others (2023) and Zekollari and others (2024). These

findings highlight the need for further improvements in global-scale glacier modeling.

We attribute the strong performance of the SEB models (with calibrated precipitation and albedo
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corrections) in fitting mass balance observations to the use of ERA5 reanalysis data, which reasonably

captures local meteorological conditions at multiple glacier sites in western Canada (Draeger and others,

2024). The only bias correction applied to the ERA5 input data is a lapse rate adjustment for 2 m air

temperature. This correction proved to be crucial: omitting it increased the median NRMSE by 24.6% for

the SEBMLP model and by 49.9% for the PDD model using the same melt factors. The PDD model shows

a greater sensitivity to the lapse rate correction because temperature directly drives its melt calculations.

In contrast, the SEB model is less affected by temperature biases; near-surface temperature primarily

influences turbulent heat fluxes, which contribute less than 30% to seasonal melt energy at the study sites.

Additionally, temperature had a minimal effect on simulated albedo evolution in the MLP model, resulting

in an average difference of 0.08 in summer albedo across the study glaciers.

The higher sensitivity of the PDD model to temperature changes is further evident in our sensitivity

tests, where temperature is uniformly adjusted across the entire observational period. The PDD model

consistently exhibits a greater response, with median summer BB
BT values around -0.52 m w.e. yr´1 ˝C´1,

compared to approximately -0.20 m w.e. yr´1 ˝C´1 for the SEBMLP model. The spatial pattern, with the

lowest sensitivities observed in Arctic glaciers and the highest in West Coast glaciers, aligns with previous

findings showing greater sensitivities for maritime glaciers and lower sensitivities for Arctic glaciers (Radi

and Hock, 2011). Additionally, our sensitivity values fall within the range reported for static mass balance

sensitivities across various glaciers globally (e.g., Woul and Hock, 2005). The temperature sensitivity of

the PDD model is also influenced by the difference between fsnow and fice; glaciers with larger differences

between these melt factors show a more pronounced, non-uniform response to varying magnitudes of tem-

perature changes. Given that many large-scale glacier models primarily rely on projections of temperature

and precipitation (e.g., Marzeion and others, 2020; Rounce and others, 2023), the differing temperature

sensitivities of the PDD and SEB models could lead to substantially different predictions of future glacier

mass changes in climate projections where temperature is the only changing variable. Unlike the PDD

model, which responds solely to temperature, the SEB model accounts for multiple climatic variables,

providing additional degrees of freedom in its response. Consequently, it exhibits lower sensitivity to tem-

perature alone. While these findings do not invalidate the use of PDD models for glacier melt projections,

they highlight the limitations of relying exclusively on temperature as the sole meteorological input for

melt calculations.

Given our focus on evaluating a relatively simple SEB model, we deliberately excluded components that
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would require more complex and calibration-intensive frameworks. This choice was guided by the principle

that increasing model complexity does not necessarily yield better regional-scale glacier simulations (Temme

and others, 2023) and can complicate the diagnostic assessment of model performance. However, some

of our simplified assumptions may not be universally applicable across glaciers from different climatic

regimes. For instance, processes such as meltwater refreezing within the snowpack and heat flux into the

glacier surface are more critical for SEB and mass balance in Arctic glaciers compared to those in mid-

latitudes (Woodward and others, 1997; Hock, 2005). Similarly, rain heat flux has been shown to contribute

significantly (up to 20%) to daily melt energy during extreme rainfall events on some glaciers in the Rockies

(Fitzpatrick and others, 2017). However, the uncertainty in the models used to estimate rain heat flux

remains relatively high (Fitzpatrick and others, 2017).

Despite its simplicity, our SEB model enhanced with precipitation and albedo corrections achieves

a “goodness of fit” comparable to or better than those reported in studies using more complex, heavily

parameterized SEB models, such as Shannon and others (2019), which are part of global-scale simulations.

Specifically, our model consistently produces lower RMSE values (0.20-0.64 m w.e. yr´1 compared to 0.96-

1.73 m w.e. yr´1 in Shannon and others (2019)), higher correlation coefficients, lower mean bias errors,

and Nash-Sutcliffe efficiency coefficients closer to one metrics evaluated using approximately the same

in-situ mass balance observations across Canadian glaciers. While differences in model complexity, climate

forcing, and downscaling approaches exist between our study and Shannon and others (2019), the superior

fit of our model to in-situ mass balance observations underscores its potential for large-scale mass balance

modeling.

CONCLUSIONS

Large-scale glacier mass balance models commonly rely on PDD melt models, which, while widely used, have

well-recognized limitations. This study investigated the ability of a relatively simple, elevation-dependent

SEB model, requiring minimal downscaling of climate input data, to replicate seasonal and annual mass

balance observations. We compared mass balance models utilizing SEB and PDD melt components against

observations from 23 glaciers across Canada, spanning diverse climatic regimes. The models were driven

by ERA5 data, with downscaling limited to lapse-rate corrections of 2 m air temperature for better local

representation. We initially assessed SEB models without calibrated parameters and then introduced

calibrated correction factors for precipitation, albedo, and wind to enhance the alignment between modeled
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and observed mass balance. A central aspect of this study was the improved representation of glacier albedo

within the SEB model, contrasting a simple empirical albedo approach (SEBDec) with a machine learning-

based method trained on MODIS-derived albedo data (SEBMLP ). Our principal conclusions are:

The accuracy of ERA5 input data, especially the lapse rate correction for 2 m temperature, were

crucial for the performance of both SEB and PDD models. Initially, the PDD-based mass balance

model outperformed the SEB-based model when no calibrated parameters or only precipitation cor-

rection factors were applied, emphasizing the efficiency of glacier-specific melt factor calibration in

PDD models.

Incorporating a calibrated albedo correction significantly improved the performance of SEB models,

bringing them on par with or marginally better than the PDD model in simulating glacier mass

balance. The calibrated SEBMLP model outperformed the SEBDec model in most scenarios, demon-

strating the importance of advanced albedo parameterization.

MODIS-derived albedo data tended to underestimate summer albedo at the study glaciers, partic-

ularly in the accumulation zones, resulting in overestimated melt. Calibrated albedo corrections in

the SEB models significantly improved their alignment with observed mass balance, underscoring the

importance of calibrating albedo or, more broadly, net shortwave radiative fluxes to enhance model

accuracy.

Calibration using seasonal mass balance data, as opposed to annual mass balance, led to more

accurate simulations of summer and winter mass balance. This finding underscores the importance

of using detailed seasonal data for calibrating mass balance models to avoid compensating biases in

accumulation and melt during the calibration process.

Although the calibrated SEB and PDD models produced similar reconstructions of glacier mass

balance over the 19802019 period in terms of long-term trends and interannual variability, the PDD

model exhibited twice the sensitivity to temperature changes when temperature was the only altered

climate variable. Since climate change affects multiple climatic variables, these findings highlight

the limitations of the PDD model in relying solely on temperature as the primary input for melt

calculations.

While a more complex, fully distributed SEB model incorporating glacier slope and aspect could yield

more accurate simulations, the simpler, elevation-dependent SEB model assessed in this study provided
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a good balance between computational efficiency and model performance. This suggests that for regional

applications, simplified models like the SEB model can be effective without unnecessary complexity, as

long as key parameters such as albedo are properly calibrated.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at XXX.
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All data used in this study was sourced from publicly available data repositories (see Methods for further

details).
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Table 1: Details of glaciers used in the study

Name RGI ID
Latitude

(˝)

Longitude

(˝)

Period of

observations

Seasonal

data

Glacier

area (km2)
Subregion

White RGI60-03.04539 79.45 -90.7 1960-2017 No 40.51 Arctic

Devon Ice Cap NW RGI60-03.02435 75.42 -83.25 1961-2016 Yes 765.44 Arctic

Tiedemann RGI60-02.04379 51.33 -125.05 1981-1985 Yes 58.91 W Coast

Yuri RGI60-01.05211 56.98 -130.68 1981-1984 Yes 1.62 W Coast

Alexander RGI50-01.05355 57.1 -130.82 1979-1990 Yes 4.03 W Coast

Andrei RGI60-01.04591 56.93 -130.97 1978-1990 Yes 71.75 W Coast

Place RGI60-02.01104 50.42 -122.6 1965-2016 Yes 3.02 W Coast

Sentinel RGI60-02.00296 49.89 -122.98 1966-1989 Yes 2.03 W Coast

Helm RGI60-02.00377 49.96 -122.99 1975-2015 Yes 0.98 W Coast

Zavisha RGI60-02.02107 50.79 -123.41 1976-1985 Yes 6.15 W Coast

Bridge RGI60-02.02636 50.82 -123.57 1981-1985 Yes 81.98 W Coast

Bench RGI60-02.04503 51.43 -124.92 1981-1990 Yes 9.56 W Coast

Sykora RGI60-02.02631 50.87 -123.58 1976-1985 Yes 24.66 W Coast

Superguksoak RGI60-04.07387 58.95 -63.78 1982-1984 No 1.26 E Coast

Abraham RGI60-04.07381 58.94 -63.55 1982-1984 No 0.5 E Coast

Hidden RGI60-04.07380 58.93 -63.56 1982-1984 No 0.58 E Coast

Minaret RGI60-04.07329 58.89 -63.68 1982-1984 No 0.73 E Coast

Peyto RGI60-02.05098 51.66 -116.56 1966-2016 Yes 9.7 Rockies

Kokanee RGI60-02.00147 49.75 -117.14 2013-2018 Yes 1.8 Rockies

Nordic RGI60-02.04264 51.43 -117.71 2014-2019 Yes 4.42 Rockies

Zillmer RGI60-02.07780 52.67 -119.58 2014-2018 Yes 6.49 Rockies

Conrad RGI60-02.02171 50.81 -116.93 2015-2019 Yes 16.9 Rockies

Illecillewaet RGI60-02.03688 51.24 -117.43 2009-2017 No 5.94 Rockies
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Table 2: Performance metrics (root-mean-square error (RMSE), mean bias error (MBE), and correlation
coefficient (r)) evaluating daily MODIS-derived albedo against in-situ albedo observations at four glaciers
across multiple summer seasons. The number of observations per glacier is listed in the final column. The
last row summarizes metrics calculated across all sites combined.

Glacier RMSE MBE r Number
of obs

Conrad 0.19 -0.15 0.73 99

Nordic 0.30 -0.28 0.40 24

Belcher 0.18 -0.14 0.69 68

POW 0.09 -0.03 0.56 31

All sites 0.19 -0.14 0.73 222

Table 3: Performance metrics for simulations of annual (bold), summer, and winter mass balance from the
PDD model and two SEB models, summarized for each subregion. Results are shown for SEB models with
calibrated precipitation and albedo corrections and the PDD model with calibrated precipitation and melt
factors. Metrics include root-mean-square error (RMSE), mean bias error (MBE), correlation coefficient
(r), and Nash-Sutcliffe efficiency (NS). Reference data are in-situ specific mass balance measurements from
WGMS (WGMS, 2022). The number of observations per subregion is listed in the final column.

Model type Region
RMSE

(m w.e. yr´1)

MBE

(m w.e. yr´1)
r NS

Number

of obs

PDD

Rockies 0.66 0.60 0.28 0.12 0.02 0.03 0.92 0.91 0.85 0.83 0.80 0.69 571 377 377

Arctic 0.29 0.18 0.06 0.08 0.15 -0.04 0.87 0.96 0.06 0.76 0.84 -10.28 984 54 54

West Coast 0.61 0.51 0.39 0.13 0.27 -0.16 0.94 0.92 0.89 0.88 0.81 0.76 716 690 690

East Coast 0.47 -0.06 0.84 0.71 72 0 0

SEBMLP

Rockies 0.64 0.56 0.28 0.14 0.02 0.08 0.92 0.92 0.84 0.82 0.83 0.57 571 377 377

Arctic 0.20 0.10 0.06 0.06 0.04 -0.04 0.93 0.97 0.06 0.81 0.93 -10.28 984 54 54

West Coast 0.58 0.49 0.29 0.15 0.21 -0.08 0.94 0.92 0.91 0.87 0.80 0.82 716 690 690

East Coast 0.62 0.03 0.70 0.19 72 0 0

SEBDec

Rockies 0.60 0.56 0.26 0.06 -0.03 0.03 0.93 0.92 0.84 0.87 0.85 0.65 571 377 377

Arctic 0.25 0.25 0.06 0.04 0.14 -0.04 0.90 0.91 0.06 0.81 0.75 -10.28 984 54 54

West Coast 0.62 0.53 0.29 0.13 0.22 -0.12 0.94 0.92 0.92 0.87 0.81 0.82 716 690 690

East Coast 0.52 0.01 0.77 0.32 72 0 0
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