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Abstract. The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of
research that has seen much progress in recent years. In this contribution we briefly review
the processes describing the journey of BHs during mergers, from the cosmic context all the
way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would
be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently
close, they coalesce via the emission of gravitational waves. How often two BHs are involved
in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger
history. It is therefore necessary to start with full cosmological models including BH physics and
a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long
journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich
and gas-poor galaxies, leading to a sort of “dichotomy” between high-redshift and low-redshift
galaxies, and late-type and early-type, typically more massive galaxies.
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1. Introduction
This contribution is a short update and review on the theoretical aspects of the dy-

namics of massive black holes (BHs) in galaxy mergers. See Colpi & Dotti (2011) and
Colpi (2014) for comprehensive reviews. For reviews and updates on observations, see
also Komossa and Greene (both in this volume), and Bogdanović (2015).

Massive BHs are routinely found in the centers of most nearby galaxies. They should
naturally grow along with their host galaxies through BH-BH mergers (Volonteri et al.
2003) and accretion of gas, and influence their galaxies through AGN (Active Galactic
Nucleus) feedback (Di Matteo et al. 2005). The relative role of BH-BH mergers and gas
accretion in growing the population of BHs can be estimated using a simple argument,
hinging on Soltan’s seminal work (Soltan 1982): the BH mass density increases by ac-
cretion by more than one order of magnitude in the last ∼ 10 Gyr (Fabian & Iwasawa
1999; Yu & Tremaine 2002; Elvis et al. 2002; Hopkins et al. 2007; Merloni 2015). We
expect, therefore, that accretion is responsible for the bulk of BH growth. However, BH-
BH mergers are likely to be important for growing high-mass BHs in gas-poor galaxies
(Dubois et al. 2014).

The main open questions about BHs in galaxy mergers, 35 years after the pioneering
paper by Begelman et al. (1980) are: Which galaxy mergers lead to BH-BH mergers? For
how long BH binaries linger before coalescing via emission of gravitational waves? When
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and where merging BHs can be detected? In the last few years a sort of “dichotomy” in
BH and galaxy mergers has become apparent. High-redshift and small galaxies tend to be
gas-rich: gas will also drive BH dynamics. Low-redshift and large galaxies are gas poor,
and BH dynamics will be dominated by interactions with stars. This hints to a different
BH dynamical evolution in different classes of galaxies, and at different cosmic times.
Intriguingly, these different classes of objects will be probed by different gravitational
wave experiments, a large space-based interferometer such as eLISA will probe relatively
low-mass BHs (� 107 M�) up to a high redshift, while the Pulsar Timing Arrays can
probe high mass BHs (� 108 M�) at low redshifts (z < 2).

2. A massive BH binary’s journey
Studying BH mergers is a severely multi-scale problem: the merger rate of halos and

galaxies, hosting BHs in their centers, is driven by the cosmic web on large scales (tens
to hundreds of Mpc), but the final merger of BHs, their plunge into each other’s event
horizon, occurs at the Schwarzschild radius, ∼ 10−7 pc for a 106 M� BH. We will briefly
summarize the various stages here, from the merger of the halos, to the pairing of BHs
in merging galaxies, until they form a gravitationally bound binary. The reader should
keep in mind that at the current time initial and boundary conditions for most studies
are idealized and not self-consistently linked to the previous evolutionary stage, because
of the enormous dynamical range involved.

2.1. Context: the cosmic merger rate of halos and galaxies
• Cosmological simulations (Mpc–100 pc). We need to estimate the merger rate of

halos with mass from 106 M� at z ∼ 20− 30, where BH formation occurs, to 1015 M� at
redshift z ∼ 0. This is a real challenge: to have a statistical sample one needs uniform
volume cosmological simulations covering hundreds of Mpc3: this limits the minimum
halo mass that can be resolved to ∼ 109 M�, and the spatial resolution to, at best,
hundreds of pc, so the information on the evolution of the BHs, and the small-scale
dynamics are lost. To overcome this limit and obtain realistic orbital decay, dynamical
friction, the force exerted by the gravitational wake caused by a massive object, a BH
in our case, moving in an extended medium, must be added as a sub-grid correction
(Dubois et al. 2012; Tremmel et al. 2015). Increasing the dark matter mass resolution is
also necessary, to avoid numerical noise (Bellovary et al. 2010; Tremmel et al. 2015)

• Semi-analytical models (Mpc–sub pc). Alternatively, one can use semi-analytical
models (e.g., Volonteri et al. 2003; Sesana et al. 2011; Barausse 2012), which can probe
an equivalent volume 100 Gpc3 with minimum halo mass of 105–106 M�. The advantage
of an analytic approach is that in principle it has unlimited spatial resolution, but at the
cost of not fully capturing non-linear processes that cannot be described by well behaved
mathematical functions (e.g., galaxy mergers). Encouragingly however, the merger rates
determined by both techniques are similar in the portions of the parameter space where
comparisons can be made.

2.2. Gas-driven dynamics:
• Pairing: galaxy merger simulations (100 kpc–1 pc) start from idealized initial and

boundary conditions, thus losing information about the cosmic web (e.g., how cosmic
flows replenish gas in galaxy discs). The highest achieved numerical resolution is ∼1–10
pc (when gas and star formation are included), and dynamical friction is well resolved
(Mayer et al. 2007; Callegari et al. 2009, 2011; Van Wassenhove et al. 2012; Capelo et al.
2015; Roškar et al. 2015). In most cases when the mass ratio of the merging galaxies is
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Figure 1. Left: Merging time for halos only (thin curves), or halos+galaxies (thick curves) for
mass ratios of 0.1 (dotted) and 1 (dashed), averaging over orbital parameters. The whole process
can take up to several Gyr at z < 1. Right: time from when the encounter between halos takes
place, all the way to the coalescence of a BH binary (equal-mass binary of 108 M� with zero
eccentricity), assuming a gas-dominated (thin green curves) or stellar-dominated (thick blue
curves) environment. Comparison of the left and right panels allows the reader to appreciate
where the bottlenecks lie at different cosmic times and mass ratios. Note that we do not expect
many mergers to be stellar dominated at high-redshift (conservatively, z > 1), when most
galaxies are gas-rich.

q > 0.1, the two BHs form a gravitationally bound binary in the end, especially when
a large bound stellar nucleus speeds up BH pairing (Yu 2002; Van Wassenhove et al.
2014). In gas-rich environments, at the end of the simulations, the BHs are embedded in
nuclear discs.
• Binary: nuclear discs (kpc–0.1 pc). These studies start from idealized initial condi-

tions (Escala et al. 2005; Dotti et al. 2007, 2009; Fiacconi et al. 2013; Amaro-Seoane et al.
2013; del Valle & Escala 2014; Lupi et al. 2015), and the dynamics of the binary sensi-
tively depends on thermodynamical properties of the gas disc (i.e., hot, cold, lumpy, star
formation, SN feedback). The effect of the AGN feedback is usually neglected. The BH
separation if found to reach a resolution limit, i.e., sub-pc scales, within 1–100 Myr. They
are then expected to evolve through interaction with the accretion disc(s) surrounding
them, through the so called circumbinary disc phase.
• Binary: circumbinary discs (0.1–0.001 pc). A binary clears a cavity in its surround-

ings due to the binary’s tidal torques. This was feared to be a show-stopper for further
orbital decay, but recent simulations indicate that despite strong binary torques, accretion
into the central cavity continues unhindered and may even be enhanced relative to the
single BH case. If so, this has two important implications: (1) sufficient conditions exist
for efficient transport of angular momentum through the circumbinary disc and therefore
migration to the gravitational wave-dominated regime (∼ 0.01 pc) should occur rapidly,
within ∼ 1–10 Myr (e.g., Armitage & Natarajan 2005; MacFadyen & Milosavljević 2008;
Roedig et al. 2012; Shi et al. 2012; Noble et al. 2012; D’Orazio et al. 2013; Farris et al.
2015), but also (2) accretion powered binary BHs can shine as AGNs.

2.3. Stellar-driven dynamics:
• Direct N-body simulations (kpc–0.01 pc). Simulations using only collisionless par-

ticles start from idealized initial conditions, and well within the galaxy merger phase
when BH separation is only few kpc (compared to 100 kpc for standard galaxy merger
simulations). Dynamical friction and scattering between BHs and stars are well resolved
(e.g., Gualandris & Merritt 2008; Khan et al. 2012; Vasiliev et al. 2014, 2015), and show
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Figure 2. Left: Cosmic time at which a binary of 108 M� with zero eccentricity in mergers
involving halos and galaxies with mass ratio 0.1 and 1 which started at z = zin will merge,
assuming that the dynamical evolution is gas-dominated. To find the redshift zfin at which the
merger takes place, do as follows. Starting from a given initial redshift z = zin , draw a vertical
line. When it intersects the curve of interest, draw a horizontal line until the Hubble time (black)
is intersected. Draw a vertical line: the corresponding redshift marks when the binary, which
started at z = zin > zfin , has merged. E.g., to know when a merger with mass ratio ∼ 0.1, which
started at zin = 2.5 will complete, follow the grey arrows, to find that the total merger time is
∼ 3.5 Gyr, and coalescence happens at zfin ∼ 1.84. Right: same for stellar-dominated dynamics.

that when the separation reaches ∼pc scale, 3-body scattering between the binary and
low angular momentum stars dominate the orbital decay.
• Monte Carlo methods/scattering experiments (0.01–1 kpc) start from idealized ini-

tial conditions, and normally study only the gravitationally bound binary phase, but
are very flexible and efficient. Coupling N-body results with those of these codes has
shown that the “last parsec problem,” i.e., running out of low-angular momentum stars
(Begelman, Blandford & Rees 1980) is not a “problem.” The evolution of BH binaries
continues at nearly a constant rate leading to merger in less than ∼ 1 Gyr (Berczik et al.
2006; Vasiliev et al. 2015; Holley-Bockelmann & Khan 2015; Sesana & Khan 2015).

2.4. Merger proper
• Numerical Relativity, analytical techniques (< 0.001 pc). The merger time depends

on the mass, eccentricity, spin and spin configuration of the binary and sensibly on the
separation (e.g., Peters 1964; Lousto et al. 2009). As soon as the binary reaches the
domain of gravitational wave driven inspiral, the merger speeds up rapidly. The gravi-
tational wave signal becomes detectable months prior to merger and the merger proper
lasts several minutes (Amaro-Seoane et al. 2012).

How long does this all take? We have to consider that first halos need time to merge
(Boylan-Kolchin et al. 2008), then it’s the turn of galaxies (McWilliams et al. 2014), which
brings us to the end of the pairing phase, so to speak. The total timescales (halo+galaxy)
for some typical mergers, averaged over orbital parameters, are shown in Fig. 1 (left).
Then the gravitationally bound binary phase starts, and depending on the environment
(gas or stars), merger timescales differ. In Fig. 1 (right), we show the total merger time,
from when the galactic halos touch to when the BHs coalesce, for some simplified cases.
Fig. 2 shows the same results in a different way, allowing one to estimate when a binary
will merge, given an initial redshift when the halo merger begins. We assumed 100 Myr
from binary formation to coalescence for the gas-driven case and the fit proposed by
Sesana & Khan (2015) for the stellar-driven case. The key uncertainty in the gas-driven
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Table 1. Dual fraction in a 1:2 spiral-spiral merger at Lbol > 1044 erg s−1

Dual time (Myr) Dual AGN fraction Observation Type

No cutoff 12 19.2%
d >1 kpc 10 16.5% Imaging (HST)
d >10 kpc 0.06 0.1% Imaging (SDSS)
v > 150 km/s 3 4.8% Spectroscopy

scenario is whether at z < 2 there is enough gas to drive large binaries to merge (see
Dotti et al. 2015). When conditions for merger are fulfilled, it is possible to calculate for
example that a circular, equal mass binary with mass of 108 M� will coalesce by z = 0
if the halo merger started by z ∼ 0.1–0.2. A q = 0.1 binary will coalesce by z = 0 if the
halo merger started by z ∼ 0.4–0.5.

From Fig. 1 we can estimate where bottlenecks lie. For the gas-dominated case, at
z � 2 the circumnuclear/circumbinary disc phases are the longest, BHs are therefore
expected to linger at ∼ pc separations, what are typically referred to as “binary BHs.”
At z � 2, in principle, the dynamical friction phase (left panel) is longer than 0.1 Gyr,
the timescale we assumed here for the circumnuclear/circumbinary disc phases, therefore
we should expect mostly “dual BHs” at ∼ kpc separations. However, Dotti et al. (2015)
find that the amount of gas available in the circumbinary disc phase is not sufficient
for shrinking the binary effectively. If this is taken into account, a population of binary
BHs, at � pc separations is also to be expected. For the star-dominated case, at mass
ratios q ∼ 1 stellar dynamical friction and scattering phases are equally long, implying
existence of both dual and binary BHs. For mass ratios q ∼ 0.1, the dynamical friction
phase is the longest, therefore we should look for dual BHs. In all cases, if enough gas is
present near the BHs, we can hope to detect them as dual or binary AGN.

3. How many dual/binary BHs can we observe?
Searches for dual AGN (∼ kpc separation) are ongoing. Current estimates suggest that

dual AGN are ∼1% of the AGN population (Greene, this volume). We can use simulations
of galaxy mergers to estimate the time during a merger over which dual AGN can be
detectable, taking observational limitations which reduce detectable dual emission into
account (Van Wassenhove et al. 2012; Blecha et al. 2013). In the first place, the AGN must
be sufficiently luminous to the be detected as such, photometrically or spectroscopically.
Additionally, in searches that look for double AGN in imaging observations, the AGN
should be separated by more than the minimum angular resolution of the instrument. For
searches based on Doppler-shifted lines (double-peaked narrow line regions) the velocity
separation should be much larger than the spectral resolution, and gas kinematics can also
create double-peaked features in the absence of a dual system. Table 1 shows an example
from Van Wassenhove et al. (2012). The total simulated time is 1.35 Gyr, but BHs shine
simultanously above Lbol > 1044 erg s−1 for only 12 Myr, therefore, the fraction of all
galaxies (active and inactive) hosting a dual AGN is < 1%. However, when we look at
the AGN population, we have to include only the time that one or more BHs are active
at the given threshold. Therefore the total fraction of dual AGN in the AGN population
is ∼ 19%. When including the additional constraints (such as spatial and spectroscopic
resolution) the fraction of detectable dual AGN in the AGN population drops to a few
percent or less. Notably, accretion operates differently on the two BHs, and both theory
(Van Wassenhove et al. 2012; Capelo et al. 2015) and observations (Comerford et al.
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2015) find that the secondary, smaller BH, tends to shine at a lower luminosity even
though it accretes at a higher Eddington ratio.

Binary BHs and AGN (< pc separation) have also proven elusive. Volonteri et al. (2009)
estimated the rate of sub-parsec binary BHs using semi-analytical models. Detectable
sub-parsec binaries prove to be intrinsically rare, due to a combination of effects. On
one hand, the merger rate of BHs increases with decreasing mass. On the other hand,
the lifetime of binaries decreases with decreasing mass, making their detection hard
(Haiman et al. 2009). Detectable binaries represent a fraction ∼ 0.1% of unabsorbed
quasars (Mi < −22) in their theoretical sample at z < 0.7. The short lifetime of low-
mass binary BHs suggests that looking for faint sources should not lead to a significant
increase in the number of detectable sub-parsec binary quasars. However, the number of
observable binary systems should increase rapidly with redshift.

4. Conclusions
BHs in merging galaxies have a long journey. Beginning to end, it takes between 1

and 10 Gyr. Most BH binaries, however, should merge by z = 0. The main caveat in
theoretical studies and predictions is that this is a severely multi-scale problem, and
most studies are, consequently, highly idealized and not connected self-consistently to
the previous “level” of simulations or theoretical calculations.

Because of lifetimes/observability requirement the fraction of detectable dual and bi-
nary BHs is expected to be low. Although a variety of signatures have been predicted by
theoretical studies, in practice, only a few approaches have been used to systematically
search for binaries in observational campaigns. Future interactions between theory and
observations will hopefully bring us a wealth of new information.
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