A Spatial Study of X-ray Properties in Superbubble 30 Dor C with XMM-Newton

Babazaki, Y.¹, Mitsuishi, I.¹, Sano, H.¹, Yoshiike, S.¹, Fukuda, T.¹, Maruyama, S.¹, Fujii, K.¹, Fukui, Y.¹, Tawara, Y.¹ and Matsumoto, H^2

¹Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; email: y_babazaki@u.phys.nagoya-u.ac.jp

²Kobayashi-Maskawa Institute (KMI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan 464-8602

Abstract. The superbubble (SB) 30 Dor C with the strong non-thermal X-ray emission is one of the best targets for study of the cosmic-ray (CR) acceleration. We investigated X-ray spectral properties of the SB with a high spatial resolution of ~10 pc. Consequently, the spectra in the east regions can be described with a combination of absorbed thermal and non-thermal models while the spectra in the west regions can be fitted with an absorbed non-thermal model. We found that the observed photon index and intensity in 2-10 keV show variations of 2.0-3.5 and $(0.6-8.0) \times 10^{-7} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ str}^{-1}$, respectively. The results are possibly caused by the spatial variation of the CR acceleration efficiency and/or the circumstellar environment.

Keywords. cosmic rays - ISM: supernova remnants - ISM: bubbles - X-rays: ISM

Sano *et al.* (2015) detected the sub-parsec spatial variations of the non-thermal Xray properties in SNR RX J1713.7-3946 and a correlation between the X-ray intensity and the molecular mass interacting with the SNR. To explain the observational results, they suggested the shock-cloud interaction scenario (see the details [1]). Thus, in this work, we investigate X-ray properties of a superbubble (SB) which possesses a larger spatial extent created by successive supernova explosions and aim at constructing a CR acceleration mechanism also for SBs. 30 Dor C, located in Large Magellanic Cloud, is a young SB showing a shell structure with a diameter of ~80 pc (~6') in X-ray and bright non-thermal X-ray luminosity of ~5 × 10³⁵ erg s⁻¹ [2]. Recently, TeV γ -ray emission associated with the SB was detected for the first time [3], meaning that CR protons/electrons are efficiently accelerated up to at least 10 TeV.

We used XMM-newton EPIC-pn datasets and divided the X-ray shell into 33 regions with $0.7' \times 0.7'$ grids corresponding to a physical scale of ~10 pc in order to examine the detailed X-ray properties in the SB. Consequently, the spectra in the east regions of 30 Dor C can be described with absorbed thermal and non-thermal models, while the spectra in the west regions can be fitted with an absorbed non-thermal model. The observed photon index and intensity in 2-10 keV show spatial variations of 2.0-3.5 and $(0.6-8.0) \times 10^{-7} \text{ erg/s/cm}^2/\text{str, respectively.}$

When comparing the X-ray properties with the total integrated intensity in 12 CO (J=1-0) observed by NANTENCO, we found a positive correlation between the X-ray intensity and 12 CO intensity and the fact that the photon index tends to be less steep when the 12 CO intensity increases. These trends suggest that an interaction between the ISM and shocks affects the process of the particle acceleration.

References

Sano, H. et al. 2015, ApJ, 799, 175S
Bamba, A., et al. 2004, ApJ, 602, 257
The H. E. S. S. Collaboration 2015, Science, 347, 406