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Abstract

We prove sharp estimates for the dilation operator f (x) 7−→ f (λx), when acting on Wiener amalgam
spaces W (L p, Lq ). Scaling arguments are also used to prove the sharpness of the known convolution
and pointwise relations for modulation spaces M p,q , as well as the optimality of an estimate for the
Schrödinger propagator on modulation spaces.
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1. Introduction

Modulation and Wiener amalgam spaces have been introduced and used to measure
the time-frequency concentration of functions and tempered distributions in the
framework of time-frequency analysis [9–15, 20]. Recently, these spaces have
been employed to study boundedness properties of pseudodifferential operators
(see, for example, [4, 18, 19]), Fourier integral operators (in particular, Fourier
multipliers) [1, 7, 8] and well-posedness of solutions to partial differential equations
(see, for example [2, 3, 5, 6, 21–23] and references therein).

In this paper we present new dilation properties for Wiener amalgam spaces and
their optimality. Moreover, we prove the sharpness of the known convolution and
pointwise estimates for modulation spaces.

To recall the definition of these spaces, we first introduce the translation
and modulation operators, defined by Tx f (t)= f (t − x) and Mξ f (t)= e2π iξ t f (t),
t, x, ξ ∈ Rd .

Wiener amalgam spaces [10, 12, 15]. Let g ∈ C∞0 (R
d) be a test function. We

will refer to g as a window function. Let B be either the Banach space L p(Rd)

or F L p(Rd), 1≤ p ≤∞. For any given function f which is locally in B (that is,
g f ∈ B, for all g ∈ C∞0 (R

d)), we set fB(x)= ‖ f Tx g‖B . The Wiener amalgam space
W (B, Lq)(Rd) with local component B and global component Lq(Rd), 1≤ q ≤∞,
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is defined as the space of all functions f locally in B such that fB ∈ Lq(Rd). Endowed
with the norm ‖ f ‖W (B,Lq ) = ‖ fB‖Lq , W (B, Lq)(Rd) is a Banach space. Moreover,
different choices of g ∈ C∞0 (R

d) generate the same space and yield equivalent
norms. In fact, the space of admissible windows for the Wiener amalgam spaces
W (B, Lq)(Rd) can be enlarged to the so-called Feichtinger algebra W (F L1, L1)(Rd).
Recall that the Schwartz class S(Rd) is dense in W (F L1, L1)(Rd).

Modulation spaces [10, 14]. For a fixed nonzero g ∈ S(Rd), the short-time Fourier
transform of f ∈ S ′(Rd) with respect to the window g is given by Vg f (x, ξ)=
〈 f, MξTx g〉, x, ξ ∈ Rd . Given a nonzero window g ∈ S(Rd), 1≤ p, q ≤∞, the
modulation space M p,q(Rd) consists of all tempered distributions f ∈ S ′(Rd) such
that Vg f ∈ L p,q(R2d) (mixed-norm spaces). The norm on M p,q is given by

‖ f ‖M p,q := ‖Vg f ‖L p,q =

(∫
Rd

(∫
Rd
|Vg f (x, ξ)|p dx

)q/p

dξ

)1/q

,

with obvious changes if p =∞ or q =∞. If p = q , we write M p instead of M p,p.
The space M p,q(Rd) is a Banach space, whose definition is independent of the choice
of the window g. Different nonzero windows g ∈ M1 yield equivalent norms on
M p,q . This property will be crucial in the sequel, because we will choose a suitable
window g in estimates of the M p,q -norm. Within the class of modulation spaces,
one finds several standard function spaces, for instance M2

= L2, M1
=W (F L1, L1)

and, using weighted versions, one also finds certain Sobolev spaces and Shubin–
Sobolev spaces [4, 14]. The relationship between modulation and Wiener amalgam
spaces is expressed by the following result: The Fourier transform establishes an
isomorphism F : M p,q

→W (F L p, Lq). Consequently, convolution properties of
modulation spaces can be translated into pointwise multiplication properties of Wiener
amalgam spaces.

Let us now turn to the topic of the present paper. The importance of the dilation
operator

f (x) 7−→ f (λx), λ > 0,

in classical analysis is well known. For example, in most estimates arising in
classical harmonic analysis (for example the Hölder, Young and Hausdorff–Young
inequalities) as well as in partial differential equations (for example, Sobolev
embeddings, Strichartz estimates) scaling arguments yield the constraints that the
Lebesgue exponents must satisfy for the corresponding inequalities to hold.

When dealing with modulation or Wiener amalgam spaces, the situation becomes
more subtle. In fact, the corresponding norms are not ‘homogeneous’ with respect
to the scaling. Basically, this is due to the fact that, for example, in W (L p, Lq) the
two spaces L p, Lq display different scaling if p 6= q . Obtaining sharp estimates (in
terms of λ) for the dilation operator norm, when acting on such spaces, is therefore a
nontrivial problem. This study was carried out in depth in [17] (see also [5, 19]) in
the case of modulation spaces M p,q . The estimates obtained in [17] turned out to be
a fundamental tool for embedding problems of modulation spaces into Besov spaces

https://doi.org/10.1017/S0004972709000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000070


[3] Wiener amalgam and modulation spaces 107

(see also [22]), and for boundedness of pseudodifferential operators of type (ρ, δ) on
modulation spaces [18]. Arguments of this type allowed us to prove the sharpness of
some Strichartz estimates in the Wiener amalgam spaces W (F L p, Lq) in [6]. Finally,
they were also used in [8] to prove sharp boundedness properties of Hörmander’s type
Fourier integral operators on F L p and modulation spaces.

We point out that an investigation of the dilation operator on W (C, L1) (C being
the space of continuous functions) had already appeared in [13].

The first result of this note (Proposition 2.2 below) provides sharp upper and lower
bounds for the operator norm of the dilation operator on the Wiener amalgam spaces
W (L p, Lq).

Contrary to what one might expect, it does not happen that the exponent p alone
has its influence when λ→+∞, and the exponent q when λ→ 0.

Then, as for the classical function spaces, scaling arguments are employed to
prove the sharpness of the known convolution, inclusion and pointwise multiplication
relations for modulation spaces. This is precisely the topic studied in Section 3. In
pursuit of this goal, we do not use the bounds obtained in [17], which would give
constraints that are weaker than optimal. Instead, the sharp results come from explicit
computations involving dilation properties of Gaussian functions.

Finally, we observe that these techniques can be applied to prove the sharpness of
estimates arising in partial differential equations. As an example, in Section 4 we
prove the optimality of an estimate for the Schrödinger propagator, recently obtained
in [22] (see also [1]).

2. Dilation properties of Wiener amalgam spaces

In this section we study the dilation properties of Wiener amalgam spaces
W (L p, Lq), 1≤ p, q ≤∞. First, recall the following complex interpolation result [9].

LEMMA 2.1. Let B0, B1, be local components of Wiener amalgam spaces, as in the
Introduction. Then, for 1≤ q0, q1 ≤∞, with q0 <∞ or q1 <∞, and 0< θ < 1,
we have

[W (B0, Lq0), W (B1, Lq1)][θ ] =W ([B0, B1][θ ], Lqθ ),

with 1/qθ = (1− θ)/q0 + θ/q1.

For λ > 0, we set fλ(x)= f (λx).

PROPOSITION 2.2. For 1≤ p, q ≤∞,

‖ fλ‖W (L p,Lq ) . λ−d max{1/p,1/q}
‖ f ‖W (L p,Lq ), ∀ 0< λ≤ 1, (2.1)

and
‖ fλ‖W (L p,Lq ) . λ−d min{1/p,1/q}

‖ f ‖W (L p,Lq ), ∀λ≥ 1. (2.2)

Also,
‖ fλ‖W (L p,Lq ) & λ−d min{1/p,1/q}

‖ f ‖W (L p,Lq ), ∀ 0< λ≤ 1, (2.3)
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and
‖ fλ‖W (L p,Lq ) & λ−d max{1/p,1/q}

‖ f ‖W (L p,Lq ), ∀λ≥ 1. (2.4)

We first prove the following weaker estimates.

LEMMA 2.3. For 1≤ p, q ≤∞,

‖ fλ‖W (L p,Lq ) . λ−d(1/p+1/q)
‖ f ‖W (L p,Lq ), ∀ 0< λ≤ 1, (2.5)

and
‖ fλ‖W (L p,Lq ) . λd(1−1/p−1/q)

‖ f ‖W (L p,Lq ), ∀λ≥ 1. (2.6)

PROOF. To compute the Wiener norm, we choose the window function g = χ[0,1]d ,
the characteristic function of the box [0, 1]d . Then

‖ fλ‖W (L p,Lq ) � ‖‖ f (λt)g(t − x)‖L p
t
‖Lq

x

= λ−d/p
‖‖ f (t)g1/λ(t − λx)‖L p

t
‖Lq

x

= λ−d(1/p+1/q)
‖‖ f (t)g1/λ(t − x)‖L p

t
‖Lq

x
. (2.7)

If 0< λ≤ 1, the window function g fulfills g1/λ(y)≤ g(y), and (2.5) follows.
Now let λ≥ 1. To prove (2.6), we observe that

g1/λ(t)≤
∑

j∈Zd∩[0,λ]d
g(t − j).

Notice that the above sum contains Nλ = O(λd) terms. Using this inequality we
dominate the expression in (2.7) by

λ−d(1/p+1/q)
∑

j∈Zd∩[0,λ]d
‖‖ f (t)g(t − x − j)‖L p

t
‖Lq

x
= λ−d(1/p+1/q)Nλ‖ f ‖W (L p,Lq ),

where we have also performed a change of variable in the integral with respect to x .
This concludes the proof. 2

PROOF OF PROPOSITION 2.2. We first prove (2.1) and (2.2) when p =∞. We see at
once that (2.1) coincides with (2.5) when p =∞. On the other hand, (2.2) for p =∞
follows by complex interpolation (Lemma 2.1) from (2.6) with (p, q)= (∞, 1), that
is,

‖ fλ‖W (L∞,L1) . ‖ f ‖W (L∞,L1)

and the trivial estimate

‖ fλ‖W (L∞,L∞) � ‖ fλ‖L∞ = ‖ f ‖L∞ � ‖ f ‖W (L∞,L∞).

Since the estimates (2.1) and (2.2) also hold for p = q (because W (L p, L p)= L p with
equivalent norms), by interpolation with the case p =∞, 1≤ q ≤∞, we see that they
hold for any pair (p, q), with 1≤ q ≤ p ≤∞.
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When 1< p < q ≤∞ they follow by duality arguments as follows. Suppose, for
example, that λ≥ 1. Then relation (2.1), applied to the pair (p′, q ′), yields

‖ fλ‖W (L p,Lq ) = sup
‖g‖

W (L p′ ,Lq′ )
=1
|〈 fλ, g〉|

= sup
‖g‖

W (L p′ ,Lq′ )
=1
λ−d
|〈 f, g1/λ〉|

≤ λ−d sup
‖g‖

W (L p′ ,Lq′ )
=1
‖ f ‖W (L p,Lq )‖g1/λ‖W (L p′ ,Lq′ )

. λ−dλd max{1/p′,1/q ′}
‖ f ‖W (L p,Lq ),

which is (2.2). The proof of (2.1) is similar in this case.
It remains to prove the estimates (2.1) and (2.2) for p = 1, 1< q ≤∞. They

follow from interpolation from the case (p, q)= (1, 1) and the case (p, q)= (1,∞),
where (2.1) and (2.2) coincide with (2.5) and (2.6) respectively.

Finally, (2.3) and (2.4) follow at once from (2.2) and (2.1), respectively, applied to
the function f1/λ. 2

We now show that the result above is sharp.

PROPOSITION 2.4 (Sharpness of (2.1) and (2.2)).

(i) Suppose that, for some α ∈ R,

‖ fλ‖W (L p,Lq ) . λα‖ f ‖W (L p,Lq ), ∀ 0< λ≤ 1. (2.8)

Then

α ≤−d max
{

1
p
,

1
q

}
. (2.9)

(ii) Suppose that, for some α ∈ R,

‖ fλ‖W (L p,Lq ) . λα‖ f ‖W (L p,Lq ), ∀λ≥ 1. (2.10)

Then

α ≥−d min
{

1
p
,

1
q

}
. (2.11)

This also shows the sharpness of the estimates (2.3) and (2.4), since they are
equivalent to (2.2) and (2.1), respectively.

PROOF. (i) First, consider the case p ≥ q . We have W (L p, Lq) ↪→W (Lq , Lq)=

Lq . Hence
λ−d/q

‖ f ‖Lq = ‖ fλ‖Lq . ‖ fλ‖W (L p,Lq ).

Combining this estimate with (2.8) and letting λ→ 0+, we obtain α ≤−d/q .
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Now assume that p < q . It suffices to verify that, for every ε > 0, there exists
f ∈W (L p, Lq) such that

‖ fλ‖W (L p,Lq ) ≥ Cλ−d/p+ε. (2.12)

We study the case of dimension d = 1. The general case follows by tensor products of
functions of one variable. To this end, we choose

f (t)=

{
|t |−1/p+ε for |t | ≤ 1,

0 for |t |> 1.

Observe that f ∈W (L p, L1) ↪→W (L p, Lq), for every 1≤ q ≤∞, and

f (λt)= λ−1/p+ε f (t) for |t | ≤
1
λ
. (2.13)

Now take g = χB(0,1) as window function. Of course,

‖ fλ‖W (L p,Lq ) =

(∫
‖ fλTyg‖qL p dy

)1/q

≥

(∫
B(0,1)

‖ fλTyg‖qL p dy

)1/q

.

By using (2.13) and the choice g = χB(0,1), for λ≤ 1/2 the last expression is estimated
from below by

≥ λ−1/p+ε
(∫

B(0,1)
‖ f Tyg‖qL p dy

)1/q

,

that is, (2.12).
(ii) Again, we first consider the case p ≥ q . Then W (L p, Lq) ↪→W (L p, L p)=

L p. Hence,
‖ fλ‖W (L p,Lq ) & ‖ fλ‖L p = λ−d/p

‖ f ‖L p .

Combining this estimate with (2.10) and letting λ→+∞, we obtain α ≥−d/q .
Now suppose that p < q . As before, it suffices to prove, in dimension d = 1, that

for every ε > 0 there exists a function f ∈W (L p, Lq) such that

‖ fλ‖W (L p,Lq ) ≥ Cλ−1/q−ε.

Therefore, choose

f (t)=

{
|t |−1/q−ε for |t | ≥ 1,

0 for |t |< 1.

Then f ∈W (L∞, Lq) ↪→W (L p, Lq), for every 1≤ p ≤∞, and

f (λt)= λ−1/q−ε f (t) for |t | ≥
1
λ
. (2.14)
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Again choose g = χB(0,1) as window function. Then

‖ fλ‖W (L p,Lq ) ≥

(∫
B(0,2)

‖ fλTyg‖qL p dy

)1/q

.

By using (2.14) and the choice g = χB(0,1), for λ≥ 1 the last expression is

≥ λ−1/q−ε
(∫

B(0,2)
‖ f Tyg‖qL p dy

)1/q

,

which concludes the proof of (ii). 2

3. Convolution, inclusion and multiplication relations for modulation spaces

In this section we study the optimality of the convolution, inclusion and pointwise
multiplication relations for modulation spaces. We need some preliminary results.

If one chooses the Gaussian e−π |x |
2

as window function to compute Wiener
amalgam norms, then an easy computation (see, for example, [6, Lemma 5.3]) yields
the result below.

LEMMA 3.1. For a, b ∈ R, a > 0, set G(a+ib)(x)= (a + ib)−d/2e−π |x |
2/(a+ib). Then,

for every 1≤ p, q ≤∞,

‖G(a+ib)‖W (F L p,Lq ) =
((a + 1)2 + b2)d(1/p−1/2)/2

pd/2p(aq)d/2q(a(a + 1)+ b2)d(1/p−1/q)/2
. (3.1)

For tempered distributions compactly supported either in time or in frequency, the
M p,q -norm is equivalent to the F Lq -norm or L p-norm, respectively. This result is
well known [11, 12, 16]. For the sake of completeness we provide an outline of the
proof.

LEMMA 3.2. Let 1≤ p, q ≤∞.

(i) For every u ∈ S ′(Rd), supported in a compact set K ⊂ Rd , u ∈ M p,q if and
only if u ∈ F Lq , and

C−1
K ‖u‖M p,q ≤ ‖u‖F Lq ≤ CK ‖u‖M p,q , (3.2)

where CK > 0 depends only on K .
(ii) For every u ∈ S ′(Rd), whose Fourier transform is supported in a compact set

K ⊂ Rd , u ∈ M p,q if and only if u ∈ L p, and

C−1
K ‖u‖M p,q ≤ ‖u‖L p ≤ CK ‖u‖M p,q , (3.3)

where CK > 0 depends only on K .
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PROOF. (i) This is detailed in [16, Lemma 1].
(ii) It is well known (see, for example, [20]) that

‖u‖M p,q �

(∑
k∈Zd

‖ν(D − k)u‖qL p

)1/q

,

where ν is a test function satisfying
∑

k∈Zd ν(ξ − k)≡ 1. Now, if û has compact
support, the above sum is finite and one deduces at once the first estimate in (3.3),
since the multipliers ν(D − k) are (uniformly) bounded on L p. To obtain the second
estimate in (3.3), we write u =

∑
k∈Zd ν(D − k)u, then apply the triangle inequality

and the finiteness of the sum over k again. 2

We now turn our attention to the sharpness of the convolution properties for
modulation spaces.

PROPOSITION 3.3. Let 1≤ p, q, p1, p2, q1, q2 ≤∞. Then

‖ f ∗ g‖M p,q . ‖ f ‖M p1,q1‖g‖M p2,q2 (3.4)

if and only if the following relations hold:

1
p
+ 1≤

1
p1
+

1
p2
, (3.5)

and
1
q
≤

1
q1
+

1
q2
. (3.6)

PROOF. Sufficiency. The inclusion relations (3.4) were proved in [4, 19]. There the
relations (3.5) and (3.6) were shown with equality. The inequalities follow by the
inclusion relations M p1,q1 ↪→ M p2,q2 for p1 ≤ p2 and q1 ≤ q2 [10, 14].
Necessity. We consider the family of Gaussians ϕ(λ)(x) := e−πλ|x |

2
, for λ > 0.

Obviously, ϕ(λ) ∈ S(Rd)⊂ M p,q(Rd), for every 1≤ p, q ≤∞. Since

‖ f ‖M p,q � ‖ f̂ ‖W (F L p,Lq ) and ϕ̂(λ) = λ−d/2ϕ(1/λ),

Lemma 3.1 yields

‖ϕ(λ)‖M p,q � λ−d/2
‖ϕ(1/λ)‖W (F L p,Lq ) � ‖G(λ)‖W (F L p,Lq )

�
(λ+ 1)d(1/p−1/2)

λd/2q(λ2 + λ)(1/p−1/q)d/2
. (3.7)

A straightforward calculation shows that (ϕ(λ) ∗ ϕ(λ))(x)= (2λ)−d/2ϕ(λ/2)(x).
Hence, using (3.7), we obtain

‖ϕ(λ) ∗ ϕ(λ)‖M p,q � λ−(1+1/p)d/2 for λ→ 0+. (3.8)
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Using (3.7) again, we also obtain

‖ϕ(λ)‖M pi ,qi � λ
−d/2pi , i = 1, 2, for λ→ 0+. (3.9)

Substituting in (3.4), we obtain (3.5). The relation (3.6) can be obtained similarly.
Indeed, the estimate (3.7) gives, for λ→+∞,

‖ϕ(λ) ∗ ϕ(λ)‖M p,q � λ−d(1−1/2q), ‖ϕ(λ)‖M pi ,qi � λ
−d(1−1/qi )/2, i = 1, 2,

and, using (3.4) again, the relation (3.6) follows.
An alternative proof of the necessary conditions (3.5) and (3.6) is provided by

Lemma 3.2. Specifically, to prove (3.6), consider two compactly supported smooth
functions f, g and their scaling fλ(x)= f (λx), gλ(x)= g(λx), with λ≥ 1. Since
λ≥ 1, fλ and gλ (and therefore fλ ∗ gλ) are all supported in a compact subset K ,
independent of λ. By Lemma 3.2, (i), the bilinear estimate (3.4) for fλ and gλ becomes

‖ fλ ∗ gλ‖F Lq . ‖ fλ‖F Lq1‖gλ‖F Lq2 .

Using fλ ∗ gλ = λ−d( f ∗ g)λ, the dilation property for F Lq spaces given by
‖h(λ·)‖F Lq = λ−d/q ′

‖h‖F Lq , and letting λ→+∞, we obtain (3.6).
In order to prove (3.5), one argues similarly. Here the functions f, g have

Fourier transforms f̂ , ĝ compactly supported and the scale λ satisfies 0< λ≤ 1. By
Lemma 3.2, (ii), the estimate (3.4) becomes

‖ fλ ∗ gλ‖L p . ‖ fλ‖L p1‖gλ‖L p2 .

Using fλ ∗ gλ = λ−d( f ∗ g)λ, the dilation property ‖h(λ·)‖L p = λ−d/p
‖h‖L p , and

letting λ→ 0+, we prove (3.5). 2

The family of Gaussians ϕ(λ) provides an alternative proof for the sharpness of the
inclusion relation for modulation spaces, already obtained by the inclusion relations
for the sequence spaces `p,q , via the norm equivalence ‖ f ‖M p,q � ‖〈 f, Tm Mng〉‖`p,q ,
with {Tm Mng} being a Gabor frame (see, for example, [14, Theorem 13.6.1]).

PROPOSITION 3.4. Let 1≤ p1, p2, q1, q2 ≤∞. Then

‖ f ‖M p2,q2 . ‖ f ‖M p1,q1 (3.10)

if and only if
p1 ≤ p2 and q1 ≤ q2. (3.11)

PROOF. We show the necessity of (3.11). Let ϕ(λ)(x)= e−πλ|x |
2
, λ > 0. From the

proof of Proposition 3.3,

‖ϕ(λ)‖M pi ,qi � λ
−d/2pi for λ→ 0+ and ‖ϕ(λ)‖M pi ,qi � λ

−d(1−1/qi )/2

for λ→+∞. (3.12)
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Hence, for (3.10) to be satisfied it must be

λ−d/2p2 . λ−d/2p1 for λ→ 0+ and λ−d(1−1/q2)/2 . λ−d(1−1/q1)/2

for λ→+∞,

that give the relations in (3.11). 2

In what follows we study the pointwise multiplication operator in modulation
spaces (which is equivalent to studing the convolution operator for the Wiener
amalgam spaces W (F L p, Lq)).

PROPOSITION 3.5. Let 1≤ p, q, p1, p2, q1, q2 ≤∞. Then

‖ f g‖M p,q . ‖ f ‖M p1,q1‖g‖M p2,q2 (3.13)

if and only if the following relations hold:

1
p
≤

1
p1
+

1
p2
, (3.14)

and
1
q
+ 1≤

1
q1
+

1
q2
. (3.15)

PROOF. The sufficiency can be found in [10] (see also [23]). For the necessity
of the conditions (3.14) and (3.15) we test the estimate (3.13) on the Gaussians
f (x)= g(x)=ϕ(λ)(x)= e−λπ |x |

2
. We observe that ϕ(λ)ϕ(λ) = ϕ(2λ). Hence by

applying (3.12) and substituting in (3.13), relation (3.15) follows by letting λ→ 0+,
while (3.14) follows by letting λ→+∞. 2

4. An estimate for the Schrödinger propagator

Consider the Fourier multiplier ei t1, with symbol e−i t |2πξ |2 , that is,

(ei t1u0)(x)=
1

(4π i t)d/2

∫
ei(|x−y|2)/4t u0(y) dy.

It is shown in [22, Proposition 4.1] that, given 2≤ p <∞, 1/p + 1/p′ = 1,
1≤ q ≤∞,

‖ei t1u0‖M p,q . (1+ |t |)−d(1/2−1/p)
‖u0‖M p′,q . (4.1)

(Similar estimates were obtained in [1].) We now show that the condition p ≥ 2 is
necessary in (4.1), and the decay at infinity is optimal.

PROPOSITION 4.1 (Sharpness of (4.1)). Suppose that, for some fixed t0 ∈ R, 1≤ p,
q ≤∞, C > 0, the following estimate holds:

‖ei t01u0‖M p,q ≤ C‖u0‖M p′,q , ∀u0 ∈ S(Rd). (4.2)
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Then p ≥ 2.
Assume now that, for some α ∈ R, C > 0, M > 0, 1≤ γ, δ ≤∞, 1≤ p, q ≤∞,

the estimate
‖ei t1u0‖M p,q ≤ Ctα‖u0‖Mγ,δ , ∀u0 ∈ S(Rd), (4.3)

holds for every t > M. Then

α ≥−d

(
1
2
−

1
p

)
. (4.4)

PROOF. We consider the family of initial data u0(λx)= e−πλ
2
|x |2 , λ > 0. A direct

computation shows that the corresponding solutions are

u(λ2t, λx) = (1+ 4π i tλ2)−d/2 exp
[
−

πλ2
|x |2

1+ 4π i tλ2

]
(4.5)

= λ−d G(λ−2+4π i t)(x),

where we have used the notation in Lemma 3.1. It follows from (3.1) that

‖u0(λ·)‖M p′,q � λ
−d
‖û0(λ

−1
·)‖W (F L p′ ,Lq )

= ‖G(λ2)‖W (F L p′ ,Lq )
� λ−d/p′, as λ→ 0+. (4.6)

On the other hand, by (4.5),

‖u(λ2t, λ ·)‖M p,q � ‖F(u(λ2t, λ ·))‖W (F L p,Lq )

� λ−d(a2
+ b2)d/4‖G(a+ib)‖W (F L p,Lq ), (4.7)

where

a =
λ−2

λ−4 + (4π t)2
, b =−

4π t

λ−4 + (4π t)2
.

Hence, for fixed t = t0, (3.1) gives

‖u(λ2t0, λ ·)‖M p,q � λ−d/p as λ→ 0+. (4.8)

Estimates (4.6), (4.8) and (4.2) yield −d/p ≥−d/p′, namely p ≥ 2.
Choosing λ= 1 in (4.7) and using (3.1), we obtain

‖u(t, ·)‖M p,q � t−d(1/2−1/p) as t→+∞.

This shows that (4.4) is necessary for (4.3) to hold. 2
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