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I n t r o d u c t i o n . Let R be a field of rational functions of one variable over a 
field of constants R0. Dock Sang Rim (6) has proved t h a t the global reciprocity 
law in exactly the usual sense holds whenever R0 is an absolutely algebraic 
quasi-fini te field of characteristic not equal to 0: this was known before only 
when R0 was a finite field. We shall give another proof of Rim's result by 
means of a notewor thy generalization of the usual global reciprocity law. 
Namely, let R0 be a finite field and let F be the set of all fields k contained in 
some fixed i^al^clos- and of finite degree over R. T h e reciprocity law s ta tes 
t h a t there exists a family {/*}, k Ç F, of functions fk: Ck -> G(jfeabel-cl08*/fe) 
(where Ck is the idèle class group of k) enjoying certain properties such as 
the norm transfer law. Let F* denote the set of all fields which are composite 
of a field in F and a quasi-finite algebraic extension of R0, possibly of infinite 
degree. W e shall show tha t if the idèle class groups Ck are replaced by their 
closures Ck under a certain topology, we can define a generalized norm 
NLfk: CL —» Ck for all k, L £ F* with k C L, and a family {fk}, k £ F*, of 
functions defined on the groups Ck, such t h a t the global reciprocity law holds 
for our much larger set of ground field F* with the Ck replaced by the Ck. 
Finally, let k G F* and let F(k) denote the set of finite extensions of k. T h e 
global reciprocity law in exactly the usual sense holds for the family 
{fL\, L Ç F(k), of functions fL obtained by restricting the fL to the subgroup 
CL C CL; this proves Rim's result. 

Since our proof uses only routine topological constructions, our results are 
in a certain sense trivial. 

Several papers (the most recent being 3 ; 4 ; 5) have been wri t ten already 
on global reciprocity law over ground fields of infinite degree bu t they replace 
the usual idèle class group by something else. 

1. E x t e n d e d idè les . Let k be a local field (i.e., complete under a discrete 
rank 1 valuat ion) and call its residue class field k good if i t is quasi-finite, 
absolutely algebraic, and of characteristic p ^ 0. W e shall consider only such 
local fields. Topologize the multiplicative group k' of k by taking the sub
groups [k'nk(t)'}, for all positive integers n and i, as a base for the open 
neighbourhoods of 1, where &(*>' denotes the group of elements congruent 
1 mod Tt. 
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P R O P O S I T I O N 1. If k is good, then k' is a Hausdorff space under this topology. 

Proof. W e mus t show t h a t fïn,*&'"£(*)' = {!}• Le t a be contained in this 
intersection. I t s residue class à is contained in C\nk'n. Suppose t h a t 5 ^ 1 . 
Then since k is good, a is a primitive rath root of un i ty for some m > 1 and 
prime to p. Let g be a prime different from p and dividing m. If â were a 
g;'th power for every j , then k would contain primitive qi+1th roots of uni ty 
for every j , the Steinitz degree of k over Z/p would be divisible by pœ, and 
k would not be quasi-finite. Thus , â = 1, i.e., a = 1 mod 7r. Considering the 
neighbourhoods k'plka)' shows t h a t a = 1. 

Le t k be the completion of k' under this topology. Proposit ion 1 shows t h a t 
there is a monomorphism k' —» fe. W e shall identify &' with its image in £ so 
t h a t k' C £• Art in (1) defined k in the case when k is finite: if t ha t is so, 
then k is compact and the local norm residue symbol can be extended to an 
isomorphism of k onto the Galois group of feabel-clos-/fe; however, if k is not 
finite, then k is not compact and the local norm residue symbol can only be 
extended to a monomorphism into. 

Le t Z denote the product over all primes p of the rings Zv of ^>-adic integers 
with p-adic topology on the Zp and product space topology on Z . There is 
an obvious injection Z —» Z : namely, n £ Z goes into the element of Z whose 
^-component is n a t every prime p. W e identify Z with its image under this 
injection and consider Z C Z. Then (1) the topology on Z induces on Z the 
topology defined by taking the subsets J w Z ) , m G Z, m ^ 0, as base for the 
open neighbourhoods of 0, and Z is the completion of Z under this topology. 
T h e na tura l definition of k' as Z-module can be uniquely extended to a 
definition of k as Z-module. 

Le t k be a product formula field for a set of non-archimedean valuat ions 
M(k) (i.e., a field of algebraic functions of one var iable) . Assume t h a t the 
field of constants k0 of k is good. Define the group Jk of extended k-idèles by 
replacing the kp in the definition of idèles by the groups k$. T h a t is, Jk is the 
subgroup of np£M( f c)^ consisting of the elements which are uni ts a t all b u t 
finitely m a n y primes. (Unit in kp = l imit of uni ts of kp.) W e do not consider 
Jk or Jk as topological groups. Under na tura l identifications we consider 
k' C Jk C Jk'* since Jk is a Z-module, this defines an action of Z on k' ; let 
£ denote the group of all c^, a Ç &", w G 2 ; it is a Z-module contained in Jk. 
Define Ck = Jk/k: it is a Z-module and there is a na tura l homomorphism 
of Ck into Ck. 

P R O P O S I T I O N 2. / / &0 is good, this homomorphism Ck —» Ckis a monomorphism; 
i.e., Jk C\k = &'. 

Proof. Suppose t h a t a = am with a £ Jk, a Ç &', w Ç £ . Proposit ion 1 
shows t ha t a is uniquely determined by a and w. If m G Z, then a G k, and 
the proof is complete; thus, assume t h a t m € Z. If |«|p ^ 1 for any p G Mk 

we easily see t ha t an equation av = aw with ap G &P is impossible; therefore, 
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|a|i> = 1 for all p, i.e., a is in k0; hence, a is a root of unity, and hence am is 
also in k0, and this completes the proof. 

2. Fake degrees and fake norms. If k is any subfield of a field K, let 
deg K/k mean the Steinitz number I I pv(p) (product taken over all positive 
prime integers p with v(p) a non-negative integer or oo ) which is the l.c.m. 
of the degrees of all finite algebraic extensions K' of k with Kf C k. We shall 
use this notion only when K/k is algebraic or when k is complete under a 
non-archimedean valuation and K is the completion of an algebraic extension 
of k. In these cases one can show that k C L C K implies 

(1) deg K/k = (deg L/k) (deg K/L). 

Call a Steinitz number Yl pv(p) quasi-finite if v(p) ^ co for every p. If k is 
any quasi-finite field and K/k algebraic, then K is quasi-finite if and only if 
deg K/k is quasi-finite. 

From now on, let R be the field of rational functions of one variable over a 
finite field of constants R0: one may take R0 = Z/p. Let F* denote the set of 
all subfields k of some fixed R^-clos- such that R C V C k with kf/R of 
finite degree and k/k' a constant field extension of quasi-finite degree. It is 
easy to see that F* is closed under finite algebraic extension and quasi-finite 
constant field extension. 

The field R is of course a product formula field for the set MR of all primes 
( = equivalence classes of valuations) of R. If k Ç F*, then k is a product 
formula field for the set Mk of all its primes. Its field of constants k0 is "good" 
in the sense of § 1. Every prime in MR has only finitely many extensions to 
a p G Mk: the ramification number of p in k/R will be finite but the residue 
class degree will be a quasi-finite Steinitz number, not finite unless deg k/R 
is finite. 

If L, K G F*, define L ~ K to mean that deg LK/K and deg LK/L are 
finite. I t is an equivalence relation. 

PROPOSITION 3. Let L, K Ç i7*, let $ G MLK, and let K<$, Ly, and Ry, be the 

completions of L, K, and R at ty. Then 

L~ K^ (deg K/R)/(deg (L/R)) is rational 

<=> (deg K<$/Ry)/ (deg Ly/Ry)) is rational 

<=> Ly ~ K<$. 

Proof. These quotients of Steinitz numbers make sense since none of the 
exponents is oo. Of course, such a quotient is rational if and only if the ex
ponents in numerator and denominator are equal at all but finitely many p. 

UL~K, then (deg K/R)/(deg L/R) = (deg LK/L)/(deg LK/K) by (1) ; 
thus, it is rational. Let R C U C L and R C K! C K with U/R, K'/R 
finite and L/L', K/K' constant extensions. If (deg K/R)/deg(L/R) is 
rational, then deg(KL'/K'L')/deg(K'L/K'L') is rational; thus, degKL/KU 
and deg KL/K'L are finite since a constant extension is completely deter-
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mined by its degree, therefore, deg KL/K and deg KL/L are finite. This 
proves the first "<=>" and the last "<=»" follows in the same way. 

To prove the middle "<=>", notice that the residue class field of K' is of 
finite degree over the field of constants of K' and if d is theg.c.d. of this degree 
and deg K/K', then deg K/K' = d • deg Ky/'K$', where d is an ordinary 
integer; similarly for deg L/Lf. Therefore, the middle "«=>" holds. 

If a G Z and p is any prime, define v(a, p) by \a\v = \p\v
v{a"v), where \a\p 

is the £-adic value of the ^-component of a (v(a, p) = oo if this ^-component 
is 0). The function h: a —> IT pv(a& is a homomorphism, under multiplication, 
of Z onto the Steinitz numbers: its kernel is the group of units of Z, it maps 
the set of non-0-divisors of Z onto the quasi-finite Steinitz numbers, and it 
reduces to the identity on the positive integers. 

PROPOSITION 4. Let 5* denote the set of quasi-finite Steinitz numbers, P the 
positive integers. There exist functions <f>\ 5* —» Z such that 

(4.1) h o 4> = identity on 5*; 
(4.2) <$>(a) = a for a G P ; 
(4.3) a |6=>0(a ) |0 (6 ) /d ra ,6 G 5*; 
(4.4) If a/b is rational, then a/b = <£ (a)/</>(&). 

Proof. Call two elements of 5* equivalent if their quot ien t is rat ional , 
choose representatives of the equivalence classes and define <f>{r) so that 
h<t>(r) = r for all representatives r; then define <l>(rp) = p<j>{r) if p is rational 
and rp G 5*. 

Remark 1. I t is an interesting problem, unsolved so far by us, whether <j> 
can be chosen to be a homomorphism 5* —» Z. 

Choose a particular fixed </> satisfying Proposition 4 and for k £ F* define 
the fake degree d(k/R) to be 0(deg ft/1?). If k C J? G F*, define a(JST/ife) = 
d(K/R)/d(k/R): this implies that d(i£/&) = d(L/k) • d(K/L) whenever 
k <Z L C K, and d(K/k) is the ordinary degree whenever this is finite. 
Similarly, for each prime spot ty of K define fake local degree d(Ky$/ky) to be 

<t> (deg (Kv/R*) ) /$ (deg (H/Rv) ). 

PROPOSITION 5. Let k, K G F* with k C -K; then for all p G M&, 

(2) d{K/k) = E * , * ^ * / * * ) , 

where the sum is taken over all $ G ikf̂  which divide p. 

Proof, Since p has only finitely many extensions to K we can find K' with 
2£'/& finite and K/Kr a constant extension such that each $ ' G M*/ which 
divides p has only one extension $ to ikf ;̂ then d(Ky/Ky') = d(K/Kr) for 
each $|p and (2) holds for K/k since it holds for the finite extension K'/k. 

Now we define fake norms. Let k, K G F* with k d K and let Ç G -M*. 
To simplify printing we shall sometimes denote completions at $ by k* and K* 
instead of ky and Ky. If 4̂ is any element of Ky which is algebraic over ky, 
then its fake local norm NK/k^A is defined to be (NKr/Jc*A)d(K*/K'\ where K' 
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is any finite algebraic extension of k* containing A and contained in K* and 
NK>/k*A is the ordinary norm. This is independent of the choice of K' and 
defines NK/k><$ on an everywhere dense subset of Ky: extend it by continuity 
to a homomorphism NK/kt<$: K<$ —> ky. 

PROPOSITION 6. If k C L C K 6 F* andty G MK, then 

NK,kM = iV^/*,^ O NK/Lft. 

Proof. Let L* = L<$. Suppose that A is in K* and is algebraic over k*. 
Let fix) be the monic irreducible polynomial with coefficients in L* satisfied 
by A and let V be the finite extension of k* generated by the coefficients of 
fix). Then 

NK/Jb#A = ( ^ u ) / * ^ ) a ( K * / L / ( i l ) ) 

= NLf/A(NL*U)^Ay^^^y^^ 

since i\f£*u)/z,*-4 = NL,U)IL>A = ± / ( 0 ) and 

a(X*/L ,(^)) = d(K*/L*)d(U{A)/L')-ldiL*/L') 
= dilP/L^ditfW/ISyidilS/L') = d(K*/L*(A))diL*/L'). 

Now define iVXM: JK~^ Jk as follows: the ^-component of NK/k% shall be 
n^ip/^/piVjf/^^ç, where 4̂?j denotes the ^-component of 21 and /$# the 
canonical isomorphism k% —» &p. This is exactly like the usual definition of 
norm of an idèle and it defines a homomorphism, also called NK/k, of CK into 
Ck. Our fake norm satisfies the transitivity law by Proposition 6. 

Remark 2. Our fake degrees and fake norms have the following disadvantage: 
if K/k is normal separable and K C\ L = k, then deg LK/L = deg K/k and 
NLKIL = NK/k need not hold for fake degree and norm, unless deg K/k is 
finite. If we could construct a 4> which was a homomorphism (see Remark 1) 
we could remove this disadvantage. 

3. Generalized reciprocity law. For k £ F the usual norm residue 
function fk can be uniquely extended by continuity to a Z-homomorphism 
/*: Jk -» G(£abel-clos-/&). Let k G F* and let K/k be abelian of finite degree n. 
We can find k',K' G F with V C k, d(k/k') prime to n, K = K'k, K'/kr 

finite abelian and G (K/k) = G(Kr/k') under restriction. 
Let a G Jk. We can find cti £ Jk such that a Ç //cti . There is a finite S C M* 

such that K/k is unramified and ai is a local unit at all primes outside 5. At 
each p 6 5 the p-component of cti is congruent modulo the local conductor of 
K/k to a finite linear combination of powers of the local prime element times 
elements of local field of constants. Therefore, we can further assume that there 
is an a' 6 Jk> with a = Ck/k>af mod NK/kJK. 

There is a unique aK Ç G(K/k) with <TK = fk>(Nk'/kCk/k'a') on K'. It is inde
pendent of the^choice of jfe', K\ 5, and a'. Define /*: Jk -> G(k&heUGl0S-/k) by 
requiring that /*(a) = cr̂  for all a G J*, all finite abelian K/k: this is possible 
in a unique way because of the compactness of the Galois group. 
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The function/ft could have been defined in many other equivalent ways: 

(3) /*(ct) = /*(a'»<*'/*)) =Ma')iik'/k) 

for a', k', K' as above. Also,/*; equals the product of the extended local norm 
residue functions. Its definition involves one arbitrary choice, namely the 
function <t> satisfying Proposition 4. 

THEOREM 1. The family {fk},k £ F*, has the following properties: 
(a) k C L G F* => rst fcabei.cios. ofL = fk o NL/k ("rst" denotes the restriction); 
(b) For a e G(Ralg-cl09-/R), aGofk = fk<T o a, where <rG(p) = a pa'1 for 

p G G(Ralg-cl08-/R); 
(c) For K/k finite abelian, the kernel of rstK ofk is exactly k'NK/kJK. 

Proof, (a) and (b) follow by routine constructions like those used to prove 
Proposition 6. From (a), it follows that if K/k is finite abelian, then k'NK/kJK 

is contained in the kernel of rstK ofk. Let a be contained in this kernel. Then 
for K', k', a' as above, we see that a = Ck'/ka' mod NK/kJK and (3) yields 
fk(a) = fk>(a')d(k'/k) = 1 on K' with d(k'/k) prime to degree K'/kf. Therefore, 
fk'W) = 1 on Z ' and by the ordinary reciprocity law, a' = afNK'/k>W with 
93' Ç JK> We easily see that a = oùfNK/kCK'/K$8f mod NK/kJK, completing 
the proof of (c). 

COROLLARY. Let k Ç F*, let F(k) be the family of finite extensions of k, and 
let { fL), L G F(k), be the restrictions to the ordinary idele class groups CL of the 
functions fL. Then the global reciprocity law over k holds for this family. 
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