A GENERALIZATION OF GLOBAL CLASS FIELD THEORY

TAE KUN SEO AND G. WHAPLES

Introduction. Let *R* be a field of rational functions of one variable over a field of constants R_0 . Dock Sang Rim (6) has proved that the global reciprocity law in exactly the usual sense holds whenever R_0 is an absolutely algebraic quasi-finite field of characteristic not equal to 0: this was known before only when R_0 was a finite field. We shall give another proof of Rim's result by means of a noteworthy generalization of the usual global reciprocity law. Namely, let R_0 be a finite field and let F be the set of all fields k contained in some fixed $R^{\text{alg.clos.}}$ and of finite degree over R. The reciprocity law states that there exists a family $\{f_k\}, k \in F$, of functions $f_k: C_k \to G(k^{\text{abel.clos.}}/k)$ (where C_k is the idèle class group of k) enjoying certain properties such as the norm transfer law. Let F^* denote the set of all fields which are composite of a field in F and a quasi-finite algebraic extension of R_0 , possibly of infinite degree. We shall show that if the idèle class groups C_k are replaced by their closures \hat{C}_k under a certain topology, we can define a generalized norm $N_{L/k}: \hat{C}_L \to \hat{C}_k$ for all $k, L \in F^*$ with $k \subset L$, and a family $\{\hat{f}_k\}, k \in F^*$, of functions defined on the groups \hat{C}_k , such that the global reciprocity law holds for our much larger set of ground field F^* with the C_k replaced by the \hat{C}_k . Finally, let $k \in F^*$ and let F(k) denote the set of finite extensions of k. The global reciprocity law in exactly the usual sense holds for the family $\{f_L\}, L \in F(k)$, of functions f_L obtained by restricting the \hat{f}_L to the subgroup $C_L \subset \hat{C}_L$; this proves Rim's result.

Since our proof uses only routine topological constructions, our results are in a certain sense trivial.

Several papers (the most recent being 3; 4; 5) have been written already on global reciprocity law over ground fields of infinite degree but they replace the usual idèle class group by something else.

1. Extended idèles. Let k be a local field (i.e., complete under a discrete rank 1 valuation) and call its residue class field \bar{k} good if it is quasi-finite, absolutely algebraic, and of characteristic $p \neq 0$. We shall consider only such local fields. Topologize the multiplicative group k of k by taking the subgroups $\{k^{\cdot n}k_{(i)}\}$, for all positive integers n and i, as a base for the open neighbourhoods of 1, where $k_{(i)}$ denotes the group of elements congruent 1 mod π^{i} .

Received December 13, 1967.

PROPOSITION 1. If \bar{k} is good, then k' is a Hausdorff space under this topology.

Proof. We must show that $\bigcap_{n,i} k^{\cdot n} k_{(i)} = \{1\}$. Let α be contained in this intersection. Its residue class $\bar{\alpha}$ is contained in $\bigcap_n \bar{k}^{\cdot n}$. Suppose that $\bar{\alpha} \neq 1$. Then since \bar{k} is good, $\bar{\alpha}$ is a primitive *m*th root of unity for some m > 1 and prime to p. Let q be a prime different from p and dividing m. If $\bar{\alpha}$ were a q^{j} th power for every j, then \bar{k} would contain primitive q^{j+1} th roots of unity for every j, the Steinitz degree of \bar{k} over \mathbb{Z}/p would be divisible by p^{∞} , and \bar{k} would not be quasi-finite. Thus, $\bar{\alpha} = 1$, i.e., $\alpha \equiv 1 \mod \pi$. Considering the neighbourhoods $k^{\cdot p^{i}}k_{(i)}$ shows that $\alpha = 1$.

Let \hat{k} be the completion of k' under this topology. Proposition 1 shows that there is a monomorphism $k' \to \hat{k}$. We shall identify k' with its image in \hat{k} so that $k' \subset \hat{k}$. Artin (1) defined \hat{k} in the case when \bar{k} is finite: if that is so, then \hat{k} is compact and the local norm residue symbol can be extended to an isomorphism of \hat{k} onto the Galois group of $k^{\text{abel.clos.}}/k$; however, if \bar{k} is not finite, then \hat{k} is not compact and the local norm residue symbol can only be extended to a monomorphism into.

Let $\hat{\mathbf{Z}}$ denote the product over all primes p of the rings \mathbf{Z}_p of p-adic integers with p-adic topology on the \mathbf{Z}_p and product space topology on $\hat{\mathbf{Z}}$. There is an obvious injection $\mathbf{Z} \to \hat{\mathbf{Z}}$: namely, $n \in \mathbf{Z}$ goes into the element of $\hat{\mathbf{Z}}$ whose p-component is n at every prime p. We identify \mathbf{Z} with its image under this injection and consider $\mathbf{Z} \subset \hat{\mathbf{Z}}$. Then (1) the topology on $\hat{\mathbf{Z}}$ induces on \mathbf{Z} the topology defined by taking the subsets $\{m\mathbf{Z}\}, m \in \mathbf{Z}, m \neq 0$, as base for the open neighbourhoods of 0, and $\hat{\mathbf{Z}}$ is the completion of \mathbf{Z} under this topology. The natural definition of k as \mathbf{Z} -module can be uniquely extended to a definition of \hat{k} as $\hat{\mathbf{Z}}$ -module.

Let k be a product formula field for a set of non-archimedean valuations M(k) (i.e., a field of algebraic functions of one variable). Assume that the field of constants k_0 of k is good. Define the group \hat{J}_k of extended k-idèles by replacing the $k_{\mathfrak{P}}$ in the definition of idèles by the groups $\hat{k}_{\mathfrak{P}}$. That is, \hat{J}_k is the subgroup of $\prod_{\mathfrak{P}\in M(k)}\hat{k}_{\mathfrak{P}}$ consisting of the elements which are units at all but finitely many primes. (Unit in $\hat{k}_{\mathfrak{P}} = \text{limit of units of } k_{\mathfrak{P}}$.) We do not consider J_k or \hat{J}_k as topological groups. Under natural identifications we consider $k \in J_k \subset \hat{J}_k$; since \hat{J}_k is a $\hat{\mathbf{Z}}$ -module, this defines an action of $\hat{\mathbf{Z}}$ on k; let \hat{k} denote the group of all α^n , $\alpha \in k$, $n \in \hat{\mathbf{Z}}$; it is a $\hat{\mathbf{Z}}$ -module contained in \hat{J}_k . Define $\hat{C}_k = \hat{J}_k/\hat{k}$: it is a $\hat{\mathbf{Z}}$ -module and there is a natural homomorphism of C_k into \hat{C}_k .

PROPOSITION 2. If k_0 is good, this homomorphism $C_k \to \hat{C}_k$ is a monomorphism; i.e., $J_k \cap \hat{k} = k$.

Proof. Suppose that $\mathfrak{a} = \alpha^m$ with $\mathfrak{a} \in J_k$, $\alpha \in k$, $m \in \mathbb{Z}$. Proposition 1 shows that \mathfrak{a} is uniquely determined by α and m. If $m \in \mathbb{Z}$, then $\mathfrak{a} \in k$, and the proof is complete; thus, assume that $m \notin \mathbb{Z}$. If $|\alpha|_{\mathfrak{p}} \neq 1$ for any $\mathfrak{p} \in M_k$ we easily see that an equation $\alpha_p = \alpha^m$ with $\alpha_{\mathfrak{p}} \in k_{\mathfrak{p}}$ is impossible; therefore,

 $|\alpha|_{\mathfrak{p}} = 1$ for all \mathfrak{p} , i.e., α is in k_0 ; hence, α is a root of unity, and hence α^m is also in k_0 , and this completes the proof.

2. Fake degrees and fake norms. If k is any subfield of a field K, let deg K/k mean the Steinitz number $\prod p^{\nu(p)}$ (product taken over all positive prime integers p with $\nu(p)$ a non-negative integer or ∞) which is the l.c.m. of the degrees of all finite algebraic extensions K' of k with $K' \subset k$. We shall use this notion only when K/k is algebraic or when k is complete under a non-archimedean valuation and K is the completion of an algebraic extension of k. In these cases one can show that $k \subset L \subset K$ implies

(1)
$$\deg K/k = (\deg L/k)(\deg K/L).$$

Call a Steinitz number $\prod p^{\nu(p)}$ quasi-finite if $\nu(p) \neq \infty$ for every p. If k is any quasi-finite field and K/k algebraic, then K is quasi-finite if and only if deg K/k is quasi-finite.

From now on, let R be the field of rational functions of one variable over a finite field of constants R_0 : one may take $R_0 = \mathbb{Z}/p$. Let F^* denote the set of all subfields k of some fixed $R^{\text{alg.elos.}}$ such that $R \subset k' \subset k$ with k'/R of finite degree and k/k' a constant field extension of quasi-finite degree. It is easy to see that F^* is closed under finite algebraic extension and quasi-finite constant field extension.

The field R is of course a product formula field for the set M_R of all primes (= equivalence classes of valuations) of R. If $k \in F^*$, then k is a product formula field for the set M_k of all its primes. Its field of constants k_0 is "good" in the sense of § 1. Every prime in M_R has only finitely many extensions to a $\mathfrak{p} \in M_k$: the ramification number of \mathfrak{p} in k/R will be finite but the residue class degree will be a quasi-finite Steinitz number, not finite unless deg k/R is finite.

If $L, K \in F^*$, define $L \sim K$ to mean that deg LK/K and deg LK/L are finite. It is an equivalence relation.

PROPOSITION 3. Let $L, K \in F^*$, let $\mathfrak{P} \in M_{LK}$, and let $K\mathfrak{P}$, $L\mathfrak{P}$, and $R\mathfrak{P}$ be the completions of L, K, and R at \mathfrak{P} . Then

$$L \sim K \Leftrightarrow (\deg K/R)/(\deg (L/R)) \text{ is rational} \\ \Leftrightarrow (\deg K_{\mathfrak{P}}/R_{\mathfrak{P}})/(\deg L_{\mathfrak{P}}/R_{\mathfrak{P}})) \text{ is rational} \\ \Leftrightarrow L_{\mathfrak{P}} \sim K_{\mathfrak{P}}.$$

Proof. These quotients of Steinitz numbers make sense since none of the exponents is ∞ . Of course, such a quotient is rational if and only if the exponents in numerator and denominator are equal at all but finitely many p.

If $L \sim K$, then $(\deg K/R)/(\deg L/R) = (\deg LK/L)/(\deg LK/K)$ by (1); thus, it is rational. Let $R \subset L' \subset L$ and $R \subset K' \subset K$ with L'/R, K'/Rfinite and L/L', K/K' constant extensions. If $(\deg K/R)/\deg(L/R)$ is rational, then $\deg(KL'/K'L')/\deg(K'L/K'L')$ is rational; thus, $\deg KL/KL'$ and $\deg KL/K'L$ are finite since a constant extension is completely determined by its degree, therefore, deg KL/K and deg KL/L are finite. This proves the first " \Leftrightarrow " and the last " \Leftrightarrow " follows in the same way.

To prove the middle " \Leftrightarrow ", notice that the residue class field of K' is of finite degree over the field of constants of K' and if d is the g.c.d. of this degree and deg K/K', then deg $K/K' = d \cdot \deg K_{\mathfrak{P}}/K_{\mathfrak{P}}'$, where d is an ordinary integer; similarly for deg L/L'. Therefore, the middle " \Leftrightarrow " holds.

If $a \in \hat{\mathbf{Z}}$ and p is any prime, define v(a, p) by $|a|_p = |p|_p^{v(a,p)}$, where $|a|_p$ is the *p*-adic value of the *p*-component of a ($v(a, p) = \infty$ if this *p*-component is 0). The function $h: a \to \prod p^{v(a,p)}$ is a homomorphism, under multiplication, of $\hat{\mathbf{Z}}$ onto the Steinitz numbers: its kernel is the group of units of $\hat{\mathbf{Z}}$, it maps the set of non-0-divisors of $\hat{\mathbf{Z}}$ onto the quasi-finite Steinitz numbers, and it reduces to the identity on the positive integers.

PROPOSITION 4. Let S^* denote the set of quasi-finite Steinitz numbers, **P** the positive integers. There exist functions $\phi: S^* \to \hat{\mathbf{Z}}$ such that

(4.1) $h \circ \phi = identity \text{ on } S^*$;

(4.2) $\phi(a) = a \text{ for } a \in \mathbf{P};$

(4.3) $a|b \Rightarrow \phi(a)|\phi(b)$ for $a, b \in S^*$;

(4.4) If a/b is rational, then $a/b = \phi(a)/\phi(b)$.

Proof. Call two elements of S^* equivalent if their quotient is rational, choose representatives of the equivalence classes and define $\phi(r)$ so that $h\phi(r) = r$ for all representatives r; then define $\phi(r\rho) = \rho\phi(r)$ if ρ is rational and $r\rho \in S^*$.

Remark 1. It is an interesting problem, unsolved so far by us, whether ϕ can be chosen to be a homomorphism $S^* \to \hat{\mathbf{Z}}$.

Choose a particular fixed ϕ satisfying Proposition 4 and for $k \in F^*$ define the fake degree $\partial(k/R)$ to be $\phi(\deg k/R)$. If $k \subset K \in F^*$, define $\partial(K/k) =$ $\partial(K/R)/\partial(k/R)$: this implies that $\partial(K/k) = \partial(L/k) \cdot \partial(K/L)$ whenever $k \subset L \subset K$, and $\partial(K/k)$ is the ordinary degree whenever this is finite. Similarly, for each prime spot \mathfrak{P} of K define fake local degree $\partial(K\mathfrak{P}/k\mathfrak{P})$ to be

 $\phi(\deg(K\mathfrak{g}/R\mathfrak{g}))/\phi(\deg(k\mathfrak{g}/R\mathfrak{g})).$

PROPOSITION 5. Let k, $K \in F^*$ with $k \subset K$; then for all $\mathfrak{p} \in M_k$,

(2) $\partial(K/k) = \sum \mathfrak{P}_{\downarrow} \partial(K\mathfrak{P}/k\mathfrak{P}),$

where the sum is taken over all $\mathfrak{P} \in M_{\kappa}$ which divide \mathfrak{p} .

Proof. Since \mathfrak{p} has only finitely many extensions to K we can find K' with K'/k finite and K/K' a constant extension such that each $\mathfrak{P}' \in M_{K'}$ which divides \mathfrak{p} has only one extension \mathfrak{P} to M_{K} ; then $\partial(K\mathfrak{P}/K\mathfrak{P}') = \partial(K/K')$ for each $\mathfrak{P}|\mathfrak{p}$ and (2) holds for K/k since it holds for the finite extension K'/k.

Now we define fake norms. Let $k, K \in F^*$ with $k \subset K$ and let $\mathfrak{P} \in M_K$. To simplify printing we shall sometimes denote completions at \mathfrak{P} by k^* and K^* instead of $k\mathfrak{P}$ and $K\mathfrak{P}$. If A is any element of $K\mathfrak{P}$ which is algebraic over $k\mathfrak{P}$, then its fake local norm $N_{K/k,\mathfrak{P}}A$ is defined to be $(N_{K'/k^*}A)^{\mathfrak{d}(K^*/K')}$, where K' is any finite algebraic extension of k^* containing A and contained in K^* and $N_{K'/k^*}A$ is the ordinary norm. This is independent of the choice of K' and defines $N_{K/k,\mathfrak{P}}$ on an everywhere dense subset of $\hat{K}\mathfrak{P}$: extend it by continuity to a homomorphism $N_{K/k,\mathfrak{P}}$: $\hat{K}\mathfrak{P} \to \hat{k}\mathfrak{P}$.

PROPOSITION 6. If $k \subset L \subset K \in F^*$ and $\mathfrak{P} \in M_K$, then

$$N_{K/k,\mathfrak{P}} = N_{L/k,\mathfrak{P}} \circ N_{K/L,\mathfrak{P}}.$$

Proof. Let $L^* = L_{\mathfrak{P}}$. Suppose that A is in K^* and is algebraic over k^* . Let f(x) be the monic irreducible polynomial with coefficients in L^* satisfied by A and let L' be the finite extension of k^* generated by the coefficients of f(x). Then

$$N_{K/k,\mathfrak{P}A} = (N_{L'(A)/k*A})^{\partial(K*/L'(A))}$$

= $N_{L'/k*}((N_{L*(A)/L*A})^{\partial(K*/L*(A))})^{\partial(L*/L')}$

since
$$N_{L^*(A)/L^*A} = N_{L'(A)/L'}A = \pm f(0)$$
 and
 $\partial(K^*/L'(A)) = \partial(K^*/L^*)\partial(L'(A)/L')^{-1}\partial(L^*/L')$
 $= \partial(K^*/L^*)\partial(L^*(A)/L^*)^{-1}\partial(L^*/L') = \partial(K^*/L^*(A))\partial(L^*/L').$

Now define $N_{K/k}$: $\hat{J}_K \to \hat{J}_k$ as follows: the p-component of $N_{K/k}$ shall be $\prod_{\mathfrak{P}|\mathfrak{P}} I_{\mathfrak{P}/\mathfrak{P}} N_{K/k,\mathfrak{P}} A_{\mathfrak{P}}$, where $A_{\mathfrak{P}}$ denotes the \mathfrak{P} -component of \mathfrak{A} and $I_{\mathfrak{P}/\mathfrak{P}}$ the canonical isomorphism $\hat{k}_{\mathfrak{P}} \to \hat{k}_{\mathfrak{P}}$. This is exactly like the usual definition of norm of an idèle and it defines a homomorphism, also called $N_{K/k}$, of \hat{C}_K into \hat{C}_k . Our fake norm satisfies the transitivity law by Proposition 6.

Remark 2. Our fake degrees and fake norms have the following disadvantage: if K/k is normal separable and $K \cap L = k$, then deg $LK/L = \deg K/k$ and $N_{LK/L} = N_{K/k}$ need not hold for fake degree and norm, unless deg K/k is finite. If we could construct a ϕ which was a homomorphism (see Remark 1) we could remove this disadvantage.

3. Generalized reciprocity law. For $k \in F$ the usual norm residue function f_k can be uniquely extended by continuity to a $\hat{\mathbf{Z}}$ -homomorphism $\hat{f}_k: \hat{J}_k \to G(k^{\text{abel.clos.}}/k)$. Let $k \in F^*$ and let K/k be abelian of finite degree n. We can find $k', K' \in F$ with $k' \subset k$, $\partial(k/k')$ prime to n, K = K'k, K'/k'finite abelian and $G(K/k) \cong G(K'/k')$ under restriction.

Let $\mathfrak{a} \in \hat{J}_k$. We can find $\mathfrak{a}_1 \in J_k$ such that $\mathfrak{a} \in \hat{J}_k^n \mathfrak{a}_1$. There is a finite $S \subset M_k$ such that K/k is unramified and \mathfrak{a}_1 is a local unit at all primes outside S. At each $\mathfrak{p} \in S$ the \mathfrak{p} -component of \mathfrak{a}_1 is congruent modulo the local conductor of K/k to a finite linear combination of powers of the local prime element times elements of local field of constants. Therefore, we can further assume that there is an $\mathfrak{a}' \in J_{k'}$ with $\mathfrak{a} \equiv C_{k/k'}\mathfrak{a}' \mod N_{K/k}\hat{J}_{K}$.

There is a unique $\sigma_K \in G(K/k)$ with $\sigma_K = \hat{f}_{k'}(N_{k'/k}C_{k/k'}\mathfrak{a}')$ on K'. It is independent of the choice of k', K', S, and \mathfrak{a}' . Define $\hat{f}_k: \hat{J}_k \to G(k^{abel.elos.}/k)$ by requiring that $\hat{f}_k(\mathfrak{a}) = \sigma_K$ for all $\mathfrak{a} \in \hat{J}_k$, all finite abelian K/k: this is possible in a unique way because of the compactness of the Galois group.

The function \hat{f}_k could have been defined in many other equivalent ways:

(3)
$$\hat{f}_k(\mathfrak{a}) = \hat{f}_{k'}(\mathfrak{a}'^{\vartheta(k'/k)}) = f_{k'}(\mathfrak{a}')^{\vartheta(k'/k)}$$

for \mathfrak{a}', k', K' as above. Also, \hat{f}_k equals the product of the extended local norm residue functions. Its definition involves one arbitrary choice, namely the function ϕ satisfying Proposition 4.

THEOREM 1. The family $\{\hat{f}_k\}, k \in F^*$, has the following properties: (a) $k \subset L \in F^* \Rightarrow \operatorname{rst}_{k^{\operatorname{abel.clos.}}} \circ \hat{f}_L = \hat{f}_k \circ N_{L/k}$ ("rst" denotes the restriction); (b) For $\sigma \in G(R^{\operatorname{alg.clos.}}/R), \sigma_G \circ \hat{f}_k = \hat{f}_{k\sigma} \circ \sigma$, where $\sigma_G(\rho) = \sigma \rho \sigma^{-1}$ for $\rho \in G(R^{\mathrm{alg.clos.}}/R);$

(c) For K/k finite abelian, the kernel of $rst_{\kappa} \circ \hat{f}_k$ is exactly $k N_{\kappa/k} \hat{J}_{\kappa}$.

Proof. (a) and (b) follow by routine constructions like those used to prove Proposition 6. From (a), it follows that if K/k is finite abelian, then $k N_{K/k} \hat{J}_K$ is contained in the kernel of $rst_{\kappa} \circ \hat{f}_{k}$. Let a be contained in this kernel. Then for K', k', a' as above, we see that $\mathfrak{a} \equiv C_{k'/k}\mathfrak{a}' \mod N_{K/k}\hat{J}_K$ and (3) yields $\hat{f}_k(\mathfrak{a}) = f_{k'}(\mathfrak{a}')^{\partial(k'/k)} = 1$ on K' with $\partial(k'/k)$ prime to degree K'/k'. Therefore, $f_{k'}(\mathfrak{a}') = 1$ on K' and by the ordinary reciprocity law, $\mathfrak{a}' = \alpha' N_{K'/k'} \mathfrak{B}'$ with $\mathfrak{B}' \in J_K$. We easily see that $\mathfrak{a} \equiv \alpha' N_{K/k} C_{K'/K} \mathfrak{B}' \mod N_{K/k} \hat{J}_K$, completing the proof of (c).

COROLLARY. Let $k \in F^*$, let F(k) be the family of finite extensions of k, and let $\{f_L\}, L \in F(k)$, be the restrictions to the ordinary idèle class groups C_L of the functions \hat{f}_L . Then the global reciprocity law over k holds for this family.

References

- 1. E. Artin, Algebraic numbers and algebraic functions. I, Mimeographed lecture notes, Princeton University, Princeton, N.J.; New York University, New York, 1951 (printed ed., Gordon and Breach, New York, 1967).
- 2. E. Artin and J. Tate, Class field theory, Lecture notes, Harvard University, Cambridge, Massachusetts, 1961 (W. A. Benjamin, New York, 1968).
- 3. Y. Kawada, On the class field theory on algebraic number fields with infinite degree, J. Math. Soc. Japan 3 (1951), 104-115.
- 4. - Class formations. IV (infinite extension of ground field), J. Math. Soc. Japan 9 (1957), 395-405.
- 5. M. Mori, Ueber Klassenkörpertheorie für unendliche Erweiterungen von einem p-adischen Zahlkörper, Proc. Japan Acad. 33 (1957), 376–379.
- 6. D. S. Rim and G. Whaples, A remark on quasi-finite field, Nagoya Math. J. 27 (1966), 323 - 329.
- 7. Tae Kun Seo, A generalization of global class field theory, Ph.D. Thesis, Indiana University, Bloomington, Indiana, 1965.
- 8. G. Whaples, Lecture notes on class field theory, Bowdoin College, Summer, 1966.

Indiana University, Bloomington, Indiana; University of Kentucky, Lexington, Kentucky; University of Massachusetts, Boston, Massachusetts