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Rigidity Properties for Hyperbolic
Generalizations

Brendan Burns Healy

Abstract. Wemake a few observations on the absence of geometric and topological rigidity for acylin-
drically hyperbolic and relatively hyperbolic groups. In particular, we demonstrate the lack of a well-
deûned limit set for acylindrical actions on hyperbolic spaces, even under the assumption of univer-
sality. We also prove a statement about relatively hyperbolic groups inspired by a remark by Groves,
Manning, and Sisto about the quasi-isometry type of combinatorial cusps. Finally,we summarize these
results in a table in order to assert ameta-statement about the decay ofmetric rigidity as the conditions
on actions on hyperbolic spaces are loosened.

1 Introduction

Gromov-hyperbolic spaces are a core focus in geometric group theory, in part because
of how they behave under deformation. his is a stark contrast from generic metric
spaces and their large-scale properties. For example, the geodesic ray deûnition for
boundaries of spaces is not always homeomorphically rigid under quasi-isometry; it
famously fails for CAT(0) spaces, as shown by Croke and Kleiner in [CK00]. here-
fore, the visual boundary of a CAT(0) group is not well deûned; however, we ûnd
that it will be if the space X is hyperbolic. Speciûcally, any quasi-isometry X → Y

induces a homeomorphism ∂X ≅ ∂Y . Furthermore, if a group acts properly, cocom-
pactly, and by isometries on a hyperbolic space X, we can even make sense of ∂G by
the Švarc-Milnor lemma.

In an eòort to make more broad statements, geometric group theorists o�en
loosen the requirements of a “geometric” action. In particular,we can consider groups
that act acylindrically and nonelementarily on hyperbolic spaces, a class that is aptly
named acylindrically hyperbolic. Much of the known machinery and results regard-
ing this class is available in [Osi16]. We also consider a class of groups introduced
by Gromov with important early attention given by Bowditch and Farb: relatively

hyperbolic groups. Speciûcally, these are groups that act in a “geometrically ûnite”way
on hyperbolic spaces that can be thought of as Cayley graphs with negatively curved
cusps added. he geometrical ûniteness in this action refers to the fact that although
the quotient space is no longer compact, it has a ûnite number of ends, in the sense
of [Geo08].
Althoughwe can deûnewhat the boundary of the group shouldmean in this latter

case, we ûnd that extending that to acylindrically hyperbolic groups, which is a strict
generalization of relatively hyperbolic groups, is problematic. We demonstrate that
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Rigidity Properties for Hyperbolic Generalizations 67

even under some additional assumptions, the limit sets of these actions do not achieve
a consistent shape.

his is stated as follows, with deûnitions of terms coming in Section 2.

heorem A here exist acylindrically hyperbolic groups G that admit two diòerent

universal actions G ↷ X i , such that, in the representations

ρ1 ∶ G Ð→ Isom(X1) and ρ2 ∶ G Ð→ Isom(X2),

the limit sets Λ1(G) and Λ2(G) are not homeomorphic.

In fact, the actionswill be by any closed surface group, both on the spaceH3,where
one copy will be identiûed with the universal cover of a 3-manifold, in which the
surface sits as a normal subgroup and has full limit set, and the other will have the
action induced by a geodesically embedded copy ofH2 with the action extending the
natural one by deck transformations, with limit set a circle.

Recent work of Abbott, Balasubramanya, and Osin in [ABO], has generated the
idea of a largest such action, though this is only possible in the class of cobounded ac-
tions. We note however, that these actions are not guaranteed to exist. his is because
universal actions themselves are not always guaranteed to exist, by [Abb16].

One advantage ofworking in the setting of geometric actions on hyperbolic spaces
is the quasi-isometry invariance of the acted-on spaces and their boundaries. We
can recover somewell-deûned notion of boundary for geometrically ûnite actions on
hyperbolic spaces, so we can ask if we retain the quasi-isometry invariance as well.
We should expect that in the “well-behaved” portion of the hyperbolic cusped space,
which is the preimage of a compact portion of the quotient, chosen so that the li�s of
the cusps do not intersect,we do see a nice invariance. So itmust be then that if quasi-
isometry invariance breaks down, it is in the cusps. It is a fact asserted in [GMS] that
one can choose the shape of these cusps carefully (or carelessly, depending on your
viewpoint) to force them away from being in the same QI class. We prove this fact
rigorously to obtain a statement about geometrically ûnite actions.

heorem B Any relatively hyperbolic groupwith inûnite peripheral subgroups acts as

in [Bow12] on hyperbolic spaces that are not equivariantly quasi-isometric.

2 Universal Acylindrical Actions

To deûne acylindrically hyperbolic groups, we deûne what it means for an action to
be acylindrical.

Deûnition 2.1 Anmetric space actionG ↷ X is called acylindrical if for every є > 0,
there exist R(є),N(є) > 0 such that for any two points x , y ∈ X such that d(x , y) ≥ R,
the set

{g ∈ G ∣ d(x , g .x) ≤ є, d(y, g .y) ≤ є}

has cardinality less than N .
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68 B. B. Healy

We need more hypotheses on a group than simply acting acylindrically on a hy-
perbolic space, however, as all groups admit such an action. he trivial action of any
group on a point, a hyperbolic space, is acylindrical.

Deûnition 2.2 A group G is called acylindrically hyperbolic if it admits an acylin-
drical action on a hyperbolic space that is not elementary; that is, it has a limit set
inside the boundary of the space of cardinality strictly greater than 2.

In restricting to this class, we obtain amore interesting class of groups. Indeed, we
omit some groups we feel in some natural sense, should not be negatively curved. A
quick fact available in [Osi16], for example, tells us that any group that decomposes
into the direct product of two inûnite factors is not acylindrically hyperbolic. For
some subclasses, such as right angled Artin groups (see [Osi16, Section 8], [Sis18], and
[CS11]), this, together with being virtually cyclic, is a complete obstruction to acylin-
drical hyperbolicity. We would like to know if, similar to hyperbolic and relatively
hyperbolic groups, these groups admit somewell-deûned notion of boundary or limit
set. his question is also being studied byAbbott,Osin, and Balasubramanya, who in
[ABO] develop what they term a largest action, which is necessarily also cobounded.
Although here we will not look at cobounded actions, we do use one of their condi-
tions, which is that our actions will be universal.

Deûnition 2.3 Let G be an acylindrically hyperbolic group. An element g ∈ G is
called a generalized loxodromic if there’s an acylindrical actionG ↷ X for X hyperbolic
such that g acts as a loxodromic. An individual isometry g is a loxodromic if for some
basepoint x0 ∈ X, themap Z→ X deûned by n ↦ gn .x0 is a quasi-isometry.

Deûnition 2.4 For an acylindrically hyperbolic group, an action G ↷ X is called
universal if it is acylindrical, X is hyperbolic, and all generalized loxodromics act as
loxodromics.

Universal actions are a natural setting to consider our question, as we can easily
change a given action ifwe force a generalized loxodromic to act elliptically. Evenwith
universality, however,we do not get awell-deûned boundary. Firstwe note that a sub-
group of an acylindrically hyperbolic group will inherit that property if the induced
sub-action remains non-elementary.

We will also need to note that geometric actions are acylindrical. his is observed
in [Osi16], but we provide a proof here for completeness.

Lemma 2.5 ([Osi16]) If a group action is geometric, then it is also acylindrical.

Proof SupposeG ↷ X geometrically. Let K ⊂ X be a compact fundamental domain
for this action. Set d = diam(K). We note by cocompactness that for any x , y ∈ X,
there exists a group element h ∈ G such that

d(x , h.y) ≤ d .

Wemake onemore claim, that is due to the action being by isometries. We claim that
for all є > 0, y ∈ X and h as above,

{g ∈ G ∣ d(y, g .y) ≤ є} = {g ∈ G ∣ d(h.y, h.(g .y) ≤ є}.
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Figure 1: he convex hull of these geodesics serve as a fundamental domain.

Now, for є > 0, pick R(є) > d. For any two points x , y, we can choose g such that
d(x , g .y) ≤ d, i.e., that both x , g .y belong to the same translate of K. Without loss of
generality, assume this translate is K itself. hen the set

{g ∈ G ∣ d(x , g .x) ≤ є, d(y, g .y) ≤ є}

is exactly equal to the set

{g ∈ G ∣ d(x , g .x) ≤ є, d(h.y, h.(g .y)) ≤ є}.

his set is a subset of the set of elements that translate K to a tile at distance amaxi-
mum of є away, which is bounded because the group action is proper. his bound is
a function of є, so let this bound serve as N(є). ∎

he groups that we invoke for our non-uniqueness claim will be hyperbolic sur-
face groups that will act on H3. Accordingly, we need one more lemma, to do with
hyperbolic geometry.

Lemma 2.6 Let Γ be a torsion-free Fuchsian group acting geometrically onH2. hen

for the natural isometric embedding of H2
↪ H3, the induced action of Γ ↷ H3 that

comes from the inclusion PSL(2,R) ⊂ PSL(2,C) is acylindrical.

Proof For any є > 0, let N(є) be the (necessarily ûnite) number of translates of K
that intersect Nє(K), that is to say N(є) = ∣S∣, where

S = {g ∈ Γ ∣ gK ∩Nє(K) ≠ ∅}.

For any g ∈ Γ,which are all acting as loxodromics because Γ is assumed to be torsion-
free, because X is the only totally geodesic copy of H2 that Γ acts on geometrically,
the geodesic axis lies entirely within X. What this tells us is that for any point z ∈ H3,
there exists a point x ∈ X such that

d(z, g .z) ≥ d(x , g .x).

From this we can determine that

{g ∈ Γ ∣ d(z, g .z) ≤ є} ⊂ {g ∈ Γ ∣ d(x , g .x) ≤ є}.
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70 B. B. Healy

he size of this right-hand set is bounded by N(є), which thus also bounds the size
of the le�-hand set. Because for any points w , z ∈ H3,

{g ∈ Γ ∣ d(z, g .z) ≤ є, d(w , g .w) ≤ є} ⊂ {g ∈ Γ ∣ d(z, g .z) ≤ є},

we get that the action is acylindrical with constants N(є) as chosen before, and any
value of R(є) > 0. ∎

We have the pieces now to state the following theorem.

heorem A here exist acylindrically hyperbolic groups G that admit two diòerent

universal actions G ↷ X such that, in the representations

ρ1 ∶ G Ð→ Isom(X) and ρ2 ∶ G → Isom(X),

the limit sets Λ1(G) and Λ2(G) are not homeomorphic.

Proof he space in question will beH3 and the group a closed surface group.
he following argumentwillwork for the fundamental group of any closed surface

of genus at least 2. However, to be explicit, we will consider G = π1(Σ2), where Σ2 is
a closed surface of genus 2.

Now, consider the action G ↷ H2. his action is that of deck transformations,
recognizingH2 as the universal cover Σ̃2. Because the quotient of this space is a closed
manifold, the action is geometric,meaning it is acylindrical. Furthermore, it has full
limit set, that is to say ∂G = ∂H2

≅ S1. Finally, every nontrivial element in this group
action acts as a loxodromic,meaning it is a universal action.
By the lemma above, this action extends to an acylindrical action on H3, that has

limit set Λ(G) ≅ S1, with all nontrivial elements continuing to act loxodromically.
Nowwewant to exhibit another universal action by this group onH3 with distinct

limit set. Let ϕ be a pseudo-Anosov element of MCG(Σ2). We can construct a hy-
perbolic 3-manifold, the geometry of which is given to us by [hu97], by taking the
space Σ2 × [0, 1], and identiûying Σ2 × {0} with ϕ(Σ2) × {1}. Denote this manifold
by M. We get a decomposition of π1(M) = π1(Σ2)⋊ϕ∗ Z, where ϕ∗ ∈ Aut(π1(Σ2)) is
induced by ϕ.
Again because the quotient is a closedmanifold, the natural covering space action

π1(M) ↷ H3 is geometric, and therefore acylindrical. Also by the geometric nature
of the action, we get ∂π1(M) = ∂H3

≅ S2.
We use a fact proved by hurston in [hu97, Corollary 8.1.3, Chapter 8], to as-

sert that in fact the π1(Σ2) has the same limit set as the entire group, by normality.
Speciûcally, Λ(π1(Σ2)) = ∂H3

≅ S2.
Now we need to know that all elements act as loxodromics. Because the action is

geometric (and acylindrical), none will act as parabolics. herefore, we need to rule
out the possibility of elements acting elliptically. However, because H3 is CAT(0),
we know that any element acting elliptically will have a ûxed point on the interior
of H3. We note that all nontrivial elements of π1(M) = π1(Σ2) ⋊ϕ∗ Z are of inûnite
order. his implies that none of them can act elliptically. If a nontrivial g ∈ π1(M)

was elliptic, then it would ûx a point, giving us an inûnite number of elements, the
powers of g, ûxing a point, which violates the properness assumption of our action.
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hus the induced action G = π1(Σ2)↷ H3 has the following properties:
● It is acylindrical.
● he space is hyperbolic.
● It has limit set S2.
● All nontrivial elements act as loxodromics.

herefore, this is a universal actionwith a distinct (homeomorphism type) of limit
set for the group G. ∎

3 Geometrically Finite Actions

here are many exisiting deûnitions in the literature for what it means for a group/
subgroup combination to be a relatively hyperbolic pair. A thorough review of these
conditions and their equivalence is available in [GM08]. For our purposes, we will
use the following deûnition.

Deûnition 3.1 A group action G ↷ M, for M a compact metrizable space, is called
a convergence action if the induced action on the set of distinct triples

{(m1 ,m2 ,m3) ∣ m i ∈ M ,m i ≠ m j for i ≠ j}

is properly discontinuous.

To this end, we want actions which are a certain kind of convergence action.

Deûnition 3.2 A convergence action is called geometrically ûnite if every m ∈ M is
such that one of the following is true:

● he point m is a bounded parabolic point,meaning it has inûnite stabilizer act-
ing cocompactly on M/{m}.

● he point m is a conical limit point,meaning there exists a sequence g i , i ∈ N of
group elements and distinct points a, b ∈ M such that g im → a and g im

′
→ b

for all m′
≠ m.

We call a group acting on a hyperbolic space a geometrically ûnite action if its
induced action on the boundary of that space is a geometrically ûnite convergence
action.

Deûnition 3.3 ([Bow12]) A pair (G ,H) is relatively hyperbolic if G admits a geo-
metrically ûnite action on a proper, hyperbolic space X such that the set H consists
of exactly themaximal parabolic subgroups and each of these are ûnitely generated.

We are now ready to state the resultwe are interested in: howwell speciûed the ge-
ometry of these spaces are, given the group and peripheral group structure. What we
ûnd is that while the core of the space is well deûned up to quasi-isometry, the shape
of the cusps can break quasi-isometry between candidate spaces. Here “core” means
the space that is the li� of a connected compactum that separates the ends in the quo-
tient. he inspiration for this result came from observations in [GMS, Remark A.6],
which asserted a version of Lemma 3.5.
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heorem B Any relatively hyperbolic groupwith inûnite peripheral subgroups acts as

above on hyperbolic spaces that are not equivariantly quasi-isometric.

We need onemore deûnition before stating the heavy-li�ing lemma.

Deûnition 3.4 ([GM08]) For a connected, locally ûnite metric graph Γ with edge
lengths 1, and increasing function f ∶ R≥0 → R≥0 that is coarsely at least exponential,
the associated combinatorial horoball C f (Γ) is a graph with vertex set

V(H(Γ)) ∶= Γ0
×N

where the points (v , n) and (v , n + 1) are connected by edges of length 1, and each
level Γ0

× n has an edge of length 1 between them if their distance in Γ was less than
or equal to f (n).

his object ismostly used for groups, inwhich case the combinatorial horoball of a
(sub)groupG will be denoted C f (G), andwe refer to C f (Γ(G)) for some understood
Cayley graph Γ. In the case of a subgroup, it will be assumed the intended graph is
the natural subgraph of Γ(G).

Lemma 3.5 Let f (x) ∶= 2x and g(x) ∶= 22x . hen for any ûnitely generated inûnite

group H, the combinatorial horoballs C f (H) and Cg(H) are not quasi-isometric.

Proof Herewemight be tempted to apply the idea, explained for example in [BH99],
that the growth of balls in a graph is a quasi-isometry invariant, because these two
graphs by design have diòerent growth rates. However, this statement is made specif-
ically for graphs which arise as Cayley graphs of ûnitely generated groups. We are us-
ing the assumption that our graph has uniformly bounded valence implicitly in this
formulation,which regrettably is not true for these combinatorial horoballs. Wemust
do a littlemore work. We will denote distance in C f (H) by d f , distance in Cg(H) by
dg , and distance restricted to the zero level of the horoball (which is independent of
which scaling function is used) by dH .

he ûrst thingwe observe about these spaces is that they are δ-hyperbolic for some
δ, by [GMS] Appendix A, and the boundaries are single points. In the geodesic ray
deûnition of the boundary, these points are the equivalence class of rays that point
straight “upwards”, consisting entirely of vertical edges. herefore, any (c, c) quasi-
isometry ϕ ∶ C f (H) → Cg(H) between the combinatorial horoballs, which acts by
homeomorphism on the boundaries of hyperbolic spaces, must take these geodesic
rays to quasi-geodesic rays in the equivalence class of the lone boundary element on
the right which are in turn B close to geodesic rays for some value B. Up to bounded
distance, then,we can assume such amap takes a ray {(x , i) ∣ i ≥ 0} to some geodesic
ray {(y, i) ∣ i ≥ k}, for x , y ∈ H. Because of this potential error between geodesic
and quasi-geodesic rays, the next paragraph is performed up to a bounded constant
B = B(δ), which can be added to the appropriate constant found for each application
of the quasi-isometry.

We proceed by contradiction. Let ϕ be a (c, c) quasi-isometry between these
spaces, and denote its quasi-inverse by ψ. Without loss of generality, assume ψ also
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has (c, c) for quasi-isometry constants. We ûrst need to note that the zero level of
C f (H) has bounded height in the image. To do this, it is suõcient to consider what
happens to the vertices. Pick an arbitrary point in this level set, (x , 0). By quasi-
inverses, ψ ○ ϕ((x , 0)) has bounded distance from (x , 0), and so has height bounded
by somemultiple of c. Due to the above observation of geodesic rays, {(x , i) ∣ i ≥ 0}
goes to some geodesic ray {(y, i) ∣ i ≥ k}, and under the quasi-inverseψ, {(y, i) ∣ i ≥ k}

goes to some geodesic ray {(z, i) ∣ i ≥ ℓ}. In particular, this means that the value of ℓ
is at least k

c − c. Because the height of ψ ○ ϕ((x , 0)) is bounded above by somemulti-
ple of c, this says that the value of k is also bounded above by some function of c. So
the height of any point ϕ((x , 0)) is bounded by a function of c, δ. A symmetric ar-
gument guarantees the same is true for ψ((y, 0)). Call themaximum of these height
bounds D.

Now consider two points x0 , xN ∈ H with horospherical distance dH(x0 , xN) = N .
We can pick these for any value of N desired by the assumption that H has inûnite
diameter. Subdivide an H-geodesic between these points into a path x0 , x1 . . . xN so
that each successive point is at distance 1; note that each x i will necessarily be a vertex.
Let (y i , h i) ∶= ϕ((x i , 0)), recalling that h i < D. Because we know that

dg(ϕ((x i , 0)), ϕ((x i+1 , 0))) ≤ 1c + c = 2c,
dg(ϕ((x i , 0)), (y i , 0)) ≤ D + B,

the triangle inequality guarantees that

dg((y i , 0), (y i+1 , 0)) ≤ 2c + 2(D + B).

Recall that the last term comes from the discrepancy between geodesics and quasi-
geodesics, and only depends on the hyperbolicity constant. his observation implies
that dH(y i , y i+1) is uniformly bounded (independent of i ,N) by some constant we
label E. So we know that for any choice of x0 , xN , the distance dH(y0 , yN) ≤ EN .
hen we also know by the way we deûned Cg(H) that

dH(y0 , yN) ≤ EN(3.1)

Ô⇒ dg((y0 , 0), (yN , 0)) ≤ 2⌈log2(log2(EN))⌉ + 3

Ô⇒ dg(ϕ((x0 , 0)), ϕ((xN , 0))) ≤ 2⌈log2(log2(EN))⌉ + 3 + 2B.

his is because we can adapt [GM08, Lemma 3.10] to observe that geodesics be-
tween vertices in these combinatorial horoball spaces will always consist of traveling
towards the boundary point along vertical edges, traveling along at most 3 horizontal
edges, and traveling again vertically downwards, which achieves at most the distance
listed above. However, the fact that ϕ is a (c, c) quasi-isometry dictates that

dg(ϕ((x0 , 0)), ϕ((xN , 0))) ≥

1
c
d f ((x0 , 0), (xN , 0)) − c(3.2)

≥

1
c
(2⌊log2(N)⌋ + 1) − c

by another application of [GM08, 3.10]. We see that for suõciently large values of N ,
the statements (3.1) and (3.2) are incompatible, contradicting the existence of such a
map ϕ. ∎
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Proof of Theorem B Let (G ,H) be a relatively hyperbolic pair such that H is in-
ûnite. We construct two spaces, X1 , X2, as follows. X i will be a copy of Γ(G), the
Cayley graph, with combinatorial horoballs glued on to all cosets of H. In X1, allow
the scaling function to be 2n , and in X2 allow the scaling function to be 22n

. Again by
[GMS],we note that this resultant space is hyperbolic for both cases. he equivalence
of deûnitions of relative hyperbolicity tell us that these spaces are acted upon in the
appropriate sense of [Bow12].

In order to apply our lemma in the correct way, we need to show that any equi-
variant map between the X i will coarsely take cusps to cusps. Denote by Q1 and Q2
the quotients of X1 and X2, respectively, by the action of G. By the assumption that
these spaces are hyperbolic, they have awell deûned boundary, and by the assumption
that the action is geometrically ûnite, thesewill be spaces that have ûnitelymany, iso-
lated boundary points, in one-to-one correspondencewith the number of (conjugacy
classes of) peripheral subgroups.

Suppose f is a G-equivariant (c,c) quasi-isometry f ∶ X1 → X2. hen f descends
to a quasi-isometry fq ∶ Q1 → Q2. Explicitly, let p i ∶ X i → Q i be the quotient maps.
henwe can deûne fq(q1) = p2( f (p

−1
1 (q1))). Note this iswell deûned because of the

assumption of equivariance of themap f . We claim fq is a (c, c)-quasi-isometry. Let
z1 , z2 be points in Q1. hen

dQ2( fq(z1), fq(z2))

= dQ2(p2( f (p
−1
1 (z1))), p2( f (p

−1
1 (z2)))) By deûnition of fq .

≤ dX2( f (p
−1
1 (z1)), f (p−1

1 (z2))) Projection does not
increase distance.

≤ c dX1(p
−1
1 (z1), p−1

1 (z2)) + c f is a (c,c)-QI with
careful choice of
pre-image.

= c dQ1(z1 , z2) + c

and

dQ2( fq(z1), fq(z2))

= dQ2(p2( f (p
−1
1 (z1))), p2( f (p

−1
1 (z2)))) By deûnition of fq .

= dX2( f (p
−1
1 (z1)), f (p−1

1 (z2))) Choosing pre-image
points at theminimum
distance.

≥

1
c
dX1(p

−1
1 (z1), p−1

1 (z2)) − c f is a (c,c)-QI

≥

1
c
dQ1(z1 , z2) − c Projection does not

increase distance.

Finally, to satisfy the quasi-onto conditionwe note that any point in X2 is bounded
distance from the image of f , so the same will be true (with the same bound) when
the points are projected downstairs.

Now, because fq is a QI from Q1 to Q2, it must act as a homeomorphism on the
discrete boundary. In particular, it takes geodesic rays representing these boundary
points, to inûnite length quasi-geodesic rays in Q2. he only such rays that exist in
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this space are those that represent the cusps that are the quotient of peripheral groups
upstairs. herefore, downstairs, f coarsely maps cusps to cusps. Because of how we
deûned this map, this forces f to map, again coarsely, our combinatorial horoballs in
X1 to those in X2. hen, by Lemma 3.5, this map cannot be a QI a�er all, so we have
a contradiction,meaning that no such map can exist. ∎

It is conjectured by the author thatwe can drop equivariance in the statement of B
ifwe allow the scaling functions tobe super-exponential and super-super-exponential,
with the proof of Lemma 3.5 being similar just with more 2s. In this case, we would
expect to ûnd thatwe naturally cannot coarselymap cusps into the “core” of the target
space by a divergence argument.

4 Decay of Rigidity

hese two results tell us that as we loosen the conditions that we use to classify nega-
tively curved groups,we also lose some of themetric structure and end behavior their
corresponding spaces enjoy. We sum up this meta-statement in the following table,
where ‘Yes’ indicates that structure is rigid.

Group Property Action Type on Boundary/ QI Type
Hyperbolic X Limit Set of X

Hyperbolic Geometric Yes Yes
Relatively Hyperbolic Geometrically Finite Yes No

Acylindrically Hyperbolic Universal No No

Table 1: Quasi-isometric and Limit Set Rigidity ofHyperbolicity Generalizations

It should be noted here that in the third column, we are referring to the well-
deûned Gromov boundary of the group in the ûrst row and the Gromov boundary
of the “cusped space” in the second row, which is well deûned by [Bow12].
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