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The encapsulation of active particles, such as bacteria or active colloids, inside a droplet
gives rise to a non-trivial shape dynamics and droplet displacement. To understand
this behaviour, we derive an asymptotic solution for the fluid flow about a deformable
droplet containing an active particle, modelled as a Stokes-flow singularity, in the case
of small shape distortions. We develop a general solution for any Stokes singularity and
apply it to compute the flows and resulting droplet velocity due to common singularity
representations of active particles, such as Stokeslets, rotlets and stresslets. The results
show that offsetting of the active particle from the centre of the drop breaks symmetry
and excites a large number of generally non-axisymmetric shape modes as well as
particle and droplet motion. In the case of a swimming stresslet singularity, a run-and-
tumble locomotion results in superdiffusive droplet displacement. The effect of interfacial
properties is also investigated. Surfactants adsorbed at the droplet interface counteract
the internal flow and arrest the droplet motion for all Stokes singularities except the
Stokeslet. Our results highlight strategies to steer the flows of active particles and create
autonomously navigating containers.

Key words: active matter, drops

1. Introduction
Many biological cells are capable of autonomous locomotion. Bacteria, for example,
exhibit directed motion as they sense and move towards nutrients while navigating
complex environments (Bastos-Arrieta et al. 2018). Artificial systems that mimic this type
of behaviour possess great potential for the engineering of autonomous micro-robots (Li
et al. 2017; Lee et al. 2023a), however, achieving internally driven motility is a challenging
task. Active matter, which consists of entities (active particles) capable of harvesting
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energy from the environment and converting it into motion, presents a promising solution
of this problem. The constant energy dissipation unlocks a wealth of phenomena in active
matter that are impossible at equilibrium, e.g. self-organization and directed coherent
motion on scales much larger than the individual particle (Marchetti et al. 2013). Bacteria
and swimming microorganisms are examples of living active particles (Elgeti, Winkler
& Gompper 2015; Bechinger et al. 2016; Gompper et al. 2021). There has been a
great effort to create self-propelled particles emulating microswimmers (Shields & Velev
2017; Ebbens & Gregory 2018; Bishop, Biswal & Bharti 2023; Al Harraq et al. 2022;
Birrer, Cheon & Zarzar 2022; Boymelgreen et al. 2022; Diwakar et al. 2022; Michelin
2023). However, effective strategies to control the collective dynamics of such artificial
micromotors without external steering, or utilize micromotors to move cargo-carrying
containers remain elusive.

Recently, spontaneous displacement of a cell-like soft container enclosing active
particles has been achieved experimentally using a droplet containing motile colloids
(Kokot et al. 2022) or bacteria (Ramos, Cordero & Soto 2020; Rajabi et al. 2021). While
one can intuitively appreciate that the activity of the particles drives droplet motion, a
comprehensive understanding of the mechanisms underlying droplet self-propulsion is
necessary to design a strategy to effectively control the droplet locomotion. It is well
known that geometric boundaries strongly influence the particle dynamics and often are
used to orchestrate the collective behaviour of active ensembles. For example, while
unconfined suspensions of bacteria exhibit turbulent-like flow (Wensink et al. 2012; Alert,
Casademunt & Joanny 2022), directed motion emerges when the suspension is confined
to a channel (Wioland, Lushi & Goldstein 2016) or a macroscale vortex forms when the
bacteria are constrained in a droplet (Wioland et al. 2013; Lushi, Wioland & Goldstein
2014). Similar behaviour is observed with Quincke rollers constrained by solid boundaries
(Bricard et al. 2013; Chardac et al. 2021; Chardac et al. 2021).

In the case of the droplet, the boundary is soft and can deform in response to the internal
flow generated by the active particles. The flow about a self-propelled active particle such
as microswimmers or active droplets in unbounded fluid is well known (Lauga 2016;
Saintillan 2018; Lauga 2020; Michelin 2023; Ishikawa 2024). However, active particles
in a spherical container are less studied and most work is focused on modelling particle
motion in a rigid enclosure (Aponte-Rivera & Zia 2016; Aponte-Rivera, Su & Zia 2018;
Chamolly & Lauga 2020; Marshall & Brady 2021).

In the case of a non-deformable spherical drop, exact solutions for a microswimmer
modelled as a squirmer at the centre the droplet along with boundary integral simulations
of the squirmer placed in an arbitrary location inside the drop were first considered
in Reigh et al. (2017); Reigh & Lauga (2017). Subsequent works developed analytical
solutions also for non-axisymmetric configurations (Kree & Zippelius 2021, 2022), or
surfactant-covered drops (Shaik, Vasani & Ardekani 2018). Models of the active particle
as a point singularity have examined the case of a point force, a stresslet and a rotlet
placed at an arbitrary position inside the drop (Daddi-Moussa-Ider, Löwen & Gekle
2018; Hoell et al. 2019; Sprenger et al. 2020; Kree, Rueckert & Zippelius 2021). These
works reported that even a force-free singularity can give rise to net droplet translation.
Deformation in response to the active internal flow was solved analytically in the case
of an elastic shell, assuming the container shape remains close to a sphere (Hoell et al.
2019). Large deformations of a container due to active particles have only been considered
in the absence of hydrodynamic interactions (Paoluzzi et al. 2016; Wang et al. 2019;
Quillen, Smucker & Peshkov 2020; Uplap, Hagan & Baskaran 2023; Lee et al. 2023b).
In these simulations, the boundary is modelled as a chain of spring-connected beads and
the container deformation arises solely from the collisions between active particles and

1007 A41-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

75
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.75


Journal of Fluid Mechanics

boundary beads. Simulations with the full hydrodynamics of many microswimmers are
limited to a non-deformable, spherical drop (Huang, Omori & Ishikawa 2020).

In this work, we address the case of an active particle, represented by an arbitrary Stokes-
flow point singularity, inside a slightly deformable drop with clean or surfactant-covered
interface. We adapt the methods developed to model deformable drops in an applied
external flow (Vlahovska, Blawzdziewicz & Loewenberg 2009; Vlahovska 2015) to the
flow generated inside the droplet by any Stokes-flow singularity. Drop deformation and
the migration velocity are obtained for some common singularities like the stresslet, which
approximates the flow created by a bacterium, and the interplay between the trajectory of
the swimming active particle and droplet dynamics is explored.

The paper is organized as follows. Section (2) presents the formulation of the problem
and Section (3) provides the general solution method. Section (4) presents results for the
flows generated by the Stokeslet, rotlet and stresslet. The shape and velocity of the drop
are then calculated. General results for higher-order singularities inside the droplet are
also given. The case of a stresslet inside a droplet is used to illustrate the impact of the
transient internal flow on the motion and reorientation of the enclosed active particle, and
the droplet displacement.

2. Problem formulation
Consider an initially spherical, neutrally buoyant droplet with equilibrium radius R0 and
viscosity λμ suspended in an unbounded fluid with viscosity μ. The droplet interface
is either clean with interfacial tension γ0 or covered with an insoluble non-diffusing
surfactant monolayer with uniform surface concentration Γeq and interfacial tension γeq
at equilibrium. An active particle with strength Q and swimming velocity Vp p̂ is placed
inside the droplet, see figure 1(a) for a sketch of the problem. We will model the active
particle as a Stokes-flow singularity, e.g. a Stokeslet, a stresslet, a rotlet and a source dipole,
see the table in figure 1(b).

Hereafter, all quantities are rescaled using the droplet radius R0 and the characteristic
active force F . In the case of the potential flow singularities, i.e. the source multipoles

F = Qμλ

R j+1
0

, (2.1)

where j = 1 corresponds to a source dipole, j = 2 corresponds to a source quadrupole and
so on. In the case of the force singularities

F = Q

R j
0

, (2.2)

where j = 0 corresponds to a point force, j = 1 to a force dipole, j = 2 to a force
quadrupole and so on.

Fluid velocity and pressure inside the drop, uins and pins, and outside the drop, uout and
pout, are described by the Stokes equation

−∇ pout + ∇2uout = 0 , ∇ · uout = 0, (2.3)

−∇ pins + λ∇2uins = s , ∇ · uins = q. (2.4)

The point distributions s(x − x0) and q(x − x0) model the active particle located at x0
in a coordinate system centred at the droplet, see the table in figure 1(b). The position of
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Singularity

(b)

(a)

Solution in unbounded fluid u (x) s (x) q (x)

Stokeslet 1
8πλ|x|

1

8πλ|x|2

1

4π|x|3

8πλ|x|3

|x|
x

(d̂ · x)x
|x|2

0

Rotlet d̂×x − 1
2

 � × (–d̂ δ(x))

1
3

–   � · ((d̂ d̂  –    |d̂ |I ) δ(x))

0

Axisym. stresslet 0

–d̂ ·    δ(x)

–d̂ δ(x)

d̂ 

(d̂  +           )

d̂ · xx
|x|2

(–d̂  + 3         )

(d̂ · x)2

|x|3
(–      + 3          x)

u =Source dipole 0

x0

R0

¢

Figure 1. (a) Sketch of the problem: a Stokes-flow singularity (Stokeslet) inside of a droplet. (b) The
Stokes-flow singularities used to model the active particle in our analysis (Graham 2018) .

the droplet interface is specified by xs = rs(θ, φ, t)r̂ . It evolves according to

drs

dt
= us · n̂, (2.5)

where n̂ is the outward normal vector and us is velocity of the interface

uins = uout = us, at r = rs. (2.6)

Fluid motion gives rise to bulk hydrodynamic stress

T (i) = −p(i) I + η(i)
[
∇u(i) + (∇u(i))T

]
, (2.7)

where (i) denotes {ins, out} and ηout = 1, ηins = λ.
In the case of a clean drop, the jump in normal stress at the interface is balanced by the

surface tension, and the tangential stresses are continuous across the interface

n̂ · (T out − T ins) = Ca−1 (∇ · n̂
)

n̂ , r = rs. (2.8)

The capillary number Ca quantifies the competition between the shape-distorting flow
stresses and the shape-restoring interfacial tension

Ca = F

γ0 R0
. (2.9)
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In the case of a surfactant-covered drop, the flow advects the surfactant. In the absence
of adsorption and desorption, and with negligible diffusion, the surfactant transport along
the deforming interface is described by (Stone 1990)

∂Γ

∂t
+ ∇s · (Γ us) = 0 , (2.10)

where us is the total velocity of the interface, (2.6), which has components both normal
and tangential to the interface. The surfactant redistribution gives rise to gradients in
the interfacial tension (Marangoni stresses) since the interfacial tension depends on the
local surfactant concentration, γ (Γ ). Considering small deviations from equilibrium, the
equation of state is linearized

γ (Γ ) = γeq(1 − EΓ̄ ) , (2.11)

where Γ̄ = (Γ − Γeq)/Γeq and E = −Γeq
γeq

(
∂γ
∂Γ

)eq is the elasticity of the monolayer. The
interfacial stress balance becomes

n̂ · (T out − T ins) = Ca−1
s
(
1 − EΓ̄

) (∇ · n̂
)

n̂ + Ma∇sΓ̄ , r = rs . (2.12)

The capillary number Cas is defined relative to the equilibrium interfacial tension γeq.
The Marangoni number

Ma−1 = F

�γ R0
= Cas E−1 , (2.13)

reflects the strength of the Marangoni stresses, which oppose the surfactant redistribution
by the flow and act to restore the uniform surfactant coverage. Here, �γ = −Γeq(

∂γ
∂Γ

)eq is
the characteristic magnitude of the Marangoni stresses.

In the limit Ma � 1, the non-uniformities in the surfactant distribution induced by
the flow are small, Γ̄ ∼ O(Ma−1), and (2.10) reduces to the condition for a surface-
incompressible flow (Blawzdziewicz, Vlahovska & Loewenberg 2000; Vlahovska et al.
2009)

∇s · us = 0 . (2.14)

The velocity field is independent of Ma in this case, as the tension adapts to keep the
surface flow area incompressible.

The active particle swims and it is advected and reoriented by the fluid flow. Its trajectory
is given by

dx0

dt
= Ṽp p̂ + up

d p̂
dt

= ωp × p̂, (2.15)

where the normalized particle velocity is Ṽp = VpμR0/F , and up, ωp are the local flow
velocity and rotation rate.

3. Asymptotic solution for small shape deformation
We solve the problem in the case of weak particle activity, i.e. Ca � 1, where the droplet
shape remains nearly spherical. Given the spherical geometry of the problem, we expand
all variables in spherical harmonics (see Appendix A). Accordingly, the surface in a
coordinate system centred at the droplet is parametrized as

rs(θ, φ, t) = 1 + ε f (θ, φ, t), (3.1)
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where ε ≡ Ca and the deviation from sphericity is expressed in terms of scalar spherical
harmonics

f (θ, φ, t) =
∞∑
j=1

j∑
m=− j

f jm(t)y jm(θ, φ). (3.2)

Assuming surfactant elasticity E ∼ O(1), the surface tension variations are also small (but
comparable to the flow stresses)

γ = γ0 + ε

∞∑
j=1

j∑
m=− j

g jm(t)y jm(θ, φ) . (3.3)

3.1. Solution for the fluid velocity
The fluid flows inside and outside the droplet are expanded in a basis of fundamental
solutions of the Stokes equation in a spherical geometry, u±

jmσ (x), where ± denotes
solutions that are regular at infinity (−) or at the origin (+), and σ = 0, 1, 2 denote the
irrotational, rotational and pressure-conjugate velocity fields (see Appendix A for details).

The flow velocity inside and outside the droplet is computed in three steps.

(i) The flow due to the active particle in free space filled with the droplet fluid, which
is the solution u(x, x0) of (2.4) in a coordinate system centred at the singularity, is
expressed in decaying solutions of the Stokes equation

uact(x) =
∑
j,m,σ

cact
jmσ u−

jmσ (x) , (3.4)

where
∑

j,m,σ =∑∞
j=1

∑ j
m=− j

∑2
σ=0. For example a rotlet with axis of rotation ẑ is

described by coefficient cact
101 = − i

2
√

6πλ
.

(ii) Droplet deformation is computed from (3.1). For this purpose, the flow (3.4) needs
to be transformed into a coordinate system centred at the droplet. A similar problem
is encountered in the study of electrostatic and gravitational fields, where the field at
distant points is sought in terms of sources in a given region, and is solved by the
multipole expansion method (Jackson 1999). The difference in our case is that we are
dealing with a vector (velocity) not scalar (potential) fields. This problem has been
solved by Felderhof & Jones (1989).
The structure of the transformed flow depends on the position x. In the region |x| <
|x0|, the velocity field is a superposition of Stokes-flow solutions that are non-singular
at the origin. In the region |x| > |x0|, the flow consists of Stokes-flow solutions that
are non-singular at infinity

uact(x, x0) =
∑
j,m,σ

cact,+
jmσ (x0)u+

jmσ (x)H(|x0| − |x|)

+ cact,−
jmσ (x0) , u−

jmσ (x)H(|x| − |x0|), (3.5)

where H is the step function. The coefficients of the transformed flow cact,±
jmσ are

determined by the transformations derived in Felderhof & Jones (1989) and the details
are given in Appendix B. Continuing the previous example of the axisymmetric
configuration of a rotlet, when the rotlet is placed at (x = 0, y = 0, z = r0) with
respect to the drop centre, the coefficients for the expansion are
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cact,−
j01 = − ir j−1

0
4λ

√
j ( j + 1)

(2 j + 1)π
, cact,+

j02 = − i jr− j−2
0

4
√

(2 j + 1)πλ
,

cact,+
j00 = cact,+

j01 = r−2 j−1
0 cact,−

j01 , (3.6)

with all other coefficients equal to 0.
(iii) The total flow is a superposition of the flow due to the singularity and perturbation

due to the presence of the interface

uins = uact +
∑
j,m,σ

(c jmσ − cact,−
jmσ )u+

jmσ , uout =
∑
j,m,σ

c jmσ u−
jmσ . (3.7)

The above form for the solution satisfies the continuity of velocity at the spherical
droplet interface. The unknown coefficients c jmσ are determined using the stress
balance at the interface. The hydrodynamic tractions associated with the flow are
expanded in vector spherical harmonics (Vlahovska 2015)

t ≡ (Tins − Tout) · r̂ =
∑

τ jmσ y jmσ ,

τ jmσ =
2∑

σ
′=0

c jmσ
′T −

σσ
′ − λ((c jmσ

′ − cact,−
jmσ

′)T +
σσ

′ + cact,−
jmσ

′T −
σσ

′) ,
(3.8)

where the T ±
σσ

′ are listed in Appendix A.
Next, we discuss the solution in the case of a surfactant-free drop where the

hydrodynamic tractions are balanced by the surface tension only and surfactant-covered
drop where the surface traction also include the Marangoni stresses.

3.1.1. Clean droplet
For a surfactant-free droplet, the tangential tractions are continuous (σ = 0, 1) and the
normal tractions(σ = 2) is balanced by surface tension

τ jmσ = (−2 + j ( j + 1)) f jmδσ,2, (3.9)

where δ j,k is the Kronecker delta function.
Solving for c jmσ yields

c jm1 = λ(2 j + 1)

2 j + 1 + (λ− 1)( j − 1)
cact,−

jm1 , c jmn = ζ−1
j

(−p jmn f jm + q jmn
)

(n = 0, 2),

(3.10)

where

p jm0 = 3
√

j ( j + 1)( j − 1)( j + 2) ((2 j + 1) + (λ− 1)( j + 1))

q jm0 = (2 j + 1)λ(3cact,−
jm2

√
j (1 + j)(λ− 1)

+ cact,−
jm0 ( j (4 j2 + 6 j − 1) + λ( j + 1)(4 j2 + 2 j − 3))

p jm2 = ( j − 1) j ( j + 1)( j + 2)(2 j + 1)(λ+ 1)

q jm2 = (2 j + 1)λ(3cact,−
jm0

√
j ( j + 1)(λ− 1)

+ cact,−
jm2 ((4 j3 + 6 j2 − j + 3) + λ(4 j3 + 6 j2 − j − 6))

ζ j = (2 j − 1)(2 j + 1)2(2 j + 3) + (λ− 1)(2 j + 1)(8 j3 + 12 j2 − 2 j − 9)

+ 2(λ− 1)2( j − 1)( j + 1)(2 j2 + 4 j + 3).

(3.11)
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3.1.2. Surfactant-covered droplet
In this case, the surface incompressibility condition (2.14) gives a relation between the
amplitudes of the tangential and radial velocity components

c jm2 = 1
2

√
j ( j + 1)c jm0. (3.12)

The stress balance for the surfactant-covered drop is

τ jmσ = (2g jm + (−2 + j ( j + 1)) f jm)δs,2 −√
j ( j + 1)g jmδs,0. (3.13)

Equation (3.12) and the radial component of (3.13) serve to determine the tangential and
radial velocities (c jm0 and c jm2 coefficients). The tangential σ = 1 flow (c jm1 coefficients)
is obtained from the continuity of the tangential jm1 stress. The jm0 tangential stress
component serves to determine the tension distribution g jm (Vlahovska 2015). The
resulting coefficients for the velocity and tension are

c jm0 = 2c jm2√
j ( j + 1)

, c jm1 = λ(2 j + 1)

2 j + 1 + (λ− 1)( j − 1)
cact,−

jm1

c jm2 = ξ−1
j

(−p jm2 f jm + q jm2
)

, g jm = ξ−1
j

(−p jmg f jm + q jmg
) (3.14)

where

p jm2 = ( j − 1) j ( j + 1)( j + 2)

q jm2 = (2 j + 1)λ(
√

j ( j + 1)cact,−
jm0 + (2 j2 + 2 j − 3)cact,−

jm2 )

p jmg = ( j − 1)( j + 2) ((2 j + 1) + (λ− 1)( j − 1))

q jmg = −(2 j + 1)λ

[
(2 j − 1)(2 j + 1)(2 j + 3) + (λ− 1)( j − 1)(4 j2 + 10 j + 9)√

j ( j + 1)
cact,−

jm0

−2(2 j − 1)(2 j + 1)(2 j + 3) + ( j − 1)(8 j2 + 17 j + 12)

j ( j + 1)
cact,−

jm2

]
ξ j = (2 j + 1)(2 j2 + 2 j − 1) + (λ− 1)( j − 1)(2 j2 + 5 j + 5).

(3.15)

3.2. Interface evolution and steady shape
The evolution equation for the interface (2.5) is (Vlahovska 2015)

Ca
d f jm

dt
= c jm2 = −p jm2 f jm + q jm2. (3.16)

For both clean and surfactant-covered droplets, the coefficient p jm2 > 0 for all j > 1
indicating that when the singularity is fixed in place with respect to the drop centre the
shape modes f jm evolve to a steady-state value given by

f ss
jm = q jm2

p jm2
. (3.17)

Inserting the steady shape in the flow coefficients (3.10) recovers the solution for the flow
around a non-deformable clean droplet, which would be obtained by setting the normal
velocity to the surface c jm2 = 0 and the shape deformation f jm = 0 in the tangential stress
balance. The flow and motion of a non-deformable surfactant-covered drop is obtained if
the steady-state shape amplitudes, f jm , are inserted in (3.14) instead.
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For a surfactant-free drops at steady state, the flow for modes j > 1 is then given by

css
jm0 = λ2 j ( j + 1)cact,−

jm0 − 3
√

j ( j + 1)cact,−
jm2

j ( j + 1)(λ+ 1)
,

css
jm1 = λ(2 j + 1)

2 j + 1 + (λ− 1)( j − 1)
cact,−

jm1 ,

css
jm2 = 0.

(3.18)

The j = 1 flows remain the same as in (3.10).
For a surfactant-covered drop at steady state, f ss

jm , the flow for j > 1 reduces to

css
jm0 = css

jm2 = 0 ,

css
jm1 = λ(2 j + 1)

2 j + 1 + (λ− 1)( j − 1)
cact,−

jm1 ,
(3.19)

matching the flow about a surfactant-covered spherical drop. The tension adapts to keep
the surface flow area-incompressible flow. The tension distribution is obtained from the
tangential stress balance

gss
jm = (2 j + 1)λ

−2cact,−
jm0

√
j ( j + 1) + 3cact,−

jm2

j ( j + 1)
. (3.20)

The Marangoni stresses counteract the viscous stresses due to the flow components with
velocity amplitudes c jm0 and c jm2. If the active particle generates axisymmetric flow,
m = 0, then cact,−

jm1 = 0, the interface is completely immobilized and the flow outside the
droplet vanishes.

3.3. Drop migration
The translational velocity of a drop is defined as the volume average velocity of the fluid
inside the drop

U = 1
V

∫
V

uinsdV, (3.21)

where V is the volume of the drop. Under the assumption that the flow is incompressible
everywhere, ∇ · uins = 0, the following relation holds: ∇ · (xuins) = uins. Under the
further assumption of the smoothness of uins, we can relate the drop translation to the
surface velocity

U = 1
V

∫
S
(uins · n̂)xdS, (3.22)

where S is the surface of the drop. For a spherical drop, n̂ = x = r̂ and V = 4π/3.
Some care must be taken when placing singularities inside a droplet. Both the

incompressibility and smoothness conditions may no longer hold. For a Stokeslet, rotlet,
and stresslet, the singularity may be removed in the sense that∫

Vδ

udVδ = O(δ) → 0 as δ → 0, (3.23)

where Vδ is a ball of radius δ around the singularity and u is the velocity of the Stokeslet,
rotlet or stresslet. This results in definition (3.21) being well defined and relation (3.22)
holding.
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For higher-order singularities, we have that the volume average velocity as defined in
(3.21) does not converge. Note, however, if we were to consider an active particle of finite
size with volume Vactive, we have a well defined volume average velocity of the fluid

U = 1
V

∫
V −Vactive

uinsd(V − Vactive). (3.24)

This can be given in terms of surface velocity contributions from the drop surface, S, and
active particle surface, SAP

U = 1
V

∫
S
(uins · n̂)xdS + 1

V

∫
SAP

(uins · n̂AP)xdSAP , (3.25)

where n̂AP is the unit normal vector pointing into the active particle.
For the remainder of the paper we will only consider the drop velocity in terms of the

contribution from the drop surface and define the velocity of the spherical drop as

Ud = 3
4π

∫
S
(us · r̂)r̂d S = 3

4π

1∑
m=−1

c1m2

∫
S

y1m2dS. (3.26)

The integral of the vector spherical harmonic function can be taken on the unit sphere to
yield

Ud = 3
4π

√
2π

3
(c1,−1,2

⎡
⎣ 1

−i
0

⎤
⎦+ √

2c1,0,2

⎡
⎣0

0
1

⎤
⎦+ c1,1,2

⎡
⎣−1

−i
0

⎤
⎦ ). (3.27)

For a clean drop, substituting (3.10) for c1m2 into (3.27), leads to

Ud = λ

2(2 + 3λ)

√
3

2π

⎡
⎢⎢⎣

√
2(cact,−

1,−1,0 − cact,−
1,1,0 )(λ− 1) + (cact,−

1,−1,2 − cact,−
1,1,2 )(λ+ 4)

−i
√

2(cact,−
1,−1,0 + cact,−

1,1,0 )(λ− 1) − i(cact,−
1,−1,2 + cact,−

1,1,2 )(λ+ 4)

2cact,−
1,0,0 (λ− 1) + √

2cact,−
1,0,2 (λ+ 4)

⎤
⎥⎥⎦ .

(3.28)

The clean drop can only move as a results of singularities that generate the ’1m2’ mode
when displaced from the origin. A closer inspection of the transforms in Felderhof &
Jones (1989) reveals that only linear combinations of the Stokeslet, rotlet, stresslet and
source dipole can generate non-zero c1m2 coefficient values and thus result in non-zero
drop velocity. Higher-order singularities do not induce droplet translation.

For a surfactant-covered drop, substituting (3.14) into (3.27), yields for the drop velocity

Ud = λ

3
√

6π

⎡
⎢⎢⎣

√
2(cact,−

1,−1,0 − cact,−
1,1,0 ) + cact,−

1,−1,2 − cact,−
1,1,2

−i(
√

2(cact,−
1,−1,0 + cact,−

1,1,0 ) + cact,−
1,−1,2 + cact,−

1,1,2√
2cact,−

1,0,0 + cact,−
1,0,2

⎤
⎥⎥⎦ . (3.29)

Although there are four types of singularities that can produce non-zero c1m2 coefficients,
we will see in the next section that only the Stokeslet can produce a non-zero migration
for the surfactant-covered drop.

An alternative approach to calculate the drop velocity is from the force on the droplet
divided by the droplet drag coefficient (Sprenger et al. 2020). The result is the same as the
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one obtained from (3.26) in the case of a spherical drop. However, for a droplet enclosing
a Stokeslet (Sprenger et al. 2020) overlooked the contribution of the Stokeslet in the net
force on the droplet, and their expression for the drop velocity differs from ours and (Kree
et al. 2021), see Appendix C for a discussion of this issue.

3.4. Trajectory of the active particle
The flow generated in response to the internal singularity advects the active particle. The
resulting trajectory is

dx0

dt
= Ṽp p̂ +

∑
j,m,σ

(c jmσ − cact,−
jmσ )u+

jmσ

d p̂
dt

= 1
2

⎛
⎝∑

j,m,σ

(c jmσ − cact,−
jmσ )∇ × u+

jmσ

⎞
⎠× p̂.

(3.30)

4. Results and discussion
Here, we discuss the flows generated and the drop migration induced by a Stokeslet,
rotlet and axisymmetric force dipole. Notable results for higher-order singularities are also
given. We show that transient shape deformation has a significant impact on the particle
trajectory.

4.1. Stokeslet
The flow due to a point force in the direction d̂ = (dx , dy, dz) in the coordinate system
centred at the singularity is given by coefficients

cact
1,−1,0 = dx + idy

4
√

3πλ
, cact

1,0,0 = dz

2
√

6πλ
, cact

1,1,0 = −dx − idy

4
√

3πλ

cact
1,−1,2 = dx + idy

2
√

6πλ
, cact

1,0,2 = dz

2
√

3πλ
, cact

1,1,2 = −dx − idy

2
√

6πλ
.

(4.1)

Upon using the transforms in Felderhof & Jones (1989), the coefficients for the flow in the
coordinate system centred at the drop are obtained (see Appendix B for details)

cact,−
jm0 = r j−1

0
2(2 j + 1)λ

[
−( j − 2)(d jm2

√
j ( j + 1) + d jm0( j + 1))

2 j − 1

+ j (d jm2
√

j ( j + 1) + d jm0( j + 3))

2 j + 3
r2

0

]

cact,−
jm1 = r j

0
(2 j + 1)λ

d jm1

cact,−
jm2 = r j−1

0
2(2 j + 1)λ

[
( j + 1)(d jm2 j + d jm0

√
j ( j + 1))

2 j − 1

−(d jm2 j ( j + 1) + d jm0
√

j ( j + 1)( j + 3))

2 j + 3
r2

0

]

(4.2)
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cact,+
jm0 = r− j

0
2(2 j + 1)λ

[
( j + 1)(d jm2

√
j ( j + 1) − d jm0( j − 2))

2 j − 1

−( j + 3)(d jm2
√

j ( j + 1) − d jm0 j)

2 j + 3
r−2

0

]

cact,+
jm1 = r− j−1

0
(2 j + 1)λ

d jm1

cact,+
jm2 = r− j

0
2(2 j + 1)λ

[
d jm2 j ( j + 1) − d jm0

√
j ( j + 1)( j − 2)

2 j − 1

+ j (−d jm2( j + 1) + d jm0
√

j ( j + 1)

2 j + 3
r−2

0

]
,

(4.3)

where the singularity is located at x0 = (r0, θ0, φ0) in spherical coordinates and d jmσ =
d̂ · y∗

jmσ (θ0, φ0). The expressions above have been simplified and are not valid for θ0 =
0, π as a result. The full expressions listed in Appendix B.3 should be used to evaluate the
coefficients for θ0 = 0, π .

4.1.1. Stokeslet in a surfactant-free droplet
Substituting (4.3) into (3.10) and (3.11) gives the coefficients for the flow accounting for
the confining interface

c jm1 = ζ−1
j

(
r j

0 d jm1

2 j + 1 + (λ− 1)( j − 1)

)
, c jmn = ζ−1

j

(−p jmn f jm + q jmn
)

(n = 0, 2)

(4.4)
where

q jm0 = r j−1
0
2

[
d jm0

(
(2 j + 1)

(
−( j − 2)( j + 1)(2 j + 3) + j ( j + 3)(2 j − 1)r2

0

)
+2(λ− 1)( j + 1)

(
−( j + 1)( j2 − j − 3) + ( j − 1) j ( j + 3)r2

0

))
+ d jm2

√
j ( j + 1)

(
(2 j + 1)

(
−( j − 2)(2 j + 3) + j (2 j − 1)r2

0

)
+2(λ− 1)( j + 1)

(
− j2 + j + 3 + ( j − 1) jr2

0

))]

q jm2 = −r j−1
0
2

[
d jm0

√
j ( j + 1)

(
(2 j + 1)

(
−( j + 1)(2 j + 3) + ( j + 3)(2 j − 1)r2

0

)
+2(λ− 1)( j + 1)

(
− j ( j + 2) + ( j − 1)( j + 3)r2

0

))
+ d jm2 j ( j + 1)

(
(2 j + 1)

(
−(2 j + 3) + (2 j − 1)r2

0

)
+2(λ− 1)

(
− j ( j + 2) + ( j − 1)( j + 1)r2

0

))]
(4.5)

and ζ j , p jm0 and p jm2 are provided in (3.11).
The steady-state shape of a drop with a Stokeslet at a fixed position with respect to the

centre of the drop is

f ss
jm = q jm2

p jm2
, j � 2. (4.6)
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Asymptotically for large j , f ss
jm ∼ r j−1

0 j−1. For a Stokeslet near the centre of the particle,

the amplitude of the shape mode decay is a power law, r j−1
0 , while for a Stokeslet closer

to the boundary, the amplitudes decay is dominated by the 1/j factor.
In general, the droplet migration velocity depends on the instantaneous shape. However,

at steady state, (4.4), (4.6) and (3.28) yield

Ud = 1
4π(2 + 3λ)

[
(2λ+ 3)d̂ + r2

0 (−2d̂ + (d̂ · r̂)r̂)
]
. (4.7)

The direction of drop translation is in general misaligned with the direction of the point
force of the Stokeslet; the correction is proportional to the off-centre location of the
singularity, r0. The droplet velocity becomes the same as the Hadamard–Rybczynski
expression when the Stokeslet is on the droplet surface, r0 = 1 and d̂ = r̂ . The results
for the steady flow and velocity of the drop agree with those derived in Kree et al. (2021)
for non-deformable droplets.

Figure 2 shows the flow and steady shape of the interface for several configurations
of the Stokeslet inside the surfactant-free droplet. The interface of the drop is depressed
inwards behind the Stokeslet and inflated outwards in front of it due to the Stokeslet pulling
in fluid from behind and pushing it forward. The confinement leads to the circulation of
the flow inside the drop. If the Stokeslet direction is aligned with the line connecting the
droplet centre and the singularity location, this line of centres is a symmetry axis and drop
migration is in the same direction as the point force. If the Stokeslet is perpendicular to
the line of centre, droplet velocity is still colinear with the point force but smaller than the
previous axisymmetric configuration.

4.1.2. Stokeslet in a surfactant-covered droplet
For a surfactant-covered drop, the velocity coefficients are obtained by substituting (4.3)
into (3.14) and (3.15)

c jm0 = 2c jm2√
j ( j + 1)

, c jm1 = r j
0 d jm1

j + 2 + λ( j − 1)
,

c jm2 = ξ−1
j

(−p jm2 f jm + q jm2
)

, g jm = ξ−1
j

(−p jmg f jm + q jmg
)

,

(4.8)

where

q jm2 = −r j−1
0
2

(
d jm0

√
j ( j + 1)( j − 1)(−( j + 1) + ( j + 3)r2

0 )

+ d jm2 j ( j + 1)(−( j + 1) + ( j − 1)r2
0 )
)

q jmg = −r j−1
0
2

[
d jm0√
j ( j + 1)

(
(2 j + 1)

(
− j ( j + 1)(2 j + 3) + ( j + 2)( j + 3)(2 j − 1)r2

0

)
+2(λ− 1)( j − 1)( j + 1)

(
−( j2 + 3 j + 3) + ( j + 2)( j + 3)r2

0

))
+ d jm2

(
(2 j + 1)

(
− j (2 j + 3) + ( j + 2)(2 j − 1)r2

0

)
+2(λ− 1)( j − 1)(−( j2 + 3 j + 3) + ( j + 1)( j + 2)r2

0 )
)]

(4.9)

and p jm2,p jmg and ξ j are given in (3.15).

1007 A41-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

75
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.75


S. Kawakami and P.M. Vlahovska

1.5

1.0

0.5

Drop

Sphere

0y y

(a)

–0.5

–1.0

–1.5 –1.0 –0.5

Ud

0

x
0.5 1.0 1.5

Ud

1.5

1.0

0.5

Drop

Sphere

0y

(c)

–0.5

–1.0

–1.5
–1.5

–1.0 –0.5 0

x
0.5 1.0 1.5

1.5

1.0

0.5

Drop

Sphere

0

(b)

–0.5

–1.0

–1.5
–1.5 –1.5

–1.0 –0.5 0

x
0.5 1.0 1.5

Ud

Figure 2. Stokeslet inside a droplet with clean interface, Ca = .5, λ= 1. The steady flow and drop shape
contour in the equatorial plane z = 0. The stokeslet is located at (.7, 0, 0) with different orientations (a) d̂ =
(−1, 0, 0), (b) d̂ = (−1/

√
(2), 1/

√
(2), 0), (c) d̂ = (0, 1, 0). Flows are given in the frame of reference moving

with the droplet and the colour indicates the magnitude of the velocity. The dashed line outlines the undeformed
droplet contour.

The steady-state droplet shape is described by the shape mode amplitudes

f ss
jm = − r j−1

0
2( j − 1) j ( j + 1)( j + 2)

[
d jm0

√
j ( j + 1)( j − 1)(−( j + 1) + ( j + 3)r2

0 )

+d jm2 j ( j + 1)(−( j + 1) + ( j − 1)r2
0 )
]
, j � 2.

(4.10)

Asymptotically for large j , the amplitudes of the shape modes decay as f ss
jm ∼ r j−1

0 j−1,
obeying the same general behaviour as the clean drop case.

Evaluating (3.29) with (4.8) and (4.10), shows that the drop velocity at steady state is

U surfactant
d = 1

6π
d̂ . (4.11)
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Independent of the location of the Stokeslet inside the drop and the Ma, the migration of
the drop is the same as a solid particle experiencing a force with direction d̂ at its centre.
The surfactant redistribution by the Stokeslet flow generates Marangoni stresses that in the
limit of surfactant-incompressible flow ( Ma → ∞) suppress streaming flows for which
∇s · us �= 0. Thus the interface is effectively rigid (although there can be recirculating
surface flows of the ’jm1’ type that are solenoidal, like rigid body rotation described by
the ’1m1’ velocity field). The flows and steady shapes for the surfactant-covered droplet
are qualitatively similar to the flows and steady shape for surfactant-free droplets shown in
figure 2.

4.2. Rotlet
The flow due to a particle spinning in unbounded Stokes flow is given by the rotlet. The
coefficients for the rotlet in a coordinate system centred about itself is given by

cact
1,−1,1 = −idx + dy

4
√

3πλ
, cact

1,0,1 = − idz

2
√

6πλ
, cact

1,1,1 = idx + dy

4
√

3πλ
. (4.12)

The coefficients for the rotlet in a coordinate system centred at the drop is

cact,−
jm0 = − i jr j

0
2λ(2 j + 1)

d jm1, cact,−
jm2 = i

√
j ( j + 1)r j

0
2λ(2 j + 1)

d jm1

cact,−
jm1 = − i( j + 1)r j−1

0

2
√

j ( j + 1)(2 j + 1)λ
(
√

j ( j + 1)d jm0 + jd jm2)

cact,+
jm0 = i( j + 1)r− j−1

0
2λ(2 j + 1)

d jm1, cact,+
jm2 = i

√
j ( j + 1)r− j−1

0
2λ(2 j + 1)

d jm1

cact,+
jm1 = i

√
j ( j + 1)r− j−2

0
2( j + 1)(2 j + 1)λ

(
√

j ( j + 1)d jm0 − ( j + 1)d jm2).

(4.13)

Similar to the case of the Stokeslet, the expressions above cannot be evaluated for θ0 = 0, π

and the full expressions listed in Appendix B.4 should be used in those cases.

4.2.1. Rotlet in a surfactant-free droplet
For the surfactant-free drop, substituting (4.13) for the rotlet into (3.10) and (3.11) yields
the velocity coefficients

c jm0 = ζ−1
j

(
−p jm0 f jm − i j (2 j + 3)r j

0
2

((2 j − 1)(2 j + 1)

+ 2(λ− 1)( j − 1)( j + 1)) d jm1
)

c jm1 = − i( j + 1)r j−1
0

2
√

j ( j + 1)(2 j + 1 + (λ− 1)( j − 1))
(
√

j ( j + 1)d jm0 + jd jm2)

c jm2 = ζ−1
j

(
−p jm2 f jm + i

√
j ( j + 1)(2 j + 3)r j

0
2

((2 j − 1)(2 j + 1)

+2(λ− 1)( j − 1)( j + 1)) d jm1
)
,

(4.14)

where p jm0, p jm2, ζ j are given in (3.11).
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Figure 3. Rotlet inside a droplet, Ca = .5, λ= 1. The steady flow and droplet contour in the equatorial plane
z = 0 due to a rotlet placed at (.7, 0, 0) with orientation d̂ = (0, 0, 1) inside (a) a clean droplet and (b) a
surfactant-covered droplet. Flows are in the frame of reference moving with the droplet and the colour scheme
indicates the magnitude of the velocity. The dashed line outlines the undeformed droplet contour.

The steady shape for a droplet with a rotlet fixed in place with respect to the drop
centre is

f ss
jm = ir j

0
√

j ( j + 1)(2 j + 3) ((2 j − 1)(2 j + 1) + 2(λ− 1)( j − 1)( j + 1))

2( j − 1) j ( j + 1)( j + 2)(λ+ 1)
d jm1, j � 2.

(4.15)
Asymptotically for large j , the shape modes decay as f ss

jm ∼ r j
0 .

Substituting (4.14) into (3.28), the steady-state velocity of the drop due to the rotlet is

Ud = − 5r0

8π(2 + 3λ)
d̂ × r̂. (4.16)

An enclosed rotlet can only drive net motion of the drop if its axis of rotation does not
point directly towards or away from the centre of the drop. The velocity of the drop also
scales linearly with the distance of the rotlet from the centre of the drop with the direction
of motion directed perpendicular to the axis of rotation of the rotlet and the line containing
the singularity location and drop centre. A rotlet located in the centre of a drop does not
induce any drop migration. Equation (4.16) agrees with the velocity for a rotlet in a drop
that can be derived from force dipole results given in Kree et al. (2021).

An example of the flow induced by a rotlet inside a clean drop is shown in figure 3(a).
The axis of rotation of the rotlet is ẑ. and it is spinning counterclockwise in the view of
the equatorial plane, z = 0. Both a depression and inflation of the interface is seen near the
rotlet and the singularity induces drop migration in the negative y-direction.

4.2.2. Rotlet in a surfactant-covered drop
For the surfactant-covered drop, substituting (4.13) into (3.14) and (3.15) yields the
following velocity coefficients and tension distribution:
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c jm0 = 2c jm2√
j ( j + 1)

c jm1 = − i( j + 1)r j−1
0

2
√

j ( j + 1)(2 j + 1 + (λ− 1)( j − 1))
(
√

j ( j + 1)d jm0 + jd jm2)

c jm2 = ξ−1
j

(
−p jm2 f jm + 1

2
i
√

j ( j + 1)( j − 1)(2 j + 3)r j
0 d jm1

)

g jm = ξ−1
j

(
−p jmg f jm + i( j + 2)(2 j + 3)

2
√

j ( j + 1)
((2 j − 1)(2 j + 1)

+ 2(λ− 1)( j − 1)( j + 1)) r j
0 d jm1

)
,

(4.17)

where p jm2, p jmg, ξ j are given in (3.15).
For a surfactant-covered drop containing a rotlet fixed in place with respect to the centre

of the drop, the steady shape is

f ss
jm = i(2 j + 3)r j

0

2( j + 2)
√

j ( j + 1)
d jm1. (4.18)

Asymptotically for large j , the amplitude of the shape modes is f ss
jm ∼ r j

0 /j . This differs
by a factor of j−1 from the case of the clean drop, with the difference becoming more
pronounced as the rotlet moves closer to the surface, i.e. r0 → 1. Substituting (4.17) into
(3.28) reveals that the surfactant suppresses translational drop motion.

Figure 3(b) shows the flow induced by a rotlet in a steady shape surfactant-covered drop
in the frame of reference moving with the drop. Although the shape is similar to the clean
drop with an enclosed rotlet in the same position, the flow around the surfactant-covered
droplet does not contain any translational component associated with the j = 1 modes.

4.3. Axisymmetric stresslet
The flow due to the axisymmetric stresslet is given by

uact(x) = P

8πλ|x|2
(

− x
|x| + 3

(d̂ · x)2x
|x|3

)
, (4.19)

where P = ±1. P = 1 corresponds to the flow produced by a pusher that expels fluid
along d̂ and P = −1 corresponds to the flow of produced by a puller that expel fluid
perpendicular to d̂ (Lauga 2016; Saintillan 2018; Lauga 2020). The coefficients for an
axisymmetric stresslet in a coordinate system centred at itself is

cact
2,−2,2 = P

4λ

√
3

10π
(dx + idy)

2, cact
2,−1,2 = P

2λ

√
3

10π
(dx + idy)dz,

cact
2,0,2 = P

4λ
√

5π
(1 − 3d2

z ), cact
2,1,2 = P

2λ

√
3

10π
(dx − idy)dz,

cact
2,2,2 = P

4λ

√
3

10π
(dx − idy)

2.

(4.20)

The expression for the flow coefficients of the axisymmetric stresslet and the droplet shape
are listed in Appendix B.5. We observe that the shape coefficients decay as r j−2

0 , slower
that the shape modes excited by the Stokeslet and rotlet. Thus for the same Ca, the droplet
deformation due to the stresslet is more pronounced.
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Figure 4. Axisymmetric stresslet inside a clean droplet, Ca = .2, λ= 1. Flow and drop shape in response
to a axisymmetric stresslet located at (.7, 0, 0) with different orientations (a) d̂ = (−1, 0, 0), (b) d̂ =
(−1/

√
(2), 1/

√
(2), 0), (c) d̂ = (0, 1, 0). Flows are in the frame of reference moving with the droplet and

the colour scheme indicates magnitude of the velocity.

Using (3.28) for the clean drop and the coefficients for the flow due to confinement,
obtained by substituing the results in Appendix B.5 into (3.10) and (3.11), the droplet
velocity induced by an axisymmetric stresslet located at x0 is

Ud = Pr0

4π(2 + 3λ)
(r̂ − 3(d̂ · r̂)d̂). (4.21)

The drop velocity scales linearily with the distance of the stresslet from the centre of the
drop. A stresslet at the centre of a drop does not induce drop displacement.

For the surfactant-covered drop, substituting the results in Appendix B.5 into (3.14) and
(3.15) to compute the flow coefficients and using (3.29) to compute the drop velocity,
shows that drop migration is suppressed.

Figure 4 and figure 5 show the steady shape and flow generated by an axisymmetric
stresslet with P = 1 in a clean and a surfactant-covered droplet, respectively, in the frame
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Figure 5. Axisymmetric stresslet inside a surfactant-covered droplet, Ca = .2, λ= 1. Flow and drop shape
in response to a axisymmetric stresslet located at (.7, 0, 0) with different orientations (a) d̂ = (−1, 0, 0), (b)
d̂ = (−1/

√
(2), 1/

√
(2), 0), (c) d̂ = (0, 1, 0). Flows are in the frame of reference moving with the droplet and

the colour scheme indicates magnitude of the flow. There is no flow outside the droplet for a stresslet in the
configuration (a).

of reference of the drop. The interface of the drop is bulged along the axis d̂ of the stresslet
and is pulled in perpendicular to it.

In the case of the surfactant-covered drop, the Marangoni stresses suppress the
flow with amplitudes c jm0 and c jm2; only the c jm1-type flow, which is by definition
surface incompressible on a sphere, is transmitted outside the drop. The axisymmetric
configuration of the stresslet shown in figure 5(a) does not induce c jm1 flow and thus
there is no fluid motion outside of the drop. There is no drop migration for all of the
configurations of the stresslet inside of the surfactant-covered drop.

4.4. Higher-order singularities
The flow and shape deformation for a droplet enclosing higher-order singularities can be
computed with the method described in the paper. The coefficients for the expansion of
the source dipole and the rotlet dipole in a coordinate system centred at the singularity
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are provided below. The full solution can be obtained from following the procedure in
Section (3).

Source dipole

uact(x) = 1
8πλr3 (−d̂ + 3

d̂ · x
r2 x),

cact
1,−1,0 = −dx + idy

4
√

3πλ
, cact

1,0,0 = − dz

2
√

6πλ
, cact

1,1,0 = dx − idy

4
√

3πλ
, cact

j,m,2 = −√
2c j,m,0.

(4.22)

Axisymmetric rotlet dipole

uact(x) = 3χ

8πλ

(d̂ · x)(d̂ × x)

r5

cact
2,−2,1 = −3iχ(dx + idy)

2

8
√

5πλ
, cact

2,−1,1 = −3iχ(dx + idy)dz

4
√

5πλ

cact
2,0,1 =

√
3iχ(1 − 3d2

z )

4
√

10πλ
, cact

2,1,1 = 3iχ(dx − idi )dz

4
√

5πλ
cact

2,2,1 = −3iχ(dx − idy)
2

8
√

5πλ
,

(4.23)

where χ = ±1 indicates the rotation of the rotlets with respect to the swimming direction.
For example, for swimming bacteria whose flagellar filaments rotate behind the cell in a
counter-clockwise direction while the body counter rotates, χ = 1 (Lauga 2020).

In both the surfactant-free and surfactant-covered drops, the velocity of the drop is
related to the amplitude of the ′1m2′ modes in the expansion for the unbounded singularity
in the coordinate system centred at the drop (see (3.28) and (3.29) ). A careful examination
of the displacement theorems from Felderhof & Jones (1989) shows that only the Stokeslet,
rotlet, axisymmetric stresslet, source dipole and their linear combinations can excite the
’1m2’ mode and possibly result in a non-trivial drop velocity.

The last remaining singularity that can induce droplet migration is the source dipole.
For a surfactant-free droplet the droplet steady velocity is given by

Ud = 5
4(2 + 3λ)π

d̂. (4.24)

The velocity of the drop is independent of the location of the source dipole and only
dependent on its orientation. The migration due to the source dipole is relevant when
examining the flow due to a finite size squirmer in a droplet. Unlike a stresslet located at the
droplet centre, the source dipole induces migration of the drop. The results for a squirmer
in Reigh et al. (2017) are recovered by superimposing a stresslet and a source dipole.

For a surfactant-covered droplet, despite the unbounded singularity exciting the ′1m2′
modes, the source dipole does not produce drop motility because the Marangoni stresses
counteract the streaming flow along the droplet interface. For all other singularities, we
get that cact,−

1m2 = 0 and as a result the droplet migration velocity is zero at the leading-order
considered in this paper.

4.5. Interplay of the active particle motion and the deformable drop dynamics
The trajectories of active particles near boundaries differ from their counterparts in
unbounded fluid. The flow generated by the active particle gets scattered by the confining
interface and modifies the particle motion
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Figure 6. Feedback to the active particle from the flow due to the interface for a clean droplet at steady state.
Ca = .4, λ= 3. (a) Illustration of an axisymmetric pusher-type stresslet at position r0 r̂ oriented on the xy-plane
with angle φ0 with the radial direction r̂ . For this specific case we have r̂ = x. (b) Translational velocity of the
stresslet in the radial direction in response to the interface for steady shape droplets. The velocity is symmetric
about φ0 = π/2. (c) Rotational velocity of the stresslet in response to the interface for steady shape droplets.
The rotatinal velocity is anti-symmetric about φ0 = π/2.

dx0

dt
= Ṽp p̂ + up,

d p̂
dt

= ωp × p̂

up =
∑
j,m,s

(cact,−
jmσ − c jmσ )u+

jmσ (x0), ωp = 1
2

⎡
⎣∑

j,m,s

(cact,−
jmσ − c jmσ )∇ × u+

jmσ (x0)

⎤
⎦ ,

(4.25)

where up and ωp are the particle advection and rotation by the flow due to the presence
of the droplet interface. For an active particle in a drop with the steady-state shape
corresponding to our leading-order solution for small Ca, the particle translational and
rotational velocity are the same as those for an active particle inside a non-deformable
spherical drop. The variation of up and ωp in this case with particle location and
orientation are illustrated in figure 6 on the example of a stresslet.

Figure 6(a) shows the configuration of a stresslet, with P = 1, inside a droplet. The
orientation relative to the radial direction, r̂ , is specified by the angle φ0 and the distance
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Figure 7. Effect of the transient droplet deformation on the translational and rotational velocity of the active
particle. (a). A stresslet is placed at position (.7, 0, 0) inside a clean spherical drop with viscosity ratio λ= 3
and capillary number Ca = .4. The position and orientation of the singularity is held in place as the interface
shape evolves towards the steady-state shape. (b) The correction to the swimming speed of the stresslet due to
the flow from the deforming interface in the radial and tangential direction. In this particular case r̂ = x, t̂ = ŷ.
(c) The rotation rate of the stresslet due to the flow from the deforming interface.

from the centre of the drop is r0. (Figure 6b, c) shows the translational and angular
velocity due to the flow generated by presence of the confining drop interface. The
drop is surfactant free with viscosity ratio λ= 3, capillary number Ca = .4 and is in
the steady-state shape. The correction to the particle swimming motion has a radial
translational component that tends to repel the particle away from the interface when
its orientation is perpendicular to the interface; when the particle orientation is parallel
to the interface, the particle is attracted to the interface. The angular velocity of the
pusher stresslet indicates turning in clockwise directions for 0 < φ0 < π

2 and as a result
the active particle will rotate to align parallel with the interface. The strength of both
the translational and rotational velocity feedback increase as the stresslet approaches the
interface.

Figure 7 illustrates the effect of the transient drop shape on the translational and
rotational velocity of a stresslet at location specified in figure 7(a), x0 = r0x, and φ0 =
−π/4 with the radial vector r̂ and Ca = .4, λ= 3. The position and orientation of the
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stresslet are held static, and the feedback from the flow generated by the evolving interface,
up and ωp, are measured. figure 7(b) shows the evolution of the translational velocity of
the particle, up, components normal and tangential to the drop interface. We see that
the translation velocity up, reverses directions as the interface evolves towards the steady
shape. Initially the particle is attracted, up · r̂ > 0, towards the interface but as the interface
evolves, the particle is repelled. figure 7(c) shows the evolution of the angular velocity of
the particle ωp. Similar to the translational velocity, a reversal in the rotational direction
is observed during the transient evolution of the drop shape. Initially the flow due to the
presence of the soft interface works to align the stresslet perpendicularly to the boundary
but reverses to align the stresslet parallel to the interface as the drop shape approaches
steady state. The coupling of the transient drop shape and trajectory of the active particle
thus can result in behaviour not found in non-deformable drops.

Thus far we have considered only an active particle that is held in place. Next, we
examine the dynamics of a swimming active particle. To prevent collision with the
interface, we prescribe that the particle velocity normal to the interface becomes zero at a
distance from the droplet centre r0 = 0.85R0. If the spherical confining interface was rigid,
this leads to the particle sliding along the surface, moving in a direction tangential to the
surface even though the propulsion direction p̂ remains unchanged, i.e. the particle does
not reorient. The particle tangential velocity, Vp arcsin( p̂ · r̂), varies along the surface.
Eventually the particle reaches a location in which the propulsion direction p̂ becomes
colinear with the radial vector r̂ , the component of the swimming velocity tangential to
the interface vanishes and the particle stops.

The fluid interface, however, generates a flow that rotates the particle’s propulsion
direction to align it parallel to the interface, thereby enhancing the tangential component
of the particle swimming speed. This prevents the particle from stalling. Figure 8(a) and
Movie 1 show that a stresslet enclosed by spherical, non-deformable droplet settles into
continual orbiting motion once it reaches the exclusion radius r0. The same occurs if the
droplet shape is allowed to reach steady state corresponding to the instantaneous particle
position. Transient droplet deformation, however, weakens the flow and its reorientation
effect, and the stresslet eventually gets stuck, with orientation perpendicular to the
interface, see figure 8(b) and Movie 2.

Bacteria like Escherichia Coli run and tumble by executing persistent translation
following a straight line with nearly constant velocity interrupted by random changes
in the direction of motion. Here, we examine the dynamics of a stresslet that is not a
persistent swimmer, but instead mimics the bacterial locomotion and undergoes a random
reorientation in 0.1 time intervals. figure 9 and Movie 3 illustrate the swimmer trajectory
and droplet dynamics in the case of a particle restricted to move only in the equatorial
plane. figure 9(a) shows that, over long time, T f = 500 in this case, the particle explores
the droplet interior although there is a tendency of the particle to spend more time near the
interface. At each location, the particle generates a flow that deforms the droplet. Since the
particle locomotion is a random walk, this gives rise to random fluctuations of the droplet
shape and droplet displacement. figure 9(b) shows the amplitude of the shape fluctuations
along the contour in the equatorial plane. figure 9(c) shows the mean square displacement
(MSD) of the drop centre using data from simulation with T f = 500. The MSD increase in
time is faster than linear indicating superdiffusive behaviour. Interestingly, this contrasts
with the diffusive displacement observed for a vesicle enclosing microswimmers that
interact only through steric repulsion (Paoluzzi et al. 2016). The observed superdiffusion
in our study hints upon the importance of the flow driven by the deforming interface in the
dynamics of active droplets (Kokot et al. 2022).
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Figure 8. Trajectory of an axisymmetric force dipole in a droplet. (a) An axisymmetric force dipole with
velocity Ṽp = 1.5, starting at (.7, 0, 0) and oriented initially direction (1/

√
(2))(−1, 1, 0), with a radial

repulsion from the interface swims inside of a non-deformable droplet. The magnitude of the torque on the
particle is large enough to lead the particle trajectory to orbit the outer edge of the droplet. (b) Trajectory of a
force dipole in a deformable interface Ca = 0.2 with the same parameters as (a). Due to the transient nature
of the interface, the magnitude of the torque as it approaches the interface cannot overcome the propulsion
eventually aligning perpendicular to the interface. (c) The magnitude of the torque on the particle due to
the presence of the interface in both non-deformable and deformable cases. The propulsion can lead to the
perpendicular alignment with the interface to become stable. (d) Particle orientation with respect to the unit
radial vector, φ0 = arccos( p̂ · r̂). The swim direction of the particle enclosed in the deformable droplet becomes
perpendicular to the interface φ0 = 0. For a non-deformable drop, the swim direction of the enclosed particle
settles on an orientation with a component tangential to the interface.

5. Conclusions and outlook
This paper describes a methodology to analytically solve for the flow generated by any
Stokes-flow singularity enclosed by a deformable drop with either clean interface or
interface covered with insoluble, non-diffusing surfactant. The approach assumes small
interfacial deformation and nearly uniform surfactant coverage. The Stokeslet is shown
to induce drop translation in both surfactant-free and surfactant-covered drops while
the rotlet, stresslet and source dipole induce non-zero drop migration only in a drop
with clean interface. In the surfactant-covered case, the Marangoni stresses suppress the
streaming flow responsible for droplet translation, and for a singularity that generates only
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Figure 9. Droplet enclosing a motile stresslet executing a random walk. (a). A stresslet with propulsion velocity
Ṽp = 1 is placed in the centre of a drop with viscosity ratio λ= 1 and Ca = .2. The stresslet randomly reorients
in the xy plane every τ = 0.1 time units. Total run time is T f = 500. (b). Amplitude of the deviation of the
droplet shape from a sphere, r(θ = π/2, φ) − R0, in the xy plane over the course of the simulation. (c). Mean
square displacement of the drop centre. Dashed lines indicate diffusive and ballistic motion.

an axisymmetric flow, completely immobilize the interface thereby arresting the external
flow even though internal flow is present. The location and type of singularity influence
strongly the direction of the drop motion, the drop shape, as well as the trajectory of the
active particle inside. For example, the direction of drop translation is generally misaligned
with the direction of the Stokeslet and drop shape is asymmetric. A pusher type stresslet
tends to align parallel to the interface and pull on it producing a ‘dimple’. The analytical
results provide useful insights into the physical mechanisms of droplet motility driven
by encapsulated active particles and highlight the importance of interface deformation
in the dynamics of a swimming particle inside the drop. A stresslet swimming in a run-
and-tumble pattern mimicking a bacterium gives rise to droplet shape fluctuations and a
superdiffusive droplet displacement.

The approach developed in this paper can be extended to study active particles enclosed
by viscoelastic interfaces (Barthes-Biesel & Sgaier 1985; Edwards, Brenner & Wasan
1991). For the case of lipid and polymer membranes (vesicles and capsules) the leading-
order solution can be found following Vlahovska (2015). The analysis of the effects of
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shape deformation and surfactant distortion can be extended beyond the leading order
presented in this paper. For a spherical drop, the method developed in (Blawzdziewicz
et al. 2000) can be used to solve for the flow at arbitrary Ma. However, the general case
of a deformable droplet is challenging to treat analytically (Vlahovska et al. 2009) and
numerical simulations are better suited to explore this regime.

Our methodology can be utilized to explore the dynamics of multiple particles in
a droplet (Park, Lee & Granick 2022; Kokot et al. 2022; Guo, Man & Zhu 2024)
and provides a foundation for the modelling of active particles with finite size as a
superposition of singularities.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2025.75.
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Appendix A. Spherical harmonics and fundamental solutions of the Stokes equation
The normalized scalar spherical harmonic are defined as

y jm(θ, φ) =
[

2 j + 1
4π

( j − m)!
( j + m)!

]
Pm

j (cos(θ))eimφ, (A1)

where θ and φ are the polar and azumithal angles in spherical coordinates, and Pm
j are the

associated Legendre polynomials.
The vector spherical harmonics are defined as

y jm0 = 1√
j ( j + 1)

r∇ΩY jm, y jm1 = −i r̂ × y jm0, y jm2 = Y jm r̂, (A2)

where ∇Ω denotes the angular part of the gradient operator.
Following the definitions in (Vlahovska 2015), we list a basis for solutions to the Stokes

equations

u−
jm0 = 1

2
r− j (2 − j + jr−2)y jm0 + 1

2
r− j

√
j ( j + 1)(1 − r−2)y jm2 (A3)

u−
jm1 = r (− j−1)y jm1 (A4)

u−
jm2 = 1

2
r− j (2 − j)

√
j

j + 1
(1 − r−2)y jm0 + 1

2
r− j ( j + (2 − j)r−2)y jm2 (A5)

u+
jm0 = 1

2
r j−1(−( j + 1) + ( j + 3)r2)y jm0 − 1

2
r j−1

√
j ( j + 1)(1 − r2)y jm2 (A6)

u+
jm1 = r j y jm1 (A7)

u+
jm2 = 1

2
r j−1( j + 3)

√
j + 1

j
(1 − r2)y jm0 + 1

2
r j−1( j + 3 − ( j + 1)r2)y jm2. (A8)

On the unit sphere, the velocity fields reduce to

u±
jmσ = y jmσ . (A9)

Each of the basis fields are also incompressible

∇ · u±
jmσ = 0. (A10)
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Given a velocity of the following form

u =
∑
j,m,σ

c±
jmσ u±

jmσ . (A11)

The T ±
jmσ used in (3.8) are defined via the radial traction of u

r̂ · (−p I + ∇u + (∇u)T ) =
∑
j,m,s

τ±
jmσ y jmσ

τ±
jmσ =

2∑
σ=0

c±
jmσ

′T ±
σσ

′,
(A12)

where

T −
σσ

′ =

⎡
⎢⎢⎣

−(2 j + 1) 0 3
√

j
j+1

0 −( j + 2) 0

3
√

j
j+1 0 −4+3 j+2 j2

j+1

⎤
⎥⎥⎦ , (A13)

and

T +
σσ

′ =

⎡
⎢⎢⎣

(2 j + 1) 0 −3
√

j+1
j

0 ( j − 1) 0

−3
√

j+1
j 0 3+ j+2 j2

j

⎤
⎥⎥⎦ . (A14)

The curl of the basis fields used in this paper are

∇ × u+
jm0 = ir j (2 j + 3)y jm1

∇ × u+
jm1 = ir j−1(( j + 1)y jm0 +√

j ( j + 1)y jm2)

∇ × u+
jm2 = −ir j

√
j + 1

j
(2 j + 3)y jm1. (A15)

Appendix B. Felderhof Jones transform
The displacement theorems introduced in Felderhof & Jones (1989) are used to relate the
representation of a velocity field in terms of a fundamental solution basis centred at two
different positions. We note the last sentence before Section 4 in Felderhof & Jones (1989)
should also include l = l ′ + 1, σ ′ = 0 as an additional case for non-zero coefficients. This
correction is important when calculating the expression for the stresslet about the centre
of a drop.

B.1 Fundamental basis used in Felderhof & Jones (1989)
The fundamental basis for the solutions to the Stokes solution used in Felderhof & Jones
(1989) differ from the one used throughout this paper. Define a normalization factor

n jm =
√

4π

2 j + 1
( j + m)!
( j − m)! . (B1)
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Then define the following unnormalized vector spherical harmonics:

Ã jm = n jm

(
jy jm2 +√

j ( j + 1)y jm0

)
B̃ jm = n jm

(
−( j + 1)y jm2 +√

j ( j + 1)y jm0

)
C̃ jm = n jmi

√
j ( j + 1)y jm1

(B2)

and a solution basis for the Stokes equation,

uF J,+
jm0 = r j−1 Ã jm

uF J,+
jm1 = ir j C̃ jm

uF J,+
jm2 = r j+1

(
( j + 1)(2 j + 3)

2 j
Ã jm + B̃ jm

)

uF J,−
jm0 = 1

(2 j + 1)2 r− j
(

j + 1
j (2 j − 1)

Ã jm − 1
2

B̃ jm

)

uF J,−
jm1 = i

j ( j + 1)(2 j + 1)
r− j−1C̃ jm

uF J,−
jm2 = j

( j + 1)(2 j + 1)2(2 j + 3)
r− j−2 B̃ jm,

(B3)

we omit the pressure associated with the Stokes basis as it will not be necessary to conduct
the displacement transform for the coefficients.

B.2 Coefficient transformation between fundamental basis
Given the flow

u =
∑
j,m,s

c±
jmσ u±

jmσ =
∑
j,m,s

a±
jmσ u±,F J

jmσ , (B4)

the transformation between the coefficients for the representation of the flow in the two
basis are

c−
jm0 = n jm

2(2 j + 1)

(√
j + 1

j

2 − j

2 j − 1
a−

jm0 +
√

j

j + 1
2 j

(2 j + 1)(2 j + 3)
a−

jm2

)

c−
jm1 = n jm

(2 j + 1)
√

j ( j + 1)
a−

jm1

c−
jm2 = n jm

2 j + 1

(
j + 1

2(2 j − 1)
a−

jm0 − j

(2 j + 1)(2 j + 3)
a−

jm2

)

c+
jm0 = n jm

(√
j ( j + 1)a+

jm0 + 1
2
( j + 3)(2 j + 1)

√
j + 1

j
a+

jm2

)

c+
jm1 = n jm

√
j ( j + 1)a+

jm1

c+
jm2 = n jm

(
ja+

jm0 + 1
2
( j + 1)(2 j + 1)a+

jm2

)
. (B5)
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B.3 Stokeslet
The following are the coefficients for the expansion of the Stokeslet located at x0 =
(r0, θ0, φ0) with orientation (dx , dy, dz) in a spherical coordinate system about the centre
of the drop. The coefficients are in the uF J±

jmσ basis and can be converted to the basis
used in this paper using (B5). As a shorthand we abbreviate Y j,m = y j,m(θ0, φ0), S+

k =√
j + m + k, S−

k = √
j − m + k

n jmaact,+
jm0 = (−1)mr− j

0
2λ(2 j + 1)[ −2( j + 1)

j (2 j − 1)3/2√2 j + 1

(
dx + idy

2
S−
−1S−

0 Y j−1,−m−1 − dz S−
0 S+

0 Y j−1,−m

−dx − idy

2
S+

0 S+
−1Y j−1,−m+1

)

+ 1√
(2 j + 3)(2 j + 1)

(
dx + idy

2
S+

1 S+
2 Y j+1,−m−1 + dz S+

1 S−
1 Y j+1,−m

−dx − idy

2
S−

1 S−
2 Y j+1,−m+1

)]

(B6)

n jmaact,+
jm1 = (−1)mr− j−1

0
(2 j + 1) j ( j + 1)λ

[
−dx + idy

2
S−

0 S+
1 Y j,−m−1 + dzmY j,−m

−dx − idy

2
S+

0 S−
1 Y j,−m+1

] (B7)

n jmaact,+
jm2 = (−1)mr− j−2

0 j

( j + 1)[(2 j + 1)(2 j + 3)]3/2λ[
−dx + idy

2
S+

1 S+
2 Y j+1,−m−1 − dz S+

1 S−
1 Y j+1,−m + dx − idy

2
S−

1 S−
2 Y j+1,−m+1

]
(B8)

n jmaact,−
jm0 = (−1)mr j−1

0
λ

√
2 j + 1
2 j − 1[

−dx + idy

2
S−

0 S−
−1Y j−1,−m−1 + dz S+

0 S−
0 Y j−1,−m + dx − idy

2
S+

0 S+
−1Y j−1,−m+1

]
(B9)

n jmaact,−
jm1 = (−1)mr j

0
λ

[
−dx + idy

2
S−

0 S+
1 Y j,−m−1 + mdzY j,−m

−dx − idy

2
S+

0 S−
1 Y j,−m+1

] (B10)
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n jmaact,−
jm2 = (−1)mr j+1

0
√

2 j + 1
2λ[

( j + 1)(2 j + 3)

j

(
−dx + idy

2
S−

0 S−
−1Y j−1,−m−1 + dz S+

0 S−
0 Y j−1,−m

+dx − idy

2
S+

0 S+
1 Y j−1,−m+1

)

− 2√
2 j + 3

(
dx + idy

2
S+

1 S+
2 Y j+1,−m−1 + dz S+

1 S−
1 Y j+1,−m

−dx − idy

2
T p1S−

2 Y j+1,−m+1

)]
.

(B11)

B.4 Rotlet
The following are the coefficients for the expansion of the rotlet located at x0 =
(r0, θ0, φ0)with axis of rotation (dx , dy, dz) in a spherical coordinate system about the
centre of the drop. The coefficients are in the uF J±

jmσ basis and can be converted to the basis
used in this paper using (B5). As a shorthand we abbreviate Y j,m = y j,m(θ0, φ0), S+

k =√
j + m + k, S−

k = √
j − m + k

n jmaact,+
jm0 = i(−1)mr− j−1

0
2 j (2 j + 1)λ

[
−dx + idy

2
S−

0 S+
1 Y j,−m−1 + mY j,−m

−dx − idy

2
S+

0 S−
1 Y j,−m+1

]

n jmaact,+
jm1 = i(−1)mr− j−2

0

2( j + 1)λ
√

(2 j + 1)(2 j + 3)[
−dx + idy

2
S+

1 S+
2 Y j+1,−m−1 − dz S+

1 S−
1 Y j+1,−m + dx − idy

2
S−

1 S−
2 Y j+1,−m+1

]
n jmaact,+

jm2 = 0 (B12)

n jmaact,−
jm0 = 0

n jmaact,−
jm1 = i(−1)mr j−1

0
2λ

( j + 1)

√
2 j + 1
2 j − 1[

dx + idy

2
S−

0 S−
−1Y j−1,−m−1 − dz S−

0 S+
0 Y j−1,−m − dx − idy

2
S+

0 S+
−1Y j−1,−m+1

]

n jmaact,−
jm2 = i(−1)m(2 j + 1)(2 j + 3)r j

0
2 jλ

√
2 j + 1
2 j − 1[

dx + idy

2
S−

0 S−
1 Y j,−m−1 − mY j,−m + dx − idy

2
S+

0 S+
1 Y j,−m+1

]
.

(B13)B.5 Axisymmetric stresslet
The following are the coefficients for the expansion of the axisymmetric stresslet located
at x0 = (r0, θ0, φ0)with orientation (dx , dy, dz) in a spherical coordinate system about the
centre of the drop.. The coefficients are in the uF J±

jmσ basis and can be converted to the basis
used in this paper using (B5). As a shorthand we abbreviate Y j,m = y j,m(θ0, φ0), S+

k =
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√

j + m + k, S−
k = √

j − m + k

n jmaact,−
jm0 = (−1)m Pr j−2

0
λ

√
2 j + 1
2 j − 3

[
(dx + idy)

2

4
S−

0 S−
−1S−

−2S−
−3Y j−2,−m−2

− (dx + idy)dz S−
0 S−

−1S−
−2S+

0 Y j−2,−m−1 − 1 − 3d2
z

2
S−

0 S−
−1S+

0 S+
−1Y j−2,−m

+(dx − idy)dz S−
0 S+

0 S+
−1S+

−2Y j−2,−m+1

+(dx − idy)
2

4
S+

0 S+
−1S+

−2S+
−3Y j−2,−m+2

]

(B14)

n jmaact,−
jm1 = (−1)m Pr j−1

0
2λ

√
2 j + 1
2 j − 1

[
(dx + idy)

2

2
S+

1 S−
0 S−

−1S−
−2Y j−1,−m−2

− (dx + idy)dz( j + 2m + 1)S−
0 S−

−1Y j−1,−m−1 − m(1 − 3d2
z )S+

0 S−
0 Y j−1,−m

−(dx − idy)dz( j − 2m + 1)S+
0 S+

−1Y j−1,−m−1

−(dx − idy)
2

2
S−

1 S+
0 S+

−1S+
−2Y j−1,−m+2

]

(B15)

n jmaact,−
jm2 =(−1)m(2 j+1)3/2 Pr j

0
2 j (2 j−1)λ

[
( j+1)(2 j+3)√

2 j−3

(
(dx+idy)

2

4
S−

0 S−
−1S−

−2S−
−3Y j−2,−m−2

− (dx+idy)dz S+
0 S−

0 S−
−1S−

−2Y j−2,−m−1 − 1−3d2
z

2
S+

0 S+−1S−
0 S−

−1Y j−2,−m

+(dx − idy)dz S−
0 S+

0 S+
−1S+

−2Y j−2,−m+1

+(dx − idy)
2

4
S+

0 S+
−1S+

−2S+
−3Y j−2,−m+2

)

+ 1√
2 j + 1

(
−6

(dx + idy)
2

4
S−

0 S−
−1S+

1 S+
2 Y j,−m−2

+3(dx + idy)dz(2m + 1)S−
0 S+

1 Y j,−m−1

− 2
1 − 3d2

z

2
( j + j2 − 3m2)Y j,−m + 3(dx − idy)dz(2m − 1)S+

0 S−
1 Y j,−m+1

−6
(dx − idy)

2

4
S−

1 S−
2 S+

0 S+
−1Y j,−m+2

)]

(B16)
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n jmaact,+
jm0 = (−1)m Pr− j−1

0
2(2 j + 3)λ

[
1

(2 j + 1)(2 j − 1) j

(
3(dx + idy)

2

2
S−

0 S−
−1S+

1 S+
2 Y j,−m−2

− 3(dx + idy)dz(2m + 1)S−
0 S+

1 Y j,−m−1 + (1 − 3d2
z )( j + j2 − 3m2)Y j,−m

+3(dx − idy)
2S+

0 S−
1 Y j,−m+1 + 3(dx − idy)

2

2
S+

0 S+
−1S−

1 S−
2 Y j,−m+2

)

+ 1√
(2 j + 1)(2 j + 5)

(
−(dx + idy)

2

4
S+

1 S+
2 S+

3 S+
4 Y j+2,−m−2

− (dx + idy)dz S−
1 S+

1 S+
2 S+

3 Y j+2,−m−1 + 1 − 3d2
z

2
S+

1 S+
2 S−

1 S−
2 Y j+2,−m

+(dx − idy)S+
1 S−

1 S−
2 S−

3 Y j+2,−m+1 + dx − idy)
2

4
S−

1 S−
2 S−

3 S−
4 Y j+2,−m+2

]

(B17)

n jmaact,+
jm1 = (−1)m Pr− j−2

0

2 j ( j + 1)
√

(2 j + 1)(2 j + 3)λ

[
(dx + idy)

2

2
S−

0 S+
1 S+

2 S+
3 Y j+1,−m−2

+ (dx + idy)dz( j − 2m)S+
1 S+

2 Y j+1,−m−1 + (1 − 3d2
z )mS+

1 S−
1 Y j+1,−m

+(dx − idy)dz( j + 2m)S−
1 S−

2 Y j+1,−m+2

−(dx − idy)
2

2
S+

0 S−
1 S−

2 S−
3 Y j+1,−m+2

]

(B18)

n jmaact,+
jm2 = (−1)m P jr− j−3

0

( j + 1)(2 j + 1)3/2( j + 3)
√

2 j + 5λ

[
(dx + idy)

2

4
S+

1 S+
2 S+

3 S+
4 Y j+2,−m−2

+ (dx + idy)dz S−
1 S+

1 S+
2 S+

3 Y j+2.−m−1 − 1 − 3d2
z

2
S+

1 S+
2 S−

1 S−
2 Y j+2,−m

−(dx−idy)
2S+

1 S−
1 S−

2 S−
3 Y j+2,−m+1+(dx − idy)

2

2
S−

1 S−
2 S−

3 S−
3 Y j+2,−m+2

]
.

(B19)

Appendix C. Drop Velocity
The flow about a spherical droplet translating in response to an internal Stokeslet in
Sprenger et al. (2020) is obtained, in the frame of reference of the drop, as a superposition
of the solution for a Stokeslet in a pinned (held in place) droplet with velocity field
decaying to zero at infinity and the solution for a pinned drop with velocity at infinity
equal to the drop translational velocity, −U . The additional flow gives rise to stresses on
the interface f and the stress balance on the drop surface for the composite problem is

(Tout − Tins) · r̂ = 2γ

R
r̂ + f, (C1)
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where γ is the constant surface tension, and R is the drop radius. Integrating C1 over the
surface of the drop leads to ∫

S
(Tout − Tins) · r̂d S = Fd , (C2)

where Fd = ∫
fd S is the force on the droplet. Equation (32) in Sprenger et al. (2020) is

missing the contribution from the stress due to the interior flow. When considering flows
applied externally to the drop such as Stokeslets outside the droplet as in Shaik & Ardekani
(2017) and Shaik et al. (2018), one has the Stokes equation ∇ · Tins = 0 everywhere inside
the droplet and thus it is sufficient to only consider the outside tractions∫

S
Tout · r̂d S = Fd . (C3)

However, if a Stokeslet with strength Fs is present inside the drop, ∇ · Tins = −Fsδ(x −
x0) and thus ∫

S
Tout · r̂d S + Fs = Fd . (C4)

The velocity of the spherical clean drop is then

U = (1 + λ)
2πμR(2 + 3λ)

(∫
S

Tout · r̂d S + Fs

)
. (C5)

Equation 5 for the drop velocity yields the same expression as ours, which is obtained
from the volume averaged internal velocity, and the result reported by Kree et al. (2021). It
differs from the result of Sprenger et al. (2020) by the contribution of the internal Stokeslet
to the net force on the drop. Our results for singularities other than the Stokeslet agree with
those of Kree et al. (2021) and Sprenger et al. (2020), since the internal tractions do not
contribute to the force on the droplet.

Note that calculating the drop velocity as the volume-average of the internal velocity
used in our paper is not limited to a spherical drop and can be used for a drop of any
shape. The approach used in Sprenger et al. (2020) requires knowledge of the mobility
coefficient for the specific shape of the drop.
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