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The settling of highly elastic non-Brownian closed fibres (called loops) under gravity
in a viscous fluid is investigated numerically. The loops are represented using a bead–
spring model with harmonic bending potential and finitely extensible nonlinear elastic
stretching potential. Numerical solutions to the Stokes equations are obtained with
the use of HYDROMULTIPOLE numerical codes, which are based on the multipole
method corrected for lubrication to calculate hydrodynamic interactions between spherical
particles with high precision. Depending on the elasto-gravitation number B, a ratio of
gravitation to bending forces, the loop approaches different attracting dynamical modes,
as described by Gruziel-Słomka et al. (2019 Soft Matt. 15, 7262–7274) with the use of
the Rotne–Prager mobility of the elastic loop made of beads. Here, using a more precise
method, we find and characterise a new mode, analyse typical time scales, velocities and
orientations of all the modes, compare them and investigate their coexistence. We analyse
numerically the transitions (bifurcations) to a different mode at certain critical values of
the elasto-gravitation number.
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1. Introduction
Understanding sedimentation of deformable, complex-shaped objects is important for
various biological systems of particles or cells, for example DNA, polymers or red blood
cells (Vologodskii et al. 1998; Lo Verso & Likos 2008; Peltomäki & Gompper 2013;
Matsunaga et al. 2016; Waszkiewicz et al. 2023). The gravitational settling of particles
of different shapes at the Reynolds number much smaller than unity has been of interest
for a long time. The dynamics of various rigid objects have been studied, including con-
glomerates (Cichocki & Hinsen 1995), trumbbells (Ekiel-Jeżewska & Wajnryb 2009a),
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slender ribbons (Koens & Lauga 2017), helical ribbons (Huseby et al. 2025), helices
(Palusa et al. 2018), propellers (Makino & Doi 2003), disks (Chajwa, Menon &
Ramaswamy 2019), bent disks (Miara et al. 2024; Vaquero-Stainer et al. 2024),
Möbius bands (Moreno, Vázquez-Cortés & Fried 2024) and particles of general shapes
(Goldfriend et al. 2015, 2016; Witten & Diamant 2020; Joshi & Govindarajan 2025).
Depending on the shape, lateral motion, helical trajectories, periodic or quasiperiodic
oscillations of singlets and different patterns of hydrodynamic interactions within pairs
have been observed.

For elastic objects, the motion can be even more complex, owing to time-dependent
shapes. Typical patterns of evolution have been studied for varied elasticity and different
shapes, such as filaments (Xu & Nadim 1994; Cosentino Lagomarsino, Pagonabarraga &
Lowe 2005; Schlagberger & Netz 2005; Manghi et al. 2006; Llopis et al. 2007; Li et al.
2013; Saggiorato et al. 2015; Shojaei & Dehghani 2015; Bukowicki & Ekiel-Jeżewska
2019; du Roure et al. 2019; Shashank, Melikhov & Ekiel-Jeżewska 2023; Melikhov &
Ekiel-Jeżewska 2024), dumbbells (Bukowicki, Gruca & Ekiel-Jeżewska 2015), trumbbells
(Bukowicki & Ekiel-Jeżewska 2018), sheets (Miara et al. 2022; Yu & Graham 2024), loops
(Gruziel-Słomka et al. 2019; Waszkiewicz, Szymczak & Lisicki 2021) and knots (Gruziel
et al. 2018).

Until now, most of papers on sedimenting deformable objects focused on the dynamics
of moderately elastic filaments (Xu & Nadim 1994; Cosentino Lagomarsino et al. 2005;
Schlagberger & Netz 2005; Manghi et al. 2006; Llopis et al. 2007; Li et al. 2013;
Shojaei & Dehghani 2015; Bukowicki & Ekiel-Jeżewska 2019; du Roure et al. 2019). The
main finding was the existence of a stable, stationary, planar, vertical configuration. The
dependence of its U-like shape on the bending stiffness was determined. Recently, very
different, rich dynamics of highly elastic filaments have been reported (Saggiorato et al.
2015; Shashank et al. 2023; Melikhov & Ekiel-Jeżewska 2024). In these studies, the ends
of the filament can move relative to each other. However, it is also interesting to investigate
the dynamics of highly elastic loops.

In this work, we show that a circular non-horizontal elastic loop settling under gravity
in a viscous fluid at Reynolds number much smaller than unity is not a stationary
configuration. We focus on the analysis of other stationary configurations, and other
attracting dynamical modes of highly elastic loops settling under gravity in a viscous fluid
at Reynolds number much smaller than unity. We extend the previous results (Gruziel-
Słomka et al. 2019; Waszkiewicz et al. 2021) by evaluating the characteristic time scales
and velocities (what is essential for separating different modes or applying them), and
finding numerically bifurcations between the modes at critical values of the bending
stiffness (what is a prerequisite to understanding the nature of the different modes). We
also find a new mode.

The plan of the paper is as follows. The theoretical model, its numerical implementation
and its parameters are presented in § 2. Properties of the dynamical modes reached from
inclined planar and non-planar initial configurations for different values of the elasto-
gravitation number are analysed in §§ 3 and 4, respectively. Characteristic time scales
and loop velocities for different attracting modes are determined in § 5. Discussion and
conclusions are presented in § 6.

2. Methodology

2.1. Model of elastic loops and their dynamics
The bead–spring model is used to represent an elastic fibre of length L and diameter of the
circular cross-section d. The fibre is closed and it forms a loop. It is modelled as a chain
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of N identical non-deformable spherical beads N of diameter d. Position of the centre of
the ith bead is denoted as r i , for i = 1, . . . , N . Consecutive beads interact with each other
by the finitely extensible nonlinear elastic (FENE) spring potential energy (Warner 1972;
Bird, Armstrong & Hassager 1977),

U S = −1
2

k(l0 − d)2
N∑

i=1

ln

[
1 −

(
l0 − li
l0 − d

)2
]
, (2.1)

where li = |r i+1 − r i | for i = 1, . . . , N − 1, lN = |r1 − r N |, l0 is the equilibrium distance
between beads centres and k is a spring constant.

The finitely extensible nonlinear elastic (FENE) spring potential allows for precise
treatment of the dynamics of very close bead surfaces, preventing spurious overlaps. The
choice of a small value l0 = 1.01d leads to small time-dependent gaps between the surfaces
of the consecutive beads. Therefore, the loops can stretch a bit but are almost inextensible.
The fibre aspect ratio is well-approximated by the number of beads, L/d ≈ N .

In addition, there are also bending forces. It is assumed that each triplet of the
consecutive beads is straight at the elastic equilibrium, and it harmonically resists bending,
leading to the following bending potential energy of the whole loop,

U B =
N∑

j=1

A

2l0
β2

j , (2.2)

where A is the bending stiffness, and βi is the bending angle between the
consecutive bonds, with cos βi=(r i−r i−1) · (r i+1−r i )/(li−1li ) for i = 2, . . . , N − 1,
cos β1 = (r1 − r N ) · (r2 − r1)/(lN l1) and cos βN = (r N − r N−1) · (r1 − r N )/(lN−1lN ).
For highly elastic fibres, the harmonic bending potential energy (MacKerell et al. 1998;
Storm & Nelson 2003; Frenkel & Smit 2023), used in this work, is more realistic than the
Kratky–Porod potential energy (Schlagberger & Netz 2005; Manghi et al. 2006; Llopis
et al. 2007; Saggiorato et al. 2015; Marchetti et al. 2018). The reason is that for larger
bending angles (as it happens for highly elastic fibres), the Kratky–Porod potential may
lead to spurious dynamics (Bukowicki & Ekiel-Jeżewska 2018).

The bending stiffness A is proportional to the Young’s modulus EY by the model
of an elastic cylinder of diameter d (Bukowicki & Ekiel-Jeżewska 2018; Bukowicki &
Ekiel-Jeżewska 2019),

A = EYπd4

64
. (2.3)

The same elastic model is applied to the spring constant k, and therefore the spring
constant k is linked to the bending stiffness A by the relation (Bukowicki & Ekiel-Jeżewska
2018)

A = kd2l0
16

. (2.4)

The potential energies (2.1)–(2.2) result in the following expression for the elastic force
onto the j th bead, for j = 1, . . . , N :

Fe
j = −∂

(
U S + U B

)
∂ rj

. (2.5)

There is also a constant gravitational force, corrected for buoyancy, which acts on each
bead j along the z-axis,
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Fg = − G

N
· êz . (2.6)

Here, G is the total gravitational force on the whole loop, and êz is the unit vector along
the z-axis.

We restrict ourselves to the systems with the Reynolds number much smaller than unity.
Therefore, the fluid flow obeys the Stokes equations, and the bead velocities, ṙ i , depend
linearly on the elastic and gravitational forces exerted on the beads j . The dynamics of the
positions of the bead centres r i , i = 1, . . . , N , satisfy the set of the first-order ordinary
differential equations,

ṙ i =
N∑

j=1

μi j (r1, . . . , r N ) ·
(

Fe
j + Fg

)
. (2.7)

The 3 × 3 mobility matrices μi j (r1, . . . , r N ), for i, j = 1, . . . , N , depend on the time-
dependent positions of all the bead centres. They are calculated by the multipole expansion
of the solutions to the Stokes equations, corrected for lubrication to speed up the expansion
convergence (Felderhof 1988; Cichocki et al. 1994, 1999). The lubrication correction
between all the bead pairs (also non-neighbouring beads) is always switched on in the
simulations.

The elastic forces Fe
j depend only on the time-dependent positions r i (t) of all the bead

centres i = 1, . . . , N . Therefore, (2.7) can be solved for any initial positions of the bead
centres, r i (0), for i = 1, . . . , N , no matter what the angular velocity Ω i (t) of each bead.

In the following, we choose G/N as the force unit, and adopt the following units for the
length, time and translational and rotational velocities:

d, τb = πηd2 N

G
, vb = d

τb
= G

πηd N
, ωb = 1

τb
= G

πηd2 N
. (2.8)

From now on, we redefine the symbols used previously to mean the corresponding
dimensionless quantities.

2.2. Simulations, parameters and variables
The precise numerical code HYDROMULTIPOLE (Cichocki, Ekiel-Jeżewska & Wajnryb
1999; Ekiel-Jeżewska & Wajnryb 2009b), based on multipole expansion of solutions to the
Stokes equations, corrected for lubrication (Cichocki et al. 1999), is used to evaluate the
mobility matrices μi j (r1, . . . , r N ) for the elastic fibre made of N = 36 beads and solve
the dynamics in (2.7). The lubrication correction is applied to the relative motions of each
pair of beads. The multipole truncation order L = 2 is taken in these computations. An
adaptive fourth-order Runge–Kutta method was employed with the limit of the maximum
timestep set to 0.5. The majority of the simulations were performed until t = 88 000.
A few selected simulations were run for longer times.

Following Cosentino Lagomarsino et al. 2005, Llopis et al. 2007, Saggiorato et al.
2015, Bukowicki & Ekiel-Jeżewska 2018, Marchetti et al. 2018, and Bukowicki & Ekiel-
Jeżewska 2019, we introduce in this work the elasto-gravitation number, B, that is a ratio
of the gravitational and bending forces acting on the loop,

B = L2G

A
. (2.9)

In our model, the fibre aspect ratio L/d ≈ N , and therefore B ≈ N 2d2G/A.
In the simulations, the number of beads in the loop is fixed, N = 36. The value of B

is varied in the range 1000 ≤ B ≤ 40 000. Within the considered range of values of the
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elasto-gravitation number, the moderately elastic loops, with smaller values of B, deform
from a circle only slightly. However, highly elastic loops, with larger values of B, deform
significantly out of a plane.

To study the time evolution of the loop orientation, we evaluate the time-dependent
gyration tensor (Mattice & Suter 1994),

Sαβ = 1
N

N∑
j=1

r ′
jαr ′

jβ, (2.10)

where α= x, y, z, β = x, y, z and r ′
j = (r ′

j x , r ′
j y, r ′

j z) is the position of j th bead centre in
the centre-of-mass reference frame, r ′

j = rj − rC M , with the centre-of-mass position

rC M ≡ 1
N

N∑
i=1

r i = (xC M , yC M , zC M ). (2.11)

We find the eigenvalues and eigenvectors of the gyration tensor defined in (2.10). We select
the unit eigenvector associated with the smallest eigenvalue and denote it as n. The unit
vector n is used to provide information about the orientation of the loop. For example, in
the case of a circular flat loop with its centre at the origin of the coordinate system, the
unit vector n is perpendicular to the plane of the loop, and it lies on the loop rotational
symmetry axis.

Expressing n in spherical coordinates with the polar angle θ that it makes with the
vertical axis z (antiparallel to gravity), and the azimuthal angle φ that its projection onto
the xy-plane makes with the x-axis,

n = (
sin θ cos φ, sin θ sin φ, cos θ

)
(2.12)

we will monitor dependencies of θ and φ on time, and we will use them to help us to
characterise the dynamical modes.

3. The dynamical modes reached from an inclined planar initial configuration

3.1. Outline
In this section, we present the majority of our simulations. We focus on a flat inclined
circle as the initial configuration, similarly as in Gruziel-Słomka et al. (2019). Typically,
θ(t = 0)= 16◦ for highly elastic loops, and θ(t = 0)= 80◦ for some moderately elastic
loops. A few simulations performed with curved initial configurations will be presented
in § 4.

We find numerically that a highly elastic loop, after a relatively long time, reaches a
certain dynamical mode and remains in this mode for a very long time until the end of
the simulations. For a given initial configuration, the type of the mode reached depends
on a value of the elasto-gravitation number B. We observe the following dynamical
modes: vertical (V), tilted (T), rocking (R), gyrating-rocking-tank-treading (GRTT), frozen
rotating (FR), tank-treading (TT), swinging (S) and flapping (F).

The snapshots of the sedimenting elastic fibres (xz projection), separated by the same
time interval �t = 83, are presented in figure 1, accompanied by the Supplementary
movies. The evolution of the shapes in the vertical, tilted, frozen rotating, tank-treading,
swinging and flapping modes observed in this work is qualitatively similar to that
reported earlier in Gruziel-Słomka et al. (2019), where a numerical study was performed
using the Rotne–Prager method. This work describes two additional modes: rocking
and gyrating-rocking-tank-treading. The rocking mode might be the same as the tilted
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Figure 1. The time sequence of the loop shapes and their centre-of-mass positions at the (x, z)
projection for different attracting modes: vertical (V), tilted (T), rocking (R), gyrating-rocking-
tank-treading (GRTT), frozen rotating (FR), tank-treading (TT), swinging (S), and flapping (F), for
B = 6030, 7714, 14 098, 17 422, 22 497, 34 843, 35 993 and 40 000, respectively. The time step between the
neighbouring insets is �t = 83, and the total time t = 1079. Each inset represents the loop shape in a square
of 10d by 10d. The centre of each inset is positioned at the centre of mass of the loop at that particular time.
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Figure 2. Different attracting dynamical modes: the time dependence of (a) polar angle θ and (c) azimuthal
angle φ, together with (b) horizontal projections of the centre-of-mass trajectories. In (b), the ranges of times
are 963 for the tilted, 968 for the rocking and 3000 for the GRTT modes. In (b), for the swinging mode, the
centre-of-mass of the loop oscillates on the line yC M=0 between −7 ≤ xC M ≤ 7, which it covers during time
period of 303; for the frozen rotating mode, xC M=0 and yC M=0.

swinging mode in Gruziel-Słomka et al. (2019), but the shape evolution of the tilted
swinging mode was not provided there. (The evolution of shapes in the rocking mode is
essentially different from that in the swinging mode.)

The important new input of the present paper is the evaluation of the characteristic time
scales and velocities for all the attracting dynamical modes. A qualitative comparison
of the mean velocities can be found in figure 1, where we show the motion of the fibre
centre-of-mass. Each snapshot of the fibre shape (drawn to scale) is centred at the loop
centre-of-mass position (xC M , zC M ) at the corresponding time instant. The time of the
recorded motion, t = 1079, is the same for all the modes. By comparing the last vertical
coordinate zC M , we clearly see that the mean sedimentation speed for different modes is
different; the settling of the fibre in the TT mode is the fastest. Also, by looking at the last
horizontal coordinate xC M , it is clear that the fibres in the tilted and rocking modes move
laterally, and their horizontal displacement can be as large as around 10 % of the vertical
one.

For different modes, we also analyse the time dependence of the loop three-dimensional
(3-D) orientation, θ , φ and its 3-D centre-of-mass motion, (xC M , yC M , zC M ). The
exemplary comparison of θ(t), φ(t) and yC M (xC M ) for different attracting modes is
presented in figure 2. Here, we do not include the vertical mode (with θ = 90◦, φ = 0◦
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90
90

85

80

6200 6300 6400

B
6500

85

80

75

70

65

60

Vertical

Tilted

55

4000 6000 8000

6366 13 877

B
10 000 12 000 14 000

θ F
 (

d
eg

.) θ F
 (

d
eg

.)
Figure 3. The final polar angle θF as a function of the elasto-gravitation number B for the tilted and vertical

modes. Symbols correspond to the numerical data and are connected by solid lines to guide the eye.

and xC M=yC M=0), and the tank-treading and flapping modes for which significant out-
of-plane loop deformations are observed. For all the modes plotted in figure 2, the smallest
eigenvalue of the gyration tensor does not switch with another eigenvalue at any time
instant, therefore the angle θ is a meaningful physical quantity.

In the next sections, we will determine the typical properties of each mode, including the
evaluation of the characteristic time scales, such as periods of oscillation, circular motion,
rotation and tank treading, as well as both translational and angular velocities. We will
also identify critical values of B for the transitions between different modes.

3.2. The vertical and tilted modes
A moderately elastic loop (i.e. with lower values 1000 � B � 13847 of the elasto-
gravitation number), initially planar, circular and inclined, later deforms a bit (Gruziel-
Słomka et al. 2019), and after a long time attains a fixed shape with two or one vertical
planes of symmetry, in a vertical or tilted mode, respectively. In the vertical mode, the loop
shape is restricted to a vertical plane, but it is not circular (Gruziel-Słomka et al. 2019).
The corresponding loop shapes are shown in Movie 1 of the Supplementary movies. For
a given value of B, the vertical and tilted modes are characterised by a single, constant
in time, value of the polar angle θ(t)= θF , and a constant in time value of the azimuthal
angle; in the chosen coordinate system, φ(t)= 0. In the vertical mode, θF = 90◦, and in
the tilted mode, θF < 90◦. The dependence of the final angle θF on the elasto-gravitation
number B is shown in figure 3 (analogous to figure 16 in (Gruziel-Słomka et al. 2019)). The
loop inclination in the tilted mode results in a drift of its centre of mass in the x-direction,
as illustrated in figure 2(b).

The transition value Bcrit between the vertical and tilted modes, marked in figure 3,
has been determined by analysing how these modes are reached from the initially
inclined circular configuration. When the loop tends to the vertical or tilted mode of the
characteristic inclination θF from the initial inclination θ̃0 = θ(t = 0) at the start of the
simulation, the inclination angle θ changes monotonically with time, and the exponential
law can fit this relation, as shown in figure 4(a),

θ(t)= θF + (θ̃0 − θF ) · e−t/tchar , (3.1)
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Figure 4. The exponential approach of the polar angle θ(t) to the final angle θF for vertical and tilted modes
with different values of B can be used to estimate Bcrit between both modes. Here (a) θ(t) for B = 13 501 with
θF = 53.37◦; (b) ln|(θF − θ)/θF | is well approximated by the fit (3.1) with tchar = 453. (c) The characteristic
time tchar of the fit (3.1) as a function of the elasto-gravitation number B. (d) Log–log plot confirms a power
law dependence of tchar on |B − Bcrit | near the critical value Bcrit .

with characteristic time tchar > 0 depending on the elasto-gravitation number B and
different for the vertical and tilted modes. Numerical simulations show that when B is
approaching Bcrit from either side, the characteristic time tchar approaches infinity, as
presented in figure 4(c). Therefore, the power-law increase is expected,

tchar = t0 · |B − Bcrit |−p. (3.2)

In figure 4(d), the fit (3.2) is plotted together with the numerical data. The fitted parameters
are Bcrit = 6366, (t0, p)= (1.53 × 106, 0.92) for the vertical mode and (t0, p)= (0.86 ×
106, 0.96) for the tilted mode.

The fitting procedure in the power law (3.2) involves two coefficients, Bcrit and p,
and requires very long simulations to get a reasonable precision. A similar fitting was
performed by Ekiel-Jeżewska (2014) for a period of oscillations of a group of particles
dependent as a power law on a parameter of the initial configuration, c − ccrit . In that
case, it was possible to determine the exponent analytically, using an approximation for
the relative trajectories.

The evolution of the loop’s centre of mass in the vertical and tilted modes can be
expressed in the following simple form:
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Figure 5. The evolution of θ for different values of B is used to determine Bcrit for the transition between
tilted and rocking modes. Here (a) θ(t) for B = 14 174. For 4000 � t � 18 000, the loop seems to be in the tilted
mode with θt ≈ 54.16◦. But later, it destabilises. The periodic rocking motion is observed after the transition
phase is finished at t ≈ 55 000. (b) Here θt − θ0 and θ2 are well-fitted by linear functions of B; they vanish at
approximately the same value of Bcrit = 13 877, estimated as the transition between tilted and rocking modes.

⎧⎪⎪⎨
⎪⎪⎩

xC M (t)= xc + vC M,x t,

yC M (t)= yc,

zC M (t)= −vC M,zt,

(3.3)

where xc, yc, vC M,x � 0 and vC M,z � 0 are constants, and in the case of vertical mode,
vC M,x = 0. The sedimentation speed vC M,z in the vertical mode is almost independent
of B: 1.631 � vC M,z � 1.635. On the other hand, the velocity vC M,x increases and vC M,z
decreases with the increase of B ≤ 12 000, what is caused by the decrease of the inclination
angle θ , shown in figure 3, as will be discussed in § 6.

3.3. The rocking and gyrating-rocking-tank-treading modes
In our numerical simulations, elastic loops with the elasto-gravitation number 13 882 �
B � 14 211 end up in the rocking mode, illustrated in Movie 2 of the Supplementary
movies. For slightly larger values, 14 248 � B � 17 422, a gyrating-rocking-tank-treading
mode is reached, as shown in Movie 4 of the Supplementary movies. The common feature
of these modes is the existence of periodic in-time oscillations of both orientation angles
θ and φ, as shown in figure 2(a,c). We first analyse the properties of the rocking mode,
and then we describe the gyrating-rocking-tank-treading mode.

When the elasto-gravitation number B increases above the values typical for the tilted
mode, the loop ends in a rocking mode instead of the tilted one. The appearance of this
mode is illustrated in figure 5(a). In the first stage of the evolution, the loop seems to
reach the tilted mode with a certain inclination angle θt . However, after a relatively long
time, the inclination angle θ(t) decreases, and starts oscillating around a lower value θ0.
The periodic oscillations of the angle θ , with a constant amplitude θ2 and the average
θ0 �= 90◦, are typical for the rocking mode.

The amplitude θ2 of the rocking oscillations and the difference θt − θ0 increase linearly
with an increase of the elasto-gravitation number B as seen in figure 5(b). Linear fits to
the simulation data predict that θ2 and θt − θ0 vanish at approximately the same value
B = Bcrit ≈ 13 877. This observation indicates that the rocking mode ceases to exist when
B decreases to Bcrit .

1013 A13-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
20

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10203
https://doi.org/10.1017/jfm.2025.10203
https://doi.org/10.1017/jfm.2025.10203


Journal of Fluid Mechanics

300

295

Rocking

GRTT

290

285

280

275

270
14 000 15 000 16 000

B
17 000

Bcrit = 14 218

Tr

Figure 6. Dependence of the period Tr of the oscillations on elasto-gravitation number B in the rocking mode
and in the gyrating-rocking-tank-treading mode.

In the rocking mode, the period Tr = 2π/ωr of the azimuthal angle oscillations is twice
as large as the period of the polar angle oscillations, as visible in figure 2. For the rocking
mode, the period Tr decreases gradually with an increase of B, as shown in figure 6 (blue
triangles). The oscillations of θ are around the averaged inclination angle θ0 �= 90◦. We
choose such a reference frame that the oscillations of φ are around the average value equal
to zero. The time dependence of θ and φ can be approximated as{

θ(t)= θ0 + θ2 sin (2ωr t +ψθ) ,

φ(t)= φ1 sin
(
ωr t +ψφ

)
,

(3.4)

where ψθ and ψφ are the phase shifts, and the amplitudes θ2 and φ1 dependent on B.
The approximation from (3.4) is shown to fit well the numerical data, as demonstrated in
Appendix A for an exemplary value of B. The amplitudes θ2 and φ1 are small. The largest
value of φ1, i.e. φ1 = 8.52◦ is attained for B = 14 211.

In contrast, θ0 is relatively large, as shown in figure 5(a). The averaged inclination of the
loop is associated with an averaged horizontal drift of its centre of mass along the x-axis,
as illustrated in figure 2(c).

The motion of the loop’s centre of mass in the rocking mode is a superposition of
translation with a constant velocity and periodic oscillations. It can be approximated as⎧⎪⎪⎨

⎪⎪⎩
xC M = vx,c t + Ar,x cos

(
2ωr t +ψr,x

)
,

yC M = Ar,y cos
(
ωr t +ψr,y

)
,

zC M = vz,c t + Ar,z cos
(
2ωr t +ψr,z

)
,

(3.5)

where ψr,x , ψr,y and ψr,z are the phase shifts, velocities vx,c and vz,c depend on B,
and amplitudes Ar,x , Ar,y and Ar,z decrease with a decrease of B. The velocities vx,c
and vz,c = −vC M,z depend on B very weakly, as shown in figures 7 and 17(a). The
approximation from (3.5) is shown to fit well the numerical data, as demonstrated in
Appendix A for an exemplary value of B.

The gyrating-rocking-tank-treading (GRTT) mode is observed for moderately elastic
loops with elasto-gravitation number B in the range 14 248 � B � 17 422. As a part of
this name indicates, the loop ‘gyrates’ – it rotates with a constant angular velocity ωg
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Figure 7. The mean x-component vx,c of the horizontal velocity of the elastic loop in the rocking mode as a
function of elasto-gravitation number B. Here vy,c = 0, see (3.5).

around a vertical axis, and also performs ‘rocking’ oscillations with the frequency ωr ,
similar to in the rocking mode. The polar angle is a periodic function of time, with the
period Tr = 2π/ωr . The azimuthal angle is a superposition of the linear growth in time at
the rate equal to ωg and a periodic function with the period Tr . The time-dependent angles
θ(t) and φ(t) can be approximated as{

θ(t)= θ0 + θ1 sin (ωr t +ψθ1)+ θ2 sin (2ωr t +ψθ2) ,

φ(t)=ωgt + φ1 sin
(
ωr t +ψφ1

) + φ2 sin
(
2ωr t +ψφ2

)
,

(3.6)

where the parameters depend on elasto-gravitation number B. In general, two frequencies
are needed in (3.6).

The evolution of the loop’s centre of mass as a function of time is more complex. The
horizontal projection of the centre-of-mass trajectory, shown in figure 2(b), involves two
characteristic frequencies,ωg andωr , with in general irrational ratio. Therefore, the centre-
of-mass motion, in general, is quasiperiodic. It can be approximated by the following
equations:⎧⎪⎪⎨
⎪⎪⎩

xC M=xc + Ag cos
(
ωgt

) + Ar,xy[cos((ωr −ωg)t + φr,xy1)+ cos((ωr +ωg)t + φr,xy2)],
yC M=yc + Ag sin(ωgt)+ Ar,xy[sin((ωr −ωg)t + φr,xy1)+ sin((ωr +ωg)t + φr,xy2)],
zC M=vz,ct + Ar,z sin(ωr t + φr,z),

(3.7)

with the parameters dependent on B. Here Ag is the amplitude (the averaged radius) of
the gyrating motion and the amplitudes Ar,xy and Ar,z are associated with the oscillating
‘rocking’ motion. The constants xc and yc are somewhat arbitrary. Their values are set
at the end of a transition phase. The sedimentation velocity vz,c is constant in time. The
approximations from (3.6)–(3.7) are shown to fit the numerical data well, as demonstrated
in Appendix A for an exemplary value of B.

The function Tr (B) is shown in figure 6. The period of the oscillations in the GRTT
mode smoothly extends Tr (B) from the rocking mode for larger values of B. The
characteristic time scale of gyration, Tg = 2π/ωg , is plotted as a function of B in
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trajectories increases with the decrease of B, as shown in (a), while the gyration velocity is almost constant, as
visible in (b).

figure 8(a). It is clear that Tg increases significantly with the decrease of B. We expect
that Tg might diverge at a critical value of Bcrit as

Tg ∼ |B − Bcrit |−χ (3.8)

that allowed us to identify Bcrit = 14 218 as the critical value of B corresponding to the
transition between the rocking and GRTT modes (see Appendix B for details).

The increase of Tg is related to the increase of the amplitude (the averaged radius) Ag
of the gyrating motion. Here Tg is proportional to Ag , with the approximately constant
gyration velocity, vg = Ag ωg ≈ 0.16, as shown in figure 9.

So far, we have analysed only global features of the loop, such as the polar and azimuthal
angles and the centre-of-mass coordinates or velocities. Some information on the loop
shape can be provided by the time-dependent local curvature at each specific bead i ,
which is calculated as the inverse of the radius of a circle circumscribed on the centres
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B = 15 000 is described by approximately the same envelope function of a period Ttt , but shifted in time
by 10Ttt/36, as shown in (a). Oscillations of the local curvature at a short-time scale Tr due to the rocking
motion are seen in (b).

of three consecutive beads i − 1, i, i + 1 (Słowicka et al. 2022). An example of the time-
dependent curvature at two beads for B = 15 000 is shown in figure 10. The local curvature
has approximately the same envelope function of time for both beads but with a time shift.
The shift corresponds to the tank-treading-like motion of each bead along the loop shape.
This motion may be described as the beads undergoing a periodic alteration in their spatial
position with respect to the centre of mass. It bears a resemblance to the tank-treading
motion in which the beads move along the fixed shape (see § 3.5). Note that the overall
shape of the loop in the GRTT mode is not fixed; the rocking oscillations take place.

The period Ttt associated with the tank-treading-like motion can be also identified
through an analysis of the time dependence of z − zC M for any given bead. Since beads
undergo a periodic alteration in their spatial position with respect to the centre of mass,
the quantity z − zC M will exhibit maxima and minima with a period of Ttt , similar to the
local curvature.

The time shift between the beads can be utilised to identify the value of Ttt also when the
time range of the observed GRTT mode is smaller than the period Ttt , which is particularly
relevant in cases with smaller values of B, specifically when B ≤ 14 556.

3.4. The frozen rotating mode
The frozen rotating mode is observed for relatively elastic loops with values of the elasto-
gravitation number B being in the range of 17 477 � B � 32 733. In this mode, the loop
settles vertically with a constant velocity vz, f r and spins with a constant angular velocity
ω f r around a vertical axis containing the loop centre of mass. The angles θ and φ, plotted
in figure 2, are {

θ(t)= 90◦,
φ(t)=ω f r t,

(3.9)

where the period of rotation T f r = 2π/ω f r depends on elasto-gravitation number B as
shown in figure 11. The evolution of the loop’s centre of mass is described by the following
simple equations:
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Figure 11. Dependence of the period T f r of the loop rotation on the elasto-gravitation number B in the frozen
rotating mode reached from a flat inclined circle as the initial configuration. The gap between the dots indicates
the range of B corresponding to an irregular mode.

⎧⎪⎪⎨
⎪⎪⎩

xC M (t)= xc,

yC M (t)= yc,

zC M (t)= vz, f r t,

(3.10)

where xc, yc and vz, f r are constants, and the sedimentation velocity vz, f r is almost
independent on B, 1.660 � |vz, f r |� 1.664, as it will be discussed in § 5.

Note that for the selected values of B, namely for B = 18 622, B = 18 945, B = 19 286
and B = 19 634, the frozen rotating mode could not be achieved within the monitored
simulation time of 88 000. The final stage of the evolution for these values of B (not
shown here) contains features similar to the irregular mode observed for sedimenting
highly elastic fibres (Melikhov & Ekiel-Jeżewska 2024).

3.5. The tank-treading, swinging, flapping and irregular modes
In the tank-treading, swinging, flapping and irregular modes, a significant out-of-plane
deformation of the loop shape is observed. The tank-treading mode was found for B =
34 843. The mode is characterised by the loop having a fixed shape that rotates about
a vertical axis with a period Trot = 52 and the constant angular velocity (the azimuthal
angle φ changes linearly with time). The centre of mass moves along a helix of a small
horizontal circular cross-section with radius rrot ≈ 1. The polar angle θ = 0◦ but the shape
is far from being planar. In addition, there is also a translation of the beads along the loop
with a period Ttt = 96. The specifics of the structural configuration and the flow of beads
are presented in Movies 7 and 8 of the Supplementary movies, confirming that this mode
is analogous to the tank-treading mode observed in Gruziel-Słomka et al. (2019).

The swinging mode, analogous to the swinging mode reported in Gruziel-Słomka et al.
(2019), is observed for two values of the elasto-gravitation number, B = 35 993 and 37 244,
with the periods Tswing = 303 and 308, respectively. It involves significant time-dependent
periodic deformations of the loop shape, as shown in Movie 9 of the Supplementary
movies. At each time instant, the shape is symmetric with respect to a vertical plane
(xz plane in Movie 9 of the Supplementary movies). Therefore, the motion of the centre of
mass is restricted to this plane. Two cases of the swinging mode exhibit slight differences

1013 A13-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
20

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10203
https://doi.org/10.1017/jfm.2025.10203
https://doi.org/10.1017/jfm.2025.10203
https://doi.org/10.1017/jfm.2025.10203
https://doi.org/10.1017/jfm.2025.10203


Y. Melikhov and M.L. Ekiel-Jeżewska
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Figure 12. Dependence of attracting dynamical modes on elasto-gravitation number B. Initially, the loop is
planar, circular and inclined, typically at θ=16◦. Critical values of B separating distinct modes are 6366
(vertical-tilted), 13 877 (tilted-rocking) and 14 218 (rocking-GRTT). The empty circles correspond to an
irregular mode.

in the one-dimensional horizontal drift of the centre of mass. For B = 35 993, the centre
of mass of the loop exhibits symmetric oscillations with the amplitude 7d about a fixed
position, resulting in no horizontal displacement after a single swinging cycle. In contrast,
for B = 37 244, the forward and backward motions of the centre of mass of the loop are
not symmetric, resulting in a horizontal displacement of 2d after each swinging cycle.

The flapping mode is observed for B = 40 000 with the period of T f lap = 157. The
loop shape undergoes considerable time-dependent periodic deformations, as shown in
Movie 10 of the Supplementary movies. The configuration changes from an almost flat and
almost horizontal shape to a severely bent 3-D shape. In contrast to the swinging mode,
all subsequent configurations possess two vertical planes of symmetry perpendicular to
each other. Therefore, the centre of mass does not move horizontally. This mode is also
analogous to the flapping mode reported in Gruziel-Słomka et al. (2019).

The irregular mode is observed for B = 33 746, and for several other values of B, as
discussed in § 3.4. The mode is characterised by irregular rotations and oscillations of the
centre of mass trajectory and considerable irregular deformations of the loop shape with
time. This mode is analogous to the irregular mode observed in the case of sedimenting
fibres reported in Melikhov & Ekiel-Jeżewska (2024).

3.6. Diagram of the modes
Different attracting dynamical modes, reached from the initially inclined circular
configuration, for different ranges of the elasto-gravitation number B, are shown as a
phase diagram in figure 12. The evolution of shapes in these modes is illustrated in the
Supplementary movies.

4. The frozen rotating mode reached from a non-planar initial configuration
It is known that different attracting dynamical modes can coexist, reached from different
initial configurations, as shown in figure 20 in Gruziel-Słomka et al. (2019). Of special
interest is the frozen rotating mode, with a fixed shape. Therefore, in this work, we check if
the frozen rotating mode can exist for a wider range of B if a different initial configuration
is chosen. As a non-planar initial configuration for a chosen value of B, we took the final
configuration in the sedimentation of the loop with one of the closest values of B that
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Figure 13. Dependence of attracting dynamical modes on elasto-gravitation number B in the case of the
non-planar initial configuration. The critical value of B separating the tilted and frozen rotating modes
is 13 167.
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Figure 14. Dependence of the period T f r of the loop rotation on the elasto-gravitation number B in the frozen
rotating mode approached from two different initial conditions: a flat inclined circle, or a non-planar loop, as
explained in the text.

ended up in the frozen rotating mode. We performed numerical simulations for 12 000 �
B � 17 422 and 18 622 � B � 19 634. The last range corresponds to the values of B that
result in irregular modes if a flat inclined circle as the initial configuration was selected.
For the non-planar initial configuration, in the same range of B, the loop ends up in the
frozen rotating mode with a shape slightly different than the initial one.

This behaviour differs from the evolution from a flat inclined initial configuration,
analysed in § 3. For 12 000 � B � 17 422, if a flat inclined initial configuration is chosen,
the loop ends up in the tilted, rocking or GRTT modes, as shown in figure 12. However, if
the non-planar initial configuration is selected, the tilted mode is approached in a narrower
range of values, 12 000 � B � 13 138, and for larger values, 13 169 � B � 17 422, the
frozen rotating mode appears, as shown in figure 13. The rotation period in the frozen
rotating mode, the same when reached from both flat and non-planar initial configurations,
is plotted in figure 14, now in a wider range than in figure 11.
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Figure 16. The growth rate λ in (4.1) is a linear function of B, enabling estimation of Bcrit = 13 167 for the
transition between the frozen rotating and tilted modes.

Interestingly, for the lower range of the elasto-gravitation number, 12 000 � B � 13 138,
in a very long first stage of the evolution, the loop seems to be in a frozen rotating mode
(like it happens in the range of larger values of B); however, such behaviour is transient,
and finally the tilted mode is reached.

To estimate the critical value Bcrit of the transition between the final tilted and frozen
rotating modes, approached from the non-planar initial configuration, the evolution θ(t)
is studied for the cases in which the frozen rotating transient destabilises if starting from
the non-planar initial configuration. An example of this analysis is shown in figure 15 for
B = 12 558. It is seen that θ ≈ 90◦ for a while, but after the transition period, the loop
continues to sediment in the tilted mode.

The initial stage of destabilisation can be analysed via the dependence of θ on time. The
time-dependent amplitude Ao(t) of the oscillations of θ around 90◦ can be approximated
to increase exponentially,
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Figure 17. (a) The sedimentation speed vC M,z > 0 and (b) the lateral speed vC M,h � 0 of the loop centre-of-
mass as a function of elasto-gravitation number B. For the rocking, GRTT, swinging and flapping modes, the
maximum and minimum of both velocities (and the average of vC M,z) are shown. In the vertical, tilted, frozen
rotating and tank-treading modes, both velocities do not depend on time. The colours and symbols correspond
to the modes as presented in figures 12 and 13 for the planar and non-planar initial configurations, respectively.

Ao(t)∝ eλt (4.1)

in the range 12 000 � B � 13 012. The dependence of λ> 0 on B is linear, allowing
identification of the value of Bcrit ≈ 13 167 below which the frozen rotating mode is not
reached after a long time, as illustrated in figure 16.

5. Centre-of-mass velocity and characteristic time scales for the attracting modes
In figure 17, we compare the characteristic centre-of-mass (CM) velocity of the elastic
loop made of 36 spherical beads in different attracting modes. In figures 17(a) and 17(b),
we show separately the absolute values of the vertical and horizontal components of
the CM velocity, vC M,z = |vz,c| (in the following called the sedimentation speed) and
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vC M,h =
√
v2

C M,x + v2
C M,y (called the lateral speed). The chosen normalisation,

given in (2.8), is such that the sedimentation speed of a single bead is equal
to 1/3.

The main observation is that the sedimentation speed is typically at least an order of
magnitude larger than the lateral one. There is no horizontal drift in the vertical, frozen
rotating and flapping modes. The lateral speed vC M,h is constant in time for the tank-
treading and tilted modes. In the tilted mode, the horizontal drift tends to vanish when
B decreases to the critical value corresponding to the transition between the tilted and
vertical modes. In the tilted mode, the horizontal component of the CM velocity has a fixed
direction, and in the tank-treading mode, the horizontal component of the CM velocity
corresponds to the motion along a circle.

In the rocking mode, the horizontal component of the CM velocity has a fixed direction
plus oscillations along this direction and oscillations perpendicular to it. In the swinging
mode, the horizontal component of the CM velocity has a fixed direction plus oscillations
along this direction. In the GRTT mode, the horizontal component of the CM velocity
corresponds to the motion along a circle plus periodic oscillations along the circle and
perpendicular to it. The magnitude of the oscillations about the mean values in the rocking
and GRTT modes increases with B, seen as the increase in the difference between the
maximum and minimum values of the sedimentation and lateral speeds. The characteristic
time of the oscillations between the minimum and maximum sedimentation and lateral
speeds for GRTT corresponds to Tr shown in figure 6.

For the rocking and GRTT modes, the lateral speed vC M,h =
√
v2

C M,x + v2
C M,y (i.e. the

magnitude of the instantaneous horizontal velocity of the loop centre-of-mass) differs from
the speed of the effective displacement of the loop centre of mass, i.e. from the gyration
velocity vg in the GRTT mode (shown in figure 9b) and the horizontal drift velocity vx,c in
the rocking mode (shown in figure 7). The gyration velocity vg = Ag ωg , where Ag is the
averaged radius of the gyrating motion and ωg is the vertical angular velocity, see (3.6).
The horizontal drift velocity vx .c is defined in (3.5).

The dependence of the sedimentation and lateral speeds on B is non-monotonic and
very complex. The loop shape and orientation, and their variation with time, are essential
for the resulting value and direction of the CM velocity. There is no systematic dependence
of the lateral speed on B. The sedimentation speed of the loop with a fixed shape in the
tank-treading mode is larger than in the frozen rotating mode, in the frozen rotating mode
– larger than in the vertical mode, and in the vertical mode – larger than in the tilted
mode. The last inequality is in agreement with the behaviour of an inclined rigid circle
that sediments faster than a vertical circle of the same diameter.

For the vertical, tilted and frozen rotating modes, the shape of the elastic loop is fixed
in time, only translating or rotating and translating. We checked that the sedimentation
speeds are practically the same as for the rigid particles of the same shape and orientation
(a slight numerical difference is less than 0.2 %). However, the sedimentation speed of
the elastic loop in the tank-treading mode is by 3.7 % larger than the sedimentation speed
of the rigid loop of the same shape and orientation. This is consistent with the previous
observations by Ekiel-Jeżewska & Wajnryb (2009a) that the relative motion of certain
parts of an object without a change of its shape leads to a higher sedimentation velocity
than for the rigid object. Moreover, the calculation performed for the rigid object of
the shape and orientation taken from the tank-treading mode shows that the horizontal
components of the angular velocity do not vanish, and therefore its orientation is not
stationary, unlike in the case of an elastic object, that rotates only along the vertical axis
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Figure 18. The polar angle θ of the loop as a function of the elasto-gravitation number B. (a) The final θF for
the tilted mode and maximum and minimum values of θ during the rocking and GRTT modes, θmax = θ0 + θ2
and θmin = θ0 − θ2, see figures 4(a) and 5(a). (b) The polar angle for the attracting tilted mode (θF , B ≤
13 877) and for transient tilted configuration (θt , 12 877 ≤ B ≤ 15 000) before the rocking and GRTT modes
are established. The dashed rectangle in (a) corresponds to the axes limits used in (b).

and moves along a circular helix. Clearly, the tank-treading motion stabilises the loop
orientation, and the rigid body dynamics is different.

For a mode with a time-dependent shape deformation, variations in time of the
sedimentation speed can be as large as 30% (as for example in the swinging mode). In
general, it might be expected that almost horizontal loop (with a smaller value of θ )
sediments slower than almost inclined loop (with a greater value of θ ), and therefore,
that the lower and upper branches in figure 17 (the minima and maxima of vC M,z(t) over
time) correspond to the lower and upper branches in figure 18(a) (the minima and maxima
of θ(t)), respectively. Indeed, for the rocking mode, the time positions of θmax and θmin
coincide with the time positions of the maximum and minimum values of vC M,z . For the
GRTT and swinging modes, the values of the time at which θmax and θmin are reached
are close to the values of the time corresponding to the maximum and minimum values of
vC M,z . The reason for a small difference could be assigned to non-planar and non-circular
shapes. For the flapping mode, the sedimentation speed is the smallest when the loop is
almost horizontal.

We now compare the characteristic time scales of the attracting modes, ordering them
from the shortest to the longest. For all the modes, the smallest is the sedimentation time
scale, of the order of 0.5–0.7. The time scale of the horizontal drift is � 5. The time scales
of the rotation and tank-treading in the tank-treading mode are 50 and 100, of the flapping
in the flapping mode, 150, of the rotation in the frozen rotating mode, 200–300, of the
rocking in the rocking and GRTT modes and swinging in the swinging mode, around
300. Much longer are the gyration (1000–50 000) and tank-treading (4000–100 000) time
scales in the GRTT mode. In general, the attracting modes are reached after a very
long time.

However, we numerically observe that in the first stage of the evolution, typically very
long, the loop often behaves similarly as in such an attracting dynamical mode that is
‘close’ to the initial configuration, for example tilted for initially inclined circle and frozen
rotating for the non-planar initial configuration, see figures 5 and 15(a), respectively. The
averaged inclination angle θt of the transient tilted mode is shown in figure 18(b) as a
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function of B � 13 877. It is clear that in this range of B, the function θt (B) for the
transient configuration extends smoothly the function θF (B) corresponding to the stable
stationary configuration with B ≤ 13 877. This similarity illustrates that the typical CM
velocities and time scales analysed above for the attracting modes can be also observed at
much shorter times as characteristic features of the transients.

6. Discussion and conclusions
In our numerical findings, all the stationary configurations of the highly elastic loops
are non-planar except the vertical one. This result differs from the known fact that all
configurations of rigid circles are stationary – they translate vertically and horizontally
with no change in their inclination angle, and are neutrally stable, as the sedimenting rods
(Taylor 1967).

Now we will argue that there are no planar circular stationary configurations for an
elastic loop made of N beads, with the inclination angle θ other than 0◦ (horizontal).
Assume that there is one, which means that the velocity vector vi of each bead
i = 1, . . . , N is the same. The vectors vi are sums of two contributions: v⊥

i , caused by the
forces (acting on all the beads j = 1, . . . , N ) perpendicular to the circle, and v

‖
i caused

by the forces (acting on all the beads j = 1, . . . , N ) parallel to the circle. The forces
perpendicular to the circle are only the perpendicular components of gravity, while the
parallel ones are the parallel components of gravity plus all the elastic forces. Owing to
symmetry, v⊥

i is perpendicular, and v
‖
i is parallel to the circle; moreover, v⊥

i is the same
for all the beads i .

To require that the vector v
‖
i is also the same for all the beads, we need to select

the circle in the elastic equilibrium (with vanishing elastic forces). In particular, for the
horizontal circle (i.e. for θ = 0) in the elastic equilibrium, no horizontal forces are acting
on each bead i ; therefore, this configuration is stationary. In general, θ �= 0, and the only
parallel force acting on a bead i is the parallel component of gravity, F = G/N sin θ �= 0.
We consider N = 36 for simplicity and assume that beads 1 and 19 are at the bottom
and at the top, respectively, and the line of centres of beads 10 and 28 is horizontal.
Numerical evaluation of v

‖
i demonstrates that |v‖

10|> |v‖
1| by around 6 %, in a qualitative

agreement with analytical predictions based on the point-force model (the details are given
in Appendix C). Therefore, a circle is not a stationary configuration, except if it is oriented
horizontally. Our numerical analysis demonstrates that the stationary horizontal circular
configuration is unstable, as shown in Appendix C.

In the vertical attracting mode, a stationary non-circular planar (vertical) configuration
is reached, shown in figure 25 in Appendix C, and also in figure 2 in (Gruziel-Słomka et al.
2019). However, this configuration is not stationary if tilted – our numerical computations
show that v⊥

i is not the same for all the beads i (see Appendix C). These observations
seem to indicate the non-existence of a planar stationary configuration of an elastic loop,
except if oriented vertically or horizontally.

The existence of attracting stationary and transient tilted and frozen rotating
configurations is important for the overall structure of invariant manifolds of the dynamics,
and their stability, as described, for example in Barenblatt (1996). In future studies of the
invariant manifolds and bifurcations of the dynamics of highly elastic loops (or fibres with
open ends), the methods from Fox & Graham (2024) might be useful. In the future, it
would also be interesting to understand the nature of the bifurcations between the different
dynamical modes by a mathematical stability analysis, for example using the methods
described by Clarke, Hwang & Keaveny (2024).
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The existence of several attracting dynamical modes of highly elastic loops is similar
to the existence of attracting modes of highly elastic fibres with open ends, described in
Melikhov & Ekiel-Jeżewska (2024). For both elastic objects, there exist two stationary
shapes: one translating vertically and horizontally (called tilted) and one translating
and rotating (called frozen rotating and rotation, respectively). Also, there exist modes
oscillating periodically and quasiperiodically (the analogues of the rocking and GRTT
modes for loops are, respectively, the crawling and rotation-crawling modes for the fibres).
In general, the attracting modes are approached after a long time. However, the details
of the shape evolution and centre-of-mass motion are different. In particular, for the same
value of B, the shapes of the loops are less deformed and closer to planar than for the fibres
with open ends. Moreover, for the loops, the transition between different modes is shifted
to much larger values of B than for the fibres with open ends. For very large values of B,
for the loops there are more different periodic attracting modes (tank-treading, swinging,
flapping) than for the fibres with open ends, for which often irregular evolution is
observed.

In conclusion, the main results of this paper are as follows. Different attracting
dynamical modes of a highly elastic loop sedimenting under gravity in a viscous fluid are
observed for different values of the elasto-gravitation number B, starting from planar and
non-planar initial conditions. This work extends the study performed by Gruziel-Słomka
et al. (2019) as outlined in Appendix D. Two new modes of the dynamics is described:
rocking and GRTT, and it is shown that (as the tilted mode) they can coexist with the frozen
rotating mode for certain values of B. Critical values of B corresponding to transitions
between all the attracting modes are determined. Beyond the transition, some of the modes
become unstable (but still can be observed), while others cease to exist. For each attracting
mode, characteristic time scales are evaluated. Sedimentation and lateral translational
velocities, and the angular velocity are calculated and shown to vary depending on the
mode and the value of the elasto-gravitation number.

We will now comment on possible practical significance of the dynamics of sedimenting
highly elastic loops. Moderately elongated biological objects are typically characterised by
values of B � 200. Their density is close to unity, and therefore, the total force (gravity
minus buoyancy) is relatively small. This, however, could be compensated by a large
length. For example, the estimated value of the elasto-gravitation number for a diatom
chain of diameter d = 20 µm, density ρ = 1125 kg m−3, chain bending stiffness A =
1.3 × 10−17 and length 2~mm corresponds to B = 200, as reported by Young et al. (2012)
and Bukowicki & Ekiel-Jeżewska (2019). The range of values of B considered in our
manuscript would be reached for longer, 6 − 12~mm-long diatom chains, closed in a loop.

Moreover, the highly elastic loops investigated here could be considered as a model of
a very thin elastic sheet. The dynamics of such objects have been recently investigated
because of their possible application for graphene flakes. Young’s modulus of graphene
is very large, around 1 T Pa, but owing to minimal thickness, the bending rigidity of
monolayer graphene is very low, of the order of 1 eV , see, for example Berinskii,
Krivtsov & Kudarova (2014). Moreover, graphene’s density is large, equal to 2267 kg m−3,
with the density relative to the water-based solvent one order of magnitude larger than for
biological systems like diatom chains.

The differences between the sedimentation velocities of the elastic loops in different
modes determined here might be used in a centrifuge to sort the loops with different
densities, different lengths or different elastoviscous numbers. A similar sorting of elastic
fibres with open ends can be expected, based on the results shown in figure 5(d) in
(Melikhov & Ekiel-Jeżewska 2024). The horizontal translation in a single direction of the
sedimenting elastic loop for the tilted and rocking modes could be relevant for transporting
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cargo, and the motion of the loop centre-of-mass along a horizontal circle, and the
oscillations of the centre-of-mass position might be useful for mixing of the fluid. The
dynamics of highly elastic loops and fibres may be useful to explain the motion and shape
deformation of more complex highly elastic objects, for example disks or sheets (Miara
et al. 2022; Yu & Graham 2024).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10203.
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Appendix A. Fitting expressions
For the rocking and GRTT modes, we perform the fast Fourier transform (FFT) of the
numerical data for the time-dependent orientation angles θ and φ and the centre-of-mass
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Figure 19. Fitting the time dependence given by (3.4) to the numerical data for the orientation angles θ and
φ in the rocking mode with B = 14 098. (a,c) The FFT analysis of θ and φ. (b) The fit of θ − θ0 is performed
with one dominant FFT frequency 2ωr . (d) The fit of φ is performed with one dominant FFT frequency ωr .
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Figure 20. The centre-of-mass movement for the rocking mode with B = 14 098. (a) The FFT of xC M , yC M
and zC M . (b–d) The fits of quasiperiodic xC M , yC M and zC M were performed with one dominant FFT
frequency only: ωr for yC M , and 2ωr for xC M and zC M . The amplitudes are 0.0213, 1.781 and 0.079 for
xC M , yC M and zC M , respectively. See (3.5) for the fitting functions.

position (xC M , yC M , zC M ) and we determine the leading frequencies. Then, we use these
values to construct and plot the fitting expressions.

The results of the FFT analysis of the data and the fitting expressions for the rocking
mode with B = 14 098 are shown in figures 19 and 20. The parameters are θ0 = 53◦,
ωr = 2.12 × 10−2, vx,c = 0.166 and vz,c = 1.505.

The results of the FFT analysis of the data and the fitting expressions for the GRTT
mode with B = 16362 are shown in figures 21 and 22. Even though the amplitudes
of the frequencies ωr −ωg and ωr +ωg are more than 30 times smaller than the
amplitude of ωg , they need to be taken into account to demonstrate the quasiperiodicity of
xC M (t) and yC M (t). The parameters are θ0 = 47◦, ωg = 2.43 · 10−3, ωr = 2.30 · 10−2 and
vz,c = 1.489.

Appendix B. The critical value Bcrit for the transition between the rocking and GRTT
modes
Figure 23 demonstrates that in the GRTT mode, when B decreases to a critical value
Bcrit , the gyration period Tg diverges as Tg ∼ |B − Bcrit |−χ , in agreement with (3.8).
The fitting procedure was used to determine the critical value of Bcrit . The range of
B for which this procedure was performed was limited to the closest data points near
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Figure 21. Fitting the time dependence given by (3.6) to the numerical data for the orientation angles θ and φ
in the GRTT mode with B = 16 362. (a,c) The FFT analysis of θ and φ. (b,d) The fits of θ − θ0 and φ −ωgt ,
performed with two dominant FFT frequencies, ωr and 2ωr .

the expected Bcrit : 14 248 � B � 14 594 (see figure 8a). The best fit, which yielded the
smallest residual, resulted in χ = −0.5560 and Bcrit = 14 218. For larger values, the GRTT
mode is observed, and for smaller values, the rocking mode is present.

Appendix C. Examples of stationary and non-stationary planar configurations of a
sedimenting elastic loop

A non-horizontal circle is not a stationary configuration (for all values of B)
First, we demonstrate that a vertical circle made of N beads is not a stationary
configuration, even if it is in elastic equilibrium. For N = 36, the beads 19 and 1 are
at the top and bottom, respectively, and the line of centres of the beads 10 and 28 is
horizontal. The numerically evaluated i th bead velocities are shown in figure 24. The
vertical component of the first and 19th bead velocity is smaller than for the 10th and 28th
beads, by approximately 6 %. The horizontal component of velocity tends to move apart
the upper beads and the lower beads closer to each other.

Therefore, the circular vertical configuration of the elastic loop is not stationary.
This conclusion can be supported by an analytical calculation within the point-particle
model. We will show that the sedimentation speed of the top bead is smaller than
the sedimentation speed of the right-hand side bead, v19 < v10. The contribution to
v19 from four beads, 19+k, 19−k, and their horizontal reflections, 1+k, 37−k, scaling
as vvk = cos φk + 1/ cos φk + sin φk + 1/ sin φk is smaller than the contribution to v10
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Figure 22. The centre-of-mass movement for the GRTT mode with B = 16 362. (a) The FFT of xC M , yC M
(overlapped) and zC M . (b–c) The fit of quasiperiodic xC M and yC M was performed with three dominant FFT
frequencies, and the amplitude of the first frequency, equal to 68.60, is truncated in the plot. (d) The fit of
periodic zC M − vz,ct was performed with one FFT frequency only. See (3.7) for the fitting functions.

4.7

4.6

4.5

4.4

4.3

4.2

4.1

1.6 1.8 2.0

Log10| B – Bcrit |

L
o
g

1
0
 (

T g
)

2.2 2.4

Data

Linear fit

2.6

Figure 23. Log–log plot of the gyration period Tg in the GRTT mode as a function of |B − Bcrit | confirms a
power law dependence (3.8) with the critical value Bcrit = 14 218. The range of elasto-gravitation number B
chosen for the fit is 14 248 � B � 14 594.
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Figure 24. A circular vertical loop in the elastic equilibrium is not stationary. Vertical (vz , dots) and
horizontal (vy , diamonds) components of the i th bead velocity v

‖
i vary with the bead number i .
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Figure 25. The planar vertical stationary shape of the elastic loop in the attracting vertical mode for N = 36
and B = 6282 (solid line in (a)) is shown to differ from a circle (dotted line in (a)). The distance between the
consecutive beads li depends on the bead position – it is the smallest at the bottom, and the largest at the top,
as visible in (b), with li = |r i+1 − r i | for i = 1, . . . , N − 1, and lN = |r1 − r N |. The distance in the elastic
equilibrium equals to 1.01.

from the analogous rotated configuration of four beads 10+k, 10−k, and their vertical
reflections, 28+k, 28−k, scaling as vh

k = sin2 φk/ cos φk + 1/ cos φk + cos2 φk/ sin φk +
1/ sin φk , where k = 1, . . . , 8 and φk = π(18 − k)/36>π/4. The contribution to v10 from
the beads 1 and 19 is the same as the contribution v19 from the beads 10 and 28. The
contribution to v19 from the bead 1, scaling as 1, is larger than the contribution to v10 from
the bead 28, scaling as 1/2, but it is easy to check that this difference is smaller than the
difference vh

1 − vv1 . Therefore, within the point-particle model, v19 < v10.
The reasoning presented above is generalised straightforwardly for an inclined circle

other than horizontal – the vertical gravitational force needs to be replaced by its projection
parallel to the circle’s plane. Therefore, a circle other than horizontal is not a stationary
configuration.
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Figure 26. Velocities of the beads for the planar shape from figure 25 placed horizontally (z → y). This
configuration is not stationary.

In a certain range of B, there exists a planar vertical stationary configuration
Then, we show that the stationary planar vertical configuration of the attracting vertical
mode is non-circular, and it is not stationary if placed horizontally. The non-circular,
vertical shape of the attracting vertical mode, visible in figure 25, was also reported by
Gruziel-Słomka et al. (2019). This shape is not stationary if placed horizontally – velocities
of all the beads are not the same, as shown in figure 26. This conclusion can be easily
generalised for an inclined loop other than vertical if the gravitational forces are replaced
by their projections perpendicular to the loop’s plane. Therefore, the planar configuration
observed in the attracting vertical mode is not stationary after tilting by an angle θ �= π/2.

A horizontal circle in elastic equilibrium is an unstable stationary configuration
Finally, we argue that the horizontal circular stationary configuration of the loop in the
elastic equilibrium is unstable. Indeed, the elastic loop with B = 6283, initially horizontal
with the shape shown in figure 25, evolves towards a horizontal circle, but then it moves
out of the horizontal plane.

Appendix D. Comparison with the dynamics of sedimenting elastic loops in Gruziel-
Słomka et al. (2019)
The results obtained here for the elastic loops made of N = 36 beads of diameter d,
with their centres at the elastic equilibrium separated by 1.01d, will be now compared
with Gruziel-Słomka et al. (2019). The same loops are modelled there as an elastic ring
made of 60 overlapping beads of the same diameter d, but with their centres at the elastic
equilibrium separated by 0.6d, which provides approximately the same geometrical aspect
ratio. The elasto-gravitation number B, used in this work and defined in (2.9), relates in
the following way to the stiffness parameter Ã used in Gruziel-Słomka et al. (2019) with
the correction in Gruziel-Słomka et al. (2022),

B ≈ 1.5 · 104/ Ã. (D1)

The above comparison is based on assuming (Bukowicki & Ekiel-Jeżewska 2018) that
the loop from Gruziel-Słomka et al. (2019, 2022) has the same bending energy,
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U B =
60∑
j=1

A∗

1.2d
β ′2

j , (D2)

as in (2.2) the loop with N = 36 considered here. In (D2), A∗ from Gruziel-Słomka et al.
(2019) is the same bending stiffness as A used here.

In Gruziel-Słomka et al. (2019), hydrodynamic interactions between the beads were
described by the Rotne–Prager translational–translational mobility matrix (Rotne & Prager
1969; Yamakawa 1970; Zuk et al. 2014, 2017, 2018). This approach does not include the
lubrication forces caused by the relative motion of close bead surfaces (in contrast to our
method). To compensate, in Gruziel-Słomka et al. (2019), the consecutive beads overlap,
and small short-distance repelling forces are added. This approach allows for monitoring
the motion of very elastic loops, such as the bent figure eight or toroidal attracting modes.
Such compact modes cannot be studied by our present numerical approach. Another
advantage of the Rotne–Prager method is that the simple analytical form of the mobility
coefficients allows for fast computations. The benefit of the multipole expansion corrected
for lubrication (used here) is a controlled high precision.

The attracting dynamical modes (vertical, tilted, frozen rotating, swinging, flapping)
observed in the Rotne–Prager approximation (Gruziel-Słomka et al. 2019) have also been
found here. The transition between vertical and tilted modes takes place at approximately
the same value of B. The coexistence of different modes, found in Gruziel-Słomka et al.
(2019), is confirmed here. However, in the present work, two new modes and some
differences in the phase diagram are reported. Moreover, here all the modes are described
quantitatively, including the characteristic time scales, velocities and transitions between
the modes.
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