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ON THE PRODUCT OF IDEALS 

BY 

D A V I D F. A N D E R S O N A N D D A V I D E . D O B B S * 

ABSTRACT. This article introduces the concept of a condensed 
domain, that is, an integral domain JR for which IJ = {ij: ieI,jeJ} 
for all ideals / and J of R. This concept is used to characterize 
Bézout domains (resp., principal ideal domains; resp., valuation 
domains) in suitably larger classes of integral domains. The main 
technical results state that a condensed domain has trivial Picard 
group and, if quasilocal, has depth at most 1. Special attention is 
paid to the Noetherian case and related examples. 

1. Introduction. Let I and J be ideals of a commutative ring 1?. The product 
IJ is, of course, defined to be the ideal of R generated by the set of products, 
P = P(I,J)={xeR: there exist iel and jeJ such that x = ij}. Although it is 
customary to take P itself as the product of I and J in algebraic contexts where 
only one binary operation (in this case, multiplication) is available, such a 
convention would be inappropriate for ring theory, since many examples show 
that P need not be closed under sums. The present note treats the so-called 
condensed domains, the (commutative integral) domains R in which all sets 
of the form P actually are ideals; that is, where P(7, J) = IJ for all choices of I 
and /. 

As noted in Corollary 2.2 below, familiar examples of condensed domains 
include all Bézout domains and, in particular, all principal ideal domains and 
all valuation domains. Our main purpose here is to show that the "condensed" 
property serves to characterize each of the above types of domains amongst 
suitably larger classes of domains. In this regard, see Propositions 2.12 and 
2.13 and Corollaries 2.6 and 2.8. The main technical tools are Proposition 2.5 
and Theorem 2.7: each condensed domain has trivial Picard group and, if 
quasi-local, has depth at most 1. Special attention is paid to the impact of the 
"condensed" property in the Noetherian case (Corollaries 2.8 and 2.9 and 
Theorem 3.3). Further results and related concepts are treated in the brief final 
section. 
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Throughout, R denotes a domain with group of units U(R), integral closure 
R', and quotient field K. Any unexplained terminology is standard, as in [2] 
and [3]. 

2. Main results. We begin with some characterizations of condensed do
mains. 

PROPOSITION 2.1. For a domain R, the following conditions are equivalent: 
(1) P(I, J) = II for all two-generated ideals I and J of R; 
(2) R is a condensed domain; 
(3) For all positive integers n>2 and all ideals Il912,..., In of R, one has 

hh ' ' ' In
 ={x e R' for each k = 1, 2 , . . . , n, there exists ik e Ik such that 

x = hi2' ' ' ij', 
(4) There exists a positive integer n>2 such that for all two-generated ideals 

Iu I2, . . . , In of R, one has IXI2 • • • In={xeR: for each k = 1, 2 , . . . , n, 
there exists ik e Ik such that x = ixi2 • • • in}. 

Proof. (1)=>(2): Let I and / be ideals of R. Consider relJ; write r = 
Ï1J1 + Ï2/2+' * m + iJn> with k^I an<i Jk^J f° r e^ch k. For each 2<fe<n , let 
rk = hi 1 + hi2 + • • • + ikik- Then r2 e AB, where the ideals A and B are given by 
A = (il9 i2) c: I and B = (ju j2) a J. An application of (1) yields aeA and beB 
such that r2 = abe P(A, B) <= p(/5 / ) . Consequently r3 = r2+ i3j3 G CD, where the 
ideals C and D are given by C = (a, i3) c= I and D = (b, j3) c: J. Another applica
tion of (1) yields r3eP(C,D)<=:P(I,J). Continuing repeatedly in this way, we 
find ultimately that r = rn G P(I9 J), as desired. 

(2)=>(3): This follows easily by induction, in view of the observation that 

I1I2'-In=(IJ2--In-l)ln-
(3)=>(4): Trivial. 
(4) =>(1): Assume (4). Given I and J as in (1), select any nonzero element 

seR, and set Ij =(s), a principal (hence, two-generated) ideal of JR, for each 
3 < / < n . If relJ then rsn~2eIJI3 • • • / „ , and so an application of (4) supplies 
i G I, j e / and r 3 , . . . ,rneR such that rsn~2 = i7*(r3s) • • • (rns). Cancellation in 
the domain R leads to r = i(jr3 • • • rn)eP(I,J), completing the proof. 

COROLLARY 2.2. If R is a Bézout domain, then R is condensed. In particular, 
all principal ideal domains and all valuation domains are condensed. 

Proof. By Proposition 2.1, it is enough to show that P(I,J) = IJ for all 
finitely generated ideals I and / of R. Since R is a Bézout domain, such J and / 
are principal ideals. However, a cancellation argument (cf. the above proof that 
(4)=>(1)) yields P(I,J) = IJ whenever I is principal and J is any ideal. This 
completes the proof. 

We next give an example of a one-dimensional local condensed domain 
which is not integrally closed. 
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EXAMPLE 2.3. Let F be a field. Set R = F[[X2 , X3]], the ring of those formal 
power series over F whose coefficient of X is 0. Then R is a condensed 
domain. 

For a proof, first recall from [1, Exercise 1(a), p. 545] that all nonprincipal 
ideals of R assume the form (X k ,X k + 1 ) , k > 2 . If I = (Xm ,Xm + 1 ) and J = 
(X n ,X n + 1 ) for some 2 < m < n , the fact that Xn+2eJ readily leads to IJ = 
(Xm)J, so that I J - P ( ( X m ) , J)c=P(I, J). In view of the earlier comments, this 
guarantees that R is condensed. 

The class of condensed domains is stable under various constructions, such as 
formation of factor-domains and localization. Our next result generalizes the 
latter fact. 

PROPOSITION 2.4. Each overring of a condensed domain is itself condensed. 

Proof. Let S be an overring of a condensed domain R. If I and / are ideals 
of S and if s G IJ, write s = ilj1 + • • • + in/n, with ik e I and jk e J for each k. By 
multiplying denominators appropriately, one finds a nonzero element reR 
such that rik, rjk e R for all k. Consider the ideals A = (n\ , . . . , rin) and B = 
( r / l 5 . . . , rjn) of R. Since r2se AB and R is condensed, r2s — ab for some aeA 
and b e B. Note that ax = ar~x e X Rik Œ I and> similarly, b1 = br~l e J. As r2s = 
r2axbu cancellation gives s = alb1eP(I,J), as desired. 

The import of the next result is that Pic(JR) = 0 for each condensed domain 
R. 

PROPOSITION 2.5. If I is an invertible ideal of a condensed domain JR, then I is 
principal. 

Proof, As usual, set I~l ={xeK: x/cijR}. Invertibility of I guarantees that 
I1 is a finitely generated R -module (cf. proof of [3, Theorem 58]), thus 
producing a nonzero element reR such that A = rI~l^R. Since r = rle 
r(II~A) = IA and R is condensed, there exist iel and aeA such that r = ia. 
Then b = ar~l e I1 satisfies r = ibr, whence cancellation gives ib = 1. Therefore, 
for each y G I, we have y = y(ib) = (yb)i e Ri, so that I = Ri, completing the 
proof. 

COROLLARY 2.6 (cf. Zafrullah [7, Corollary 8]). For a domain R, the follow
ing conditions are equivalent: 

(1) R is a condensed Prufer domain; 
(2) R is a Bézout domain. 

Proof. (1)=^>(2): Assume (1). Our task is to show that if / is a finitely 
generated ideal of R, then I is principal. Without loss of generality, 7^0 . Since 
R is a Prùfer domain, I is therefore invertible. Now an applicaton of Proposi
tion 2.5 suffices. 
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(2)=M1): As any Bézout domain is a Prufer domain, the assertion follows 
from Corollary 2.2. 

We next present our main technical result. As usual, we shall take 
depth(,R) < 1 to mean that 2? contains no R -sequence of length greater than 1. 

THEOREM 2.7. If R is a quasilocal condensed domain, then depth(i^)<l . 

Proof. If not, then the maximal ideal M of R contains an R -sequence x, y. 
Consider the ideals I = (x,y2) and J = (x2, y) of JR. As jc3 + y 3 e l / and R is 
condensed, there exist a,b,c,deR such that 

x3 + y3 = (ax + by2)(cx2 + dy). 

Expanding and regrouping reveal that ( l - a c ) x 3 e ( y ) . Since y, x is an JR-
sequence, l - a c e ( y ) c : M , so that ace U(R). Thus both a and c are units of 
R; similarly, so are b and d. Consequently ad + bcxy e U(R). However, the 
above equation yields (ad + bcxy)xy e(x3 , y3), whence jcy = rx3 + sy3 for suita
ble r,seR. As sy3e(x) and x, y is an JR-sequence, se(x); write s = ex for 
some eeR. Similarly, r = fy for some feR. Since xy = (fx2 + ey2)xy, cancella
tion gives l = / x 2 + ey 2eM, the desired contradiction, completing the proof. 

COROLLARY 2.8. For a domain R, the following conditions are equivalent: 
(1) R is Noetherian, gldim(.R)<oo and R is condensed; 
(2) JR is Noetherian, integrally closed and condensed; 
(3) JR is a principal ideal domain. 

Proof. (1) => (2): Assume (1). Since R is Noetherian, sup{gl dim(JRM): M is a 
maximal ideal of i?} = gldim(.R)<°°. For each M,RM is therefore a regular 
local ring, hence integrally closed; thus, R is integrally closed as well. 

(2)=>(3): Assume (2). If the Krull dimension of JR exceeds 1, the 
generalized principal ideal theorem (cf. [3, Theorem 152]) provides a height 2 
prime P of JR. Then Rp is a Macaulay ring [3, Exercise 25, p. 104], and so has 
an Rp -sequence of length 2. However, Proposition 2.4 guarantees that Rp is 
condensed, whence Theorem 2.7 gives depth(JRp)<l, a contradiction. Hence, 
dim(JR)<l. Accordingly, JR satisfies Noether's conditions for a Dedekind 
domain. As each nonzero ideal of JR is therefore invertible, an application of 
Proposition 2.5 yields (3). 

(3)=»(1): Trivial. 

By Corollaries 2.2 and 2.8, any Dedekind domain which is not a principal 
ideal domain is locally condensed (in the obvious sense) but not condensed. 

COROLLARY 2.9. Let R be a Noetherian condensed domain. Then dim(JR)<l 
and R' is a principal ideal domain. 

Proof. If dim(K)> 1, one argues as above that JR has a height 2 prime P, so 
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that S = Rp is a two-dimensional Noetherian condensed domain. By the 
Mori-Nagata theorem (cf. [4, Theorem 33.12]), Sf is also Noetherian. Since 
Proposition 2.4 assures that S' is condensed, Corollary 2.8 yields that Sf is a 
principal ideal domain, whence 2 = dim(S) = d im(S ' )< l , a contradiction. 
Therefore dimCR)<l. As JR' is Noetherian (by the Krull-Akizuki theorem [3, 
Theorem 93]) and condensed (by Proposition 2.4), Corollary 2.8 gives that Rf 

is a principal ideal domain, as asserted. 

We are grateful to the referee for the observations in the following two 
paragraphs. 

If A is a (Noetherian) local domain of dimension at least 2, then there exist 
nonzero nonunits x and y of A such that (x) : y =(x) : y2. (For instance, let M be 
the maximal ideal of A, choose O ^ X G M , use the prime avoidance lemma to 
find z in M but outside each of the minimal primes of (x), use the Noetherian 
property to find n such that (x) : zn = (x) : zl for all i > n, and set y = zn.) Hence, 
by arguing as in Theorem 2.7, no such A can be condensed. (Otherwise, argue 
as in Theorem 2.7 that ( l - a c ) x 3 e ( y ) . If 1 - ac is a unit, then x 3 e(y) , so that x 
is in any minimal prime of y, contradicting the fact that height (x, y) = 2. Thus a 
and c are units, and similarly so are b and d. As before, xy = rx3 + sy3, whence 
sy e(x) : y2 = (x) : y, and se(x) : y2 = (x) : y, producing teR such that sy = tx. This 
leads to y = rx2+ ty2 and, since 1 — ty is a unit, to y G (X2), contradicting height 
(x,y) = 2.) 

The assertions of the preceding paragraph apply in particular to (A = ) S, the 
ring in the proof of Corolary 2.9. Accordingly, those assertions may replace the 
second and third sentences of that proof. Thus the first assertion of Corollary 
2.9 may be obtained without appeal to the Mori-Nagata theorem. 

COROLLARY 2.10. For a domain R, the following conditions are equivalent: 
(1) R[X] is condensed; 
(2) R[[X]] is condensed; 
(3) R is a field. 

Proof. If R is a field, then both JR[X] and JR[[X]] are principal ideal 
domains. Consequently (3) implies both (1) and (2). We shall next prove that 
(2)=>(3), leaving the similar details for (1) 4> (3) for the reader. If (2) => (3) 
fails, let r e R be a nonzero nonunit, choose a maximal ideal M of ,R containing 
r, and set S = R[[X]]iMX). As R[[X]] is supposed condensed, Proposition 2.4 
assures that S is condensed, so that Theorem 2.7 yields depth(S)< 1. However 
r, X is evidently an R[[X]]-sequence and, hence, also an S-sequence (cf. [3, 
Theorem 133]), the desired contradiction. This completes the proof. 

We next collect some examples which illuminate some of the preceding 
material. To motivate parts (b) and (c) of Examples 2.11, note that any local 
(Noetherian) one-dimensional integrally closed domain is a DVR and, hence, 
condensed. 
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EXAMPLES 2.11. (a) The converse of Corollary 2.9 is false. Indeed, there 
exists a Noetherian one-dimensional domain R such that R' is a principal ideal 
domain and R is not condensed. One such example is given by R = F[X2, X3] , 
the ring of those polynomials over a field F whose coefficients of X is 0. It is 
well-known that Pic(JR) ^ 0 (indeed, Pic(jR) = F qua abelian groups), and so the 
fact that R is not condensed is a consequence of Proposition 2.5. The other 
assertions are immediate. 

(b) There exists a local (Noetherian) one-dimensional domain R such that 
Pic(S) = 0 for each overring S of R and R is not condensed. (Necessarily, R is 
not integrally closed. Indeed, the example given below is not even 
seminormal.) 

For the construction, let R =[R + (RX3 + [RX5 + [RX6 + [RX 8 +. . . , the ring of 
those formal power series over 1R whose coefficients of X, X2 , X 4 and X 7 are 0. 
Since i?'=IR[[X]] is a valuation domain, each overring S of R is (quasi-)local 
(cf. [5, Proposition 2.34]), whence Pic(S) = 0 by [1, Proposition 5, p. 113]. As 
R'= R[X] is Noetherian, it follows by Eakin's theorem (cf. [3, Exercise 15, 
p. 54]) that R is also Noetherian; one-dimensionality follows by integrality. 
Moreover, the unique maximal ideal of R is given by M = X[R[[X]]HR = 
(X3, X5). We claim that X 6 + X10 , which is evidently in M2 , is not in P{M, M). 
Otheriwse, X 6 4- X1 0 - (X3 + aX5 + • • -)(X3 + bX5 + • • •) for suitable real coeffi
cients a, b,. . . . Equating corresponding coefficients of X 8 (resp., X10) yields 
a + b = 0 (resp., ab = 1), whence a2 = — 1, the desired contradiction, proving the 
claim. Therefore R is not condensed. Finally, JR is not seminormal since 
y=X4eR'\R satisfies y2, y3eJR. 

(c) There exists a quasi-local one-dimensional integrally closed domain R 
such that R satisfies accp (ascending chain condition on principal ideals) and R 
is not condensed. 

For the construction, let k be a field of characteristic 0, let Y and Z be 
algebraically independent commuting indeterminates over k, set F = k(Y, Z), 
and consider the valuation domain V = F[[X]]. Note V = F+M, where M = 
XV. We claim that R = k + M has the asserted properties. 

Indeed, it is well known that .R is quasi-local, one-dimensional and integrally 
closed (cf. [3, Exercise 5, p. 52]). Next, observe that 

fc = fc( Y 2 + Y, z) n it( Y2, z) n k( Y, z2) n k( Y, Z+Z2). 

If LJ (1 < i < 4) denote the fields intersected above, then Dj = Lj + M is Noeth
erian for each i (cf. [2, Exercise 8(3), p. 271]). Then, as a finite intersection of 
domains each having accp, R = (~)Dt necessarily also satisfies accp. 

Finally, to show that JR is not condensed, let I be the ideal of R generated by 
X(Y,Z)/c[Y,Z]. We claim that X 2 Y 2 + X 2 Z 3 , which is evidently in I2, is not 
in P(I, I). Otherwise, a degree argument (and cancellation of X2) would lead to 
an expression of Y2 + Z3 as a product of two elements in (Y, Z)k[Y, Z], 
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contradicting the fact that Y2±Z3 is an irreducible element of k[Y, Z] . This 
establishes the claim and completes the proof. 

PROPOSITION 2.12. For a domain R, the following conditions are equivalent: 
(1) R is a condensed GCD-domain; 
(2) R is a Bézout domain. 

Proof. (2) => (1).* If R is a Bézout domain, then R is condensed by Corollary 
2.2, and it is well-known that JR is a GCD-domain. 

(1)=>(2): Assume (1). By Corollary 2.6, it is enough to show that R is a 
Prufer domain. As the conditions in (1) are preserved by localizaton (cf. 
Proposition 2.4), we may assume that R is quasilocal, say with maximal ideal 
M, and our task is then to prove that R is a valuation domain. Note that R, 
being a GCD-domain, is necessarily a so-called finite-conductor domain, in the 
sense that Ra Pi Rb is finitely generated for all a,beR. Accordingly, by the 
proof of [6, Lemma 3.9], it suffices to establish that M is jR-flat. Now if r and s 
are in M then Theorem 2.7 guarantees that r, s is not an 1?-sequence; thus by 
[3, Exercise 5, p. 102], a greatest common divisor d of r and s must lie in M. In 
particular, (r, s) <= (d) <= M. Consequently M is a direct limit of (flat) principal 
ideals of JR, and so M is jR-flat [1, Proposition 2(ii), p. 14], completing the 
proof. 

By passing to the quasilocal case of Proposition 2.12, we see that valuation 
domains may be characterized as the quasilocal condensed GCD-domains. 

A compansion result to Proposition 2.12 characterizes principal ideal do
mains as the condensed unique factorization domains. One way to see this is 
via the following generalization. 

PROPOSITION 2.13. For a domain JR, the following conditions are equivalent: 
(1) R is a condensed Krull domain', 
(2) R is a principal ideal domain. 

Proof. We need only tend to the proof that (1)=>(2). Assume (1). If 
dim(J3)<l then R is Noetherian (cf. [3, Exercise 8, p. 83]) and integrally 
closed, so that (2) follows from Corollary 2.8. Without loss of generality, we 
may therefore assume n =dim(jR)>l . There is no harm in further assuming 
that JR is quasilocal, with maximal ideal M By Theorem 2.7, depth( i?)<l , 
whence [3, Exercise 4(b), p. 83] implies that h, the height of M in R, is at most 
1. (Note that the result quoted from [3] may be applied because JR is a Krull 
domain.) But h = n> 1, the desired contradiction, completing the proof. 

Since the integral closure of any Noetherian domain must be a Krull domain 
[4, Theorem 33.10(1)], Proposition 2.13 readily leads to another proof of 
Corollary 2.9. 
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3. Further results. This section begins with a characterization of valuation 
domains which, quite apart from any possible intrinsic interest, yields another 
proof that all valuation domains are condensed. 

PROPOSITION 3.1. For a domain R, the following conditions are equivalent: 
(1) R is a valuation domain; 
(2) If an indexed subset {ik} of R generates the ideal I of R, then I = [j (ik); 
(3) If indexed subsets {im} and {jn} of R generate ideals I and J, respectively, 

then IJ=\J (ijn). 

Proof. (1)=>(2): Assume (1). Given {/k} as in (2) and re I, write r = 
r\ik, + • • • + rnikn for some indexes ku . . . , kn and some coefficients rl9..., rn e 
JR. By (1), we may relabel so that ikm e (ik) for all 2 < m < n, so that r e (iki), as 
desired. 

(2) =̂> (3): Given I and / as in (3), note that {imjn} generates IJ. Apply (2). 
(3) =>(1): Let r, s e JR. Consider the ideals I and J of JR generated by the sets 

{r, s} and {1}, respectively. Since r + seI = IR = IJ, (3) assures that r + s e 
(r)U(s). Without loss of generality, r + se(r). Then s = (r + s)-re(r), estab
lishing (1), to complete the proof. 

It is clear that condition (3) of Proposition 3.1 implies that R is condensed. 
Note also that the list of equivalent conditions in Proposition 3.1 may be 
augmented by three conditions analogous to (1), (3) and (4) in the statement of 
Proposition 2.1. 

In view of the arguments given for parts (b) and (c) of Examples 2.11, it 
seems convenient to say that a domain JR is semicondensed in case I2 = P(I, I) 
for each ideal I of JR. This definition permits us to state a sharpening of the first 
assertion in Corollary 2.9. First, we shall need the next result. 

LEMMA 3.2. Each overring of a semicondensed domain is itself semicon
densed. 

Proof. (Sketch) Modify the proof of Proposition 2.4 in the natural way, by 
applying the semicondensed property to the ideal (riu . . . , rcn, rju . . . , rjn). 

THEOREM 3.3. If R is a Noetherian semicondensed domain, then dim(.R)< 1. 

Proof. We claim first that depth(Kp)<l for each prime P of R. If the claim 
fails, then Lemma 3.2 permits us to suppose that JR is quasilocal, say with 
maximal ideal M, containing an R -sequence x, y. By the proof of [3, Theorem 
125], we may change notation so as to assume S = {x, y, zu . . . , zn) is a 
minimal generating set for M as an ideal of R. (Possibly n = 0, in which case 
M = (x, y).) Consider the ideal I = (x, y) of R. As x2 + y3 e I2 and R is semicon
densed, there exist a, fc, c, d e R such that 

x2 + y3 = (ax + by)(cx + dy). 
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As (l~ac)x2e(y) and y, x is an R-sequence, 1 - a c = ry for some reR; 
consequently, both a and c are in U(R). Moreover, the equation displayed 
above yields (bd-y)y = (rx-be-ad)x after cancellation of y. The K-sequence 
property then guarantees that bd-y e(x) and rx-bc-ade(y). From the first 
of these, we see that either b or d is in M; from the second, that be 4- ad e M. It 
follows from the earlier information about a and c that both b and d are in M. 
Thus, writing bd — y = sx for some s e JR, we have M = (x, sx 4- y, z l 7 . . . , zn) = 
(x, bd, z1? . . . , zn) = (x, z l 9 . . . , zn) since fed 6 M2 . This contradicts minimality of 
S and establishes the claim. 

Next, if d im(R)> l , one argues as in Corollaries 2.8 and 2.9 that R has a 
height 2 prime P, so that T = i?p is two-dimensional, Noetherian and (thanks to 
Lemma 3.2) semicondensed. Combining the Mori-Nagata theorem with 
Lemma 3.2 reveals that T" is a two-dimensional, Noetherian, integrally closed, 
semicondensed domain. By the result of the preceding paragraph, each local
ization of T' at a prime has depth at most 1. Accordingly, one may now argue 
as in the proof that (2) => (3) in Corollary 2.8, concluding that d im(T')^ 1, the 
desired contradiction, to complete the proof. 
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