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1. Introduction. Following, for example, Kuros [8], we define the (transfinite) upper
central series of a group G to be the series

such that Zx+1/Za is the centre of O/Zx, and if /3 is a limit ordinal, then Zg = U Za. If a is the
a</3

least ordinal for which Za =ZX+1 = . . . , then we say that the upper central series has length a,
and that Z, =H is the hypercentre of G. As usual, we call G nilpotent HZn = G for some finite n.

By replacing the concept central element of G (i.e., one with only one conjugate in (?) by the
concept FC-element of G (i.e., one with only a finite number of conjugates in G), Haimo [5] has
defined the upper FC-series of G to be the series

where Fa+ljFa is the set of all FC-elements of G/Fa, and if/9 is a limit ordinal, then F$ = U Fa,

If Fa =Fa+1 =. . . , then we will call Fa =F the hyper-FC-subgroup of G.
It is clear that Fa^Za for all a. In § 2, we investigate further the connection between the

two series. The main result is
THEOREM 1. / / the centre Z1 of G is torsion-free, then Far^ H = Za for all a.
(A group is said to be torsion-free if it contains no elements of finite order, other than 1.)
Now it is well known that H is locally nilpotent, but that not every locally nilpotent

group coincides with its hypercentre. This leads us to consider the upper central series and
upper FC-series of locally nilpotent groups. We find that in a locally nilpotent group, the
hypercentre and hyper-FC-subgroup coincide, and hence deduce

COROLLARY 1. / / the centre of a locally nilpotent group G is torsion-free, then Fa = Zu for
all a.

In § 3 we investigate the hypercentre H and the hyper-FC-subgroup F of G under certain
finiteness conditions. These include : FG, the property of being finitely generated ; Max,
the maximal condition for subgroups ; Max-G, the maximal condition for subgroups which are
normal in G ; and the corresponding minimal conditions Min and Min-G. Baer [1] has shown
that for H, the properties FG, Max and Max-G are equivalent; this is also true for F (Theorem
2). The corresponding result for the minimal conditions, that H satisfies Min-G only if H
satisfies Min, does not hold, but the stronger condition that G satisfies Min-G is sufficient to
imply that both H and F satisfy Min (Theorem 3). The results for the hyper-FC-subgroup
are generalisations of some of the results on FC-nilpotent groups (groups for which Fn = G for
some finite n) in Duguid and McLain [4]. We may remark that examples of groups which
coincide with their hyper-FC-subgroups are given by the infinite supersoluble groups defined
by Baer [2]. Indeed, Theorems 1 and 2 of Baer's paper are both simple corollaries of our
Theorem 2. Mal'cev [9] has proved the existence of groups with lower central series of
arbitrary length. In § 4 we do the same for the upper central series. Explicitly, for any
ordinal a, there exists a group G with upper central series of length a, terminating in (?.f

t Added in proof. This has also been proved by V. M. GluSkov, Mat. Sb., 31 (1952), 491-496, and by
S. Moran (to appear). I am grateful to Dr. K. A. Hirsch for these references.
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2. The upper central and upper FG-series.
LEMMA 1. If x belongs to the hypercentre, but not to the centre of G, and xn belongs to some

term of the upper central series to which x does not belong, then there is an element g of 0 such that
V = [x> O] and Vn a ^ ° belong to different terms of the upper central series.

(Here, [x, g] denotes, as usual, the commutator x^g-^xg.)
Proof: If xn # 1, let a be the least ordinal for which xneZa. Then a is not a limit ordinal,

and so xn4Za_v If x" = 1, we let a = 1.
In each case the hypothesis asserts that a#£a. Hence there exists geO such that

y — [x, g] 4Za_1. Now y belongs to some term in the upper central series (since x does), so
there exists a least ordinal /? such that yeZB. Then /3 is not a limit ordinal, and yiZB_v Now y
belongs to ZB, but not to Zu_lt so /?>a - 1. Therefore /?^=a, and xncZB. Thus both y = [a;, g]
and xn belong to ZB, and this is the centre of 0 modulo ZB_V Hence

yn = [x,g]n = [xn,g] = l mod ZB_V

So y does not belong to ZB_X, but yn does. This completes the proof of the lemma.
This lemma implies that Za+1jZa can contain an element of order n only if Z1 contains an

element, not 1, of order dividing n. In particular,

LEMMA 2. / / the centre Z^ of a group is torsion-free, then so is every factor group Zx+1jZx of
the upper central series.

Proof: If the lemma is false, let a be the least ordinal such that Za+1/Za contains a periodic
element xZa, not the identity. Then xeZa+1, xtfZ^ and x^Z^ for some integer n. Let y = [x, g]
be chosen as in Lemma 1, so that, if jS is the least ordinal for which yeZB, then £ is not a limit
ordinal, yiZ^_x but yneZB_x. Therefore Z$\ZB^X contains a periodic element yZ^_v Clearly
a.~^$>$ - 1 , and this contradicts the definition of a. Therefore the lemma is true.

Proof of Theorem 1 : We use transfinite induction, and assume that FBr\R=ZB for all
ordinals /3 less than a. (The assertion is trivial when /} = 0, since FO=ZO = 1.)

If a is a limit ordinal, then

Za= U Z0= U (F^H) = U F^H-

If a = j3 +1 for some jS, let x be an arbitrary element of Fa r\ H, and suppose that xfZa.
Then there exists an element g of 6 such that [x, g\iZB. Now [x, g] belongs to H, since x does,
so there exists an ordinal y such that [x, g]eZy and [x, g~\iZy_x. Clearly y>P, so Zy_1^ZB.

Now x has only a finite number of conjugates mod FB, so among the elements g~"xgn,
(n=0,1, 2, ...), two must be conjugate mod FB. Therefore x =g~nxgn mod FB, for some ra>0.
Hence [a;, gn] =x-1g-nxgneFB. But xeH, so [x, gn]eH. Therefore

But [a;, g] lies in the centre of G mod ZY_t. Hence

[x, g]n = [x, gn]~l modZY_1.

Thus we find that [a;, g] belongs to ZY but not to ZY_V and [x, g]n belongs to ZY_V This contra-
dicts the result of Lemma 2, that ZY\Zy_x is torsion-free.

Therefore xeZx, and so Za>.Fa r> H. But in any group, Zx^Far\ H, so Za=Fxr\ H, and the
proof of Theorem 1 is complete.

LEMMA 3. / / G is a locally nilpotent group, and x is an FC-element of G, then x belongs to
Zn for some finite n.

Proof: Let x = xlt x2, ..., xm be the conjugates of x in G. Any inner automorphism of G
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permutes the {a;,}, so there is a finite number (at most m!) of elements gu ...,groiO such that
any element g of G permutes the {a;,} in the same way as one of the g}.

Let K = Gj>{x, glt..., gr). K is finitely generated, and hence nilpotent: Zn(K) =K for
some n.

If X = Gp(j{x} = G p ^ , ...,xm} is the least normal subgroup of G containing x, then we
will prove by induction that Zk^X rs Zk(K), (fc = l, 2, ...). This is true if &=0, so we assume
that

and that y =x^afi ... a^ is an arbitrary element of X rs Zk(K). Let geO, and let gs permute
the {Xt} in the same way as g. Since yeZk(K), it commutes with gt mod Zk_1(K). Hence

Also, [y, g]eX, so [y, g] belongs t o l n Zk_x(K), and hence to Zk_1. As this is true for all
gtG, y belongs to Zk. Hence

Zk>Xr^Zk(K) (k = l, 2, 3, ...).

In particular, xeX r\ Zn(K))^Zn, and the lemma is proved.
LEMMA 4. If G is locally nilpotent, then Z^^F^^Z^ for all a. (Here <u denotes the first

limit ordinal.)
This follows from Lemma 3 by transfinite induction. We omit the details.
Corollary 1, stated in the introduction, follows immediately, since if G is locally nilpotent,

then Fa^.Hby Lemma 4, so Fa = Fa rs H, and if the centre of G is torsion-free, then Theorem 1
states that Fxr\ H = Za.

3. The finiteness conditions.

THEOREM 2. The following properties of the hyper-FG-subgroup F of G are equivalent:

(a) F satisfies Max-G,

(b) F satisfies Max,

(c) F is FG,

(d) F is a finite extension of an FG nilpotent group.

Proof:. If F satisfies Max-C, let K be a normal subgroup of G, maximal among those
which are contained in F and which satisfy Max, and suppose that K*F. Now FjK contains
an element xxKi=K which is FC in GjK ; let its conjugates be x2K, x3K, ..., xrK. Then

L = Gv{xv...,xT,K}

is a normal subgroup of G, and F^L>K, Now L/K is an FG, FC-group, and so satisfies Max
(for example, [4]). Since Max is a poly property (see P. Hall [7]), L satisfies Max, and this
contradicts the definition of K. Thus (a) implies (6), so (a) and (b) are equivalent.

Now (6) implies (c) in any group, and (d) implies (6), since every FG nilpotent group
satisfies Max, and, as we noted above, Max is a poly property.

To prove that (c) implies (d), we use a result in [4] that every finitely generated FC-nilpotent
group is a finite extension of a finitely generated nilpotent group. Hence we have only to
prove that a FG group with upper FC-series

1=FO<F1<...<FX = G

actually has Fn = G for some finite n. Let S={glt ..., g2m} be the set of generators of G and
their inverses, and let x be one of the g{eS. We define a finite set Xr^G inductively. Let Z x
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contain only x. If we have defined Xr, let ar be the least ordinal such that Xr^Fa . If
Far¥=l, then ar is not a limit ordinal (since Xr is finite). Hence XT is FC in 0 mod Fa _t.
Therefore there is a finite set X* ^Xr such that, for any y{eX* and <^e$, there is an element
ykeX* for which yii=y^griyigieFXr_l. If we define Xr + 1 to be the set of all these yijt then
Xr+1 is finite.

Now alt <x2, ..., ar, ... is a set of ordinals with the property that if a r ^ 0 then a r>ar + 1 .
Hence an = 0 for some n. Thus Xn = X* = 1 = Fo.

Assume now that X*_T^Fr. If X*_T_1 ={j/i, ••-, ye}, then for any yteX*_r_^,gjfS, there
exists a ykeX*_r_l such that

Hence g^lyigj=yk mod Fr, for some fc. Since any element of O is expressible as a product of
elements of S, this shows that X*_T_1 is a complete set of conjugates mod Fr, and hence that
any y^X*^^ is FC mod FT. Therefore -£*_,._ i<-Fr+i- By induction, this is true for all r.
In particular,

Thus each element g{ of S belongs to Fr for some finite r, and therefore G = Fr.
This completes the proof of the theorem.
The corresponding result for the minimal conditions, that if F (or even H) satisfies Min-G

then it satisfies Min, is not true, as the following example shows.
Example. Let H be the direct product of the cyclic groups of order a prime p,

#={2 l}x{z2}x. . . .

Let G( = Gp{//, <7,} (i=2, 3, ...), where g{ commutes with all of the zt except z,-, and

grlzi9i=zi-iz<-

Now let G be the free product of the groups (?,-, amalgamating the subgroup H.
I t is clear that the rth term of the upper central series of G is given by

2r={Zl}x{z2}x---X{2r}>

and that H is the hypercentre. (It is also the hyper-FC-subgroup of G.) Now the only sub-
groups of H which are normal in G are the Zr, since if a normal subgroup N of G contains
x = zr{zri ... zr

s', rs9*0, then it contains [x, gs]=ze-i, and consequently {z^}, {z,_2}, .... {zj,
and therefore also {zT»} ={zs}, i.e., N^Z,. Since the Zr form a well ordered chain, H satisfies
Min-G. But H, being an infinite direct product, does not satisfy Min.

THEOREM 3. / / G satisfies Min-G (the minimal condition for normal subgroups), then H and
F both satisfy Min.

Proof: Since F contains H, it is sufficient to show that F satisfies Min.
We use the lemma proved in McLain [10], that if G satisfies Min-6? and K is the (unique)

minimal normal subgroup of finite index in G, then Z^K) satisfies Min, and Z2(K) =Zl(K).
Suppose that F r\ K is not contained in Z^K). Let a be the least ordinal for which there

exists an x e Fa r\ K such that x 4 ZX(K). Then a is not a limit ordinal, and x has only a finite
number, say r, of conjugates mod Fa_±. Clearly, x has only r conjugates mod Fa_x r\ K, and
hence has at most r conjugates mod Z^K). Therefore the centraliser of x in G mod Zt{K)
has index at most r in G, and so contains K. (Any subgroup of finite index in G contains K.)
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Thus x belongs to the second centre Z2(K) of K and so to ZX(K). This contradiction proves
that

Hence F ^ K satisfies Min. But F/(F r\K)^. KFjK which is a subgroup of the finite group
GjK. Hence Ff(F r\ K) is finite and since Min is also a poly property, F satisfies Min.

COROLLAEY 2. / / 0 satisfies Min-G, then the upper central series has length less than oi2,
and the upper FC-series has length at most 2.

Proof: P. Hall's strict inclusion theorem for the finite upper central series of a group [6]
may be easily extended to the transfinite case to read : If N is a normal subgroup of 0, and
i\T/~, Za=N r\ Za+1,thenNr^ Zp = Nr\Zp+1{or all |3>a. (Detailed proofis not given. Wemay
remark that the corresponding result for the FC-series is also true, but will not be re-
quired.)

Since ZX(K) is the direct product of a finite number of groups of type (p"1) with a finite
group, any element x of H r^ K^F r\ K^Z^K) is contained in a finite characteristic subgroup
X of ZX(K). X is normal in 0, so we can apply the strict inclusion theorem. Thus, if X is
not contained in ZT, then X r\ Zr>X r\ Zr_{>...>X r\ Z0 = l, so, since X is finite, X < Z r f o r
some finite r. Hence H rs K = H ^ ZX(K) < Zw, and so HjZw is finite. Therefore 1/ = Zw+n for
some finite n.

The centraliser of ZX(K) contains K, and so has finite index n in 0. Hence any element of
ZX(K) has at most n conjugates in 0, and so Z1(.K'X.F1. Thus we can sharpen the equation
F n Z < Z ^ K ) to the equation Fx o K =Z^{K). Therefore F/Fi is finite, and so F=F2.

4. A group with transfinite upper central series.
Construction : Let A ={A, ju, v, ...} be a partially ordered set (henceforth a " poset "), and

let L be the set of all pairs (/x, v) for which /x< v. Denote by (?£ the set of all elements of the
form g = l + Zamem, where each (/x, v)eL, the a^ belong to a field K and only a finite number
are different from zero. GL becomes a multiplicative group if we define multiplication by

if A=/x,
e ' * e « - - \0 otherwise.

We call a subset S of L a normal partition if, for every (ft, v)eS, S also contains each (K, A)
with K!?C/AO=SCA. For such an S, let Gg denote the set of all elements of (?/, such that
a^^O only if (fj., v)eS. I t is easy to see that Gg is a subgroup of Gi, and is generated by the
set of all 1 +aeIIV, aeK, (n,v)eS. (The details are omitted.) In particular,

^£ = Gp{l +«eMV) aeK, (^)eZ}.
If (fi,v)e8, (K,X)eL, then

{ 1+abe^ if V = K, "j
l-abeKV if A=/x, I (1)
1 otherwise I

and belongs to G$ in each case. Hence Gs is a normal subgroup of G^.
The group GL is a generalisation of the case when A is a chain of n elements. GL is then

the well known group of all n x n unitriangular matrices over K, and the normal partition
subgroups are the normal partition subgroups as denned by Weir [11].

LEMMA 5. The centre of Gi modulo the normal partition group G$ is the normal partition
group Gj<, where T is the set of all (A, fi)eL such that K < A implies (K, fijeS and /x< v implies
(A, v)eS.
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Proof: By equation (1), the generators of GL and GT commute mod Gs, so GT is contained
in the centre of OL mod G$.

Let g = 1 + ZaAyeA(J be in the centre of GL mod Gs, and let (|, £)€.£. Then the coefficient
of eiti in A = [g, 1 - e({] is a{(l. Since ta(7,s, this implies that if aAjJ ̂  0 and K < A, then (*, /z)e#.
Similarly, if aA(i T̂ O and v>/u., then (A, y)e$. Hence geG^, and the proof of the lemma is com-
plete.

Now the union of a tower of normal partition subgroups is itself a normal partition
subgroup, so all the terms of the upper central series of Gi, are normal partition groups. If
Za{GL) = GT, then we donote T by 8".

THEOREM 4. For any transfinite ordinal a, there exists a poset A=Aa such that Za(G£) = Gjj,

Proof: If a is finite, we can take Aa a chain of a +1 elements. GL is then nilpotent of
class a. We use transfinite induction, and assume that, for all £ < a , there is a poset Ap such
that

(a) SI =LP, but Sr ¥=Lf, if y<j8,

(b) AB satisfies the ascending and descending chain conditions,
(c) if /? is a limit ordinal, then A& is the cardinal sum of all the AY, y</3 (see Birkhoff

[3], p. 7, for the definition of the cardinal sum of posets), and
(d) if |8 = y +1, then there exists a unique minimal element £ of Ap, and another element

XeAp for which ($, \)<tS%.

Case 1. If a is a limit ordinal, we take A =AX as the cardinal sum of the Ap, j8<a. (?/,
is the direct product of the Gi , and the induction hypotheses are satisfied.

We now require two lemmas.
LEMMA 6. If A1 and A2 are two posets (Ax, /i1)e£1, (A2, /i2)e^2 an<^ there is a one-one, order-

preserving mapping between the sections of the At less than A< and between the sections greater than
fio then (Xv pJeS* if and only if (A2, fi2)eS«.

This follows immediately from Lemma 5.
LEMMA 7. If A1 satisfies (a), ..., (d), and A2 is formed by the addition of one element f less

than every element of Alt then (/x, v)eS* implies (ft, v)e*S°+1.
Proof, by transfinite induction : The lemma is true when a = 1, so assume that it holds

for all ]8<a and that (/x, v)eS°^.

If a is a limit ordinal, then (fi, v)eS& for some fi<a, and so (p, i/)eS|+1<iS'|+1.

If a = £ +1 , suppose that (/x, v)jS*+1. Then, by Lemma 5, there is either a (v, p)eL2 with
(n, p)jS%, or else a (A, /x)eL2 with (A, v)jS*. In the first case, and in the second case if A # £, the
induction hypothesis asserts that (//., p) or (A, i>)̂ iS*. Hence, by Lemma 5, (p., v)^S^+1, which
is a contradiction. In the second case if A = £, we may assume that /x is a minimal element of
A1 (otherwise the previous argument holds). Applying Lemma 6, (£, v)<fS^ implies that
(fi, v)<(S*. This is a contradiction, and Lemma 7 is proved.

Case 2. / / a = |3 +1 , where /3 is a limit ordinal, we form A=AX by adding two elements
less than A$.

Suppose first that (£, QeS^. Then (£, QeS* for some y</3, and so (£, n)eS* for all
p. For any /ne/ly+1) let A be the minimal element of AY+V We can apply Lemma 6 to

(A, fj.) in Ay+l and (£, fi) in A, to find that (A, ̂ .)e*Sy
+r This contradicts property (d) of AY+l.

Hence (£ &&
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For any (A, tAeL^, (A, fjjeSp for some y<j3 ; so, applying Lemma 7 twice,

(A, lx)eSy+2^:SK

Also (£, jn) and (£, p) belong to <Sy+2, as this is a normal partition. If A is a minimal element
of Ap, then \eAy for some y < /9, and the above argument shows that, for any pO A, (f, ju.)e/Sy+2.
Then, by Lemma 5, (£, \)e8r+3 and (£, A)e/Sfv+4.

Thus (£, £) is the only element of L not in S&, so, by Lemma 5, S&+1=L, and yl satisfies

(a), ..., (d).
Case 3. / / a = jS + 2 /or some jS, we form A = Aa by adding one element $ less than A^+1.
Let A be the minimal element of Ap+1, and (A, /x)^£| r By Lemma 6, (f, /i)̂ <S3. Therefore

(Lemma 5) (f, A)^+1. Now for any M ^ + I . /* * A, (A, /x)e-S|+J. So, by Lemma 6, (£, /*)ejS*+1.

Also, if P < ( T < T all belong to Ap+1, then (p, T ) « S | + 1 (otherwise, by Lemma 5, (p, a) would not

belong to *S|tJ), and so, by Lemma 7, (p, T)«/SS+1.

Thus <SP+1 contains every element of L except (£, A), and possibly some (p, r)eL^+1 for
which there exists no element aeA^+1 such that p < a< T. By Lemma 5, Sp+2 must be the whole
of L. Hence A satisfies conditions (a), ..., (d).

This completes the proof of Theorem 4.
Remark. If k has prime characteristic p, then QL is a locally finite p-group. If K has zero

characteristic, then GL is torsion-free. In the latter case, by Theorem 1, the upper FC-series
of (?£ coincides with the upper central series, and so has length a.

Added in proof. Another group with upper FC-series of arbitrary length has recently
been constructed by A. M. Duguid.

REFERENCES
1. R. Baer, Das Hyperzentrum einer Gruppe III, Math. Z., 59 (1953-54), 296-338.
2. R. Baer, Supersoluble groups, Proc. Amer. Math. Soc, 6 (1955), 16-32.
3. G. Birkhoff, Lattice theory (Amer. Math. Soc, 1948).
4. A. M. Duguid and D. H. McLain, FC-soluble and FC-nilpotent groups, Proc. Comb. Phil.

Soc, 52(1956), 391-398.
5. F. Haimo, On the FC-chain of a group, Canad. Jour. Math., 5 (1953), 498-511.
6. P. Hall, A contribution to the theory of groups of prime power order, Proc. Lond. Math.

Soc, 36 (1933), 29-95.
7. P. Hall, Finiteness conditions for soluble groups, Proc. Lond. Math. Soc, (3) 4 (1954),

419-436.
8. A. G. Kuro§, Theory of groups, (Chelsea, 1955).
9. A. I. Mal'cev, Generalised nilpotent algebras and their associated groups, Mat. Sbornik

N.S., 25 (1949), 347-366. (in Russian).
10. D. H. McLain, On locally nilpotent groups, Proc. Camb. Phil. Soc, 52 (1956), 5-11.
11. A. J. Weir, The Sylow p-subgroups of the general linear group over finite fields of charac-

teristic p, Proc. Amer. Math. Soc, 6 (1955), 454-464.

THE UNIVEKSITY

GLASGOW

https://doi.org/10.1017/S2040618500033414 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033414

